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An arithmetic circuit is a natural model for computing polynomials over a field

F. It is a directed acyclic graph whose leaves are input variables x1, · · · , xn and

constants from the field F. The internal nodes are addition or multiplication gates.

The size of a circuit is the number of edges in it and the depth is the length of the

longest directed path in it. Given a partition of the variable set {x1, · · · , xn} into

sets X1, · · · , Xd, a polynomial is called set-multilinear with respect to this partition

if every monomial of the polynomial contains exactly one variable from each set Xi.

If every node of a circuit computes a set-multilinear polynomial, then it is called a

set-multilinear circuit.

The main goal of Algebraic Complexity Theory is to exhibit an explicit polynomial

to compute which circuits of superpolynomial size are required. By an explicit

polynomial, we mean a polynomial where given the exponent vector of a monomial,

we can compute the coefficient of this monomial in the polynomial efficiently. But

some interesting depth reduction results show that strong enough lower bounds for

constant depth circuits yield superpolynomial lower bounds for general algebraic
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circuits. Hence, our motivation is to find strong lower bounds for constant depth

algebraic circuits.

In a recent breakthrough result [LST], the first-ever superpolynomial lower bounds

on the size of constant depth algebraic circuits were shown. The main idea of

the paper was to first convert general algebraic circuits to set-multilinear circuits

without much blowup in depth and size. Thus, strong enough lower bounds on

set-multilinear constant depth circuits would imply constant depth general circuit

lower bounds. The strong set-multilinear lower bound was achieved by considering

a partition of the variables into sets of different sizes and using this discrepancy of

set sizes crucially.

In this thesis, we improve the lower bounds in [LST]. The strategy we employed is

to pick the set sizes more carefully. We design a number-theoretic algorithm to give

this better choice of the set sizes depending on the depth we are working with and

this lets us prove a stronger lower bound.
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Chapter 1

Introduction

1.1 Our Models of Computation

Fix an underlying field F.

Definition 1.1: Arithmetic Circuits and Formulas

An arithmetic circuit is a directed acyclic graph with one sink (vertex with

zero outdegree) called the output gate. The leaves are labelled by variables

x1, · · · , xn or elements from F. The internal nodes are either addition (+)

or multiplication (×) gates. Each node of the circuit naturally computes a

polynomial in F(x1, · · · , xn). The circuit is said to compute a polynomial f if

the output gate computes the polynomial f .

An arithmetic formula is a circuit whose every internal node has outdegree

at most 1.

Without loss of generality, we can assume that the circuit or formula has alternating

layers of addition and multiplication gates, with edges going only from one layer to

the next layer.

1



Chapter 1 Introduction 2

There are some interesting complexity measures associated with circuits or formulas:

• Size: the total number of nodes and edges in the circuit.

• Depth: the number of layers in the circuit.

• Product-depth: the number of layers of multiplication gates in the circuit.

Definition 1.2: Set-multilinear polynomials and circuits

Let the underlying variable set {x1, · · · , xn} be partitioned into d setsX1, · · · , Xd.

Then, a polynomial f ∈ F(x1, · · · , xn) is said to be set-multilinear with re-

spect to this partition if every monomial of it contains one variable from each

variable set Xi.

If every node of a circuit computes a set-multilinear polynomial, then it is called

a set-multilinear circuit.

An example of a set-multilinear polynomial is the Iterated Matrix Multiplication

Polynomial IMMn,d which is defined on nd2 variables. The variables are partitioned

into d sets X1, · · · , Xd containing n
2 variables each and these sets are viewed as n×n

matrices. The polynomial IMMn,d is defined as the (1, 1)-th entry of the matrix

product X1 · · ·Xd.

Definition 1.3: ABP

An ABP is a directed layered graph with edges from one layer to the next layer.

Every edge is labelled with a weight which is a linear polynomial (c0+
∑n

i=1 cixi)

for ci ∈ F. The first layer has a single vertex s called the source and the last

layer has a single vertex t called the sink. The polynomial computed by the

ABP is ∑
P is a path from s to t

weight(P )

where weight(P ) denotes the product of the edge-weights lying on the path P .
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1.2 VP and VNP: Algebraic Complexity Classes

We need algebraic complexity classes to classify polynomials based on their com-

putational complexity in terms of these algebraic models of computation. Valiant

[Val79], in a very influential work defined the classes VP and VNP which can be

considered the arithmetic analogues of P and NP.

Definition 1.4: VP

A family of polynomials (fn) is said to be in the class VP if each fn is a p(n)-

variate polynomial of degree q(n) for some polynomially bounded functions p

and q and it is computable by a circuit of size polynomially bounded in n.

Definition 1.5: VNP

A family of polynomials (fn) is said to be in the class VNP if there exist

polynomially bounded functions p and q and a family of polynomials (gn) ∈VP

of polynomials gn ∈ F[x1, · · · , xp(n), y1, · · · , yq(n)] such that

fn(x1, · · · , xp(n)) =
∑

e∈{0,1}q(n)

gn(x1, · · · , xp(n), e1, · · · , eq(n)).

Clearly, VP ⊆ VNP. Much like the P vs NP problem in the Boolean world, the

central open problem of algebraic complexity theory is to separate VP from VNP i.e.

to exhibit a polynomial family in VNP which requires superpolynomial sized general

algebraic circuits to be computed.

But there are some interesting depth reduction results which show that depth 3 and

depth 4 circuits are almost as powerful as general ones.
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Lemma 1.1: Depth reduction [VSBR83, AV08, Koi12, Tav13, GKKS16]

Let f be an n-variate degree d polynomial computed by a size s arithmetic

circuit. Then f can be computed by a depth four circuit of size sO(
√
d). If this

polynomial f is over Q, then it can also be computed by a depth three circuit

of size sO(
√
d).

Hence proving an nω(
√
d) lower bound on these special circuits is enough to separate

VP from VNP. This is our motivation to study constant depth circuit lower bounds.

1.3 Before 2021: Lower Bounds for Constant Depth

Circuits

In the Boolean world, strong lower bound for constant depth circuits were known

since the 1980’s [FSS81, Ajt83, Has86, Raz87, Smo87], but for constant depth alge-

braic circuits, superpolynomial lower bounds remained elusive for a long time. Till

2021, the best known lower bound for even depth 3 circuits was near cubic. [KST16]

proved a lower bound of Ω(n3/(log n)2) against depth 3 circuits. In [GST20], a lower

bound of Ω(n2.5/(log n)6) was obtained for depth 4 circuits. For a general constant

∆, a lower bound of the form n1+Ω(1/∆) was known for algebraic circuits of depth

∆ [SS97, Raz10]. Clearly, these lower bounds fall far short of the superpolynomial

lower bounds we hope to prove.

