
CHENNAI MATHEMATICAL INSTITUTE

MASTERS THESIS

Discovering the roots: Unifying and
extending results on multivariate polynomial

factoring in algebraic complexity

Supervisor:
Dr. Nitin SAXENA

Supervisor:
Dr. Partha MUKHOPADHYAY

Author:
Pranjal DUTTA

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Department of Computer Science
Chennai Mathematical Institute

http://www.cmi.ac.in
https://www.cse.iitk.ac.in/users/nitin/
http://www.cmi.ac.in/~partham/
https://sites.google.com/view/pduttashomepage
http://www.cmi.ac.in/
http://www.cmi.ac.in

iii

Declaration of Authorship
I, Pranjal DUTTA, declare that this thesis titled, “Discovering the roots: Unifying and
extending results on multivariate polynomial factoring in algebraic complexity” and the
work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a masters degree
(from CMI) at IIT Kanpur.

• The thesis has been prepared without resorting to plagiarism.

• Where I have consulted the published work of others, this is always clearly attributed.

• I have acknowledged all main sources of help.

• The thesis has not been submitted elsewhere for a degree.

Signed:

Date: 10 June, 2018

v

“We cannot solve our problems with the same thinking we used when we created them.”

-Albert Einstein, Genius (2017-)

https://en.wikipedia.org/wiki/Albert_Einstein
http://www.imdb.com/title/tt5673782/

vii

Abstract
Multivariate polynomial factoring is one of the most important problems in theoretical
computer science with many important applications in various regimes including decoding
of Reed-Solomon, Reed-Muller codes [GS98, Sud97], integer factoring [LLMP90], algebra
isomorphism [KS06, IKRS12] and primary decomposition of polynomial ideals [GTZ88].
Algebraic circuit is a natural model to represent a multivariate polynomial compactly.
Here, an algebraic complexity class contains (multivariate) polynomial families instead of
languages. It is a natural question whether an algebraic complexity class is closed under
factoring.

Famously, Kaltofen [Kal89] showed that VP (Valiant’s P), the class of low degree
polynomials with small circuit representation, is uniformly closed under factoring, i.e.
for a given d degree n variate polynomial f of circuit size s, there exists a randomized
poly(snd)-time algorithm that outputs its factor as a circuit whose size is bounded by
poly(snd). This fundamental result has several applications such as ‘hardness versus
randomness’ in algebraic complexity [KI03, AV08, DSY09, AGS17], derandomization of
Noether Normalization Lemma [Mul17], in the problem of circuit reconstruction [KS09,
Sin16], and polynomial equivalence testing [Kay11]. It is still open whether low degree
factor of high degree circuits of low complexity has low complexity or not, famously
known as Factor Conjecture (due to Peter Bürgisser).

In this paper, we show that for an algebraic circuit f (x1, . . . , xn) of size s we prove that
each factor has size at most a polynomial in: s and the degree of the squarefree part of f .
Consequently, if f1 is a 2Ω(n)-hard polynomial then any nonzero multiple ∏i f ei

i is equally
hard for arbitrary positive ei’s, assuming that ∑i deg(fi) is at most 2O(n). This result also
establishes the fact that when square free degree of the given polynomial is small, factor
conjecture is true.

It is an old open question whether the class of poly(n)-sized formulas (resp. algebraic
branching programs) is closed under factoring. We show that given a polynomial f of
degree poly(n) and formula (resp. ABP) size nO(log n) we can find a similar size formula
(resp. ABP) factor in randomized poly(nO(log n))-time. Consequently, if determinant
requires nΩ(log n) size formula, then the same can be said about any of its nonzero multiples.
We also use the same technique to derive the algebraic complexity of gcd of two polynomials.

As part of our proofs, we present a general frame work that shows that under random
linear transformation, any generic multivariate polynomial can be factored into a power
series ring. Hence, we conclude that it is enough to approximate those power series roots.
Moreover, the factorization adapts well to circuit complexity analysis. We generalize
it to a matrix recurrence (allRootsNI) that approximates all the roots simultaneously.
These techniques together help us to make progress towards the old open problems;

viii

supplementing the large body of classical results and concepts in algebraic circuit factorization
(eg. Zassenhaus, J.NT 1969; Kaltofen, STOC 1985-7 & Bürgisser, FOCS 2001).

Lastly we discuss very briefly about sparsity bound on factors and discuss interesting
consequences. Most of the content of the thesis can be found in the paper “Discovering
the roots: Uniform closure results for algebraic classes under factoring” (accepted at
STOC’2018), a joint work with my advisor Dr. Nitin Saxena and my colleague Amit
Sinhababu.

https://www.cse.iitk.ac.in/users/nitin/papers/factor-closure.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/factor-closure.pdf
http://acm-stoc.org/stoc2018/
https://www.cse.iitk.ac.in/users/nitin/
https://www.cse.iitk.ac.in/users/amitks/
https://www.cse.iitk.ac.in/users/amitks/

ix

Acknowledgements
Earning a degree is always a journey and I have been fortunate to have had the support
and guidance of many throughout my journey at Chennai Mathematical Institute (CMI)
and Indian Institute of Technology, Kanpur (IIT K). First and foremost, I would like to
thank my advisor, Nitin Saxena. The past two years working with Nitin has been a deep
learning curve for me. Words would not suffice to express my gratitude towards him, from
hosting me at IIT Kanpur during my first year of masters to the constant doubt-clearing
session of hours. In the coming years (during my PhD : I am thankful to him for agreeing
to advise me for my PhD) I hope I can inculcate in me at least a part of the enthusiasm and
dedication he has towards his work and research.

I’m deeply indebted to CMI, IMSC and IIT Madras for offering truly wonderful
undergraduate and post graduate courses. Thanks to Jayalal Sarma (IIT Madras) for
introducing Algebraic Complexity Theory. Thanks to Samir Datta (CMI), Jayalal Sarma
(IIT Madras), Sourav Chakraborty (CMI), Rajat Mittal (IIT K) and Partha Mukhopadhyay
(CMI) for many enlightening discussions which motivated me to continue research. I
would like to thanks Prof. Madhavan Mukund and Prof. K. V. Subrahmanyam (CMI) for
allowing me to spend MSc 1st yeat at IIT K, arranging all the necessary documents and to
Partha for giving me the advise to work with Nitin during masters. Special thanks to Prof
Emeritus Somenath Biswas for many helpful and insightful discussions, in general which
kept me motivated and on edge during my stay at IIT K.

Besides excellent professors, CMI is endowed with a very efficient and affable office
staff as well. I’m very grateful to them, specially Rajeswari for a completely hassle free
stay both at CMI and IIT Kanpur.

I made quite a few friends in CMI and IIT Kanpur during my bachelors and masters.
Life, both in CMI and IIT K was far more enjoyable because of them. Specially, I would
like to thank Sumanta da, for engaging discussions on complexity, algebraic complexity
and clearing all my doubts (and spiritual ideas :p) whenever I had one. Thanks to Amit da,
my collaborator who has been extremely supportive (academically and administratively
and for the innumerable treats :p) and patient during my journey at IIT K; your constant
questions and doubts did encourage me to dig further into specific topics specially on
factoring. Thanks to Vishwas Bhargav for making the IIT K journey more enjoyable in
many ways (which can not be discussed openly, xD). Thanks to Rajendra, Mahesh and
Seetha Ram for making a non-boring yet motivating and enjoyable environment all the
time.

The CMI list is very lengthy; it would be very difficult to make the list exhaustive, let
me just thank everyone that need be thanked. It was really a wonderful span of 5 years

x

(well technically 4) journey at CMI and without you guys, it could have been simply boring
and non-enjoyable. You guys will be missed.

Lastly, I would also like to thank my parents, my sister and my friends who have been
very supportive during my ups and downs in my career. I would have been nothing
without the constant support that I got from my family; I owe a lot more than you think.

xi

Dedicated to

My family, for their unconditional love, support and guidance and simple yet inspiring take on life.

xiii

Contents

Declaration of Authorship iii

Abstract vii

1 Introduction 1
1.1 Arithmetic Circuits, Formulas and ABPs . 2
1.2 Algebraic Complexity Classes . 3
1.3 Previously known closure results . 5
1.4 Sparsity and Algebraic Complexity Theory 8
1.5 Contribution of the thesis . 9

1.5.1 Factorization over Power Series Ring 10
1.5.2 Closure Results . 10
1.5.3 Sparsity Bound . 13

1.6 Organization of the thesis . 13

2 Preliminaries 15
2.1 Formal Power Series . 15
2.2 Randomized algorithm for linear algebra using PIT 16
2.3 Basic operations on formula, ABP and circuit 17

2.3.1 Upper bound on derivative computation 19
2.3.2 Lower bound on derivative computation 19

2.4 Sylvester matrix & resultant . 20
2.5 Monic Transformation . 22
2.6 Closure properties for VNP . 23
2.7 Matrix and Series Inverse . 25
2.8 Holomorphic function and Order of zero . 26
2.9 Newton-Puiseux Series . 27

3 Newton Iteration and Factoring Polynomials 29
3.1 Power series factorization of polynomials . 32
3.2 Factoring reduces to approximating power series roots 35

xiv

3.3 Approximating Roots . 36
3.3.1 Recursive root finding via matrices (allRootsNI) 36
3.3.2 Rapid Newton Iteration with multiplicity 37

3.4 Algebraizing Accelerated Newton Iteration 40

4 GCD in Algebraic Complexity 43
4.1 Computing GCD for bounded degree complexity classes 43
4.2 Complexity of Low Degree GCD . 44
4.3 Strassen’s Problem on computing Numerator and Denominator 47

5 Closure of restricted complexity classes 49
5.1 PIT is equivalent to factoring . 53
5.2 Factors of constant individual degree polynomials have small complexity . 54

6 Complexity of factor and square-freeness 55
6.1 Special case f = ge . 55
6.2 Complexity of factors polynomially related to degree of radical: Proof of

Theorem 2 . 56
6.3 Low degree factors of general circuits: Proof of Theorem 3 59

7 Closure of Approximative Complexity classes 61

8 Factoring in Field Extension 65
8.1 When field F is not algebraically closed . 65
8.2 Multiplicity issue in prime characteristic . 66

9 Sparsity bound of factors 69
9.1 General Upper Bound . 69
9.2 Sparsity bound for special class of Polynomials 70

10 Conclusion and Open Problems 77

1

Chapter 1

Introduction

In half-century of existence, Computational Complexity Theory has developed into a rich,
deep and broad theory with remarkable achievements and formidable challenges. It
has important practical impact on computer science and industry and has forged strong
connections with a diverse set of mathematical fields. The interplay between mathematics
and computer science demands algorithmic approaches to various algebraic constructions.
Computational Algebra precisely addresses this issue. Polynomials, being so basic and so
useful, are studied in a variety of mathematical areas.

A key part of understanding any given polynomial is to understand its factorization,
for multivariate polynomials can be uniquely factored into irreducible polynomials in
direct analogue with the prime factorization of integers. While integer factorization is
a seemingly hard problem for (classical) computation, since the 1960’s there has been
significant progress on algorithms for the polynomial factorization problem of computing
the irreducible factors of a given polynomial [LLL82, Ber70, CZ81]. This intense study has
yielded efficient randomized algorithms for this problem, which has important applications
in complexity theory, coding theory, and cryptography.

The most basic yet still nontrivial setting for this problem is to consider univariate
polynomials, where the natural input size of a degree d univariate polynomial is d + 1
(the number of possible monomials). It is important to note that d is given is unary 1.
For n-variate degree-d polynomials, the corresponding size would be (n+d

d) (the dense
representation). We are interested in a concise representation. The most obvious such
representation is the sparse representation where the input is the non-zero coefficients
with appropriate indexing.

1One can consider a much more concise input representation where polynomials are given by the list of
nonzero coefficients, where coefficients and exponents are given in binary. It was shown in [Pla77b] and
subsequent work that algorithms for this regime are harder, and some algorithmic tasks are NP-hard

2 Chapter 1. Introduction

From the view of algebraic complexity theory, it is most natural to consider polynomials
as being given by arithmetic circuits. It is natural to desire a classification of polynomials
based on their “simplicity". The algorithmic approach suggests that the simple polynomials
are those that can be computed easily. In some sense, one should be able to measure
the ease of computation. Their complexity is measure by the number of arithmetic
operations required to compute natural ones i.e. the elementary symmetric polynomials,
determinant, permanent etc. we will formally define subsequent objects in section . The
sparse representation is a special case of this (depth-2 formulas) where depth means the
length of the longest input-output path. One may consider more powerful models such
as (general or bounded-depth) formulas, algebraic branching programs (ABPs) etc. In all
settings we are interested in producing all irreducible factors of the given polynomial,
where each such factor is given a succinct representation (such as via arithmetic circuits).
Without further delay, we formally define arithmetic circuits, formula, ABPs and algebraic
complexity classes.

1.1 Arithmetic Circuits, Formulas and ABPs

We shall fix an underlying field F.

Definition 1 (Arithmetic Circuits and Formulas). An arithmetic circuit is a directed acyclic
graph with one sink (which is called the output gate). Each of the source vertices (which are called
input nodes) are either labeled by a variable xi or an element from F. Each of the internal nodes are
labeled either by + or× to indicate if it is an addition or multiplication gate respectively. Sometimes
edges may carry weights that are elements from F.
Such a circuit naturally computes a multivariate polynomial at every node. The circuit is said to
compute a polynomial f ∈ F[x1, . . . , xn] if the output node computes f .
An arithmetic circuit is a formula if every internal node has out-degree 0.

Here is an example of circuit and formula computing (x1 + x2)2 :

Without loss of generality, the circuit or formula is assumed to be layered, with edges
only between successive layers. There are some important parameters of an arithmetic
circuit are the following :

• SIZE: the number of nodes and edges in the circuit or formula

• DEPTH: the longest path from a leaf gate to the output gate

• DEGREE: the syntactic degree of the polynomial computed at the output gate. This is
computed recursively at every gate in the most natural way. One can take max of the

1.2. Algebraic Complexity Classes 3

x1 x2

× × ×

+

x1 x2

+

×

FIGURE 1.1: Formula and Circuit computing (x1 + x2)
2

degrees of children at an addition gate and the sum of the degrees at a multiplication
gate. Observe that this need not be the degree of the polynomial computed at the
output gate due to possible cancellations, but this is certainly an upper bound.

To understand non-commutative formulas, Nisan defined the notion of an arithmetic branching
programs (ABPs).

Definition 2 (ABP). An ABP is a layered graph with d + 1 layers as follows. The layers are labeled
by 0, 1, . . . , d. The edges of the graph go from layer i to layer i + 1. Every edge e has polynomials
as their weights which is linear of the form `e = ∑j∈[n] ce,jxj or constants. Layer 0 has only one
vertex s called the source and layer d has only one vertex t called the sink. For every directed path
from the source to the sink γ = (e1, e2, . . . , ed) define the polynomial associated to , denoted f [γ]
as f [γ] = `e1 . . . `ed . The polynomial computed by the ABP is

C(x) = ∑
γ∈path(s,t)

f [γ]

It is well-known that sum over all paths in a layered graph can be represented by an
iterated matrix multiplication.

1.2 Algebraic Complexity Classes

Arithmetic circuits provide a way, alternate to Turing machines. Similarly, the algebraic
complexity classes contain multivariate polynomial families instead of languages. Strictly
speaking, this definition is for infinite family of polynomials over n variables, one for each
n, as otherwise every polynomial can be computed using O(1) operations rendering the
whole exercise meaningless.

4 Chapter 1. Introduction

1 3

t

42

s

x2

x1

1

1

x2

x1

x2
x1

FIGURE 1.2: ABP computing (x1 + x2)
2

Valiant’s paper [Val79] transformed arithmetic complexity into a complexity theory where
he provides the analogs of all basic foundations of Boolean computational complexity :

• It introduces a mathematically elegant notion of efficient reducibility between polynomials,
projection

• Arithmetic analogs of P and NP was defined which are now called respectively VP

and VNP and it was established that these classes has natural complete polynomials
under such reductions: permanent is complete for VNP and determinant is (nearly)
complete for VP.

We use size(f) to denote the minimal size of an arithmetic circuit computing a polynomial
f . The class VP, in complete analogy to P/poly, is simply all polynomials computable by
polynomial size arithmetic circuits. Here it should be noted that all polynomials discussed,
the degree is polynomially bounded by the number of variables. Thus e.g. the symmetric
polynomials, Determinant polynomials are all in VP.

Definition 3 (The class VP). We say that f = { fn} is in VP if size(fn) ≤ poly(n) and deg(fn) ≤
poly(n).

Defining the analog VNP of NP is a bit trickier nevertheless a natural one. In NP an
existential quantifier is used, which can be viewed a Boolean disjunction over all possible
Boolean values to possible “witnesses" in a polynomial size Boolean circuit. Similarly, in
VNP this disjunction is replaced by a summation over possible “witnesses” in a polynomial
size arithmetic circuit.

Definition 4 (The class VNP). We says { fn}n is in VNP if there exist polynomials t(n), s(n)
and a family {gn}n in VP such that for every n, fn(x) = ∑w∈{0,1}t(n) gn(x, w1, . . . , wt(n)). Here,
witness size is t(n) and verifier circuit gn has size s(n).

We clearly have VP ⊆ VNP and the major problem of arithmetic complexity theory is
proving that the containment is strict.

1.3. Previously known closure results 5

Conjecture 1 [Valiant’s Hypothesis]

VP 6= VNP over any field F.

There are other restrictive classes defined below :

• VF which contains the families of n-variate polynomials of degree nO(1) over computed
by nO(1)-sized formulas

• The class VBP contains the families of polynomials computed by nO(1)-sized ABPs

• VQP (resp. VQF) which contains the families of n-variate polynomials of degree nO(1),
computed by 2poly(log n)-sized circuits (resp. formulas)

In general, we define VF(s),VBP(s),VNP(s) as follows. Let s : N −→N be a function.
Define the class VF(s) that contain families { fn}n such that n-variate fn can be computed by
an algebraic formula of size poly(s(n)) and has degree poly(n). Similarly, VBP(s) contains
families { fn}n such that fn can be computed by an ABP of size poly(s(n)) and has degree
poly(n). Finally, VNP(s) denotes the class of families { fn}n such that fn has witness size
poly(s(n)), verifier circuit size poly(s(n)), and has degree poly(n).

From our definition, it is clear that VQF ⊆ VF(nlog n). We have the easy containments:
VF ⊆ VBP ⊆ VP ⊆ VQP = VQF, follows from [BOC92, VSBR83].

If we relax the condition on the degree in the definition of VP, by allowing the degree to be
possibly exponential, then we define the class VPnb. Such circuits can compute constants of
exponential bit-size (unlike VP). There are border complexity classes which we will define
later. In the next section, we will focus on the closure results of complexity classes.

1.3 Previously known closure results

As mentioned earlier, the complexity classes contain multivariate polynomial families
instead of languages. It is a natural question to ask whether a complexity class is closed
under certain operations, such as p-projection, substitution etc. VP and VNP are closed
under these operations mentioned above. A natural operation regarding polynomial
is factoring. We study the following two questions related to multivariate polynomial
factorization.

1. Let { fn(x1, . . . , xn)}n be a polynomial family in an algebraic complexity class C
(egs. VP,VF, VBP,VNP etc). Let gn be an arbitrary factor of fn. Can we say that
{gn}n ∈ C? Equivalently, is the class C closed under factoring?

6 Chapter 1. Introduction

2. Can we design an efficient, i.e. deterministic or randomized poly(n)-time, algorithm
to output the factor gn with a representation in C? (Uniformity)

The general formulation of the factorization problem where we are given such a
(restricted) circuit is the white-box model. Some algorithms can even work in the more
restrictive black-box model, where access to the given circuit is restricted to evaluating the
computed polynomial at any desired point 2. In all settings we are interested in producing
all irreducible factors of the given polynomial, where each such factor is given a succinct
representation (such as via algebraic circuits). Famously, Kaltofen [Kal85, Kal86, Kal87,
Kal89] showed that VP is uniformly closed under factoring, i.e. for a given d degree n variate
polynomial f of circuit size s, there exists a randomized poly(snd)-time algorithm that
outputs its factor as a circuit whose size is bounded by poly(snd). This fundamental result
has several applications such as ‘hardness versus randomness’ in algebraic complexity
[KI03, AV08, DSY09, AGS18], derandomization of Noether Normalization Lemma [Mul17],
in the problem of circuit reconstruction [KS09, Sin16], and polynomial equivalence testing
[Kay11]. In general, multivariate polynomial factoring has several applications including
decoding of Reed-Solomon, Reed-Muller codes [GS98, Sud97], integer factoring [LLMP90],
primary decomposition of polynomial ideals [GTZ88] and algebra isomorphism [KS06,
IKRS12].

It is natural to ask whether Kaltofen’s VP factoring result can be extended to VPnb which
allows degree of the polynomials to be exponentially high. It is known that not every factor
of a high degree polynomial has a small sized circuit. For example, the polynomial x2s − 1
can be computed in size s, but it has factors over C that require circuit size Ω

(
2s/2/

√
s
)

[LS78, Sch77]. It is conjectured that low degree factors of high degree small-sized circuits
have small circuits.

Conjecture 2 [[Bür13],Conj.8.3]

Let g be a factor of a polynomial f in n variables over a field F of char = 0. Then we have
with a universal constant c > 0 that

size(g) ≤ (size(f) + deg(g) + n)c

Partial results towards it are known. It was shown in [Kal87] that if polynomial f given by
a circuit of size s factors as geh, where g and h are coprime, then g can be computed by a
circuit of size poly(e, deg(g), s). The question left open is to remove the dependency on e. In
the special case where f = ge, it was established that g has circuit size poly(deg(g), size(f)).

2In some cases, the white-box and black-box models are equivalent such as sparse polynomials [BOT88,
KS01]. In such cases, one can be efficiently and deterministically about the circuit from the black-box access.

1.3. Previously known closure results 7

On the other hand, several algorithmic problems are NP-hard, eg. computing the degree of
the squarefree part, gcd, or lcm; even in the case of supersparse univariate polynomials
[Pla77b].

Now, we discuss the closure results for classes more restrictive than VP(such as VF, VBP
etc.). Unfortunately, Kaltofen’s technique [Kal89] for VF will give a superpolynomial-sized
factor formula; as it heavily reuses intermediate computations while working with linear
algebra and Euclid gcd. The same holds for the class VBP. In contrast, extending the
idea of [DSY09], Oliveira [Oli16] showed that an n-variate polynomial with bounded
individual degree and computed by a formula of size s, has factors of formula size poly(n, s).
Furthermore, it was established that for a given n-variate individual-degree-r polynomial,
computed by a circuit (resp. formula) of size s and depth ∆, there exists a poly(nr, s)-time
randomized algorithm that outputs any factor of f computed by a circuit (resp. formula)
of depth ∆ + 5 and size poly(nr, s). We are not aware of any work specifically on VBP
factoring, except a special case in [KK08]—it dealt with the elimination of a single division
gate from skew circuits [Jan11] that was weakened later owing to proof errors.

Going beyond VP we can ask about the closure of VNP.

Conjecture 3 [[Bür13],Conj.2.1]

VNP is closed under factoring.

This has been very recently shown to be true by Mrinal Kumar et al in [CKS18] where they
used the technique from [DSY09].

Why do we care about closure results?

We conclude by stating a few reasons why closure results under factoring are interesting
and non-trivial. First, there are classes that are not closed under factors. For example,
the class of sparse polynomials; as a factor’s sparsity may blowup super-polynomially
[vzGK85]. Closure under factoring indicates the robustness of an algebraic complexity
class, as, it proves that all nonzero multiples of a hard polynomial remain hard. For this
reason, closure results are also important for proving lower bounds on the power of some
algebraic proof systems [FSTW16].

The problem of checking if a circuit computes the zero polynomial is called polynomial
identity testing (PIT). It turns out that this problem is easy to solve algorithmically. There
are efficient randomized algorithms known. Moreover, in a surprising connection, it has
been found that if there is a deterministic polynomial time algorithm for solving PIT, then
certain explicit polynomials are hard to compute [KI03, Agr05]. Therefore, the solution
to PIT problem has a key role in our attempt to computationally classify polynomials.

8 Chapter 1. Introduction

Interestingly, there are certain connections between PIT and factoring as shown in [KSS15]
establishing equivalence between derandomizing PIT and factoring. Factoring is the key
reason why PIT, for VP, can be reduced to very special cases, and gets tightly related
to circuit lower bound questions (like VP 6=VNP?). See [KI03, Thm.4.1] for whitebox PIT
connection and [AGS18] for blackbox PIT. One of the central reasons is:
Suppose a polynomial f (y) is such that for a nonzero size-s circuit C, C(f (y)) = 0. Then,
using factoring results for low degree C, one deduces that f also has circuit size poly(s).
This gives us the connection: If we picked a “hard” polynomial f then f (y) would be a hitting-set
generator (hsg) 3 for C [KI03, Thm.7.7].
Our work is strongly motivated by the open question of proving such a result for size-s
circuits C that have high degree (i.e. sω(1)). Our first factoring result (Theorem 2) implies
such a ‘hardness to hitting-set’ connection for arbitrarily high degree circuits C assuming
that: the squarefree part Csqfree of C has low degree. In such a case we only have to find a
hitting-set for Csqfree which, as our result proves, has low algebraic circuit complexity.

For general overview of factoring and connections to algebraic complexity theory, see
[FS15]. In the next section, we discuss about sparsity as a complexity measure of polynomials
and connections to algebraic complexity theory.

1.4 Sparsity and Algebraic Complexity Theory

The sparsity of f denoted as || f ||, is the number of monomials (with non zero coefficients)
appearing in f . The sparsity of f is another natural complexity measure one can use for
polynomials and was studied in various contexts [vzGK85, KS01, SSS13]. Assuming a
single field element fits in a single location, one can store a polynomial with s monomials
on a computer using O(s) memory locations and then one would like to perform basic
operations on polynomials such as evaluation, multiplication, composition, etc. efficiently
in the size of this representation.

Suppose we are interested in factoring a polynomial f (x) = g(x) · h(x) where the input
is given as sparse representation. If we are to factor f and store g and h, then we must
first have an upper bound on the sparsity of these factors. This problem was raised in
the seminal paper of von zür Gathen and Kaltofen [vzGK85] who studied the problem
of efficient polynomial factorization in the sparse representation and gave a factoring
algorithm whose running time is polynomial in the size of the input and in the size of the
output. But, apparently no good upper bound is known.We have the following conjecture
regarding sparsity upper bound. We denote degxi(f) to be highest degree of xi in f .

3Let C ⊂ F[x1, . . . , xn] be a set of polynomials. A polynomial G : Fs −→ Fn is a hitting set generator for C
with seed length s if for all f ∈ C, f ≡ 0 ⇐⇒ f (G) ≡ 0

1.5. Contribution of the thesis 9

Conjecture 4 [Sparsity Conjecture]

Suppose f ∈ C[x1, . . . , xn] with degxi
(f) ≤ r. Then, g | f =⇒ ||g|| ≤ || f ||log r.

When r ≤ 2, Volkovich in [Vol15] showed that the above bound is true. If, in general the
answer is positive, the bound will be tight. This is because consider

f =
n

∏
i=1

(xr
i − 1) g =

n

∏
i=1

(xr−1
i + xr−2

i + . . . + 1)

Of course, || f || = 2n whereas ||g|| = rn = (2n)log r. Observe that if conjecture 4 is true,
then we have some interesting applications :

1. Using [vzGK85], one can give a quasi-polynomial time randomized algorithm for factoring
sparse polynomials.

2. We can give a quasi-polynomial time deterministic algorithm for sparse divisibility
testing 4 as shown in [DdO14] combined with deterministic sparse interpolation due
to [KS01].

Very recently, Bhargav et al gave a non trivial bound on the sparsity of the factors
in [BSV18] where they showed that for an n variate polynomial f such that || f || =
s, degxi

(f) ≤ d and g | f =⇒ ||g|| ≤ sd2 log n.

1.5 Contribution of the thesis

Our main results are of two types. Some are related to closure results and size of factors.
The others are related to the sparsity bound for special class of polynomials.

Before stating the results, we describe some of the assumptions and notations used
throughout the paper. Set [n] refers to {1, 2, . . . , n}. Logarithms are wrt base 2.

Field. We denote the underlying field as F and assume that it is of characteristic 0 and
algebraically closed. For eg. complex C, algebraic numbers Q or algebraic p-adics Qp. All
the results partially hold for other fields (such as R, Q, Qp or finite fields of characteristic
> degree of the input polynomial). For a brief discussion on this issue, see Section ??.

Ideal. We denote the variables (x1, . . . , xn) as x. The ideal I := 〈x〉 of the polynomial
ring will be of special interest, and its power ideal Id, whose generators are all degree d

4Given two sparse polynomials f , g so that g divides f and is asked to output a polynomial h so that
h · g = f

10 Chapter 1. Introduction

monomials in n variables. Often we will reduce the polynomial ring modulo Id (inspired
from Taylor series of an analytic function around 0 [Tay15]).

Radical. For a polynomial f = ∏i f ei
i , with fi’s coprime irreducible nonconstant

polynomials and multiplicity ei > 0, we define the squarefree part as the radical

rad(f) := ∏
i

fi

1.5.1 Factorization over Power Series Ring

We show that under random linear transformation, any polynomial gets factored into
linear power series factors. This is a structural results which will be used time and again
to prove the other theorems. Of course, from proposition 1, we have F[[x]][y] is UFD and
hence one can talk about factorization over power series domain.

Theorem 1 [Power Series Complete Split]

Let f ∈ F[x] with deg(rad(f)) =: d0 > 0. Consider αi, βi ∈r F and the map τ : xi 7→
αiy + xi + βi, i ∈ [n], where y is a new variable.

Then, over F[[x]], f (τx) = k ·∏i∈[d0](y− gi)
γi , where k ∈ F∗, γi > 0, and gi(0) := µi.

Moreover, µi’s are distinct nonzero field elements.

We will present two proofs of the theorem 1, see chapter 3

1.5.2 Closure Results

What can we say about these fi’s if f has a circuit of size s? Our main result gives a good
circuit size bound when rad(f) has small degree. A more general formulation (with u0)
is:

Theorem 2

If f = u0u1 is a nonzero product in the polynomial ring F[x], with size(f) + size(u0) ≤ s,
then every factor of u1 has a circuit of size poly(s + deg(rad(u1))).

Note that Kaltofen’s proof technique in the VP factoring paper [Kal89] does not extend
to the exponential degree regime (even when degree of rad(f) is small) because it requires
solving equations with degxi(f) many unknowns for some xi, where degxi(f) denotes
individual degree of xi in f , which can be very high. Also, basic operations like ‘determining
the coefficient of a univariate monomial’ become #P-hard in the exponential-degree regime
[Val82]. The proof technique in Kaltofen’s single factor Hensel lifting paper [Kal87, Thm.2]

1.5. Contribution of the thesis 11

works only in the perfect-power case of f = ge. It can be seen that rad(f) “almost” equals
f / gcd(f , ∂xi(f)), but the gcd itself can be of exponential-degree and so one cannot hope
to use [Kal87, Thm.4] to compute the gcd either. Univariate high-degree gcd computation
is NP-hard [Pla77a, Pla77b].

Interestingly, our result when combined with [Kal87, Thm.3] implies that every factor g
of f has a circuit of size polynomial in: size(f), deg(g) and min{deg(rad(f)), size(rad(f))}.
We leave it as an open question whether the latter expression is polynomially related to
size(f).

Theorem 2 shows an interesting way to create hard polynomials. In the theorem
statement let the size concluded be (s + deg(rad(u1)))

e, for some constant e. If one has a
polynomial f1(x1, . . . , xn) that is 2cn-hard, then any nonzero f := ∏i f ei

i is also 2Ω(n)-hard
for arbitrary positive ei’s, as long as

∑
i

deg(fi) ≤ 2
cn
e −1

In general, for a high degree circuit f , rad(f) can be of high degree (exponential in
size of the circuit). Ideally, we would like to show that every degree d factor of f has
poly(size(f), d)-size circuit.

The next theorem reduces the above question to a special kind of modular division, where
the denominator polynomial may not be invertible but the quotient is well-defined (eg. x2/x
mod x). All that remains is to somehow eliminate this kind of non-unit division operator
(which we leave as an open question). Consider ‘random’ elements αi, βi ∈r F and the
corresponding random linear map τ : xi 7→ αiy + xi + βi, i ∈ [n], where y is a new variable
apart from x1, . . . , xn.

Theorem 3

If nonzero f ∈ F[x] can be computed by a circuit of size s, then any degree d factor of f (τx)
is of the form A/B mod 〈x〉d+1 where polynomials A, B have circuits of size poly(sd).

Note that in Theorem 3, B may be non-invertible in F[x]/〈x〉d+1 and may have a high
degree (eg. 2s). So, we cannot use the famous trick of Strassen to do division elimination
here [Str73].

We prove uniform closure results, under factoring, for some algebraic complexity
classes.

12 Chapter 1. Introduction

Theorem 4

The classes VF(nlog n),VBP(nlog n),VNP(nlog n) are all closed under factoring. Moreover,
there exists a randomized poly(nlog n)-time algorithm that: for a given nO(log n) sized formula
(resp. ABP) f of poly(n)-degree, outputs nO(log n) sized formula (resp. ABP) of a nontrivial
factor of f (if one exists).

Remark. The “time-complexity” in the algorithmic part makes sense only in certain cases.
For example, when F ∈ {Q, Qp, Fq}, or when one allows computation in the BSS-model
[BSS89]. In the former case our algorithm takes poly(nlog n) bit operations (assuming that
the characteristic is zero or larger than the degree; see Theorem 36 in Section 8.1).

It is important to note that Theorem 4 does not follow by invoking Kaltofen circuit
factoring [Kal89] and VSBR transformation [VSBR83] from circuit to log-depth formula.
Formally, if we are given a formula (resp. ABP) of size nO(log n) and degree poly(n), then it
has factors which can be computed by a circuit of size nO(log n) and depth O(log n). If one
converts the factor circuit to a formula (resp. ABP), one would get the size upper bound
of the factor formula to be a much larger (nO(log n))log n = nO(log2 n). Moreover, Kaltofen’s
methods crucially rely on the circuit representation to do linear algebra, division with
remainder, and Euclid gcd in an efficient way; a nice overview of the implementation level
details to keep in mind is [KSS15, Sec.3].

Our proof methods extend to the approximative versions C(nlog n) for C ∈ {VF,VBP,VNP}
5 as well (Theorem 35).

As before, Theorem 4 has an interesting lower bound consequence: If f has VF

(resp. VBP resp. VNP) complexity nω(log n) then any nonzero f g has similar hardness
(for deg(g) ≤ poly(n)).

In fact, the method of Theorem 4 yields a formula factor of size sed2 log d for a given
degree-d size-s formula (e is a constant). This means— If determinant detn requires na log n

size formula, for a > 2, then any nonzero degree-O(n) multiple of detn requires nΩ(log n)

size formula.
Similarly, if we conjecture that a VP-complete polynomial fn (say the homomorphism

polynomial in [DMM+14, Thm.19]) has na log n ABP complexity, for a > 4, then any nonzero
degree-O(n) multiple of fn has nΩ(log n) ABP complexity.

GCD is an important operation for polynomials and one could also ask similar questions
about complexity of gcd. We separately discuss some interesting results about complexity
of gcd in chapter 4. Originally Kaltofen proved that low degree gcd of low complexity
arbitrary degree circuits has small size circuit [Kal87, Theorem 3]. But the complexity was

5For definitions, see chapter 7

1.6. Organization of the thesis 13

dependent on the number of input polynomials. We essentially remove the dependency
on the number of input polynomials.

Theorem 5

Let fi ∈ F[x] for i ∈ [m] and let g =gcd(f1, . . . , fm) such that size(fi) ≤ s. Then,
size(g) ≤ poly(s, d) where d :=deg(g)

For details, see chapter 4

1.5.3 Sparsity Bound

Let us consider the set of polynomials where degxi
(f) = r or 0. We will prove that the

conjecture is true for these set of polynomials. For notational purpose, let us define

Sn,r = { f | f ∈ C[x1, . . . , xn] such that degxi
(f) = r or 0}

Theorem 6

If f ∈ Sn,r, then, we have g | f ⇐⇒ ||g|| ≤ || f ||log r.

Theorem 6 is important in the sense that example 1.4 is possibly the only example where
such quasi polynomial blow up is known. Observe that f = ∏

i∈[n]
(xr

i − 1) ∈ Sn,r. Hence, we

have established that possibly for the corner extreme cases, we are fine with the bound.

This is still interesting in the sense that Bhargav etal’s bound in [BSV18] would give
dependency of r instead of log r in the exponent.

1.6 Organization of the thesis

Chapter 1 is just for the introduction. Chapter 2 is building some back ground and tools
that will be used through out the thesis. Chapter 3 is the main building block where the
idea of using Newton Iteration to factorize polynomial has been described. Chapter 4
talks about complexity of gcd of two polynomials in algebraic models. Chapter 5 talks
about the closure of restricted classes such as VF(nO(log n)) and VBP(nO(log n)) and design
algorithm to output factors in the respected classes. Chapter 6 talks about the dependency
of the squarefreeness on the complexity of the factor which partially solves the famous
factor conjecture as well. Chapter 7 deals with the approximative complexity classes such as
VP,VF(nO(log n)) and so on and show that they are also closed under factoring. Chapter 8

14 Chapter 1. Introduction

deals with the factoring of polynomials when the base field is not good enough. Chapter 9
talks about sparsity bound on specific class of factors. Finally, we conclude in chapter 10
by asking the immediate open questions.

Most of the contents of Chapter 3, 5, 6, 7, 8 can be found in the paper “Discovering the roots:
Uniform closure results for algebraic classes under factoring” (accepted at STOC’2018), a
joint work with my advisor Dr. Nitin Saxena and my colleague Amit Sinhababu.

https://www.cse.iitk.ac.in/users/nitin/papers/factor-closure.pdf
https://www.cse.iitk.ac.in/users/nitin/papers/factor-closure.pdf
http://acm-stoc.org/stoc2018/
https://www.cse.iitk.ac.in/users/nitin/
https://www.cse.iitk.ac.in/users/amitks/

15

Chapter 2

Preliminaries

This chapter is dedicated to building up the tools and lemmas that will be required in
proving the theorems mentioned in the previous chapter.

2.1 Formal Power Series

In mathematics, a formal power series is a generalization of a polynomial, where the
number of terms is allowed to be infinite; this implies giving up the possibility of replacing
the variable in the polynomial with an arbitrary number. Thus a formal power series
differs from a polynomial in that it may have infinitely many terms, and differs from a
power series, whose variables can take on numerical values.

one may think of a formal power series as a power series in which we ignore questions of
convergence by not assuming that the variable X denotes any numerical value (not even an
unknown value). For example, consider the series

1− 3X + 5X2 − 7X3 + 9X4 − . . .

If we studied this as a power series, its properties would include, for example, that its
radius of convergence is 1. However, as a formal power series, we may ignore this completely;
all that is relevant is the sequence of coefficients [1,−3, 5,−7, 9, . . .]. Arithmetic i.e. addition
and multiplication on formal power series is carried out by simply pretending that the
series are polynomials. Once we have defined multiplication for formal power series, we
can define multiplicative inverses as follows. The multiplicative inverse of a formal power
series A is a formal power series C such that AC = 1, provided that such a formal power
series exists. It turns out that if A has a multiplicative inverse, it is unique, and we denote
it by A−1. For example,

1
1− X

= ∑
i≥0

Xi

16 Chapter 2. Preliminaries

The set of all formal power series in X with coefficients in a commutative ring R form
another ring that is written R[[X]], and called the ring of formal power series in the variable
X over R. In fact one can generalize for multivariate power series ring R[[X]].

Instead of looking into the factorization over F[x], we look into the more analytic
factorization pattern of a polynomial over F[[x1, . . . , xn]], namely, formal power series
of n-variables over field F. To talk about factorization, we need the notion of uniqueness
which the following proposition ensures.

Proposition 1. [ZS75, Chap.VII] Power series ring F[[x1, . . . , xn]] is a unique factorization
domain (UFD), and so is F[[x]][y].

2.2 Randomized algorithm for linear algebra using PIT

The following lemma from [KSS15] discusses how to perform linear algebra when the
coefficients of vectors are given as formula (resp. ABP). This will be crucially used in
Theorem 4 when we would give an algorithm to output the factors.