1.4 2021: The LST Breakthrough

In 2021, Limaye, Srinivasan and Tavenas [LST] proved the first-ever superpolynomial

lower bound for general constant-depth circuits. More precisely, they showed that

the Iterated Matrix Multiplication polynomial IMMn,d (where d = o(log n)) has no
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product-depth ∆ circuits of size ndexp(−O(∆))
. Note that for any ∆ ≤ log d, IMMn,d

has a set-multilinear circuit of product-depth ∆ and size nO(d1/∆), obtained by simple

divide-and-conquer approach.

The lower bound proof of [LST] proceeds in two steps:

• Set-multilinearization: In the first step, we show that if a set-multilinear

polynomial has a circuit of depth ∆ and size s, then it can also be computed

by a set-multilinear circuit of depth at most 2∆ and size dO(d)poly(s). As

the blowup in size only depends on d, we can work in the low-degree regime

(take d = O(log n/ log log n)) and here a superpolynomial lower bound for

constant-depth set-multilinear circuits implies a superpolynomial lower bound

for general constant-depth circuit.

• Set-multilinear lower bound: In this step, we prove a lower bound of the

form ndexp(−O(∆))
for set-multilinear circuits of constant depth ∆, using the so-

called partial derivative method, used first in [NW95] to obtain set-multilinear

circuit lower bounds. This method was applied in [LST] with the important

change that the sets X1, · · · , Xd were now allowed to be of different sizes and

this discrepancy in set sizes crucially helps in getting strong set-multilinear

lower bounds.

1.5 Some More Recent Works

In a further recent work [TLS], Tavenas, Limaye and Srinivasan proved a product-

depth ∆ set-multilinear formula lower bound of (log n)Ω(∆d1/∆) for IMMn,d. There is

no restriction of degree, but in the small degree regime, the bound is much weaker

than [LST] and cannot be used for escalation. Improving on it, Kush and Saraf [KS]

showed a lower bound of nΩ(n1/∆/∆) for the size of product-depth ∆ set-multilinear

formulas computing an n2-variate, degree n polynomial in VNP from the family of
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Nisan-Wigderson design-based polynomials. Kush and Saraf further improved the

result in [KS23] by proving the same lower bound for a Θ(n2)-variate, degree Θ(n)

polynomial which is computable by a set-multilinear ABP of polynomial size.

1.6 Contribution of this Thesis

In this thesis, we see an improved lower bound for IMM against general constant

depth circuits.

For the rest of this paper, let F (n) = Θ(φn) be the n-th Fibonacci number (starting

with F (0) = 1, F (1) = 2) where φ = (1 +
√
5)/2 = 1.618 . . . is the golden ratio. We

define the functions G and µ as G(n) = F (n)−1 and µ(n) = 1/G(n) = 1/(F (n)−1)

for non-negative integers n.

Theorem 1.1: General circuit lower bound

Fix a field F of characteristic 0 or characteristic > d. Let N, d,∆ be such that

d = o(logN/ log logN). Then, any product-depth ∆ circuit computing IMMn,d

on N = dn2 variables must have size at least NΩ(dµ(2∆)/∆).

Theorem 1.1 improves on the lower bound of N
Ω
(
d1/(2

2∆−1)/∆
)
of [LST] since F (2∆) =

Θ(φ2∆) ≪ 22∆.

To prove Theorem 1.1, we use the hardness escalation given by Lemma 2.2 which

allows for conversion of general circuits to set-multilinear ones without significant

blow up in size (provided the degree is small). The actual lower bound is for set-

multilinear circuits.

Theorem 1.2: Set-multilinear circuit lower bound

Let d ≤ (log n)/4. Any product-depth ∆ set-multilinear circuit computing

IMMn,d must have size at least nΩ(dµ(∆)/∆).
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This is an improvement over the n
Ω
(
d1/(2

∆−1)/∆
)
bound of [LST, Lemma 15]. More-

over, the result holds over any field F. The restriction on the characteristic in

Theorem 1.1 comes from the conversion to set-multilinear circuits. The difference

between µ(2∆) in Theorem 1.1 and µ(∆) in Theorem 1.2 is also due to the doubling

of product-depth during this conversion.



Chapter 2

Preliminaries

For any positive integer n, we denote by F (n) the n-th Fibonacci number with

F (0) = 1, F (1) = 2 and F (n) = F (n − 1) + F (n − 2). The function G : N → N is

given by G(n) = F (n)− 1. The nearest integer to any real number r is denoted by

⌊r⌉. We follow the notation of [LST] as much as possible for better readability.

2.1 Words

Words are basically tuples (w1, . . . , wd) of length d where 2|wi| are integers. These

words define the actual set sizes of the set-multilinear polynomials we will be working

with. Given a word w, letX(w) denote the tuple of sets of variables (X1(w), . . . , Xd(w))

where the size of each Xi(w) is 2
|wi|. We denote the space of set-multilinear polyno-

mials over X(w) by Fsm[X(w)].

For a word w and any subset S ⊆ [d], the sum of elements of w indexed by S is

denoted by wS =
∑

i∈S wi. For all t ≤ d, if it holds that |w[t]| ≤ b, then we call w

‘b-unbiased’. Denote by w|S the sub-word indexed by S. The positive and negative

indices of w are denoted Pw = {i | wi ≥ 0} and Nw = {i | wi < 0} respectively with

the corresponding collections {Xi(w)}i∈Pw and {Xi(w)}i∈Nw being the positive and

8



Chapter 2. Preliminaries 9

negative variable sets. We denote by MP
w (resp. MN

w ) the set of all set-multilinear

monomials over the positive (resp. negative) variable sets.

2.2 Relative Rank: The Complexity Measure

The partial derivative matrix Mw(f) of f ∈ Fsm[X(w)] has rows indexed by MP
w

and columns by MN
w . The entry corresponding to row m+ ∈ MP

w and m− ∈ MN
w is

the coefficient of the monomial m+m− in f . The complexity measure we use is the

relative rank, same as [LST]:

relrkw(f) :=
rank(Mw(f))√
|MP

w | · |MN
w |

=
rank(Mw(f))

2
1
2

∑
i∈[d] |wi|

≤ 1 .

The following properties of relrkw will be useful.

1. (Imbalance) For any f ∈ Fsm[X(w)], relrkw(f) ≤ 2−|w[d]|/2.

2. (Sub-additivity) For any f, g ∈ Fsm[X(w)], relrkw(f + g) ≤ relrkw(f) +

relrkw(g).

3. (Multiplicativity) Suppose f = f1f2 · · · ft where fi ∈ Fsm[X(w|Si
)] and (S1, . . . , St)

is a partition of [d]. Then, relrkw(f) = relrkw(f1f2 · · · ft) =
∏

i∈[t] relrkw|Si
(fi).

For sake of completion, we provide the proof from [LST].

Proof. 1. We have |MP
w | = 2

∑
i∈Pw

wi and |MN
w | = 2−

∑
i∈Nw

wi . Hence,

relrkw(f) ≤
min

(
|MP

w |, |MN
w |
)

2
1
2

∑
i∈[d] |wi|

=

√
min

(
|MP

w |, |MN
w |
)

max
(
|MP

w |, |MN
w |
) = 2−|w[d]|/2 .

2. Mw(f + g) = Mw(f) + Mw(g) =⇒ rank(Mw(f + g)) ≤ rank(Mw(f)) +

rank(Mw(g)), which implies the subadditivity property of relative rank.
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3. The matrix Mw(f) equals to the Kronecker product Mw(f1)⊗ · · · ⊗Mw(ft).

Therefore,

relrkw(f) =

∏
i∈[t]

rank(Mw(fi))

∏
i∈[t]

2
1
2

∑
j∈Si

|wj |
=
∏
i∈[t]

relrkw|Si
(fi) .

2.3 Word Polynomials

We now define the hard polynomials we prove lower bounds for. For any monomial

m ∈ Fsm[X(w)], let m+ ∈ MP
w and m− ∈ MN

w be its “positive” and “negative”

parts. As |Xi| = 2|wi|, the variables of Xi can be indexed using boolean strings of

length |wi|. This gives a way to associate a boolean string with any monomial. Let

σ(m+) and σ(m−) be the strings associated with m+ and m− respectively. We write

σ(m+) ∼ σ(m−) if one is a prefix of the other.

Definition 2.1: Word Polynomials [LST]

Let w be any word. The polynomial Pw is defined as the sum of all monomials

m ∈ Fsm[X(w)] such that σ(m+) ∼ σ(m−).

The matrices Mw(Pw) have full rank (equal to either the number of rows or columns,

whichever is smaller) and hence relrkw(Pw) = 2−|w[d]|/2. We note (without proof) that

these polynomials can be obtained as set-multilinear restrictions of IMMn,d.
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Lemma 2.1: [LST, Lemma 8]

Let w be any b-unbiased word. If there is a set-multilinear circuit computing

IMM2b,d of size s and product-depth ∆, then there is also a set-multilinear circuit

of size s and product-depth ∆ computing the polynomial Pw ∈ Fsm[X(w)].

Moreover, relrkw(Pw) ≥ 2−b/2.

The following lemma from [LST] tells us that any circuit over a large characteristic

field can be set-multilinearized with a blowup in depth by a factor of 2 and a blowup

in size by a factor which is exponential only in poly(d).

Lemma 2.2: [LST, Proposition 9]

Let s,N, d,∆ be growing parameters with s ≥ Nd. Assume that char(F) = 0

or char(F) > d. If C is a circuit of size at most s and product-depth at most ∆

computing a set-multilinear polynomial P over the sets of variables (X1, . . . , Xd)

(with |Xi| ≤ N), then there is a set-multilinear circuit C̃ of size dO(d)poly(s)

and product-depth at most 2∆ computing the same polynomial P .

Hence, we can restrict ourselves to work in the low-degree regime so that the blowup

in size is at most polynomial in s.



Chapter 3

Lower bound proof overview

In this chapter, we provide a proof overview of Theorem 1.2 for depth three circuits.

Then we discuss the obstacles in extending this proof strategy to higher-depth cir-

cuits and the ideas used in overcoming these obstacles.

By Lemma 2.2, our goal is to prove set-multilinear circuit lower bounds for the IMM

polynomial. Lemma 2.1 says that it suffices to prove the set-multilinear circuit lower

bound for a word polynomial Pw. This lemma also tells us that if a word w is k-

unbiased for some small k, then the polynomial Pw has high relative rank. Therefore,

if we can choose such a word w and show that for this choice of word (and hence set

sizes), the relative rank is small for set-multilinear circuits of a certain size, we will

be done.

Let k be an integer close to log2 n.

Word chosen in [LST]: The positive entries of the word w were equal to an

integer close to k/
√
2 and the negative entries were −k. Evidently, these entries are

independent of the product-depth ∆.

Word chosen in this thesis: The positive entries of the word w are (1 − p/q)k

and the negative entries are −k where p and q are suitable integers dependent on

12
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∆. This depth-dependent construction of the word enables us to improve the lower

bound.

We demonstrate the high level proof strategy of the lower bound for the case of

product-depth 3.

3.1 Proof overview of Theorem 1.2 for ∆ = 3

Define λ = ⌊d1/G(3)⌋. Consider a set-multilinear formula C of product-depth 3 and

let v be a gate in it. Suppose that the subformula C(v) rooted at v has product-depth

δ ≤ 3, size s and degree ≥ λG(δ)/2. We will prove that relrkw(C
(v)) ≤ s2−kλ/48 by

induction on δ. This will give us the desired upper bound of the form s2−kλ/48 =

sn−Ω(dµ(3)) on the relative rank of the whole formula when v is taken to be the output

gate.

Write C(v) = C1 + · · · + Ct where each Ci is a subformula of size si rooted at

a product gate. Because of the subadditivity of relrkw, it suffices to show that

relrkw(Ci) ≤ si2
−kλ/48 for all i.

Base case: If δ = 1, then Ci is a product of linear forms. Thus, it has rank 1 and

hence low relative rank.

Induction step: δ ∈ {2, 3}. Write Ci = Ci,1 . . . Ci,ti where each Ci,j is a subformula

of product-depth δ − 1. If any Ci,j has degree ≥ λG(δ−1)/2, then by induction

hypothesis, the relative rank of Ci,j and hence Ci will have the desired upper bound

and we are done.