Lemma 5. (Linear algebra using PIT [KSS15, Lem.2.6])
Let M = (Mi,j)k×n be a matrix (where k is nO(1)) with each entry being a degree ≤ nO(1)

polynomial in F[x]. Suppose, we have algebraic formula (resp. ABP) of size ≤ nO(log n) computing
each entry. Then, there is a randomized poly(nlog n)-time algorithm that either:

• finds a formula (resp. ABP) of size poly(nlog n) computing a non-zero u ∈ (F[x])n such that
Mu = 0, or

• outputs 0 which declares that u = 0 is the only solution.

Proof. This was proved in [KSS15, Lem.2.6] for the circuit model. Since we are using a
different model we repeat the details. The idea is the following. Iteratively, for every
r = 1, . . . , n we shall find an r× r minor contained in the first r columns that is full rank.
While continuing this process, we either reach r = n in which case it means that the matrix
has full column rank, hence, u = 0 is the only solution, or we get stuck at some value
say r = r0. We use the fact that r0 is rank and using this minor we construct the required
non-zero vector u.

We explain the process in a bit more detail. Using a randomized algorithm, we look
for some non-zero entry in the first column. If no such entry is found we can simply take
u = (1, 0, . . . , 0). So assume that such a non-zero entry is found. After permuting the rows
we can assume wlog that this is M1,1. Thus, we have found a 1× 1 minor satisfying the
requirements. Assume that we have found an r× r full rank minor that is composed of the

2.3. Basic operations on formula, ABP and circuit 17

first r rows and columns (we can always rearrange and hence it can be assumed wlog that
they correspond to first r rows and columns). Denote this minor by Mr.

Now for every (r + 1)× (r + 1) submatrix of M contained in the first r + 1 columns
and containing Mr, we check whether the determinant is 0 by randomized algorithm. If
any of these submatrices have nonzero determinant, then we pick one of them and call
it Mr+1. Otherwise, we have found that first r + 1 columns of M are linearly dependent.
As Mr is full rank, there is v ∈ F(x)r such that Mrv = (M1,r+1, . . . , Mr,r+1)

T. This can be
solved by applying Cramer’s rule. The i-th entry of v is of the form det(M(i)

r)/det(Mr),
where M(i)

r is obtained by replacing i-th column of Mr with (M1,r+1, . . . , Mr,r+1)
T. Observe

that det(Mr), as well as det(M(i)
r), are both in F[x].

Then it is immediate that u := (det(M(1)
r), . . . , det(M(r)

r),−det(Mr), 0, . . . , 0)T is the
desired vector.

To find Mr, each time we have to calculate the determinant and decide whether it
is 0 or not. This is simply PIT for a determinant polynomial with entries of algebraic
complexity nO(log n) and degree nO(1). So, we have a comparable randomized algorithm
for this. Determinant of a symbolic n× n matrix has nO(log n) size formula (resp. poly(n)
size ABP) [MV97]. When the entries of the matrix have nO(log n) size formula (resp. ABP),
altogether, the determinant polynomial has the same algebraic complexity. There are < n2

PIT invocations to test zeroness of the determinant. Altogether, we have a poly(nlog n)-time
randomized algorithm for this [Sch80].

2.3 Basic operations on formula, ABP and circuit

We use the following standard results on size bounds for performing some basic operations
(like taking derivative) of circuits, formulas, ABPs. We denote F[[x]] to be power series
ring over F.

Lemma 6. (Eliminate single division [Str73], [SY10, Thm.2.1])
Let f and g be two degree-D polynomials, each computed by a circuit (resp. ABP resp. formula)

of size-s with g(0) 6= 0. Then f /g mod 〈x〉d+1 can be computed by O((s + d)d3) (resp. O(sd2D)

resp. O(sd2D2)) size circuit (resp. ABP resp. formula).

Proof. Assume wlog that g(0) = 1; we can ensure this by appropriate normalization. So,
we have the following power series identity in F[[x]]:

f /g = f /(1− (1− g)) = f + f (1− g) + f (1− g)2 + f (1− g)3 + · · · .

Note that this is a valid identity as 1 − g is constant free. For all d ≥ 0, LHS = RHS
mod〈x〉d+1.

18 Chapter 2. Preliminaries

If we want to compute f /g mod 〈x〉d+1, we can take the RHS of the above identity
up to the term f (1− g)d and discard the remaining terms of degree greater than d. The
degree> d monomials can be truncated, using Strassen’s homogenization trick, in the case of
circuits and ABPs (see [Sap16, Lem.5.2]), and an interpolation trick in the case of formulas
(which also works for ABPs and low degree circuits, [Sap16, Lem.5.4]). A careful analysis
shows that the size blow up is at most O((s+ d)d2 · d) (resp. O(sd ·D · d) resp. O(sd ·D2 · d))
for circuits (resp. ABP resp. formula).

Using the above result, it is easy to see, that we get poly(s, d) size circuit (resp. ABP
resp. formula) for computing f /g mod 〈x〉d+1.

Remark. Note that it may happen that g(0) = 0, thus 1/g does not exist in F[[x]], yet
f /g may be a polynomial of degree d. In such a case, we need to discuss a modified
normalization that works. We can shift the polynomials f , g by some random α ∈ Fn. The
constant term of the shifted polynomial is non-zero with high probability [Sch80]. Now,
we compute f (x + α)/g(x + α) using the method described above. Finally, we recover the
polynomial f /g by applying the reverse shift x 7→ x− α.

What if our model has several division gates?

Lemma 7. (Div. gates elimination [SY10, Thm.2.12]) Let f be a polynomial computed by a circuit
(resp. formula), using division gates, of size s. Then, f mod 〈x〉d+1 can be computed by poly(sd)
size circuit (resp. formula).

Proof idea. We preprocess the circuit (resp. formula) so that the only division gate used in
the modified circuit (resp. formula) is at the top. Now to remove the single division gate at
the top, we use the above power series trick.

The idea of the pre-processing is the following. We can separately keep track of
numerator and denominator computed at each gate and simulate addition, multiplication
and division gates in the original circuit. For + gate, use the identity u1

v1
+ u2

v2
= u1v2+u2v1

v1v2
.

Similarly do for × gate. This pre-processing incurs only poly(sd) blow up in the case of
circuits. In the case of formulas one has to ensure that in any path from the leaf to the root,
there are only O(log sd) division gates.

+

÷ ÷

u1 v1 u2 v2

÷

× ××
+

u1 v1 u2 v2

=⇒

2.3. Basic operations on formula, ABP and circuit 19

2.3.1 Upper bound on derivative computation

Suppose f (x) is a multivariate polynomial of degree d computed by a circuit(resp. formula
resp. ABP) of size s. What can we say about size of its derivative with respect to one
variable? What about higher order derivative? The next lemma exactly seeks the desired
answer.

Lemma 8 (Derivative computation). If a polynomial f (x, y) can be computed by a circuit (resp.
formula resp. ABP) of size s and degree d. Then, any ∂k f

∂yk can be computed by circuit (resp. formula
resp. ABP) of size poly(sk).

Proof. The idea is simply to use the homogenization and interpolation properties [Sap16,
Sec.5.1-2].

Let f (x, y) = c0 + c1y + c2y2 + . . . + cδyδ, where c0, c1, . . . , cδ ∈ F[x]. Given the circuit
(resp. formula resp. ABP) computing polynomial f (x, y), we can get the circuits (resp.
formula resp. ABP) computing c0, . . . , cδ using homogenization and interpolation as
discussed before. Given c0, . . . , cδ, computing ∂k f

∂yk in size poly(sd) is trivial. We use this
approach of computing derivative when the polynomial is of degree d ≤ poly(s).

In the case of high degree circuits, we cannot use the above approach. [Kal87, Thm.1]
shows that ∂k f

∂yk can be computed by a circuit of size O(k2s), i.e. the degree of the circuit
does not matter. The main idea is to inductively use the Leibniz product rule of k-th order
derivative and store at each gate upto k-th derivative i.e. for a gate computing u, we store
(u, u(1), . . . , u(k)) which we compute bottom-to-top as follows :

1. For a + gate which computes w where w = u + v (children gates compute u and v),
as we have computed u(i) and v(i), we use the identity w(i) = u(i) + v(i) to compute
i-th derivative at that gate

2. For a × gate computing w where w = u · v, we use the following identity

w(i) =
i

∑
j=0

(
i
j

)
u(i−j)v(j)

to compute i-th derivative.

Overall it is very easy to compute that the final size of the circuit will be O(k2s).

2.3.2 Lower bound on derivative computation

One can similarly ask about lower bound on the size of higher order derivative of the
given polynomial. The next lemma “almost” positively answers it.

20 Chapter 2. Preliminaries

Lemma 9 (Lower bound [Val82]). Suppose a polynomial f (x, y) can be computed by a circuit of
size s. Then, ∂k f

∂yk can be computed by circuit of size poly(s, log k) =⇒ VP = VNP.

Proof. Consider the following polynomial of n2 + n variables

g(y1, . . . , yn, z1,1, . . . , zn,n) = ∏
i∈[n]

 ∑
j∈[n]

yjzi,j

Observe that coefficient of y1 . . . yn in g is nothing but perm(z1,1, . . . , zn,n). Consider a new
polynomial f by substituting yi = x(n+1)i−1

(kronecker substitution). In particular, let

f (x, z1,1, . . . , zn,n) := g(x, xn+1, x(n+1)2
, . . . , x(n+1)n−1

, z1,1, . . . , zn,n)

As kronecker substitution gives different weights to different monomials, coefficient
ck(z1,1, . . . , zn,n) of xk in f is actually perm(z1,1, . . . , zn,n) where k = 1 + (n + 1) + . . . +
(n + 1)n−1. Therefore, it implies the following identity

∂k f (x, z1,1, . . . , zn,n)

∂xk

∣∣∣∣
x=0

= k!perm(z1,1, . . . , zn,n)

Observe that size(g) as well as size(f) is poly(n). Hence, assuming the hypothesis we
would get that perm(z1,1, . . . , zn,n) has poly(n) size circuit i.e. VP = VNP.

2.4 Sylvester matrix & resultant

First, let us look at the notion of resultant of two univariate polynomials. Let p(x), q(x) ∈
F[x] be of degree a, b respectively. From Euclid’s extended algorithm, it can be shown that
there exist two polynomials u(x), v(x) ∈ F[x] such that

u(x)p(x) + v(x)q(x) = gcd(p(x), q(x))

This is known as Bezout’s identity. If gcd(p(x), q(x)) = 1, then (u, v) with deg(u) ≤ b and
deg(v) ≤ a is unique. Let us take

u(x) = u0 + u1x + u2x2 + . . . + ubxb

v(x) = v0 + v1x + v2x2 + . . . + vaxa

Now, if we use the equation u(x)p(x) + v(x)q(x) = gcd(p(x), q(x)) and compare the
coefficients of xi, for 0 ≤ i ≤ a + b, we get a system of linear equations in the a + b + 2
many unknowns (ui’s and vi’s). The system of linear equations can be represented in the

2.4. Sylvester matrix & resultant 21

matrix form as Mx = y, where x consists of the unknowns. Resultant of f , g is defined
as the determinant of the matrix M. It is easy to see that M is invertible if and only if the
polynomials are coprime.

Now, the notion of resultant can be extended to multivariate, by defining resultant of
polynomials f (x, y) and g(x, y) wrt some variable y. The idea is same as before, now we
take gcd wrt the variable y and get a system of linear equations from Bezout’s identity. The
matrix can be explicitly written with entries being polynomial coefficients (or they could
be from F[[x]]). This is known as Sylvester matrix, which we define next.

Definition 10. Let f (x, y) = ∑l
i=0 fi(x)yi and g(x, y) = ∑m

i=0 gi(x)yi. Define Sylvester matrix
of f and g wrt y as the following (m + l + 1)× (m + l + 1) matrix:

Syly(f , g) :=

fl 0 0 . . . 0 gm 0 0 0
fl−1 fl 0 . . . 0 gm−1 gm 0 0
fl−2 fl−1 fl . . . 0 gm−2 gm−1 gl 0

...
...

...
...

...
...

...
...

...
f0 f1 fl g0 g1 . . . gm

0 f0 0 g0 . . . 0
...

...
...

...
...

...
...

...
...

0 f0 0 g0

So, resultant can be formally defined as follows (for more details and alternate definitions,

see [LN97, Chap.1]).

Definition 11. Given two polynomials f (x, y) and g(x, y), define the resultant of f and g wrt y
as determinant of the Sylvester matrix,

Resy(f , g) := det(Syly(f , g)) .

From the definition, it can be seen that Resy(f , g) is a polynomial in F[x] with degree
bounded by 2deg(f)deg(g). Now, we state the following fundamental property of the
Resultant, which is crucially used.

Proposition 2 (Res vs gcd). 1. Let f , g ∈ F[x, y] be polynomials with positive degree in y.
Then, Resy(f , g) = 0 ⇐⇒ f and g have a common factor in F[x, y] which has positive
degree in y.

2. There exists u, v ∈ F[x] such that u f + vg = Resy(f , g).

The proof of this standard proposition can be found in many standard books on algebra
including [vzGG13, Sec.6].

22 Chapter 2. Preliminaries

Lemma 12 (Squarefree-ness). Let f ∈ F(x)[y] be a polynomial with degy(f) ≥ 1. f is square
free iff f , f ′ := ∂y f are coprime wrt y.

Proof. The main idea is to show that there does not exist g ∈ F(x)[y] with positive degree
in y such that g | gcdy(f (x, y), f ′(x, y)). This is true because– suppose g is an irreducible
polynomial with positive degree in y that divides both f (x, y) and f ′(x, y). So,

f (x, y) = gh =⇒ f ′(x, y) = gh′ + g′h =⇒ g | g′h .

As g is irreducible and degy(g′) < degy(g) we deduce that g | h. Hence, g2 | f . This
contradicts the hypothesis that f is square free.

Now, we state another standard lemma, which is useful to us and which is proved
using the property of Resultant.

Lemma 13 (Coprimality). Let f , g ∈ F(x)[y] be coprime polynomials wrt y (& nontrivial in y).
Then, for β ∈r Fn, f (β, y) and g(β, y) are coprime (& nontrivial in y).

Proof. Consider f = ∑d
i=1 fiyi and g = ∑e

i=1 giyi. Choose a random β ∈r Fn. Then, by
Proposition 2 & [Sch80], fd · ge · Resy(f , g) at x = β is nonzero. This in particular implies
that

Resy(f (β, y), g(β, y)) 6= 0

Hence, by Proposition 2, f (β, y) and g(β, y) are coprime.

2.5 Monic Transformation

Sometimes it is easy to work with monic polynomial (monic wrt one variable) i.e. polynomials
whose leading co-efficient wrt a variable is a field element. Of course, initially we may not
be given a monic polynomial. Hence, we should find a way to make it monic so that the
factorization pattern 1 does not change.

Lemma 14 (Transform to monic). For a polynomial f (x) of total degree d ≥ 0 and random
αi ∈r F, the transformed polynomial (f̂)(x, y) := f (αy + x) has a nonzero constant as coefficient
of yd, and degree wrt y is d. Moreover, f̂ has same factoring pattern as f .

Proof. Suppose the transformation is xi 7→ xi + αiy where i = 1(1)n , any monomial
xβ = xβ1

1 . . . xβn
n will contribute monomials of the form

xβ′1
1 yβ1−β′1 . . . xβ′n

n yβn−β′n = yβ1−β′1+β2−β′2+...+βn−β′n xβ′1
1 . . . xβ′n

n .

1What we meant is if f = ∏ f ei
i where fi’s are irreducible and suppose f (τx) is monic after the

transformation τ, then f (τx) = ∏ fi(τx)ei where fi(τx) are irreducible.

2.6. Closure properties for VNP 23

Hence degree remains same as of the initial monomial and so deg(f̂) ≤ deg(f) = d (as
highest degree coefficients might get cancelled). We show that for random αi’s, deg(f̂) =
deg(f) = degy(f̂) = d . Let us assume

S = {β | |β|1 = d and cβ 6= 0}

where f = ∑ cβxβ + lower degree terms . Coefficient of degree d of y in f̂ is

∑
β∈S

cβα
β1
1 . . . α

βn
n

We want to show that for random αi’s, ∑β∈S cβα
β1
1 . . . α

βn
n 6= 0 so that deg remains d. It is

easy to see that as

∑
β∈S

cβtβ1
1 . . . tβn

n = 0

in variable t1, .., tn is a non-zero polynomial, from Schwartz-Zippel lemma, random points
will not be a zero of the above polynomial. Thus this makes sure that degy(f̂) = d and as
d = degy(f̂) ≤ deg(f̂) ≤ d, we have degy(f̂) = deg(f) = d.

For the second part, it is enough to show that if f is irreducible, then f̂ is irreducible too
2. suppose f̂ (x, y) is not irreducible. As it is monic, assume that a non-zero polynomial(i.e.
with positive degree in y)

g(x, y) | f̂ (x, y) =⇒ ĝ(x, y) = g(x− αy) | f (x)

As αi ∈r F, ĝ is a non-zero polynomial contradicting the fact that f is irreducible.

2.6 Closure properties for VNP

VNP-size parameter (w, v) of F refers to w being the witness size and v being the size of the
verifier circuit f .

Let F(x, y), G(x, y), H(x) have verifier polynomials f , g and h with the VNP size parameters
(w f , v f),(wg, vg), (wh, vh) respectively. Let the degree of F wrt y be d. Then, the following
closure properties can be shown ([BCS13] or [Bür13, Thm.2.19]):

1. Add (resp. Multiply): F+G (resp. FG) has VNP-size parameter (w f +wg, v f + vg + 3).

2. Coefficient: Fi(x) has VNP-size parameter (w f , (d + 1)(v f + 1)), where F(x, y) =:

∑d
i=0 Fi(x)yi.

2This is true because if reducibility and degree are both preserved, then factorization pattern must remain
the same

24 Chapter 2. Preliminaries

3. Compose: F(x, H(x)) has VNP-size parameter ((d + 1)(w f + dwh), (d + 1)2(v f + vh +

1)).

Proof. All the above statements are easy to prove using the definition of VNP.

1.

(FG)(x, y) =

 ∑
u∈{0,1}w f

f (x, u1, . . . , uw f)

 ·(∑
u∈{0,1}wg

g(x, u1, . . . , uwg)

)

= ∑
u∈{0,1}w f +wg

A(x, u1, . . . , uw f +wg)

where,

A(x, u1, . . . , uw f +wg) = f (x, u1, . . . , uw f) · g(x, uw f +1, . . . , uw f +wg)

Trivially, A has size v f + vg + 3 (extra: one node, two edges) and witness size is
w f + wg.

Similarly, with F + G.

2. Interpolation gives, fi(x) = ∑d
j=0 αjF(x, β j), for some distinct arguments β j ∈ F.

Clearly, F(x, β j) has VNP-size parameter (w f , v f). Using the previous addition
property we get that the verifier circuit has size (d + 1)(v f + 1). Witness size remains
w f as we can reuse the witness string of F.

3. Write F(x, y) =: ∑d
i=0 Fi(x)yi. We know that Fi has VNP-size parameter (w f , (d +

1)(v f + 1)). For 0 ≤ i ≤ d, Hi has VNP-size parameter (iwh, (i + 1)vh) using i-fold
product (Item 1). Substituting y = H in F, we can calculate the VNP-size parameter.

Suppose Fi and Hi have corresponding verifier circuits Ai and Bi respectively. Then,

F(x, H(x)) =
d

∑
i=0

Fi(x)Hi(x)

=
d

∑
i=0

 ∑
u∈{0,1}w f

Ai(x, u)

 ·
 ∑

u∈{0,1}iwh

Bi(x, u)

Thus, the witness size is < (d + 1)(w f + dwh). The corresponding verifier circuit size
is < (d + 1)2(v f + vh + 1).

2.7. Matrix and Series Inverse 25

2.7 Matrix and Series Inverse

Lemma 15 (Matrix inverse). Let µi, i ∈ [d], be distinct nonzero elements in F. Define a d× d
matrix A with the (i, j)-th entry 1/(yi − µj)

2. Its entries are in the function field F(y). Then,
det(A) 6= 0.

Proof. The idea is to consider the power series of the function 1/(yi − µj)
2 and show that a

monomial appears nontrivially in that of det(A).
We first need a claim about the coefficient operator on the determinant.

Claim 16. Let f j = ∑i≥0 β j,ixi be a power series in F[[x]], for j ∈ [d]. Then, Coeffxα ◦ det
(

f j(xi)
)

= det
(

β j,αi

)
.

Proof of Claim 16. Observe that the rows of the matrix have disjoint variables. Thus,
xαi

i could be produced only from the i-th row. This proves: Coeffxα ◦ det
(

f j(xi)
)

=

det
(

Coeffx
αi
i
◦ f j(xi)

)
= det

(
β j,αi

)
. �

By Taylor expansion we have

1
(x− µ)2 =

1
µ2 ∑

j≥1
j
(

x
µ

)j−1

.

Hence, the coefficient of yi−1
i in A(i, j) is

1
µ2

j

i
µi−1

j

=
i

µi+1
j

.

By the above claim, the coefficient of ∏i∈[d] yi−1
i in det(A) is: det

((
i

µi+1
j

))
. By

cancelling i (from each row) and 1/µ2
j (from each column), we simplify it to the Vandermonde

determinant:

det

1
µ0

1

1
µ0

2
. . . 1

µ0
d

1
µ1

1

1
µ1

2
. . . 1

µ1
d

...
... . . .

...
1

µd−1
1

1
µd−1

2
. . . 1

µd−1
d

 = ∏
i<j∈[d]

(
1
µi
− 1

µj

)
6= 0 .

Hence, the determinant of A is non-zero.

Remark. If the characteristic of F is a prime p ≥ 2 then the above proof needs a
slight modification. One should consider the coefficient of ∏i∈[d] ysi−1

i in det(A) for a set

26 Chapter 2. Preliminaries

S = {s1, . . . , sd} of distinct non-negative integers that are not divisible by p. Moreover, one
has to consider ‘random’ µi’s to deduce det(A) 6= 0.

Lemma 17 (Series inverse). Let δ ≥ 1. Assume that A is a polynomial of degree < δ and B is
a homogeneous polynomial of degree δ, such that A(0) =: µ 6= 0. Then, we have the following
identity in F[[x]](y) ∩ F[[x]][[y]]:

1
y− (A + B)

≡ 1
y− A

+
B

(y− µ)2 mod 〈x〉δ+1

Proof. We will use the notation A[1,δ−1] to refer to the sum of the homogeneous parts of A
of degrees between 1 and δ− 1 (equivalently, it is A<δ − µ). Note that B · A[1,δ−1] vanishes
mod 〈x〉δ+1. Now, in F[[x]][[y]],

1
y− (A + B)

≡ 1
y− µ−

(
A[1,δ−1] + B

) mod 〈x〉δ+1

≡ 1
y− µ

 1

1− A[1,δ−1]+B
y−µ

 mod 〈x〉δ+1

≡ 1
y− µ

1 +

(
A[1,δ−1] + B

y− µ

)
+

(
A[1,δ−1] + B

y− µ

)2

+

 mod 〈x〉δ+1

≡ 1
y− µ

1 +

(
A[1,δ−1] + B

y− µ

)
+

(
A[1,δ−1]

y− µ

)2

+

(
A[1,δ−1]

y− µ

)3

+

 mod 〈x〉δ+1

≡ 1
y− µ

1 +

(
A[1,δ−1]

y− µ

)
+

(
A[1,δ−1]

y− µ

)2

+

+
B

(y− µ)2 mod 〈x〉δ+1

≡ 1
y− µ

 1

1− A[1,δ−1]

y−µ

+
B

(y− µ)2 mod 〈x〉δ+1

≡ 1
y− A

+
B

(y− µ)2 mod 〈x〉δ+1 .

2.8 Holomorphic function and Order of zero

In mathematics, a holomorphic function is a complex-valued function of one or more
complex variables that is complex differentiable in a neighborhood of every point in its
domain. The existence of a complex derivative in a neighborhood is a very strong condition,
for it implies that any holomorphic function is actually infinitely differentiable and equal to

2.9. Newton-Puiseux Series 27

its own Taylor series (analytic). Holomorphic functions are the central objects of study in
complex analysis.

In complex analysis, a zero (sometimes called a root) of a holomorphic function f is a
complex number a such that f (a) = 0. Generally, the multiplicity of the zero of f at a is the
positive integer n for which there is a holomorphic function g such that

f (z) = (z− a)n · g(z) and g(a) 6= 0

We denote this by orda(f) = n. In this thesis, we are only concerned about polynomials (
in general power series) which is analytic by definition. We have the following lemma :

Lemma 18 (Order Lemma). Let f and g be two analytic functions. Then,

ordz0

(
f
g

)
= ordz0(f)− ordz0(g)

Proof. Let us assume that ordz0(f) = m and ordz0(g) = n. Then, f (z) = (z− z0)mh1(z) and
g(z) = (z− z0)nh2(z) where h1 and h2 are both analytic with h1(z0) 6= 0 and h2(z0) 6= 0.
Then,

f
g
= (z− z0)

m−nh(z)

where h(z) = h1(z)
h2(z)

. Ofcourse h(z0) 6= 0 and hence h(z) is holomorphic in the neighborhood
of z0 and hence the lemma holds.

Lemma 19 (Order of Derivative). Let f (x, y) ∈ F ((x)) [[y]] such that ordg(f) = e for some
g ∈ F ((x)) where e ≥ 1. Then ordg(∂y f) = e− 1

Proof. This simply follows from following

f = (y− g)e · A =⇒ ∂y f = (y− g)e−1 (A + (y− g)A′
)

But as A(g) 6= 0 =⇒ y − g - (A + (y− g)A′) =⇒ (A + (y− g)A′) is analytic and
non-zero at y = g. So, the lemma follows.

It is easy to show that f is analytic implies f 1/e is also analytic where e ∈ Q.

2.9 Newton-Puiseux Series

In mathematics, the Laurent series of a complex function f (z) is a representation of that
function as a power series which includes terms of negative degree. The Laurent series for

28 Chapter 2. Preliminaries

a complex function f (z) about a point c is given by:

f (z) =
∞

∑
n=−∞

an(z− c)n

where an and c are constants. Puiseux series differ from Laurent series in that they allow
for fractional exponents of the indeterminate, as long as these fractional exponents have
bounded denominator. Formally, a Pisuex series is of the form

f (T) = ∑
k≥k0

ckTk/n

for some n ∈N, k0 ∈ Z and ck are constants from the field.
Puiseux’s theorem, sometimes also called the Newton–Puiseux theorem, asserts that,

given a polynomial equation P(x, y) = 0, its solutions in y, viewed as functions of x, may
be expanded as Puiseux series that are convergent in some neighbourhood of the origin
(0 excluded, in the case of a solution that tends to infinity at the origin). In other words,
every branch of an algebraic curve may be locally (in terms of x) described by a Puiseux
series. In fact, the theorem tells stronger result.

Theorem 20 (Newton-Pisuex Theorem). if F is an algebraically closed field of characteristic
zero, then the field of Puiseux series over F is the algebraic closure of the field of formal Laurent
series over F.

29

Chapter 3

Newton Iteration and Factoring
Polynomials

Newton iteration based numerical methods are very popular in engineering [OR00, GMS+86,
BSR+05]. We will establish an interesting connection between finding the roots and
complexity of factors which largely depends on the very idea of Newton Iteration. Let us
first demonstrate how NI (Newton Iteration) came into the picture of factoring polynomials.
For the time being, we only worry about finding the root and not the complexity. We start
off by asking the simplest questions.

Question : Suppose f (x, y) = (y− g(x)) · u(x, y) where y− g - u. Can we find g?

This is a root finding problem as f (x, g) = 0. Recall that Classical Newton Iteration is one of
the famous root finding algorithms. Suppose we want to find “good” approximation of α

such that f (α) = 0 where f is continuously differentiable and f ′(α) 6= 0 i.e. α is a simple root.
The algorithm does the following :

1. guess a starting point x0

2. calculate xn+1 = xn − f (xn)
f ′(xn)

It can be shown that there exists a neighborhood of α such that for all starting values x0 in
that neighborhood, the sequence {xn} will converge to α i.e. limn→∞ xn = α.

It is then very natural to ask whether we can do similar thing to find g. If yes, what is the
notion of approximation ? What is the starting point? Let us start by answering the notion of
approximation in power series ring.

Let R be an integral Domain. Let us take 0 6= A(x) = ∑ aαxα ∈ R[[x]]. Define

val(A(x)) = min{|m|1 | am 6= 0}

30 Chapter 3. Newton Iteration and Factoring Polynomials

where |m|1 denotes the `1 norm 1. Also define val(0) = ∞. This is a valuation on ring R[[x]]
as it satisfies two conditions:

1. val(A(x) + B(x)) ≥ min(val(A(x)), val(B(x)))

2. val(A(x)B(x)) = val(A(x)) + val(B(x)).

For any real ε ∈ (0, 1), define norm||.||ε on R[[x]] by

||A(x)||ε = εval(A(x)) with ||0||ε = 0

One can easily show that by using the two properties that it gives a metric space structure
on R[[x]] with metric

dε(A(x), B(x)) = ||A(x)− B(x)||ε

We therefore obtain a notion of limit as follows:

lim
m→∞

Am(x) = A(x) ⇐⇒ lim
m→∞

dε(Am(x), A(x)) = 0

One can show that R[[x]] is a complete metric space; it is the completion of R[x] under the
metric defined above. We have the following proposition.

Proposition 3. Let Am(x) ∈ R[[x]] sequence of elements. Then limm→∞ Am(x) = A(x) iff for
every α, there exists N ≥ 0 such that for all M ≥ N, coeffxα AM(x) = coeffxα A(x).

Now we come back to the finding g such that f (g) = 0 and f ′(g) 6= 0. One can think
f (y) as a polynomial over F[x][y]. Let us try to imitate the classical NI:

• Initial starting point y0 = µ where µ := g(0)

• Define yt+1 = yt − f (x,yt)
f ′(x,yt)

. Can we say that yt is an approximation of g?

• If f ′(x, yt) is invertible, then one can show that yt ≡ g mod 〈x〉2t
=⇒ yt+1 ≡

g mod 〈x〉2t+1
. One can use taylor expansion to prove the above.

f (x, yt+1) = f
(

x, yt −
f (x, yt)

f ′(x, yt)

)
= f (x, yt)− f ′(x, yt)

f (x, yt)

f ′(x, yt)
+

f ′′(x, yt)

2!

(
f (x, yt)

f ′(x, yt)

)2

− . . .

= 0 mod 〈x〉2t+1
.

1For x = (x1, . . . , xn)T , we define `1 norm of x denoted by ||x||1 to be as ||x||1 = ∑
i∈[n]
|xi|

Chapter 3. Newton Iteration and Factoring Polynomials 31

It is also clear that as f ′(x, yt) is invertible, we have

yt+1 ≡ yt mod 〈x〉2t
=⇒ yt+1 ≡ g mod 〈x〉2t

To prove that yt+1 is in fact correct upto higher degree, we combine the above :

f (x, g) = 0 =⇒ f (x, g) ≡ 0 mod 〈x〉2t+1

=⇒ f (x, yt+1 + (g− yt+1)) ≡ 0 mod 〈x〉2t+1

=⇒ f (x, yt+1) + (g− yt+1) f ′(x, yt+1) ≡ 0 mod 〈x〉2t+1

(3.1)

The last line follows by using taylor series and the fact that

(g− yt+1)
i ≡ 0 mod 〈x〉2t+1

for i ≥ 2

We also have f ′(x, yt) is invertible ⇐⇒ f ′(x, yt)

∣∣∣∣
x=0
6= 0 ⇐⇒ f ′(0, µ) 6= 0. This

combined with yt+1 ≡ yt mod 〈x〉2t
we have

f ′(x, yt+1)

∣∣∣∣
x=0
6= 0

i.e. f ′(x, yt+1) is invertible. As, f (x, yt+1) ≡ 0 mod 〈x〉2t+1
, equation 3.1 ensures the

fact that
yt+1 ≡ g mod 〈x〉2t+1

• As f (0, y0) = 0 and f ′(0, y0) 6= 0, inductively as above we have existence of yt such
that yt ≡ g mod 〈x〉2t

.

• By the definition of limit, we have

lim
t→∞

yt = g

So, this process works even if g is a power series. If deg(g) = d i.e. a polynomial,
one can find g by calculating ylog(d+1) mod 〈x〉d+1 as above.

Let us complicate these situations and ask whether we can do similar thing as above.

1. What if f = (y− g1)(y− g2) but g1(0) = g2(0)?

(a) Pick α ∈ Fn such that g1(α) 6= g2(α)

(b) f (x + α, y) = (y− g1(x + α)) (y− g2(x + α))

(c) If we put x = 0, we get (y− g1(α)) (y− g2(α))

32 Chapter 3. Newton Iteration and Factoring Polynomials

(d) apply Newton Iteration (NI)

2. What if f = (y− g)e · u ? We can differentiate e− 1 times and apply NI on f (e−1).

3. What about f (x, y) =
(
yk + ck−1(x)yk−1 + . . . + c0(x)

)
· u where k > 1?

We would like to relate non-linear factors to somehow root finding so that we can
apply NI. Of course, one should not expect that a polynomial always has a factor which is
linear in one variable as in the above. But, if one works with an algebraically closed field,
then a univariate polynomial completely splits into linear factors (also see the fundamental
theorem of algebra [CRS96, S2.5.4]). So, if we go to the algebraic closure of F(x1, . . . , xn−1),
any multivariate polynomial which is monic in xn will split into factors all linear in xn. A
representation of the elements of F(x1, . . . , xn−1) as a finite circuit is impossible (eg.

√
x1).

This motivated us to prove something which shows that all the roots (wrt a new variable
y) are actually elements from F[[x1, . . . , xn]], after a random linear transformation on the
variables, τ : x 7→ x + αy + β, is applied (Theorem 1). Note– By a random choice α ∈r F we
will mean that choose randomly from a fixed finite set S ⊆ F of appropriate size (namely
> deg(f)). This will be in the spirit of [Sch80]. Once we have power series roots, one can
try to approximate the roots in the same manner as above (though remember, we are not
talking anything about complexity of such operations. We will talk about that later). In the
next section talks about power series roots of a generic polynomial.

3.1 Power series factorization of polynomials

As discussed before, we need to first apply a random linear map, that will make sure that
the resulting polynomial splits completely over the ring F[[x]] (Recall: F is algebraically
closed.). Before stating and proving the split theorem, we need to discuss about the criteria
which ensures existence of a power series root. In some sense it is the reverse of the newton
iteration where if the initial conditions are satisfied, newton iteration will ensure existence
of a power series root.

Lemma 21. (Power series root [BCS13, Thm.2.31]) Let P(x, y) ∈ F(x)[y], P′(x, y) = ∂P(x,y)
∂y

and µ ∈ F be such that P(0, µ) = 0 but P′(0, µ) 6= 0 . Then, there is a unique power series S such
that S(0) = µ and P(x, S) = 0 i.e.

y− S(x) | P(x, y) .

Moreover, there exists a rational function yt, ∀t ≥ 0, such that

yt+1 = yt −
P(x, yt)

P′(x, yt)
and S ≡ yt mod 〈x〉2t

with y0 = µ .

3.1. Power series factorization of polynomials 33

Proof. We give an inductive proof of existence and uniqueness together. Suppose P =

∑d
i=0 ciyi. We show that there is yt, a rational function At

Bt
such that yt ∈ F[[x]] , For all

t ≥ 0, P(x, yt) ≡ 0 mod 〈x〉2t
and for all t ≥ 1, yt ≡ yt−1 mod 〈x〉2t−1

. The proof is by
induction. Let y0 := µ. Thus, base case is true. Now suppose such yt exists. Define
yt+1 := yt − P(x,yt)

P′(x,yt)
.

Now, yt ≡ yt−1 mod 〈x〉2t−1
=⇒ yt(0) = µ . Hence P′(x, yt)|x=0 = P′(0, µ) 6= 0 and

so P′(x, yt) is a unit in the power series ring. So, yt+1 ∈ F[[x]]. Let us verify that it is an
improved root of P; we use Taylor expansion.

P(x, yt+1) = P
(

x, yt −
P(x, yt)

P′(x, yt)

)
= P(x, yt)− P′(x, yt)

P(x, yt)

P′(x, yt)
+

P′′(x, yt)

2!

(
P(x, yt)

P′(x, yt)

)2

− . . .

= 0 mod 〈x〉2t+1
.

Thus, P(x, yt+1) ≡ 0 mod 〈x〉2t+1
and yt+1 ≡ yt mod 〈x〉2t

. This completes the induction
step.

Moreover, using the notion of limit, we have limt→∞ yt = S, a formal power series.
It is unique as µ is a non-repeated root of P(0, y). In particular, we get that for all t ≥ 0,
P(x, S) = 0 or y− S | P.

Now, we present the split theorem (theorem 1) which talks about power series roots for
a generic polynomial under a random transformation. We will prove this in two ways. The
first proof is via the existence of power series roots which is constructive, as it also gives
an algorithm to find approximation of the roots up to any precision, using formal power
series version of the Newton iteration method (see [BCS13, Thm.2.31]). The second proof
is directly using Newton-Pisuex series and hence not fully self-contained (as we do not
discuss the proof of Newton-Pisuex series).

We try to explain the idea using the following example. Consider f = (y2 − x3) ∈
F[x, y]. Does it have a factor of the form y− g where g ∈ F[[x]] ? The answer is clearly
‘no’ as x

3
2 does not have any power series representation in F[[x]]. But, what if we shift

x randomly? For example, if we use the shift y 7→ y, x 7→ x + 1. Then, by Taylor series
around 1, we see that (x + 1)

3
2 has a power series expansion, namely

(x + 1)
3
2 = 1 +

3
2

x +
3/2× 1/2

2!
x2 + . . .

Does this work for a generic polynomial? Formally, we show that a random linear
transformation would suffice.

34 Chapter 3. Newton Iteration and Factoring Polynomials

First proof of Theorem 1. Let the irreducible factorization of f be ∏i∈[m] f ei
i . We apply a

random τ so that f , thus all its factors, become monic in y (Lemma 14). The monic factors
f̃i := fi(τx) remain irreducible (∵ τ is invertible). Also, f̃i(0, y) = fi(αy + β) and ∂y f̃i(0, y)
remain coprime (∵ β is random, apply Lemma 13). In other words, f̃i(0, y) is square free
(Lemma 12).

In particular, one can write f̃1(0, y) as ∏
deg(f1)
i=1 (y − µ1,i) for distinct nonzero field

elements µ1,i (ignoring the constant which is the coefficient of the highest degree of y
in f̃1). Using classical Newton Iteration (see Lemma 21 or [BCS13, Thm.2.31]), one can
write f̃1(x, y) as a product of power series ∏

deg(f1)
i=1 (y− g1,i), with g1,i(0) := µ1,i. Thus, each

fi(τx) can be factored into linear factors in F[[x]][y].
As fi’s are irreducible coprime polynomials, by Lemma 13, it is clear that f̃i(0, y),

i ∈ [m], are mutually coprime. In other words, µj,i are distinct and they are ∑i deg(fi) = d0

many. Hence, f (τx) can be completely factored as ∏i∈[m] fi(τx)ei = ∏i∈[d0](y− gi)
γi , with

γi > 0 and the field constants gi(0) being distinct.

Second proof of Theorem 1. Let us recall Newton-Pisuex series (see section 2.9). Consider
f (x, y, z) ∈ F[x][y, z]. We will actually work over the field F(x) i.e. think of the polynomial
f ∈ F(x)[y, z]. Newton-Pisuex series tells us that z− φ(x, y) | f (x, y, z) =⇒

φ(x, y) = ∑
k≥k0

ak(x)yk/n

Now ak ∈ F(x) implies if we shift xi 7→ xi + αi, then shifted ak’s are actually elements
in F[[x]]. Also, if one shifts y 7→ y + β, then (y + β)k/n ∈ F[[y]]. Hence the shifted φ is
actually an element in F[[x, y]] which is what essentially we proved.