Otherwise each Ci,j has degree Dij < λG(δ−1)/2. As the formula is set-multilinear,

there is a collection of variable-sets (Xl)l∈Sj
with respect to which Ci,j is set-multilinear.

For j ∈ [ti], let aij be the number of positive indices in Sj i.e. the number of positive

sets in the collection (Xl)l∈Sj
. Then the number of negative indices is (Dij − aij).
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We consider two cases: if aij ≤ Dij/3, then wSj
≤ (Dij/3)·(1−p/q)k+(2Dij/3)·(−k)

≤ −Dijk/3. Otherwise aij > Dij/3 and if we can prove that |wSj
| ≥ aijk/(4λ

G(δ)−1),

then in both of the above cases, we would have |wSj
| ≥ Dijk/(12λ

G(δ)−1). By the

multiplicativity and imbalance property of relrkw, it would follow that relrkw(Ci) ≤

2
∑ti

j=1 −
1
2
|wSj

| ≤ 2−kλ/48 and we would be done. Thus, we now only have to show that

|wSj
| ≥ aijk/(4λ

G(δ)−1). We have

|wSj
| = |aij(1− p/q)− (Dij − aij)| k .

Notice that |wSj
|/k is the distance of aijp/q from some integer, so it must be at

least the minimum of {aijp/q} and 1 − {aijp/q} where {.} denotes the fractional

part. The number aijp/q being rational, has a fractional part ζ = (aijp mod q)/q

and hence it comes down to finding a nice tuple (p, q) which satisfies the following

system of inequalities:

min (ζ, 1− ζ) ≥ aij/(4λ
G(δ)−1) for δ ∈ {2, 3} when aij ≤ Dij < λG(δ−1)/2 .

This notion is captured by the definition of (d,∆)-niceness of a tuple (p, q) in Chapter

4.

Here, assign p = λ, q = λ2 + 1.

The inequality for the δ = 2 case is clearly satisfied as (aijλ mod (λ2 + 1)) = aijλ

when 0 ≤ aij ≤ λ/2.

Consider the case of δ = 3 and aij < λ2/2. Write aij = y1λ+ y0 for integers

y1 = ⌊aij/λ⌋ < λ/2 and y0 ≤ λ−1. Thus, aijλ ≡ −y1+y0λ mod (λ2+1). Through

some case analysis, one can show that min

(
|y0λ−y1|, λ2+1−|y0λ−y1|

)
≥ y1 which

immediately implies the inequality for the δ = 3 case as y1 = ⌊aij/λ⌋ ≥ aij/(2λ).
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3.2 Obstacles in extending the above proof strat-

egy to product-depth 4 and how to overcome

them

Obstacle: We can attempt to extend the above proof technique to product-depth

4 as follows:

We would similarly want to express aij as aij = y2λ
2 + y1λ + y0 for integers y2 =

⌊aij/λ2⌋, y0 ≤ λ− 1 and y1 ≤ λ− 1. Ideally, we would want that for some q ≈ λ4,

pλ2 ≡ 1 mod q, pλ ≡ −λ2 mod q and p ≡ λ3 mod q

so that aijp ≡ y2 − y1λ
2 + y0λ

3 mod q and then we can carry out a similar analysis

as in the ∆ = 3 case. But this is not possible since multiplying the second congru-

ence equation by λ gives pλ2 ≡ −λ3 mod q, which contradicts the first congruence

equation.

Workaround: We decide to express aij as aij = y2b2 + y1b1 + y0b0 where b2, b1, b0

are close to λ2, λ, 1 respectively, instead of being precisely equal to these powers of

λ. Then we choose c2 ≈ 1, c1 ≈ −λ2, c0 ≈ λ3 and we assign values to p and q such

that

pb2 ≡ c2 mod q, pb1 ≡ c1 mod q and pb0 ≡ c0 mod q.

It is easy to verify that all these conditions are satisfied if we define

b0 = 1, b1 = λ, b2 = b1(λ− 1) + b0; c2 = 1, c1 = −λ2, c0 = c2 − c1(λ− 1);

p = c0 and q = pb1 − c1.

This inspired our construction of the sequences {bm} and {cm} for general product-

depth ∆.



Chapter 4

Improved lower bound for

constant depth circuits

In this chapter, we prove Theorem 1.1 and Theorem 1.2.

Theorem 1.1: General circuit lower bound

Fix a field F of characteristic 0 or characteristic > d. Let N, d,∆ be such that

d = o(logN/ log logN). Then, any product-depth ∆ circuit computing IMMn,d

on N = dn2 variables must have size at least NΩ(dµ(2∆)/∆).

Theorem 1.2: Set-multilinear circuit lower bound

Let d ≤ (log n)/4. Any product-depth ∆ set-multilinear circuit computing

IMMn,d must have size at least nΩ(dµ(∆)/∆).

4.1 Proof of the Lower Bounds

We first prove Theorem 1.1 in the same style as the proof of [LST, Corollary 4]:

16
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Proof of Theorem 1.1. From Lemma 2.2 and Theorem 1.2, for a circuit of product-

depth ∆ and size s computing IMMn,d, we get that

dO(d)poly(s) ≥ NΩ(dµ(2∆)/2∆).

Since d = O(logN/ log logN), it follows that dO(d) = NO(1). Therefore,

poly(s) ≥ NΩ(dµ(2∆)/2∆)/dO(d) ≥ NΩ(dµ(2∆)/4∆)

implying the required lower bound on s and thus, Theorem 1.1.

Now we prove Theorem 1.2. To do this, we need the notion of (d,∆)−nice tuples of

integers, defined as follows.

Definition 4.1: (d,∆)−niceness

Let d,∆ be positive integers and let λ := ⌊d1/G(∆)⌋. Then, a tuple of positive

integers (p, q) is called (d,∆)−nice if it satisfies the following two conditions:

• Condition 1: q ≤ d and
1

2λ
≤ p

q
≤ 1

2
.

• Condition 2: for all δ ∈ {2, · · · ,∆}, for all positive integers z <

λG(δ−1)/8,

min

(
zp mod q

q
, 1− zp mod q

q

)
≥ z

8λG(δ)−1
.