To actually wrap up as whole, it is enough to show that for f (x, y) ∈ F[x, y] irreducible,

f (τ(x, y)) = ∏
i
(z− gi(x, y))

where τ : xi 7→ z + ai · xi + bi and τ : y 7→ z + a · y + b with ai, bi, a, b ∈r F and gi(x, y) ∈
F[[x, y]]. It is easy to argue that each irreducible factor of f (τx) can be factored as ∏i(z−
φi(x, y)) where φi actually lies in algebraic closure of F[x, y]. The orders of z− φi’s will
be 1 i.e. z − φi(x, y) || f otherwise f can not be irreducible. By the above argument,
φi(x + α, y + β) ∈ F[[x, y]] where αi, β ∈r F. Hence the theorem follows.

What can we say about the factors of the original polynomial? Using that fact that
1 F[[x]] is a UFD and each irreducible polynomials get factored into linear factors over
power series ring as shown in the above proof, we have the following corollary:

3.2. Factoring reduces to approximating power series roots 35

Corollary 22. Suppose g is a polynomial factor of f . As before let f (τx) = ∏i∈[m] fi(τx)ei =

k ·∏i∈[d0](y− gi)
γi . As g(τx) | f (τx) we deduce that g(τx) = k′∏(y− gi)

ci with 0 ≤ ci ≤ γi.
Moreover, we can get back g by applying τ−1 on the resulting polynomial g(τx).

Using the same technique as above one can actually prove another version of power
series split theorem.

Theorem 23 (Power Series Split theorem, version 2). Suppose f (x) = ∏k
i=1 f ei

i ∈ F[x1, . . . , xn]

where fi’s are irreducible and mutually coprime polynomials with degxi
(rad(f)) = di. Then for

α ∈r Fn, ∃c ∈ F and gi,j ∈ F[[x1, . . . , xj−1]] for j = [1, . . . , n] and i = [1, . . . , dj] with order
x1 < . . . < xn such that

f (x + α) = c
n

∏
j=1

dj

∏
i=1

(xj − gi,j)
γi,j with gi,j(0) 6= 0 6= gi′,j(0) and γi,j ≥ 0

We will mainly use the version 1 of the theorem 1.

3.2 Factoring reduces to approximating power series roots

Using the split Theorem 1, we show that multivariate polynomial factoring reduces to
power series root finding up to certain precision. Following the above notation f splits as
f (τx) = ∏d0

i=1(y− gi)
γi . For all t ≥ 0, it is easy to see that

f (τx) ≡
d0

∏
i=1

(y− g≤t
i)γi mod It+1

where I := 〈x1, . . . , xn〉. Note that there is a one-one correspondence, induced by τ,
between the polynomial factors of f and f (τx) (∵ τ is invertible and f is y-free). We
remark that the leading-coefficient of f (τx) wrt y is a nonzero element in F; so, we call it
monic (Lemma 14). Next, we show case by case how to find a polynomial factor of f (τx)
from the approximate power series roots.

Case 1 : Computing a linear factor of the form y− g(x): If the degree of the input polynomial
is d, all the non-trivial factors have degree ≤ (d − 1). So, if we compute the
approximations of all the power series roots (wrt y) up to precision of degree t = d− 1,
then we can recover all the factors of the form y− g(x1, . . . , xn). Technically, this is
supported by the uniqueness of the power series factorization (Proposition 1).

Case 2 : Computing a monic non-linear factor: Assume that a factor g of total degree t is
of the form yk + ck−1yk−1 + ... + c1y + c0, where for all i, ci ∈ F[x]. Now this factor

36 Chapter 3. Newton Iteration and Factoring Polynomials

g also splits into linear (in y) factors above F[[x]] and obviously these linear factors
are also linear factors of the original polynomial f (τx). So we have to take the right
combination of some k power series roots, with their approximations (up to the
degree t wrt x), and take the product mod It+1. Note that if we only want to give an
existential proof of the size bound of the factors, we need not find the combination of
the power series roots forming a factor algorithmically. Doing it through brute-force
search takes exponential time ((d

k) choices). Interestingly, using a classical (linear
algebra) idea due to Kaltofen, it can be done in randomized polynomial time. We
will spell out the ideas later, while discussing the algorithm part of Theorem 4.

3.3 Approximating Roots

Once we are convinced that looking at approximate (power series) roots is enough, we
need to investigate methods to compute them. We will now sketch two methods. The first
one approximates all the roots simultaneously up to precision δ. The next ones approximate
the roots one at a time. In the latter, multiplicity of the root plays an important role.

3.3.1 Recursive root finding via matrices (allRootsNI)

We simultaneously find the approximations of all the power series roots gi of f (τx). At each
recursive step we get a better precision wrt degree. We show that knowing approximations
g<δ

i , of gi up to degree δ− 1, is enough to (simultaneously for all i) calculate approximations
of gi up to degree δ. This new technique, of finding approximations of the power series
roots, is at the core of Theorem 2.

First, let us introduce a nice identity. For notational easiness, we assume that f (x, y) =

∏i(y− gi)
γi (i.e. relabel f (τx)). By applying the derivative operator ∂y, we get a classic

identity (which we call logarithmic derivative identity):

∂y f
f

= ∑
i

γi

y− gi

Reduce the above identity modulo Iδ+1 and define µi := gi(0) ≡ gi mod I. This gives us
(see Claim 31):

∂y f
f

=
d0

∑
i=1

γi

y− gi
≡

d0

∑
i=1

γi

y− g<δ
i

+
d0

∑
i=1

γi · g=δ
i

(y− µi)2 mod Iδ+1.

In terms of the d0 unknowns g=δ
i , the above is a linear equation. (Note- We treat γi, µi’s

as known.) As y is a free variable above, we can fix it to d0 “random” elements ci in F,

3.3. Approximating Roots 37

i ∈ [d0]. One would expect these fixings to give a linear system with a unique solution for
the unknowns. We can express the system of linear equations succinctly in the following
matrix representation:

M · vδ = Wδ mod Iδ+1

Here M is a d0 × d0 matrix; each entry is denoted by M(i, j) := γi
(ci−µj)2 . Vector vδ resp. Wδ

is a d0 × 1 matrix where each entry is denoted by

vδ(i) := g=δ
i , Wδ(i) :=

∂y f
f
∣∣
y=ci
− Gi,δ

where Gi,δ := ∑d0
k=1

γk
ci−g<δ

k
. We ensure that {ci, µi | i ∈ [d0]} are distinct, and show that

the determinant of M is non-zero (Lemma 15). So, by knowing approximations up to
δ− 1, we can recover δ-th part by solving the above system as vδ = M−1Wδ mod Iδ+1.
An important point is that the random ci’s will ensure: all the reciprocals involved in the
calculation above do exist mod Iδ+1.

Self-correction property: Does the above recursive step need an exact g<δ
i ? We show the

self correcting behavior of this process of root finding, i.e. in this iterative process there is
no need to filter out the “garbage” terms of degree ≥ δ in each step. If one has recovered
gi correct up to degree δ− 1, i.e. say we have calculated g′i,δ−1 ∈ F(x) such that

g′i,δ−1 ≡ g<δ
i mod Iδ

and say we solve Mṽδ = W̃δ exactly, where

W̃δ(i) :=
∂y f

f
∣∣
y=ci
− G̃i,δ and G̃i,δ :=

d0

∑
k=1

γk

ci − g′k,δ−1

Still, we can show that g′i,δ := g′i,δ−1 + ṽδ(i) ≡ g≤δ
i mod Iδ+1 (Claim 32). So, we made

progress in terms of the precision (wrt degree).

3.3.2 Rapid Newton Iteration with multiplicity

We show that from allRootsNI, we can derive a formula that finds g<2t+1

1 using only g<2t

1 ,
i.e. the process has quadratic convergence and it does not involve roots other than g1.
Rewrite

∂y f
f

=
d0

∑
i=1

γi

y− gi
= (1 + L1) ·

γ1

y− g1

where L1 := ∑1<i≤d0
γi

y−gi
· y−g1

γ1
. This implies f

∂y f = (1 + L1)
−1 · y−g1

γ1
. Now, if we put

y = yt := g<2t

1 , then yt − gi = g<2t

1 − gi is a unit in F[[x]] for i 6= 1 (∵ it is a nonzero

38 Chapter 3. Newton Iteration and Factoring Polynomials

constant mod I). Also,

yt − g1 = g<2t

1 − g1 ≡ 0 mod I2t
=⇒ L1|y=yt ≡ 0 mod I2t

Thus, (L1 · (y− g1))
∣∣
y=yt
≡ 0 mod I2t+1

. Hence,

f
∂y f

∣∣
y=yt

=
yt − g1

γ1
mod I2t+1

This shows the following :

Lemma 24 (Generalized Newton Iteration). if f (x, y) = (y− g)eh, where h|y=g 6= 0 mod I
and e > 0, then the power series for g can be approximated by the recurrence:

yt+1 := yt − e · f
∂y f

∣∣∣∣
y=yt

(3.2)

where yt ≡ g mod I2t
.

This we call a generalized Newton Iteration formula, as it works with any multiplicity
e > 0.

In fact, when e = 1, g is called a simple root of f ; the above is an alternate proof of the
classical Newton Iteration (NI) [New69] that finds a simple root in a recursive way (see
Lemma 21). When all the roots are simple there are numerical methods to simultaneously
approximate them [Dur60, Ker66, Ehr67, Abe73]. However, it is well known that NI fails
to approximate the roots that repeat (see [Lec02]). In that case either NI is used on the
function f /∂y f or, though less frequently, the generalized NI is used in numerical methods
(see [DB08, Eqn.6.3.13]).

At this point it might seem that generalized NI is stronger than classical NI but in
the next two paragraphs we will establish that this is not the case; one can deduce the
generalized version from the previous one in more than one way.

1) Another thing we can do is to look at f 1/e and apply classical iteration to get the
formula. See f 1/e has order 1 at y = g. So, applying classical, one gets

yt+1 ≡ yt −
f 1/e

1
e · f 1/e−1 · ∂y f

= yt − e · f
∂y f

2) Consider, G = f
f ′ . Using lemma 18 and 19, we have ordg

(
f

∂y f

)
= 1. Now, one can

apply classical NI formula on this. We will have

yt+1 ≡ yt −
G
G′

∣∣∣∣
y=yt

3.3. Approximating Roots 39

What we wanted to show was yt ≡ g mod I2t
. Hence, it suffices to prove (by inductive

argument) that

e · f
f ′
|y=yt ≡

G
G′

∣∣∣∣
y=yt

mod I2t+1

From definition of G, it is clear that we need to prove that G(G′ − 1
e) ≡ 0 mod I2t+1

.
Observe that

ordg(G) = 1 =⇒ y− g | G =⇒ G(yt) ≡ 0 mod I2t

Also observe that

G =
1

e
y−g +

∂yh
h

=
y− g

e
· 1

1 + ∂yh
h ·

y−g
e

=
y− g

e
·
(

1−
(

∂yh
h
· y− g

e

)
+

(
∂yh
h
· y− g

e

)2

− . . .

)
=

y− g
e

+ rest

It is very clear that the "rest" is a power series which is of the form
(

y−g
e

)2
· A where A is a

power series. Hence,

G′ =
1
e
+ rest

where rest is y−g
e · B for some power series B. Plugging y = yt in G′, we have

G′(yt) =
1
e

mod I2t

Hence, we have G(G′ − 1
e) ≡ 0 mod I2t+1

what we wanted to prove.
There is a technical point about our Eqn.3.2 when e ≥ 2. The denominator ∂y f |y=yt is

zero mod I, thus, its reciprocal does not exist! However, the ratio (f /∂y f)
∣∣
y=yt

does exist
in F[[x]]. On the other hand, if e = 1 then the denominator ∂y f |y=yt is nonzero mod I,
thus, it is invertible in F[[x]] and that is necessary for fast algebraic circuit computation
(esp. division elimination).

We can compare the NI formula with the recurrence formula (which we call slow
Newton Iteration) used in [DSY09, Eqn.5], [Oli16, Lem.4.1] for root finding. The slow NI
formula is Yt+1 = Yt − f (x,Yt)

∂y f (0,Y1)
, where Yt ≡ g mod It. The rate of convergence of this

iteration is linear, as it takes δ many steps (instead of log δ) to get precision up to degree δ.
One can also compare NI with other widespread processes like multifactor Hensel lifting
[vzGG13, Sec.15.5], [Zas69] and the implicit function theorem paradigm [KP12, Sec.1.3],
[KS16, PSS16]; however, we would not like to digress too much here as the latter concept

40 Chapter 3. Newton Iteration and Factoring Polynomials

covers a whole lot of ground in mathematics.

We end up this chapter by discussing what is called accelerated Newton Iteration.

3.4 Algebraizing Accelerated Newton Iteration

This is inspired from the newton iteration observed in [LV16]. We try to see the algebraic
version of the formula.

Suppose consider the power series factorization of f in F[[x]][y] after the desired transformation
τ : xi 7→ αiy + βixi + γi for αi, βi, γi ∈r F,

f (τx) = ∏
i∈[m]

(y− gi)
ei

with gi(0) = µi and µi’s are distinct. The goal is to find approximate gi’s.

Define
Gk(y) = ∑

i∈[m]

ei

(y− gi)k

Suppose we would like to approximate g1. Recall the NI formula with multiplicity e1.
One can show that

yt+1 = yt − e1 ·
f
f ′

∣∣∣∣
y=yt

(3.3)

works fine. Consider the following accelerated iteration formula (for k ≥ 1):

Modified Formula 1

Define y0 := µ1 and

yt+1 := yt −
Gk

Gk+1

∣∣∣∣
y=yt

This formula 1 is interesting as there is no contribution of e1 unlike for the NI with
multiplicity e1. We prove the following:

Lemma 25. For k ≥ 1 , yt ≡ g1 mod I2t
=⇒ yt+1 ≡ g1 mod I2t+1

3.4. Algebraizing Accelerated Newton Iteration 41

Proof. We have

Gk

Gk+1

∣∣∣∣
y=yt

=

∑
i∈[m]

ei

(yt − gi)k

∑
i∈[m]

ei

(yt − gi)k+1

=

(
∏

i∈[m]

(yt − gi)

)
·
(

∑
i∈[m]

(
∏
j 6=i

(yt − gj)
k

)
· ei

)

∑
i∈[m]

(
∏
j 6=i

(yt − gj)
k+1

)
· ei

=

(yt − g1) ·∏
i 6=1

(yt − gi)

(
∑

i∈[m]

(
∏
j 6=i

(yt − gj)
k

)
· ei

)
∏
j 6=1

(yt − gj)
k+1 · e1

The denominator contributes ∏
i 6=1

(yt − gi)
k+1 · e1 which is when i = 1. Observe that all

other terms for i 6= 1 has (yt − g1)
k+1 which is in I2t+1

for k ≥ 1. This in particular implies
that one can write the denominator as ∏

i 6=1
(yt − gi)

k+1 · e1

(
1 + I2t+1

)
as ∏

i 6=1
(yt − gi)

k+1 is

invertible in I2t+1
because all the µj’s are distinct. Hence,

Gk

Gk+1

∣∣∣∣
y=yt

=

(yt − g1) ·
(

∑
i∈[m]

(
∏
j 6=i

(yt − gj)
k

)
· ei

)
∏
j 6=1

(yt − gj)
k · e1

Now look at the numerator. When i 6= 1, then each term has (yt − g1)
k contributing.

Already we have (yt − g1) outside multiplied. Hence those terms will have (yt − g1)
k+1

and it is 0 mod I2t+1
. The only terms that remains in the sum is when i = 1. But for i = 1,

this is exactly the denominator! Hence, they cancel out. Hence, we have

Gk

Gk+1

∣∣∣∣
y=yt

≡ yt − g1 mod I2t+1
=⇒ yt+1 ≡ g1 mod I2t+1

But, for this method to work for k = 0, we should work with the following formula:

Modified Formula 2

Define y0 := µ1 and

yt+1 := yt −
e1

∑
i∈[m]

ei
· G0

G1

∣∣∣∣
y=yt

42 Chapter 3. Newton Iteration and Factoring Polynomials

One can prove similar as lemma 25. The reason being, G0 = ∑
i∈[m]

ei and G1 = f ′
f and that is

the NI with multiplicity formula. This above formula is also interesting as it involves all
ei’s which seems to be not the case for NI with multiplicity as seen in equation 3.3.

43

Chapter 4

GCD in Algebraic Complexity

This chapter is dedicated towards computing (or showing existence of) gcd with low
complexity. In fact, for “practical" fields like Q, Qp, or Fq for prime-power q. We use the
notation g || f to denote that g divides f but g2 does not divide f . Again, we denote
I := 〈x1, . . . , xn〉.

4.1 Computing GCD for bounded degree complexity classes

We will discuss a new method for computing gcd of two polynomials, which not only fits
well in the algorithm but is also of independent interest. Of course, when computation
is involved, we can only talk about polynomials with bounded degree as determining
whether non-trivial gcd exists for a set of univariate polynomials with integer coefficient
but high degree is NP-hard [Pla84].

Claim 26 (Computing gcd). Given two polynomials f , g ∈ F[x] of degree d and computed by a
circuit (resp. formula resp. ABP) of size s. One can compute a circuit (resp. formula resp. ABP) for
gcd(f , g), of size poly(s, d) (resp. poly(s, dlog d)), in randomized poly(s, d) (resp. poly(s, dlog d))

time.

Proof of Claim 26. The idea is the following. Suppose, gcd(f , g) =: h is of degree d > 0,
then we will compute h(τx) for a random map τ as in Theorem 1. We know wlog that

f̃ := f (τx) = ∏
i
(y− Ai)

ai and g̃ := g(τx) = ∏
i
(y− Bi)

bi

where Ai, Bi ∈ F[[x]]. Since F[x] ⊂ F[[x]] are UFDs (Proposition 1), we could say wlog
that

h(τx) = ∏
i∈S

(y− Ai)
min(ai ,bi)

where S = {i | Ai = Bi} after possible rearrangement. Now, as τ is a random invertible
map, we can assume that, for i 6= j, Ai 6= Bj and that Ai(0) 6= Bj(0) (Lemma 13). So, it

44 Chapter 4. GCD in Algebraic Complexity

is enough to compute A≤d
i and B≤d

j and compare them using evaluation at 0. If indeed

Ai = Bi, then A≤d
i = B≤d

i . If they are not, they mismatch at the constant term itself! Hence,
we know the set S and so we are done once we have the power series roots with repetition.

Using univariate factoring, wrt y, we get all the multiplicities, of the roots, ai and
bi’s, additionally we get the corresponding starting points of classical Newton iteration,
i.e. Ai(0) and Bi(0)’s. Using NI, one can compute A≤d

i and B≤d
i , for all i. Suppose, after

rearrangement of Ai and Bi’s (if necessary), we have

Ai = Bi for i ∈ [s] =: S and Ai 6= Bj for i ∈ [s + 1, d], j ∈ [s + 1, d]

Lemma 13 can be used to deduce that Ai(0) 6= Bj(0) for i, j ∈ [1, d]− S. So, we have in fact

gcd(f̃ , g̃) = ∏
i∈S

(y− Ai)
min(ai ,bi)

the index set S, the exponents and Ai(0)’s computed.

Size analysis: We compute A≤d
i and B≤d

i by NI, (possibly) after making the corresponding
multiplicity one by differentiation. It is clear that at each NI step there will be a multiplicative
d2 blow up (due to interpolation, division and truncation). There are log d iterations in NI.
Altogether the truncated roots have poly(s, dlog d) size formula (resp. ABP). This directly
implies that gcd(f̃ , g̃) has poly(s, dlog d) size formula (resp. ABP). By taking the product of
the linear factors, truncating to degree d, and applying τ−1, we can compute the polynomial
gcd(f , g). For circuit, all the blow ups are additional (not multiplicative as in the case for
formula or abp). For log d steps, additional blow up happens. Hence, the size remains
poly(s, d).

Randomization is needed for τ and possibly for the univariate factoring over F. Also,
it is important to note that F may not be algebraically closed. Then one has to go to an
extension, do the algebraic operations and return back to F. For details, see Section 8.1.

�

4.2 Complexity of Low Degree GCD

As mentioned above, we can not really talk about computing gcd in high degree regime.
But still one can ask the following question:

Question 1

4.2. Complexity of Low Degree GCD 45

Does gcd (which is of low degree) of a set of arbitrary degree low complexity polynomials have
low complexity?

Kaltofen in [Kal87, Theorem 4] answered this question positively. Surprisingly, the
Euclidean algorithm does not enter in its proof, instead it is based on the so-called EZ-GCD
method [MY73].

Theorem 7

Let fi ∈ F[x] for i ∈ [m] and let g =gcd(f1, . . . , fm) such that size(fi) ≤ s. Then,
size(g) ≤ poly(s, d, m) where d :=deg(g)

One problem with this theorem is the complexity of g depends on m. Hence, if m is
super-poly(s), then size(g) is super-poly(s). Intuitively, the complexity should not really
depend on m. In fact, If one assumes Factor conjecture 2, this implies theorem 7 should not
depend on m. We in fact show that indeed complexity of g does not depend on m as stated
in Chapter 1 theorem 5.
We give an alternative proof (based on NI technique that we built on) of an important
theorem, already observed in [Bür04, Theorem 1.2] and using that, we prove theorem 5.
We also present the original proof idea of kaltofen used to prove theorem 7. Before going
any further, we state and prove the important theorem as mentioned above.

Theorem 8

Let f ∈ F[x] such that size(f) ≤ s. Let g ∈ F[x] such that f = ge · h with gcd(g, h) = 1.
Then

size(g) ≤ poly(s, d, e)

where deg(g) = d.

Sketch of Proof. From theorem 1, we know that over F[[x]],

f (τx) = k · ∏
i∈[d0]

(y− gi)
γi

where k ∈ F∗, γi > 0, and gi(0) := µi. One can assume that

g = ∏
j∈S

(y− gj)

46 Chapter 4. GCD in Algebraic Complexity

where S ⊂ [d0] such that |S| = d. One can argue that γj = e whenever j ∈ S. One can
differentiate e− 1 times and apply NI to find g≤d

j for all j ∈ S. It’s not hard to show that
size(g) ≤ poly(s, d, e).

Before proving theorem 7, we present an important lemma which is in the heart of the
proof of the theorem.

Lemma 27 ([Wan80]). Suppose fi ∈ F[x] for i ∈ [m] such that g = gcd(f1, . . . , fm). Then there
exists ai ∈ F such that

gcd

(
g, ∑

i∈[m]

ai ·
fi

g

)
= 1

Proof. Consider the transformation σ which sends x1 to x1 and other xi to yi + zix1 where
yi and zi’s are formal variables. Consider,

Resx1

(
g(σx), ∑

i∈[m]

ti
fi(σx)
g(σx)

)
:= A(y2, . . . , yn, z2, . . . , zn, t1, . . . , tm)

where ti’s are new variable. Of course, A is a non zero polynomial. We prove by
contradiction. Suppose A is zero. This implies g(σx) and ∑ ti

fi(σx)
g(σx) have non-trivial

gcd say h which follows from proposition 2. Then, h(y, z) ∈ F[y2, . . . , yn, z2, . . . , zn] as
h | g(σx). Now, σ is an isomorphism between F[x] and F[x1, y2, . . . , yn, z2, . . . , zn]. Hence,
h(σ−1(y, z)) is a non-trivial gcd of g and ∑ ti

fi
g =⇒

gcd(f1, . . . , fm) = g · h(σ−1(y, z))

a contradiction!

Hence, there are ti = ai such that A remains non-zero. As mentioned, σ is an isomorphism,
so applying σ−1, we will have A(σ−1(y, z)) is a non-zero polynomial in F[x]. Hence,

gcd

(
g, ∑

i∈[m]

ai ·
fi

g

)
= 1

Proof of Theorem 7. Lemma 27 shows that there are ai’s such that

gcd

(
g, ∑

i∈[m]

ai ·
fi

g

)
= 1

Apply theorem 8 with f = ∑ ai fi and e = 1, this theorem clearly follows as size(f) ≤
s ·m.

4.3. Strassen’s Problem on computing Numerator and Denominator 47

Kaltofen in [Kal87, Theorem 3] proved the case of e = 1 of the theorem 8 and proved
theorem 7. Now, we will see how the stronger theorem 8 will give us a stronger result,
namely theorem 5 which removes dependency on m as desired.

Proof of theorem 5. Suppose g = gcd(f1, . . . , fm) where size(fi) ≤ s and deg(g) = d.
Suppose g = ge1

1 . . . get
t . Here is an important observation.

Observation 1. There exists i such that ge1
1 || fi.

Proof. Suppose not. Suppose ge1+1
1 | fi for all i implies

ge1+1
1 |gcd(f1, . . . , fm) = g

a contradiction.

Hence, fi = ge1
1 · hi with gcd(g1, hi) = 1. We know that g1 has poly(s, deg(g1), e1) size

circuit from theorem 8. But of course deg(g1) and e1 ≤ d. So, size(g1) ≤ poly(s, d). This is
true for each gi. Hence size(g) ≤ poly(s, d).

4.3 Strassen’s Problem on computing Numerator and Denominator

Here is an interesting question regarding computing denominator and numerator from a
division circuit:

Question 2

Consider an algebraic circuit C with division gates allowed and suppose it computes a rational
polynomial, let us say f

g where f , g ∈ F[x] with gcd(f , g) = 1. Can we output f and g as
algebraic circuits with no division gate allowed?

One can think of pushing the division gate at top by computing (u, v) at each gate (bottom
to top) as done in lemma 7. One would have f · h and g · h calculated at the top. But the
issue is how to calculate f ·h

h as degree of h can be arbitrary.

Kaltofen in [Kal86] showed that using pade approximation, we can output f and g with high
probability of size poly(s, d + e) where d = deg(f) and e = deg(g). Interesting, he gave an
alternative approach in [Kal87] which although asymptotically bigger size than the one in
[Kal86], but serves the same importance nevertheless. We present the result which also
uses theorem 7 and lemma 27.

48 Chapter 4. GCD in Algebraic Complexity

Answer of Question 2. It is very easy to see that f · h and g · h have poly(s) size circuits.
From lemma 27, we know that there exists a1, a2, b1, b2 ∈ F with a1 · b2 − a2 · b1 6= 0 such
that

gcd(h, a1 · f + b1 · g) = 1

and
gcd(h, a2 · f + b2 · g) = 1

Using theorem 7, one can deduce that a1 · f + b1 · g and a2 · f + b2 · g both have circuits of
size poly(s, max(d, e)). From linear combinations, one can find f and g which trivially will
have circuits of size poly(s, d, e).

49

Chapter 5

Closure of restricted complexity
classes

This chapter is dedicated towards proving closure results for certain algebraic complexity
classes. As mentioned, for the time being we will assume that the field is algebraically
closed. We give efficient randomized algorithm to output the complete factorization of
polynomials belonging to that class (stated as Theorem 36).

Proof of Theorem 4. There are essentially two parts in the proof. The first part talks only
about the existential closure results. In the second part, we discuss the algorithm.

Proof of closure: Given f of degree d, we randomly shift by τ : xi 7→ xi + yαi + βi. From
Theorem 1 we have that f̃ (x, y) := f (τx) splits like f̃ = ∏d0

i=1(y− gi)
γi , with gi(0) =: µi

being distinct. Here is the detailed size analysis of the factors of polynomials represented
by various models of our interest.

Size analysis for formula: Suppose f has a formula of size nO(log n). To show size bound
for all the factors, it is enough to show that the approximations of the power series roots,
i.e. g≤d

i has size nO(log n) size formula. This follows from the reduction of factoring to
approximations of power series roots.

We differentiate f̃ wrt y, (γi − 1) many times, so that the multiplicity of the root we
want to recover becomes exactly one. The differentiation would keep the size poly(nlog n)

(Lemma 8). Now, we have (y− gi) || f̃ (γi−1) by repeated use of lemma 19 and we can
apply classical Newton iteration formula. For all 0 ≤ t ≤ log d + 1, we compute At and Bt

such that At/Bt ≡ gi mod I2t
. Moreover, Bt is invertible in F[[x]] (∵ gi is a simple root of

f̃ (γi−1)).
To implement this iteration using the formula model, each time there would be a blow

up of d2. Note that in a formula, there can be many copies of the same variable in the leaf
nodes and if we want to feed something in that variable, we have to make equally many
copies. That means we may need to make s (= size(f)) many copies at each step. We claim
that it can be reduced to only d2 many copies.

50 Chapter 5. Closure of restricted complexity classes

We can pre-compute (with blow up at most poly(sd)) all the coefficients C0, . . . , Cd

wrt y, given the formula of f̃ =: C0 + C1y + . . . + Cdyd using interpolation. We can do
the same for the derivative formula. For details on this interpolation trick, see [Sap16,
Lem.5.3]. Using interpolation, we can convert the formula of f̃ and its derivative to the
form C0 + C1y + . . . + Cdyd. In this modified formula, there are O(d2) many leaves labelled
as y. So in the modified formula of the polynomial f̃ and in its derivative, we are computing
and plugging in (for y) d2 copies of g<2t

i to get g<2t+1

i . This leads to d2 blow up at each step
of the iteration.

As Bt’s are invertible, we can keep track of the division gates across iterations and, in
the end, eliminate them causing a one-time size blow up of poly(sd) (Lemma 7).

Now, assume that size(At, Bt) ≤ St. Then we have St+1 ≤ O(d2St) + poly(sd). Finally,
we have Slog d+1 = poly(sd) · d2 log d = poly(nlog n).

Hence, g≤d
i ≡ Alog d+1/Blog d+1 mod Id+1 has poly(nlog n) size formula, and so does

every polynomial factor of f after applying τ−1.

Size analysis for ABP: This analysis is similar to that of the formula model, as the size
blow up in each NI iteration for differentiation, division, and truncation (to degree ≤ d)
is the same as that for formulas. A noteworthy difference is that we need to eliminate
division in every iteration (Lemma 6) and we cannot postpone it. This leads to a blow up of
d4 in each step. Hence, Slg d+1 = poly(sd) · d4 log d = poly(nlog n).

Size analysis for VNP: Suppose f can be computed by a verifier circuit of size, and witness
size, nO(log n). We call both the verifier circuit size and witness size as size parameter. Now,
our given polynomial f̃ has nO(log n) size parameters. As before, it is enough to show that
g≤d

i has nO(log n) size parameters.
For the preprocessing (taking γi − 1-th derivative of f̃ wrt y), the blow up in the size

parameters is only poly(nlog n). Now we analyze the blow up due to classical Newton
iteration. We compute At and Bt such that At/Bt ≡ gi mod I2t

. Using the closure
properties of VNP(discussed in Section 2.6), we see that each time there is a blow up
of d4. The main reason for this blow up is due to the composition operation, as we are
feeding a polynomial into another polynomial.

Assume that the verifier circuit size(At, Bt) ≤ St and witness size ≤ Wt. Then we
have St+1 ≤ O(d4St) + poly(nlog n). So, finally we have Slog d+1 = poly(sd) · d4 log d =

poly(nlog n). It is clear that g≤d
i ≡ Alog d+1/Blog d+1 mod Id+1 has poly(nlog n) size verifer

circuit. Same analysis works for Wt and witness size remains nO(log n). Moreover, we get
the corresponding bounds for every polynomial factor of f after applying τ−1.

Randomized Algorithm. We give the broad steps of our algorithm below. We are given
f ∈ F[x], of degree d > 0, as input.

Chapter 5. Closure of restricted complexity classes 51

1. Choose α, β ∈r Fn and apply τ : xi → xi + αiy + βi. Denote the transformed
polynomial f (τx) by f̃ (x, y). Wlog, from Theorem 1, f̃ has factorization of the form

∏d0
i=1(y− gi)

γi , where µi := gi(0) are distinct.

2. Factorize f̃ (0, y) over F[y]. This will give γi and µi’s.

3. Fix i = i0. Differentiate f̃ , wrt y, (γi0 − 1) many times to make gi0 a simple root.

4. Apply Newton iteration (NI), on the differentiated polynomial, for k := dlog(2d2 +

1)e iterations; starting with the approximation µi0 (mod I). We get g<2k

i0
at the end of

the process (mod I2k
).

5. Apply the transformation xi 7→ Txi (T acts as a degree-counter). Consider g̃i0 :=
g<2k

i0
(Tx). Solve the following homogeneous linear system of equations, over F[x], in

the unknowns uij and vij’s,

∑
0≤i+j<d

uij · yiT j = (y− g̃i0) · ∑
0≤i<d
0≤j<2k

vij · yiT j mod T2k
.

Solve this system, using Lemma 5, to get a nonzero polynomial (if one exists) u :=

∑0≤i+j<d uij · yiT j.

6. If there is no solution, return “ f is irreducible”.

7. Otherwise, find the minimal solution wrt degy(u) by brute force (try all possible
degrees wrt y; it is in [d− 1]).

8. Compute G(x, y, T) := gcdy(u(x, y, T), f̃ (Tx, y)) using Claim 26.

9. Compute G(x, y, 1) and transform it by τ−1 : xi 7→ xi − αiy− βi, i ∈ [n], and y 7→ y.
Output this as an irreducible polynomial factor of f .

Claim 28 (Existence). If f is reducible, then the linear system (Step 5) has a non-trivial solution.

Proof of Claim 28. If f is reducible, then let f = ∏ f ei
i be its prime factorization. Assume

wlog that y− gi0 | f̃1 := f1(τx). Of course 0 < degy(f̃1) = deg(f1) < d.
Observe that we are done by picking u to be f̃1(Tx, y). For, total degree of f1 is < d,

and so that of f̃1(Tx, y) wrt the variables y, T is < d.
Moreover, y − gi0 | f̃1 =⇒ f̃1 = (y − gi0)v, for some v ∈ F[[x]][y] with degy < d.

Hence, f̃1 ≡ (y− g<2k

i0
) · v mod I2k

=⇒ u ≡ (y− g̃i0) · v(Tx, y) mod T2k
. This shows the

existence of a nontrivial solution of the linear system (Step 5). �

Now, we show that if the linear system has a solution, then the solution corresponds to
a non-trivial polynomial factor of f .

52 Chapter 5. Closure of restricted complexity classes

Claim 29 (Step 8’s success). If the linear system (Step 5) has a non-trivial solution, then 0 <

degy G ≤ degy u < d.

Proof of Claim 29. Suppose (u, v) is the solution provided by the algorithm in Lemma 5 (u
being in the unknown LHS and v being the unknown RHS). Consider G = gcdy(u, f̃ (Tx, y)).
We know that there are polynomials a and b such that au + b f̃ (Tx, y) = Resy(u, f̃ (Tx, y))
(Section 2.4). Consider degT(Resy(u, f̃ (Tx, y)). As degree of T in u and f̃ (Tx, y) can
be at most d, hence degree of T in Resultant can be atmost 2d2 (Section 2.4). Clearly,
degy G ≤ degy u < d. If degy G = 0 then the resultant of u, f̃ (Tx, y) wrt y will be nonzero
(Proposition 2). Suppose the latter happens.

Now, we have u = (y − g̃i0)v mod T2k
. Since y − gi0 | f̃ we get that y − gi0(Tx) |

f̃ (Tx, y). Assume that f̃ (Tx, y) =: (y− gi0(Tx)) · w.
Thus, we can rewrite the previous equation as: au + b f̃ (Tx, y) ≡ (y− g̃i0)(av + bw) ≡

Resy(u, f̃ (Tx, y)) mod T2k
. Note that the latter is nonzero mod T2k

because the resultant is
a nonzero polynomial of degT < 2k. Putting y = g̃i0 the LHS vanishes, but RHS does not
(∵ it is independent of y). This gives a contradiction.

Thus, Resy(u, f̃ (Tx, y) = 0. This implies that 0 < degy G < d. �

Next we show that if one takes the minimal solution u (wrt degree of y), then it will
correspond to an irreducible factor of f . We will use the same notation as above.

Claim 30 (Irred. factor). Suppose y− gi0 | f̃1 and f1 is an irreducible factor of f . Then, G =

c · f̃1(Tx, y), for c ∈ F∗, and degy(G) = degy(u) = degy(f1) in Step 8.

Proof of Claim 30. Suppose f is reducible, hence as shown above, G is a non-trivial factor
of f̃ (Tx, y). Recall that f̃ (Tx, y) = ∏i(y− gi(Tx))γi is a factorization over F[[x, T]]. We
have that y− g̃i0 | G mod T2k

. Thus, y− gi0(Tx) | G absolutely (∵ the power series ring
is a UFD and use Theorem 1). So, y− gi0(Tx) | gcdy(G, f̃1(Tx, y)) over the power series
ring. Since, f̃1(Tx, y) is an irreducible polynomial, we can deduce that f̃1(Tx, y) | G in the
polynomial ring. So, degy(f1) ≤ degy(G).

We have degy(f̃1(Tx, y)) = deg(f1) =: d1. By the above discussion, the linear system
in Step 7 will not have a solution of degy(u) below d1. Let us consider the linear system
in Step 7 that wants to find u of degy = d1. This system has a solution, namely the one

with u := f̃1(Tx, y) mod T2k
. Then, by the above claim, we will get the G as well in the

subsequent Step 8. This gives degy(G) ≤ degy(u) = d1. With the previous inequality we
get degy(G) = degy(u) = degy(f1). In particular, G and f̃1(Tx, y) are the same up to a
nonzero constant multiple. �

Alternative to Claim 26: The above proof (Claim 30) suggests that the gcd question
of Step 8 is rather special: One can just write u as ∑0≤i≤d1

ci(x, T)yi and then compute

5.1. PIT is equivalent to factoring 53

the polynomial G = ∑0≤i≤d1
(ci/cd1) · yi as a formula (resp. ABP), by eliminating division

(Lemma 6).
Once we have the polynomial G we can fix T = 1 and apply τ−1 to get back the

irreducible polynomial factor f1 (with power series root gi0).
The running time analysis of the algorithm is by now routine. If we start with an

f computed by a formula (resp. ABP) of size nO(log n), then as observed before, one can
compute g̃i0 which has nO(log n) size formula (resp. ABP). This takes care of Steps 1-4.

Now, solve the linear system in Steps 5-7 of the algorithm. Each entry of the matrix is a
formula (resp. ABP) size nO(log n). The time complexity is similar by invoking Lemma 5.

Steps 8 is to compute gcd of two nO(log n) size formulas (resp. ABPs) which again can
be done in nO(log n) time giving a size nO(log n) formula (resp. ABP) as discussed above.

This completes the randomized poly(nlog n)-time algorithm that outputs nO(log n) sized
factors.

Remarks.

1. The above results hold true for the classes VBP(s), VF(s),VNP(s) for any size function
s = nΩ(log n). The above analysis actually tells us that factors of a polynomial
f computed by a formula (resp. ABP) of size s and degree d can be computed
by a poly(s, dO(log d)) size formula (resp. ABP); more over there is a randomized
poly(s, dO(log d)) time algorithm that can output any factor. Same holds for VNP (only
the size).

2. The above analysis implies that VP is uniform closed under factoring. One can view
this as an alternative proof to the famous result in [Kal89].

3. By the above remark, our result can be extended to prove closure result for polynomials
in VNPwith constant individual degree. There are very interesting polynomials in this
class, namely Permanent.

5.1 PIT is equivalent to factoring

In [KSS15], Kopparty et al showed that the problem of deterministically factoring multivariate
polynomials reduces to the problem of deterministic polynomial identity testing (PIT). Specifically,
given an arithmetic circuit (either explicitly or via black-box access) that computes a
polynomial f (x), the task of computing arithmetic circuits for the factors of f can be solved
deterministically, given a deterministic algorithm for the PIT. For the blackbox model, one
can use effective and efficient Hilbert irreducibility and [Kal90] together to deduce the

54 Chapter 5. Closure of restricted complexity classes

equivalence. For details, see [KSS15, section 1.2.1].

For the white box model, of course it is easy to observe that factoring implies PIT. To show
the converse implication, we use the algorithm described above. The randomization in the
algorithm comes for the following reasons :

1. choosing the "random points" for linear transformation

2. solving linear system of equation (see, section 5)

Observe that random point choosing was nothing but selecting points where a certain
polynomial won’t vanish; this in particular implies that if we have a deterministic algorithm
for PIT, randomization in the transformation step can be removed. Solving the linear
system can also be derandomized using PIT as the randomization came in determining
whether a symbolic determinant was 0 or not. In totality, one could deduce that factoring
can be derandomized assuming deterministic algorithm for PIT.