Basically, if we have such a tuple (p, q), then we can define the variable set sizes in

terms of this tuple and the above-mentioned properties of this tuple will ensure that

the discrepancy in the set sizes is nice enough to obtain strong set-multilinear lower

bounds. The following lemma guarantees the existence of such tuples in most cases:



Chapter 4. Improved lower bound for constant depth circuits 18

Lemma 4.1: Existence of (d,∆)-nice tuples

For every pair of positive integers d,∆ satisfying ⌊d1/G(∆)⌋ ≥ 3, there exists a

tuple of positive integers (p, q) which is (d,∆)-nice.

We devote Section 4.2 to the proof of this lemma.

Proof of Theorem 1.2. Fix the product-depth ∆ for which we want to prove the set-

multilinear formula lower bound. Define λ := ⌊d1/G(∆)⌋. If λ ≥ 3, then dµ(∆) < 3

and in that case, the lower bound is trivial. Hence, we can assume that λ ≥ 3. By

Lemma 4.1, there exists a tuple of positive integers (p, q) which is (d,∆)-nice. Using

these numbers p, q, we first construct a word w′ such that the word polynomial Pw′

is hard to compute.

Construction of the word: Define α = 1− p/q.

By the first condition of (d,∆)-niceness for the tuple (p, q), we know that α ≥ 1/2

and

q ≤ d < ⌊log2 n⌋/2 .

Therefore, there exists a multiple of q in the interval
[
⌊log2 n⌋

2
, ⌊log2 n⌋

]
. Let k

be this multiple of q.

Then αk is an integer. We can construct a word w′ over the alphabet {αk,−k}

such that w′ is k-unbiased. This can be done using induction: set w′
1 := −k.

At the i-th step, if |w′
[i]| ≤ 0, set w′

i+1 := αk, otherwise set w′
i+1 := −k.

Assume the following lemma:
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Lemma 4.2

Let δ ≤ ∆ be an integer and α, k be as defined above. Let w be any word of

length d over the alphabet {αk,−k}. Then any set-multilinear formula C of

product-depth δ, degree D ≥ λG(δ)/8 and size at most s satisfies

relrkw(C) ≤ s2−kλ/256.

By Lemma 2.1, there exists a set-multilinear projection Pw′ of IMM2k,d such that

relrkw′(Pw′) ≥ 2−k. If there is a set-multilinear circuit of size s and product-depth

∆ computing IMMn,d, then we can expand it to a set-multilinear formula of size

at most s2∆ which computes the same polynomial. Hence we will also have a set-

multilinear formula of size at most s2∆ computing Pw′ . As d ≥ λG(∆)/8, taking the

particular case of δ = ∆ in Lemma 4.2, we obtain relrkw′(Pw′) ≤ s2∆2−kλ/256. This

gives the desired lower bound

s2∆ ≥ 2−k2kλ/256 ≥
(n
4

) d1/G(∆)

512
/n = nΩ(dµ(∆)).

Proof of Lemma 4.2. We proceed by induction on δ. We can write C = C1+ · · ·+Ct

where each Ci is a subformula of size si rooted at a product gate. Because of the

subadditivity of relrkw, it suffices to show that

relrkw(Ci) ≤ si2
−kλ/256 for all i.

Base case: C has product-depth δ = 1 and degree D ≥ λ/8.

Then Ci is a product of linear forms. If L is linear form on some variable set X(wj),

then relrkw(L) ≤ 2−|wj |/2 ≤ 2−k/4. Therefore by the multiplicativity of relrkw,

relrkw(Ci) ≤ 2−kD/4 ≤ 2−kλ/32 .
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Induction hypothesis: Assume that the lemma is true for all product-depths

≤ δ − 1.

Induction step: Let C be a formula of product-depth δ and degree D ≥ λG(δ)/8.

We can write Ci = Ci,1 . . . Ci,ti where each Ci,j is a subformula of product-depth

δ − 1.

If Ci has a factor, say Ci,1, of degree ≥ λG(δ−1)/8, then by induction hypothesis,

relrkw(Ci) ≤ relrkw(Ci,1) ≤ si2
−kλ/256 .

Otherwise every factor of Ci has degree < λG(δ−1)/8. Let Ci = Ci,1 . . . Ci,ti where

each Ci,j has degree Dij < λG(δ−1)/8. If Ci is set-multilinear with respect to (Xl)l∈S,

then let (S1, . . . , Sti) be the partition of S such that each Ci,j is set-multilinear with

respect to (Xl)l∈Sj
.

For j ∈ [ti], let aij be the number of positive indices in Sj. We have two cases:

Case 1: aij ≤ Dij/2

We have

wSj
= aij · αk + (Dij − aij) · (−k)

≤ Dij

2
· αk +

Dij

2
· (−k) = −Dijp

2q
k ≤ −Dijk

4λ

where the last inequality follows from the first condition of (d,∆)-niceness for the

tuple (p, q). This implies that |wSj
| ≥

∣∣∣∣Dijk

4λ

∣∣∣∣ ≥ Dijk/(16λ
G(δ)−1).

Case 2: aij > Dij/2

We have

|wSj
| = |aij · αk + (Dij − aij) · (−k)|

=

∣∣∣∣aij pq − (2aij −Dij)

∣∣∣∣ k as α = 1− p/q
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≥
∣∣∣∣aijpq −

⌊
aijp

q

⌉∣∣∣∣ k where ⌊.⌉ denotes the nearest integer.

Now

∣∣∣∣aijpq −
⌊
aijp

q

⌉∣∣∣∣ can be equal to either the fractional part of
aijp

q
or one minus

the fractional part. As
aijp

q
is a rational number, its fractional part is

aijp mod q

q
.

Hence,

|wSj
| ≥ min

(
aijp mod q

q
, 1− aijp mod q

q

)
k .

As aij ≤ Dij < λG(δ−1)/8, it follows from the second condition of (d,∆)-niceness for

the tuple (p, q) that

|wSj
| ≥ aijk

8λG(δ)−1
>

Dijk

16λG(δ)−1
.

Hence in both of the above cases, we have |wSj
| ≥ Dijk/(16λ

G(δ)−1). By the mul-

tiplicativity and imbalance property of relrkw and the assumption D ≥ λG(δ)/8, it

follows that

relrkw(Ci) ≤
∏ti

j=1
2−

1
2
|wSj

| ≤ 2−
∑ti

j=1 Dijk/(32λ
G(δ)−1) = 2−Dk/(32λG(δ)−1) ≤ 2−kλ/256 .

4.2 Existence of (d,∆)-nice tuples

In this section, we prove Lemma 4.1.

For the rest of the section, let λ = ⌊d1/G(∆)⌋ ≥ 3. We will construct two sequences

{bm} and {cm} of integers which satisfy some nice properties. Then we will use

these sequences to define our (d,∆)-nice tuple (p, q). The nice properties of these

sequences will help us in proving the (d,∆)-niceness of (p, q).
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4.2.1 Defining the sequences {bm}, {cm} and the tuple (p, q):

Let rm := λG(m+1)−G(m) − 1 for 0 ≤ m ≤ ∆− 2.

Define
b0 := 1, b1 := λ and bm := bm−2 + rm−1bm−1 for 2 ≤ m ≤ ∆− 2 .

Define
c∆−2 := (−1)∆−2, c∆−3 := (−1)∆−3λG(∆−1)−G(∆−2) and

cm := (−1)m(|cm+2|+ rm+1|cm+1|) for ∆− 4 ≥ m ≥ 0 .

Note that the sign parity of cm is (−1)m i.e. |cm| = (−1)mcm for all m.

Thus,
cm−2 = (−1)m−2(|cm|+ rm−1|cm−1|)

= (−1)m−2((−1)mcm + rm−1 · (−1)m−1cm−1)

= cm − rm−1cm−1

which implies

cm = cm−2 + rm−1cm−1 for 2 ≤ m ≤ ∆− 2 .

Define

p := c0 and q := pb1 − c1 = c0(r0 + 1)− c1 .

By defining the integers p and q this way, we have ensured that pb0 ≡ c0 mod q

and pb1 ≡ c1 mod q. Hence from the relations bm = bm−2 + rm−1bm−1 and cm =

cm−2 + rm−1cm−1, it inductively follows that

pbm ≡ cm mod q for 0 ≤ m ≤ ∆− 2 . (4.1)
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4.2.2 Bounds on the values of bm and |cm|

To prove the bounds, we need a generalized version of the well-known Bernoulli’s

inequality [Mit70, Section 2.4]:

Claim 4.1 (Bernoulli’s inequality). Let x1, . . . , xr be real numbers all greater than

−1 and all with the same sign. Then,

(1 + x1)(1 + x2) . . . (1 + xr) ≥ 1 + x1 + . . .+ xr .

Proof. We prove it by induction on r. The base case r = 1 is trivial.

Assume that (1 + x1)(1 + x2) . . . (1 + xr−1) ≥ 1 + x1 + . . .+ xr−1. Then,

(1 + x1)(1 + x2) . . . (1 + xr) ≥ (1 + x1 + . . .+ xr−1)(1 + xr)

= (1 + x1 + . . .+ xr) + (x1xr + x2xr + . . .+ xr−1xr)

≥ 1 + x1 + . . .+ xr

where the last inequality follows from the fact that all the xi’s are of the same

sign.

Each bm is close to λG(m) and each |cm| is close to λG(∆−1)−G(m+1):

Lemma 4.3

For 0 ≤ m ≤ ∆− 2,we have
λG(m)

2
≤ bm ≤ λG(m) and

λG(∆−1)−G(m+1)

2
≤ |cm| ≤

λG(∆−1)−G(m+1).

Proof. Clearly, bm satisfies the bounds when m = 0 or 1. For m ≥ 2,
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bm = (λG(m)−G(m−1) − 1)bm−1 + bm−2

≤ λG(m)−G(m−1)bm−1

≤ λG(m)−G(m−1).λG(m−1)−G(m−2) . . . λG(2)−G(1)b1

= λG(m).

bm = (λG(m)−G(m−1) − 1)bm−1 + bm−2

≥ (λG(m)−G(m−1) − 1)bm−1

≥ (λG(m)−G(m−1) − 1).(λG(m−1)−G(m−2) − 1) . . . (λG(2)−G(1) − 1)b1

= λG(m)−G(1)b1.

(
1− 1

λG(m)−G(m−1)

)(
1− 1

λG(m−1)−G(m−2)

)
. . .

(
1− 1

λG(2)−G(1)

)
≥ λG(m).

(
1− 1

λG(m)−G(m−1)
− 1

λG(m−1)−G(m−2)
− · · · − 1

λG(2)−G(1)

)
[By Claim 4.1]

≥ λG(m).

(
1− 1

λm−1
− 1

λm−2
− · · · − 1

λ

)
= λG(m).

(
1− 1

λ− 1

(
1− 1

λm−1

))
≥ λG(m)

2
.

Clearly, |cm| satisfies the bounds when m = ∆− 2 or ∆− 3. For m ≤ ∆− 4,

|cm| = (λG(m+2)−G(m+1) − 1)|cm+1|+ |cm+2|

≤ λG(m+2)−G(m+1)|cm+1|

≤ λG(m+2)−G(m+1) · λG(m+3)−G(m+2) . . . λG(∆−2)−G(∆−3)|c∆−3|

= λG(∆−2)−G(m+1) · λG(∆−1)−G(∆−2) = λG(∆−1)−G(m+1).
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|cm| = (λG(m+2)−G(m+1) − 1)|cm+1|+ |cm+2|

≥ (λG(m+2)−G(m+1) − 1)|cm+1|

≥ (λG(m+2)−G(m+1) − 1) · (λG(m+3)−G(m+2) − 1) . . . (λG(∆−2)−G(∆−3) − 1)|c∆−3|

= λG(∆−2)−G(m+1)|c∆−3| ·
(
1− 1

λG(m+2)−G(m+1)

)(
1− 1

λG(m+3)−G(m+2)

)
. . .

. . .

(
1− 1

λG(∆−2)−G(∆−3)

)
≥ λG(∆−2)−G(m+1)|c∆−3|.

(
1− 1

λG(m+2)−G(m+1)
− · · · − 1

λG(∆−2)−G(∆−3)

)
[By Claim 4.1]

≥ λG(∆−2)−G(m+1)|c∆−3|.
(
1− 1

λm+1
− 1

λm+2
− · · · − 1

λ∆−3

)
= λG(∆−1)−G(m+1).

(
1− 1

λm(λ− 1)

(
1− 1

λ∆−3−m

))
≥ λG(∆−1)−G(m+1)

2
.

Proof of Lemma 4.1.

The first condition of (d,∆)-niceness is satisfied by (p,q): Indeed we have

p

q
=

c0
c0λ− c1

=⇒ 1

2λ
≤ p

q
≤ 1

2
as (−c1) is a positive integer less than c0,

q ≤ |c0|λ + |c1| ≤ 2λG(∆−1) ≤ d where the second inequality follows from the

upper bound on each |cm| in Lemma 4.3.