5.2 Factors of constant individual degree polynomials have small
complexity

This section is dedicated to showing complexity bound on the factors of polynomials which
has constant individual degree and computed by a size s formula (resp. circuit). Let us
denote VFconst to be a set of family of polynomials so that (fn) ∈ VFconst =⇒ degxi

(fn) ≤ r
for some constant r and every n ∈N where fn can be computed by formula of size poly(n).
Similarly, one can define VPconst,VBPconst,VNPconst for circuits, ABP’s and VNP polynomials.
One could show the following.

Theorem 9

VPconst,VBPconst,VFconst,VNPconst are closed under factoring.

This was originally shown for circuits and formulas in [Oli16] where he additionally
showed that the depth of the factors also get increased by a constant. Here, we will not be
talking about small depth factors as we are interested in closure results. Using the version
2 of split theorem (see theorem 23) and the reversal technique as used in [Oli16] one could
establish the closure result. For details, see [Oli16].
Remarks. The same result and technique also holds for polynomial class in VNP

as mentioned above which is interesting in the sense that there are very interesting
polynomials in this class, namely Permanent. Similar technique can be used to establish
that VNP is closed under factoring in [CKS18].

55

Chapter 6

Complexity of factor and
square-freeness

This chapter proves theorem 2 and theorem 3. The proofs are self contained and we
assume for the sake of simplicity that the underlying field F is algebraically closed and
has characteristic 0. When this is not the case, we discuss the corresponding theorems in
chapter 8. As mentioned earlier, whole point of these efforts it towards proving the factor
conjecture 2. Let us first ask a simpler case for the high degree case.

6.1 Special case f = ge

Suppose, we are given f size that size(f) ≤ s. Suppose f = ge (i.e. as in the factor
conjecture 2, h = 1). Does the factor conjecture hold? i.e. can we show that size(g) ≤
poly(s, d) where d = deg(g)? Kaltofen in [Kal87] positively answered the question.

Theorem 10

Suppose f = ge ∈ F[x] is a polynomial such that size(f) ≤ s. Then, size(g) ≤ poly(s, d)
where d =deg(g).

We will show a slightly different approach (different from the original proof due to
kaltofen) to solve this problem although fundamentally they are equivalent. The above
theorem requires the field size to be large enough (for prime characteristic p) and e to be
non-multiple of p.

Proof of theorem 10. Without loss of generality, one can assume that f (0) = 1 by shifting
and scaling. This implies that g(0) = 1. Observe that,

g = f 1/e = (1 + (f − 1))1/e = 1+
1
e
· (f − 1) +

(
1/e

2

)
· (f − 1)2 + . . .

(
1/e

d

)
(f − 1)d + . . .

56 Chapter 6. Complexity of factor and square-freeness

Observe that f − 1 ≡ 0 mod 〈x〉. Hence (f − 1)i where i ≥ d + 1 contributes terms bigger
degree d. So, one can rightly deduce that

g = 1 +
1
e
· (f − 1) +

(
1/e

2

)
· (f − 1)2 + . . .

(
1/e

d

)
(f − 1)d mod 〈x〉d+1

Using lemma 7, we certainly have size(g) ≤ poly(s, d).

6.2 Complexity of factors polynomially related to degree of radical:
Proof of Theorem 2

As seen in the previous section, we could ask similar question that if f = ge1
1 ge2

2 can be
computed be a size s circuit and deg(g1) and deg(g2) are both bounded by d, what can we
say about size of g1 and g2? One would understand that it is not possible to generalize the
above proof for two different factors. In this section, we use Theorem 1 and allRootsNI to
partially solve the case of circuits with exponential degree (stated in [Kal86] and studied in
[Kal87, Bür04]).

Proof of Theorem 2. From the hypothesis f = u0u1. Define deg(f) =: d. Suppose u1 =

he1
1 . . . hem

m , where hi’s are coprime irreducible polynomials. Let d0 be the degree of rad(u1) =

∏i hi. Note that deg(hi), m ≤ d0 and the multiplicity ei ≤ d ≤ sO(s), where s is the size
bound of the input circuit. Thus, to get the size bound of any factor of u1, it is enough to
show that for each i, hi has a circuit of size poly(sd0).

Using Theorem 1, we have f̃ (x, y) := f (τx) = k · u0(τx) · ∏i∈[d0](y − gi)
γi , with

gi(0) := µi being distinct. From Corollary 22 we deduce that

hi(τx) = ki ∏
i∈[d0]

(y− g≤d0
i)δi mod Id0+1

with ideal I := 〈x1, . . . , xn〉, exponent δi ∈ {0, 1} and nonzero ki ∈ F. We can get hi by
applying τ−1. Hence, it is enough to bound the size of g≤d0

i .
Let ũ0 := u0(τx). From the repeated applications of Leibniz rule of the derivative ∂y,

we deduce, by recalling : ∂y(FG) = (∂yF)G + F(∂yG)

∂y f̃
f̃

=
∂yũ0

ũ0
+

d0

∑
i=1

γi

y− gi

At this point we move to the formal power series, so that the reciprocals can be
approximated as polynomials. Note that y− gi is invertible in F[[x]] when y is assigned
any value ci ∈ F which is not equal to µi. We intend to find gi mod Iδ inductively, for

6.2. Complexity of factors polynomially related to degree of radical: Proof of Theorem 257

all δ ≥ 1. We assume that µi’s and γi’s are known. Suppose, we have recovered up to
gi mod Iδ and we want to recover gi mod Iδ+1. The relevant recurrence, for δ ≥ 1, is:

Claim 31 (Recurrence).
d0

∑
i=1

γi ·
g=δ

i
(y− µi)2 ≡

∂y f̃
f̃
−

∂yũ0

ũ0
− ∑

i

γi

(y− g<δ
i)

mod Iδ+1.

Proof of Claim 31. Using a power series calculation (Lemma 17), we have

1
y− gi

≡ 1
y−

(
g<δ

i + g=δ
i

) ≡ 1
y− g<δ

i
+

g=δ
i

(y− µi)2 mod Iδ+1

Multiplying by γi and summing over i ∈ [d0], the claim follows. �

By knowing approximation up to the δ− 1 homogeneous parts of gi, we want to find
the δ-th part by solving a linear system. For concreteness, assume that we have a rational
function g′i,δ−1 := Ci,δ−1/Di,δ−1 such that g′i,δ−1 ≡ g<δ

i mod Iδ. Next, we show how to
compute g≤δ

i .
We recall the process as outlined in allRootsNI (Section 3.3.1). In the free variable y, we

plug-in d0 random field value ci’s and get the following system of linear equations: M · vδ =

Wδ, where M is a d0 × d0 matrix with (i, j)-th entry, M(i, j) := γj/(ci − µj)
2. Column vδ

resp. Wδ is a d0 × 1 matrix whose i-th entry is denoted vδ(i) resp. (∂y f̃ / f̃ − ∂yũ0/ũ0)|y=ci

− G̃i,δ, where G̃i,δ := ∑d0
j=1 γj/(ci − g′j,δ−1). Think of the solution vδ as being both in F(x)d0

and in F[[x]]d0 ; both the views help.
Now we will prove two interesting facts. First, M is invertible (Lemma 15). Second,

define g′i,0 := µi and, for δ ≥ 1, g′i,δ := g′i,δ−1 + vδ(i). Then, g′i,δ approximates gi well:

Claim 32 (Self-correction). Let i ∈ [d0] and δ ≥ 0. Then, g′i,δ ≡ g≤δ
i mod Iδ+1.

Proof of Claim 32. We prove this by induction on δ. It is true for δ = 0 by definition.
Suppose it is true for δ − 1. This means we have g′i,δ−1 ≡ g<δ

i mod Iδ for all i. Let
us write g′i,δ−1 =: g<δ

i + Ai,δ + A′i,δ, where A′i,δ ≡ 0 mod Iδ+1 and Ai,δ is homogeneous
of degree δ. Hence, for i ∈ [d0], the linear constraint is: ∑d0

j=1 γj · vδ(j)/(ci − µj)
2 ≡

∂y f̃ / f̃ − ∂yũ0/ũ0 − ∑j γj/(ci − g′j,δ−1) mod Iδ+1.

The “garbage” term Aj,δ in RHS can be isolated using Lemma 17 as: 1/(ci − g′j,δ−1) ≡
1

ci−
(

g<δ
j +Aj,δ

) ≡ 1/(ci − g<δ
j) + Aj,δ/(ci − µj)

2 mod Iδ+1. So, we get:

d0

∑
j=1

γj · vδ(j)
(ci − µj)2 ≡

∂y f̃
f̃
−

∂yũ0

ũ0
−

d0

∑
j=1

γj

ci − g<δ
j
−

d0

∑
j=1

γj · Aj,δ

(ci − µj)2 mod Iδ+1 .

58 Chapter 6. Complexity of factor and square-freeness

Rewriting this, using Claim 31, we get:

d0

∑
j=1

γj

(ci − µj)2

(
vδ(j) + Aj,δ

)
≡

d0

∑
j=1

γj

(ci − µj)2 · g
=δ
j mod Iδ+1 .

Thus,
d0

∑
j=1

γj ·
(vδ(j) + Aj,δ − g=δ

j)

(ci − µj)2 ≡ 0 mod Iδ+1

As we vary i ∈ [d0] we deduce, by Lemma 15, that vδ(j) + Aj,δ − g=δ
j ≡ 0 mod Iδ+1. This

implies

g′j,δ = g′j,δ−1 + vδ(j) ≡ (g<δ
j + Aj,δ) + (g=δ

j − Aj,δ) = g≤δ
j mod Iδ+1

This proves it for all j ∈ [d0]. �

Size analysis: Here we give the overall process of finding factors using allRootsNI
technique and analyze the circuit size needed at each step to establish the size bound of the
factors. As discussed before, we need to analyze only the power series root approximation
g≤δ

i or g′i,δ.
At the (δ − 1)-th step of allRootsNI process, we have a multi-output circuit (with

division gates) computing g′i,δ−1 as a rational function, for all i ∈ [d0]. Specifically, let
us assume that g′i,δ−1 =: Ci,δ−1/Di,δ−1, where Di,δ−1 is invertible in F[[x]]. So, the circuit
computing g′i,δ−1 has a division gate at the top that outputs Ci,δ−1/Di,δ−1. We would
eliminate this division gate only in the end (see the standard Lemma 7). Now we show
how to construct the circuit for g′i,δ, given the circuits for g′i,δ−1.

From vδ = M−1Wδ, it is clear that there exist field elements βij such that

vδ(i) =
d0

∑
j=1

βijWδ(j) =
d0

∑
j=1

βij

(
(

∂y f̃
f̃
−

∂yũ0

ũ0
)|y=cj − G̃j,δ

)

Initially we precompute, for all j ∈ [d0], (∂y f̃ / f̃ − ∂yũ0/ũ0)|y=cj : Note that ∂y f̃ has
poly(s) size circuit (high degree of the circuit does not matter, see Lemma 8). Invertibility
of f̃ |y=cj and ũ0|y=cj follows from the fact that we chose cj’s randomly. In particular, f̃ (0, y),
and so ũ0(0, y), have roots in F which are distinct from cj, j ∈ [d0]. Thus, f̃ (x, cj) and
ũ0(x, cj) have non-zero constants and so are invertible in F[[x]]. Similarly, γ`/(cj − g′`,δ−1)

exists in F[[x]].
Thus, the matrix recurrence allows us to calculate the polynomials Ci,δ and Di,δ, given

their δ− 1 analogues, by adding poly(d0) many wires and nodes. The precomputations
costed us size poly(s, δ). Hence, both Ci,δ and Di,δ has poly(s, δ, d0) sized circuit.

6.3. Low degree factors of general circuits: Proof of Theorem 3 59

We can assume we have only one division gate at the top, as for each gate G we can
keep track of numerator and denominator of the rational function computed at G, and
simulate all the algebraic operations easily in this representation. When we reach precision
δ = d0, we can eliminate the division gate at the top. As Di,d0 is a unit, we can compute
its inverse using the power series inverse formula and approximate only up to degree
d0 (Lemma 6). Finally, the circuit for the polynomial g≤d0

i ≡ Ci,d0 /Di,d0 mod Id0+1, for all
i ∈ [d0], has size poly(s, d0).

Altogether, it implies that any factor of u1 has a circuit of size poly(s, d0).

Remark: It is worth observing that from theorem 1, to solve factor conjecture it is enough
to show that if f = (y− g)e · h for some g, h ∈ F[[x]], then size(g≤d) ≤ poly(size(f), d). In
order to do that one could argue that there might be way to compute δe−1 f

δy in poly(log e, size(f))
circuit. That would solve factor conjecture as then one could simply do the Newton iteration.
As e can be at most doubly exponential in n, we would be fine. But one can show that
there is no hope to doing differentiation (however clever you are unless VP = VNP) using
lemma 9.

6.3 Low degree factors of general circuits: Proof of Theorem 3

Here, we introduce an approach to handle the general case when rad(f) has exponential
degree. We show that allowing a special kind of modular division gate gives a small circuit
for any low degree factor of f .

The modular division problem is to show that if f /g has a representative in F[[x]], where
polynomials f and g can be computed by a circuit of size s, then f /g mod 〈xd〉 can be
computed by a circuit of size poly(sd). Note that if g is invertible in F[[x]], then the question
of modular division can be solved using Strassen’s trick of division elimination [Str73].
But, in our case g is not invertible in F[[x]] (though f /g is well-defined).

Proof of Theorem 3. As discussed before, to show size bound for an arbitrary factor (with
low degree) of f , it is enough to show the size bound for the approximations of power
series roots. From Theorem 1, f̃ (x, y) = f (τx) = k ·∏d0

i=1(y− gi)
γi , with gi(0) := µi being

distinct.
Fix an i from now on. To calculate g≤δ

i , we iteratively use Newton iteration with
multiplicity for log δ + 1 many times. We know that there are rational functions ĝi,t such
that ĝi,t+1 := ĝi,t − γi · f̃

∂y f̃

∣∣
y=ĝi,t

and ĝi,t ≡ gi mod 〈x〉2t
. We compute ĝi,t’s incrementally,

0 ≤ t ≤ log δ + 1, by a circuit with division gates. As before, f̃ and ∂y f̃ have poly(s) size
circuits.

60 Chapter 6. Complexity of factor and square-freeness

If ĝi,t has St size circuit with division, then St+1 = St + O(1). Hence, ĝi,lg δ+1 has
poly(s, log δ) size circuit with division.

By keeping track of numerator and denominator of the rational function computed at
each gate, we can assume that the only division gate is at the top. As the size of ĝi,log δ+1

was initially poly(s, log δ) with intermediate division gates, it is easy to see that when
division gates are pushed at the top, it computes A/B with size of both A and B still
poly(s, log δ).

Finally, a degree δ polynomial factor h| f will require us to estimate g≤δ
i for that many

i’s. Thus, such a factor has poly(sδ) size circuit, using a single modular division.

61

Chapter 7

Closure of Approximative
Complexity classes

In this chapter, we show that all our closure results, under factoring, can be naturally
generalized to corresponding approximative algebraic complexity classes.

In complexity theory it has proven useful to study “approximative algorithms", which
use arithmetic with infinite precision and nevertheless only give us an approximation of
the solution to be computed, however with any precision required. This systematically
emerged in early works on matrix multiplication (the notion of border rank, see [BCS13]).
It is also an important concept in the geometric complexity theory program (see [GMQ16]).
The notion of approximative complexity can be motivated through two ways, topological
and algebraic and both the perspectives are known to be equivalent. Both allow us to talk
about the convergence ε→ 0.

In what follows, we can see ε as a formal variable and F(ε) as the function field. For
an algebraic complexity class C, the approximation is defined as follows [BIZ17, Defn.2.1].

Definition 33 (Approximative closure of a class [BIZ17]). Let C be an algebraic complexity
class over field F. A family (fn) of polynomials from F[x] is in the class C(F) if there are
polynomials fn;i and a function t : N 7→N such that gn is in the class C over the field F(ε) with
gn(x) = fn(x) + ε fn;1(x) + ε2 fn;2(x) + . . . + εt(n) fn;t(n)(x).

The above definition can be used to define closures of classes like VF, VBP, VP, VNPwhich
are denoted as VF, VBP, VP, VNP respectively. In these cases one can assume wlog that the
degrees of gn and fn;i are poly(n).

Following Bürgisser [Bür01]:- Let K := F(ε) be the rational function field in variable ε

over the field F. Let R denote the subring of K that consists of rational functions defined in
ε = 0. Eg. 1/ε /∈ R but 1/(1 + ε) ∈ R.

Definition 34. [Bür01, Defn.3.1] Let f ∈ F[x1, . . . , xn]. The approximative complexity size(f)
is the smallest number r, such that there exists F in R[x1, . . . , xn] satisfying F|ε=0 = f and circuit
size of F over constants K is ≤ r.

62 Chapter 7. Closure of Approximative Complexity classes

Note that the circuit of F may be using division by ε implicitly in an intermediate step.
So, we cannot simply assign ε = 0 and get a circuit free of ε. Also, the degree involved can
be arbitrarily large wrt ε. Thus, potentially size(f) can be smaller than size(f).

Using this new notion of size one can define the analogous class VP. It is known
to be closed under factors [Bür01, Thm.4.1]. The idea is to work over F(ε), instead of
working over F, and use Newton iteration to approximate power series roots. Note
that in the case of VF, VBP, VP and VNP the polynomials have poly(n) degree. So, by
using repeated differentiation, we can assume the power series root (of f̃ := f (τx)) to
be simple (i.e. multiplicity= 1) and apply classical NI. We need to carefully analyze the
implementation of this idea.

Root finding using NI over K. For degree-d f ∈ F[x] if size(f) = s then: ∃F ∈ R[x] with
a size s circuit satisfying F|ε=0 = f . The degree of F wrt x may be greater than d. In that
case we can extract the part up to degree d and truncate the rest [Bür04, Prop.3.1]. So wlog
degx(F) = deg(f).

By applying a random τ (using constants F) we can assume that F̃ := F(τx) ∈ R[x, y]
is monic (i.e. leading-coefficient, wrt y in F̃, is invertible in R). Otherwise, degy(F̃) =

degy(f̃) = degx(f) will decrease on substituting ε = 0 contradicting F|ε=0 = f . Wlog, we
can assume that the leading-coefficient of F̃ wrt y is 1 and the y-monomial’s degree is d.
From now on we have F̃|ε=0 = f̃ and both have their leading-coefficients 1 wrt y.

Let µ be a root of f̃ (0, y) of multiplicity one (as discussed before). Since F̃(0, y) ≡
f̃ (0, y) mod ε, we can build a power series root µ(ε) ∈ F[[ε]] of F̃(0, y) using NI, with µ as
the starting point. But µ(ε) may not converge in K. To overcome this obstruction [Bür01]
devised a clever trick.

Define F̂ := F̃(x, y + µ + ε) − F̃(0, µ + ε). Note that (0, 0) is a simple root of F̂(x, y)
[Bür04, Eqn.5]. So, a power series root y∞ of F̂ can be built iteratively by classic NI (Lemma
21):

yt+1 := yt −
F̂

∂y F̂

∣∣∣∣
y=yt

.

Where, y∞ ≡ yt mod 〈x̄〉2t
. One can easily prove that yt is defined over the coefficient field

K, using induction on t.
Note that F̂|ε=0 = f̃ (x, y + µ) − f̃ (0, µ) = f̃ (x, y + µ). So, y∞ is associated with a root

of f̃ as well. This implies that by using several such roots y∞, we can get an appropriate
product Ĝ ∈ R[x, y], such that an actual polynomial factor of f̃ (over field F) equals Ĝ|ε=0.

The above process, when combined with the first part of the proof of Theorem 4, does
imply:

Theorem 35 (Approximative factors). The approximative complexity classes VF(nlog n),
VBP(nlog n) and VNP(nlog n) are closed under factors.

Chapter 7. Closure of Approximative Complexity classes 63

The same question for the classes VF, VBP we leave as an open question. (Though,
for the respective bounded individual-degree polynomials we have the result as before.)
Also one can use the reversal technique (used in [Oli16]) to show that VNP is closed under
factoring as well!

Remarks.

1. VP is closed under factoring. This was already observed in [Bür04]. The above sketch
is sufficient to prove this result.

2. Let F be a field of characteristic zero and assume that g is an irreducible factor of
degree d and multiplicity e of a polynomial f ∈ F[x]. Then, one can show that

size(g) = poly(size(f), deg(g))

This in particular implies that factor conjecture 2 is true with respect to approximative
complexity. For proof details, see [Bür04, Theorem 4.1].