The second condition of (d,∆)-niceness is satisfied by (p,q): Fix δ ∈

{2, · · · ,∆} and a positive integer z < λG(δ−1)/8. We have to show that

min

(
zp mod q

q
, 1− zp mod q

q

)
≥ z

8λG(δ)−1
.

We will first find what we call the base (b0, . . . ,b∆−2) representation of the

number z. For 0 ≤ m ≤ ∆ − 2, inductively define ym to be the integer quotient

when

(
z −

∆−2∑
m′=m+1

bm′ym′

)
is divided by bm. Then we can express z as z =

∆−2∑
m=0

bmym.
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Since bm ≥ λG(m)/2 for all m and z < λG(δ−1)/8, we have the following bounds on

the values of ym:

ym = 0 for m ≥ δ − 1, (4.2)

yδ−2 =

⌊
z

bδ−2

⌋
<

λG(δ−1)

8

λG(δ−2)

2

≤ λG(δ−1)−G(δ−2) − 1

2
=

rδ−2

2
, (4.3)

ym ≤
⌊
bm+1 − 1

bm

⌋
= rm for m < δ − 2 . (4.4)

By (4.1), zp ≡
∆−2∑
m=0

cmym mod q. Therefore,

min

(
zp mod q

q
, 1− zp mod q

q

)
= min

(∣∣∣∣∣
∆−2∑
m=0

cmym

∣∣∣∣∣ /q, 1−

∣∣∣∣∣
∆−2∑
m=0

cmym

∣∣∣∣∣ /q
)

(4.5)

if
∣∣∣∑∆−2

m=0 cmym

∣∣∣ /q ≤ 1, which is true by the following claim (See Section 4.2.3 for

the proof):

Claim 4.2. If 0 ≤ ym ≤ rm for all m, then

∣∣∣∣∆−2∑
m=0

cmym

∣∣∣∣ < q − c0.

Now let f be the highest index such that yf ≥ 1 [by (4.2), f ≤ δ − 2] and e be the

smallest index such that ye ≥ 1. Then
∣∣∣∑∆−2

m=0 cmym

∣∣∣ = ∣∣∣∑f
m=e cmym

∣∣∣. We need two

more claims whose proofs can be found in Section 4.2.3.

Claim 4.3. Let ym be non-negative integers such that ye ≥ 1. Then
∣∣∣∑f

m=e cmym

∣∣∣ ≥
min

(
|cfyf |, |cf−1| − |cfyf |

)
.

Claim 4.4. Let {ym}δ−2
m=0 be a sequence of non-negative integers. Let f ≤ δ − 2 be

the highest index such that yf ≥ 1. If yδ−2 = ⌊ z
bδ−2

⌋ ≤ rδ−2/2 and 0 ≤ ym ≤ rm for

all m ≤ δ − 2, then min

(
|cfyf |, |cf−1| − |cfyf |

)
≥ |cδ−2z/(2bδ−2)|.

If δ = 2, then f = 0 by (4.2). Thus, q−
∣∣∣∑f

m=e cmym

∣∣∣ > c0r0−|c0y0| > c0r0/2 > |cfyf |

where the last two inequalities follow from (4.3).
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Otherwise δ > 2. By Claim 4.2, q −
∣∣∣∑f

m=e cmym

∣∣∣ > c0. From the definition of the

sequence {cm}, we have c0 ≥ |cfrf | ≥ |cfyf | when f > 0. But when f = 0, it follows

that yδ−2 = 0 implying z < bδ−2. This further implies c0 ≥ |cδ−2| ≥ |cδ−2z/bδ−2|.

From the analysis of the two cases above and by Claims 4.3 and 4.4, we get that

min

( ∣∣∣∑f
m=e cmym

∣∣∣ , q −
∣∣∣∑f

m=e cmym

∣∣∣ )/q ≥ ∣∣∣∣ cδ−2z

2bδ−2q

∣∣∣∣ .
By Lemma 4.3, we have

|cδ−2| ≥ λG(∆−1)−G(δ−1)/2, bδ−2 ≤ λG(δ−2), q ≤ |c0|λ+ |c1| ≤ 2λG(∆−1) .

Hence, min

( ∣∣∣∑f
m=e cmym

∣∣∣ /q, 1−
∣∣∣∑f

m=e cmym

∣∣∣ /q) ≥ z

8λG(δ−1)+G(δ−2)
=

z

8λG(δ)−1

which together with (4.5) implies

min

(
zp mod q

q
, 1− zp mod q

q

)
≥ z

8λG(δ)−1
.

4.2.3 Missing proofs of technical lemmas

We present the missing proofs of the technical lemmas used in the proof of Lemma

4.1. In the following lemmas, let the sequences {bm}, {cm}, {rm} be as defined in

Section 4.2.1.

Claim 4.2. If 0 ≤ ym ≤ rm for all m, then

∣∣∣∣∆−2∑
m=0

cmym

∣∣∣∣ < q − c0.

Proof.
∆−2∑
m=0

cmym =

⌊∆−2
2

⌋∑
m=0

c2my2m +

⌈∆−2
2

⌉∑
m=1

c2m−1y2m−1

where the first summand is ≥ 0 and the second summand is ≤ 0 as ci takes positive

values at even indices and negative values at odd indices. Hence

∣∣∣∣∆−2∑
m=0

cmym

∣∣∣∣ is upper
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bounded by the maximum of the absolute values of these two summands.

∣∣∣∣∣∣
⌊∆−2

2
⌋∑

m=0

c2my2m

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⌊∆−2

2
⌋∑

m=0

c2mr2m

∣∣∣∣∣∣ =
∣∣∣∣∣∣c0r0 − c1 +

(
c1 +

⌊∆−2
2

⌋∑
m=1

c2mr2m

)∣∣∣∣∣∣
and

∣∣∣∣∣∣
⌈∆−2

2
⌉∑

m=1

c2m−1y2m−1

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⌈∆−2

2
⌉∑

m=1

c2m−1r2m−1

∣∣∣∣∣∣ =
∣∣∣∣∣∣−c0 +

(
c0 +

⌈∆−2
2

⌉∑
m=1

c2m−1r2m−1

)∣∣∣∣∣∣
By repeated substitution of the form cm + cm+1rm+1 = cm+2, the first equation

becomes equal to (c0r0 − c1) + c2⌊∆−2
2

⌋+1 and the second equation becomes equal to∣∣∣−c0 + c2⌈∆−2
2

⌉

∣∣∣ = c0− c2⌈∆−2
2

⌉ [We might need to define c∆−1 := c∆−2r∆−2+ c∆−3 for

this as we have not defined it earlier. It is easy to see that the sign parity of c∆−1

will be (−1)∆−1].

Finally,

(c0r0 − c1) + c2⌊∆−2
2

⌋+1 < q − c0 as q − c0 = c0r0 − c1 and c2⌊∆−2
2

⌋+1 is negative;

c0 − c2⌈∆−2
2

⌉ < q − c0 as q − c0 = c0r0 − c1 > c0r0 > c0 and c2⌈∆−2
2

⌉ is positive.

We will need the following lemma for proving Claim 4.3.

Lemma 4.4

Let ze, . . . , zf be integers with 0 ≤ zm ≤ rm ∀m and f ≥ e+2. Also let Y be an

integer of the same sign as ce such that |Y | ≥ |ce|. Then there exists an integer

Y ′ of the same sign as ce+2 such that |Y ′| ≥ |ce+2| and

|Y + ceze +

f∑
m=e+1

cmzm| = |Y ′ + ce+2ze+2 +

f∑
m=e+3

cmzm|
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Proof.

|Y + ceze +

f∑
m=e+1

cmzm|

=|(Y − ce) + ceze + (ce + ce+1re+1)− ce+1(re+1 − ze+1) +

f∑
m=e+2

cmzm|

=|(Y − ce) + ceze + ce+2 − ce+1(re+1 − ze+1) +

f∑
m=e+2

cmzm|

=|Y ′ + ce+2ze+2 +

f∑
m=e+3

cmzm| where Y ′ = (Y − ce) + ceze + ce+2 − ce+1(re+1 − ze+1)

Each of the terms (Y − ce), ceze, ce+2 and −ce+1(re+1 − ze+1) is either zero or has

the same sign as ce+2 because

1. Y and ce are of the same sign and |Y | ≥ |ce|

2. ze+1 ≤ re+1

3. ce,−ce+1 and ce+2 have the same sign

Hence Y ′ = (Y − ce) + ceze + ce+2 − ce+1(re+1 − ze+1) has the same sign as ce+2 and

|Y ′| = |Y − ce|+ |ceze|+ |ce+2|+ | − ce+1(re+1 − ze+1)| ≥ |ce+2|.

Claim 4.3. Let ym be non-negative integers such that ye ≥ 1. Then
∣∣∣∑f

m=e cmym

∣∣∣ ≥
min

(
|cfyf |, |cf−1| − |cfyf |

)
.

Proof. • If e = f , then

∣∣∣∣∣
f∑

m=e

cmym

∣∣∣∣∣ = |cfyf | .
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• If e = f − 1, then

∣∣∣∣∣
f∑

m=e

cmym

∣∣∣∣∣ = |cfyf + cf−1yf−1| ≥ |cf−1yf−1| − |cfyf |

≥ |cf−1| − |cfyf | . [because yf−1 = ye ≥ 1]

• If f − e ≥ 2 and f − e is even, then

∣∣∣∣∣
f∑

m=e

cmym

∣∣∣∣∣ =
∣∣∣∣∣Y + ce(ye − 1) +

f∑
m=e+1

cmym

∣∣∣∣∣ where Y = ce

= |Y ′ + cfyf | where Y ′ has the same sign as cf

[By repeated application of Lemma 4.4]

≥ |cfyf | .

• If f − e ≥ 2 and f − e is odd, then

∣∣∣∣∣
f∑

m=e

cmym

∣∣∣∣∣ =
∣∣∣∣∣Y + ce(ye − 1) +

f∑
m=e+1

cmym

∣∣∣∣∣ where Y = ce

= |Y ′ + cf−1yf−1 + cfyf | where Y ′ has the same sign as cf−1

and |Y ′| ≥ |cf−1|

[By repeated application of Lemma 4.4]

≥ |Y ′ + cf−1yf−1| − |cfyf |

≥ |Y ′| − |cfyf |

≥ |cf−1| − |cfyf | .

Hence in all four cases,
∣∣∣∑f

m=e cmym

∣∣∣ ≥ min (|cfyf |, |cf−1| − |cfyf |).

Claim 4.4. Let {ym}δ−2
m=0 be a sequence of non-negative integers. Let f ≤ δ − 2 be

the highest index such that yf ≥ 1. If yδ−2 = ⌊ z
bδ−2

⌋ ≤ rδ−2/2 and 0 ≤ ym ≤ rm for
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all m ≤ δ − 2, then min

(
|cfyf |, |cf−1| − |cfyf |

)
≥ |cδ−2z/(2bδ−2)|.

Proof. If f = δ − 2 i.e. yδ−2 ≥ 1, then

|cfyf | = |cδ−2yδ−2| and

|cf−1| − |cfyf | = |cδ−3| − |cδ−2yδ−2| ≥ |cδ−3| −
∣∣∣cδ−2

rδ−2

2

∣∣∣ ≥ ∣∣∣cδ−2
rδ−2

2

∣∣∣ ≥ |cδ−2yδ−2|

where the the second inequality follows from |cδ−3| = |cδ−2rδ−2|+|cδ−1|. As yδ−2 ≥ 1,

we obtain |cδ−2yδ−2| =
∣∣∣∣cδ−2

⌊
z

bδ−2

⌋∣∣∣∣ ≥ ∣∣∣∣cδ−2z

2bδ−2

∣∣∣∣.
Otherwise if f < δ − 2 i.e. yδ−2 = 0 i.e. z < bδ−2, then

|cfyf | ≥ |cf | ≥ |cδ−2| and

|cf−1| − |cfyf | ≥ |cf−1| − |cfrf | = |cf+1| ≥ |cδ−2|

where the last inequality on each of the above two lines follows from f < δ − 2 and

the fact that |cm| decreases as m increases. As z < bδ−2, we get |cδ−2| >
∣∣∣∣cδ−2z

bδ−2

∣∣∣∣ .
Hence in both the cases, min

(
|cfyf |, |cf−1| − |cfyf |

)
≥ |cδ−2z/(2bδ−2)|.
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[Tav13] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth

3. In Mathematical foundations of computer science 2013, volume 8087

of Lecture Notes in Comput. Sci., pages 813–824. Springer, Heidelberg,

2013. 4
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