65

Chapter 8

Factoring in Field Extension

Upto chapter 7, we used the fact that F is algebraically closed and characteristic 0. This
was partly because for split theorem, we wanted to have the univariate polynomials to
factor completely into linear ones. What happens when the field is not that "nice enough"?
Namely, what if F is not algebraically closed or it is of characteristic non-zero? The next
two sections are dedicated towards these issues and factoring results on these fields.

8.1 When field F is not algebraically closed

We show that all our results “partially” hold true for fields F which are not algebraically
closed. The common technique used in all the proofs is the structural result (Theorem 1)
which talks about power series roots with respect to y. Recall that we use a random linear
map τ : xi 7→ xi + αiy + βi, where αi, βi ∈r F, to make the input polynomial f monic in
y and the individual degree of y equal to d := deg(f). If we set all the variables to zero
except y, we get a univariate polynomial f̃ (0, y) whose roots we are interested in finding
explicitly.

The other common technique in our proofs is the classical NI, which starts with just
one field root, say µ1 of f̃ (0, y), and builds the full power series on it. Let E (F be the
smallest field where a root µ1 can be found. Say, g| f̃1(0, y) is the minimal polynomial for
µ1. The degree of the extension E := F[z]/(g(z)) is at most d. So, computations over E
can be done efficiently. The key idea is to view E/F as a vector space and simulate the
arithmetic operations over E by operations over F. The details of this kind of simulation
can be seen in [vzGG13]. In circuits it means that we make deg(E/F) copies of each gate
and simulate the algebraic operations on these ‘tuples’ following the F-module structure
of E[x].

Once we have found all the power series roots of f̃ (x, y) over E[[x]], say starting from
each of the conjugates µ1, . . . , µi ∈ E, it is easy to get a polynomial factor in E[x, y]. This
factor will not be in F[x, y], unless E is a splitting field of f̃1(0, y). A more practical method
is: While solving the linear system over E in Steps 5-7 (Algorithm in Theorem 4) we can

66 Chapter 8. Factoring in Field Extension

demand an F-solution u. Basically, at the level of algorithm in Lemma 5, we can rewrite
the linear system Mw = (∑0≤i≤d Mizi) · w = 0 as Miw = 0 (i ∈ [0, d]), where the entries of
the matrix Mi are given as formulas (resp. ABP) computing a poly(n) degree polynomial
in F[x]. This way we get the desired F-solution u. Then, Steps 8-9 will yield an irreducible
polynomial factor of f in F[x, y]. This sketches the following more practical version of
Theorem 4.

Theorem 36. For F a number field, a local field, or a finite field (with characteristic > deg(f)),
there exists a randomized poly(snlog n)-time algorithm that: for a given nO(log n) size formula (resp.
ABP) f of poly(n)-degree and bitsize s, outputs nO(log n) sized formulas (resp. ABPs) corresponding
to each of the nontrivial factors of f .

Note that over these fields there are famous randomized algorithms to factor univariate
polynomials in the base case, see [vzGG13, Part III] & [Pau01].

The allRootsNI method in Theorem 2 seems to require all the roots µi, i ∈ [d0], to begin
with. Let ũ1 := rad(u1(τx)). Since µi’s are in the splitting field E ⊂ F of rad(ũ1(0, y)), we
do indeed get the size bound of the power series roots g≤d0

i of ũ1 assuming the constants
from E. As seen in the proof, any irreducible polynomial factor h̃i := hi(τx) of rad(ũ1) is
some product of these (y− g≤d0

i)’s mod Id0+1. So, for the polynomial h̃i in F[x, y] we get
a size upper bound over constants E. We leave it as an open question to transfer it over
constants F (note: E/F can be of exponential degree).

8.2 Multiplicity issue in prime characteristic

The main obstruction in prime characteristic is when the multiplicity of a factor is a
p-multiple, where p ≥ 2 is the characteristic of F. In this case, all versions of Newton
iteration fail. This is because the derivative of a p-powered polynomial vanishes. When p
is greater than the degree of the input polynomial, these problems do not occur, so all our
theorems hold (also see Section 8.1).

When p is smaller than the degree of the input polynomial in Theorem 4, adapting an
idea from [KSS15, Sec.3.1], we claim that we can give nO(λ log n)-sized formula (resp. ABP)
for the pei -th power of fi, where fi is a factor of f whose multiplicity is divisible exactly by
pei , and λ is the number of distinct p-powers that appear.

Note that presently it is an open question to show that: If a circuit (resp. formula resp.
ABP) of size s computes f p, then f has a poly(sp)-sized circuit (resp. formula resp. ABP).

Theorem 4 can be extended to all characteristic as follows.

Theorem 37. Let F be of characteristic p ≥ 2. Suppose the poly(n)-degree polynomial given by a
nO(log n) size formula (resp. ABP) factors into irreducibles as f (x) = ∏i f pei ji

i , where p - ji. Let
λ := #{ei|i}.

8.2. Multiplicity issue in prime characteristic 67

Then, there is a poly(nλ log n)-size formula (resp. ABP) computing f pei

i over Fp.

Proof sketch. Note that λ = O(logp n).
Let the transformed polynomial of degree d split into power series roots as follows:

f̃ := f (τx, y) = ∏d0
i=1(y− gi)

γi .
p - γi: If gi is such that p - γi, then we can find the corresponding power series roots

using Newton iteration and recover all such factors. After recovering all such irreducible
polynomial factors, we can divide f̃ by their product. Let G := f̃

/
∏p-γi

(y− gi)
γi . Clearly,

G is now a p-power polynomial.
p | γi: Computing the highest power of p that divides the exponent of G (given by a

formula resp. ABP) is easy. First, write the polynomial as G = c0 + c1y + + cdyd using
interpolation. Note that it is a pe-th power iff: ci = 0 whenever pe - i, and pe+1 does not
have this property. After computing the right value of pe, we can reduce factoring to the
case of a non-p-power.

Rewrite G as Ĝ := ∑pe|i ci(x) · yi/pe
, i.e. replacing ype

by y. Clearly, g is an irreducible
factor of G iff ĝ is an irreducible factor of Ĝ.

We can now apply NI to find the roots of G̃, that have multiplicity coprime to p. Divide
by their product and then repeat the above.

Size analysis. If G can be computed by a size s formula (resp. ABP), Ĝ can be computed
by a size O(d2s) formula (resp. ABP). Similarly, a single division gate leads to a blow up
by a factor of O(d2). The number of times we need to eliminate division is at most λ log d.
So the overall size is nO(λ log n).

However, the splitting field E where we get all the roots of f̃ (0, y) may be of degree
Ω(d!). So, we leave the efficiency aspects of the algorithm as an open question.

High degree case. Note that the above idea cannot be implemented efficiently in the
case of high degree circuits. Still we can extend our Theorem 2 using allRootsNI. The key
observation is that the allRootsNI formula still holds but the summands that appear are
exactly the ones corresponding to gi with γi 6= 0 mod p.

This motivates the definition of a partial radical: radp(f) := ∏p-ei
fi, if the prime

factorization of f is ∏i f ei
i .

Theorem 38. Let F be of characteristic p ≥ 2. Let f = u0u1 such that size(f)+size(u0) ≤ s. Any
factor of radp(u1) has size poly(s + deg(radp(u1))) over F.

Proof idea: Observe that the roots with multiplicity divisible by p do not contribute
to the allRootsNI process. So, the process works with radp(u1) and the linear algebra
complexity involved is polynomial in its degree.

69

Chapter 9

Sparsity bound of factors

9.1 General Upper Bound

This section deals with sparsity upper bounds on factors.

Theorem 39. If g is a multi-linear polynomial which divides f ∈ F[x], then, ||g|| ≤ || f ||.

Proof. Proof goes via simple induction on the number of variables n. Of course, base
case n = 1 is trivial. Suppose it is true for n ≤ k. We prove that it is true for n = k + 1.
Suppose g(x1, . . . , xk, y) := Ay + B | ∑r

i=0 Ciyi := f (x1, . . . , xk, y) where A and B are both
multi-linear polynomials. Then A | Cr and B | C0. Hence ||A|| ≤ ||Cr|| and ||B|| ≤ ||C0||.
Hence ||g|| = ||Ay + B|| = ||A||+ ||B|| ≤ ||Cr||+ ||C0|| ≤ || f ||.

Theorem 40. If g is a multi-quadratic polynomial which divides another multi-quadratic polynomial
f ∈ F[x], then, ||g|| ≤ || f ||.

Proof. Proof goes via simple induction on the number of variables n. Of course, base case
n = 1 is trivial. Suppose it is true for n ≤ k. We prove that it is true for n = k + 1. Suppose
g(x1, . . . , xk, y) := b2y2 + b1y + b0 | ∑r

i=0 a2y2 + a1y + a0 := f (x1, . . . , xk, y) where ai and
bi’s are multi-quadratic polynomials. If b2 6= 0, then it must be the case that

a2

b2
=

a1

b1
=

a0

b0
= G

where G is a polynomial. This implies, by induction hypothesis that,

||bi|| ≤ ||ai|| =⇒ ||g|| = ∑ ||bi|| ≤∑ ||ai|| = || f ||

If b2 = 0, then b1 | a2 and b0 | a0 and similarly the theorem follows.

The immediate question is whether we can extend this to constant individual degree.
For the time being, it seems that there is no technique known to handle this type of situation
(very recently Bhargav etal in [BSV18] have used Newton polytopes and an approximate

70 Chapter 9. Sparsity bound of factors

version of the classical Caratheodory’s Theorem to show non-trivial upper bound on the
sparsity of the factor which would give quasi polynomial i.e. sO(log n) bound on the sparsity
of factor of n variate, constant individual degree s sparsity polynomial).

9.2 Sparsity bound for special class of Polynomials

Recall, conjecture 4. We also showed that the conjecture is optimal in the parameter sense
|logr for the following example:

f =
n

∏
i=1

(xr
i − 1) g =

n

∏
i=1

(xr−1
i + xr−2

i + . . . + 1)

In fact the belief is that these are the bad cases. So, let us consider the set of polynomials
where

degxi
(f) = r or 0

We will prove that the conjecture is true for these set of polynomials. For notational
purpose let us define

Sn,r = { f | f ∈ C[x1, . . . , xn] with |var(f)| = n such that degreexi
(f) = r or 0}

We prove that for f ∈ Sn,r , the conjecture is actually true. Before proceeding , we need
some observations and lemmas and an important theorem.

Observation 2. If f ∈ Sn,r , then there exists P ∈ Sn,1 such that f (x1, . . . , xn) = P(xr
1, . . . , xr

n)

Now we invoke [Kar89, Theorem 1.6] which implies the following theorem:

Theorem 41. Let F be an arbitary field such that
√
−1 ∈ F . Let n ≥ 1 and let a ∈ F . Then

Xn − a is reducible over F if and only if there exists a prime p | n such that a ∈ Fp .

Proof. ⇐= is obvious . For =⇒ , suppose Xn − a is reducible but a 6∈ Fp for any p | n . In
particular a 6∈ Fp for any odd prime p | n and a 6∈ F2 . Then certainly, a 6∈ −4F4 . So that
implies Xn − a is irreducible a contradiction !

Lemma 42. Suppose f = Axr
n− B where A, B ∈ C[x1, . . . , xn−1] and A and B has no non-trivial

gcd (i.e. if h|A, B then h must be a unit) , is reducible . Then there exists two polynomials
u, v ∈ C[x1, . . . , xn−1] and a prime p|r such that A = up and B = vp .

Proof. Consider the field of fraction C(x1, . . . , xn−1) . We observe the following :

Observation 3. f = Axr
n − B is reducible over C[x1, . . . , xn−1] ⇐⇒ xr

n − B
A is reducible over

C(x1, . . . , xn−1) .

9.2. Sparsity bound for special class of Polynomials 71

Using observation 3, we have that xr
n − B

A is reducible over C(x1, . . . , xn−1) . As
√
−1 ∈

C(x1, . . . , xn−1) , using theorem 41, we can say that ∃λ ∈ C(x1, . . . , xn−1) and p | r such
that

B
A

= λp

Suppose λ = v′
u′ where u′, v′ ∈ C[x1, . . . , xn−1] . Then we have

B
A

=
v′p

u′p

As A and B has no non-trivial gcd , hence we must have A = cu′p = up and B = cv′p = vp

for some c ∈ C and u, v ∈ C[x1, . . . , xn−1] .

Observation 4. For a polynomial f over any field F , f (xm
1 , . . . , xm

n) = 0⇐⇒ f (x1, . . . , xn) =

0.

Lemma 43. If ∃u ∈ C[x1, . . . , xn] such that u2 | f (xm
1 , . . . , xm

n) for some integers m, n ≥ 1 and
f ∈ Sn,1, then ‖u‖ = 1.

Proof. If u ∈ C , then we are obviously done. Otherwise , we prove this by inducting on n .

Base Case (n = 1) : Suppose f (x1) = Ax1 + B where A, B ∈ C . If

u2 | f (xm
1) = Axm

1 + B

All roots of Axm
1 + B = 0 are precisely

(
− B

A

) 1
m

ζ i
m ∀1 ≤ i ≤ m

where ζm is m-th primitive root of unity . They are all distinct if B 6= 0 and hence it can
not have repeated roots i.e. u2 - Axm

1 + B unless B = 0 . But B = 0 =⇒ u = axi
1 for some

0 ≤ i ≤ m
2 and a ∈ C . Hence ‖u‖ = 1 .

Induction Hypothesis : Suppose this is true for ≤ n− 1 variate polynomials.

Induction Step : Suppose

f (x1, . . . , xn) = A(x2, . . . , xn)x1 + B(x2, . . . , xn)

72 Chapter 9. Sparsity bound of factors

where A, B ∈ S≤n−1,1. Hence

f (xm
1 , . . . , xm

n) = A(xm
2 , . . . , xm

n)xm
1 + B(xm

2 , . . . , xm
n) = A(xm

2 , . . . , xm
n)

(
xm

1 +
B(xm

2 , . . . , xm
n)

A(xm
2 , . . . , xm

n)

)

Clearly A(xm
2 , . . . , xm

n) and xm
1 +

B(xm
2 ,...,xm

n)
A(xm

2 ,...,xm
n)

has no non-trivial gcd in C(x2, . . . , xn)[x1] . Now
consider this field extension

C′ = C(x2, . . . , xn)

((
B(xm

2 , . . . , xm
n)

A(xm
2 , . . . , xm

n)

) 1
m
)

As in C′ , roots of xm
1 +

B(xm
2 ,...,xm

n)
A(xm

2 ,...,xm
n)

= 0 are precisely

(
− B(xm

2 , . . . , xm
n)

A(xm
2 , . . . , xm

n)

) 1
m

ζ i
m∀1 ≤ i ≤ m

which are distinct if B(xm
2 , . . . , xm

n) 6= 0 . In that case we must have, from induction
hypothesis that

u2 | A(xm
2 , . . . , xm

n) =⇒ ‖u‖ = 1

If B(xm
2 , . . . , xm

n) = 0 , then using observation 4 , we have B(x2, . . . , xn) = 0 i.e.

f (x1, . . . , xn) = A(x2, . . . , xn)x1

In that case ,
u2 | f (xm

1 , . . . , xm
n) = A(xm

2 , . . . , xm
n)xm

1 =⇒ u = axi
1

for some 1 ≤ 2i ≤ m and a ∈ C[x2, . . . , xn] . That means

a2 | A(xm
2 , . . . , xm

n) =⇒
induction hypothesis

‖a‖ = 1 =⇒ ‖u‖ = 1

Note 1. From lemma 43 it follows that u2 | f where f ∈ Sn,r implies ‖u‖ = 1 .

Lemma 44. Suppose u, v ∈ C[y] such that ‖u‖ = ‖v‖ = 1 and they are disjoint variable

monomials and suppose h | upxr − vp for some prime p | r where h =
k

∑
i=0

aixi where ai ∈ C[y] .

Then ‖ai‖ = 1 for each 0 ≤ i ≤ k .

Proof. Suppose r
p = m . Consider the following field extension C′ = C(y)

((v
u

) 1
m
)

. Now
all roots of

upxr − vp = 0

9.2. Sparsity bound for special class of Polynomials 73

in C′ are actually
(v

u

) 1
m ζ i

r for all 0 ≤ i ≤ r− 1 . If h | upxr − vp , then roots of h must be

αj =
(v

u

) 1
m

ζ
ij
r

where 1 ≤ j ≤ k and ij’s are distinct numbers in the range [0, r− 1] . That implies

al

a0
= (−1)l ∑

1≤i1<...<il≤k
αi1 . . . αil =

(cv
u

) l
m

for any 0 ≤ l ≤ k for some c ∈ C . That means

al = pl(cv)
l
m and a0 = plu

l
m

where pl ∈ C[y] given the fact that u
l
m , v

l
m are actually polynomials. As a0 | vp =⇒

‖a0‖ = 1. Hence ‖pl‖ = 1 =⇒ ‖al‖ = 1 forall 0 ≤ l ≤ k .

Now we are ready to prove the following theorem 6.

Proof of theorem 6. For r ≤ 2 , it follows directly from [Vol15] . So assume r ≥ 3. We will
induct on the number of variables.

Base case (n = 1) : We have
f = axr

1 + b

where a, b ∈ C . If b = 0 then , ‖ f ‖ = 1 as well as ‖g‖ . If b 6= 0, then g | f would have
sparsity ≤ r as deg(g) ≤ r− 1 . Hence

‖g‖ ≤ r = 2log r = ‖ f ‖log r

Induction Hypothesis : Suppose this is true for≤ n− 1 variable polynomials i.e whenever
f ∈ S≤n−1,r .

Induction Step : Suppose
f = srxr

1 − s0

where sr, s0 ∈ S≤n−1,r . If s0 = 0 then f = srxr
1 and g | f implies

g = axi
1

74 Chapter 9. Sparsity bound of factors

where a | sr and 0 ≤ 2i ≤ r . So, from induction hypothesis we have

‖g‖ = ‖a‖ ≤ ‖sr‖log r = ‖ f ‖log r

Hence we may assume that s0 6= 0 . Suppose gcd (sr, s0) = G (this means upto constant) .
Also assume that

sr = GA, s0 = GB and gcd(A, B) = 1

Then
f = G(Axr

1 − B)

If (Axr
1 − B) is irreducible , then

g | f =⇒ g = g1 or g = g1(Axr
1 − B)

where g1 | G . Now g1 | G | sr , so from induction hypothesis , we have

‖g1‖ ≤ ‖sr‖log r ≤ (‖sr‖+ ‖s0‖)log r = ‖ f ‖log r

So If g = g1 , we are done. If g = g1(Axr
1 − B) , then

g1A | GA = sr and g1B | GB = s0

Hence again by induction hypothesis ,

‖g‖ = ‖g1A‖+ ‖g1B‖ ≤ ‖sr‖log r + ‖s0‖log r ≤ (‖sr‖+ ‖s0‖)log r = ‖ f ‖log r

Hence assume Axr
1 − B is reducible , then from lemma 42 , we have existence of u and v

such that
A = up and B = vp

for some p | r. Hence we have
f = G(upxr

1 − vp)

As sr, s0 ∈ S≤n−1,r , from note 1 , we have ‖u‖ = ‖v‖ = 1 . Now as A, B has no non-trivial
gcd , it implies that u and v are disjoint variable monomials. Now, suppose g | f . Then ,
g = g1g2 where

g1 | G and g2 | upxr
1 − vp

From lemma 44,

g2 =
k

∑
i=0

cixi
1

9.2. Sparsity bound for special class of Polynomials 75

where k ≤ r− 1 and ‖ci‖ = 1 .So, ‖g1ci‖ = 1 forall 0 ≤ i ≤ k . Hence

g =
k

∑
i=0

g1cixi
1 =⇒ ‖g‖ =

k

∑
i=0
‖g1ci‖ =

k

∑
i=0
‖g1‖ = (k + 1)‖g1‖

Now as g1 | G | sr, s0 and both sr, s0 6= 0 , from induction hypothesis we have

‖g1‖ ≤ min(‖sr‖log r, ‖s0‖log r)

Hence

‖g‖ = (k + 1)‖g1‖ ≤ r‖g1‖
≤ r (min(‖sr‖, ‖s0‖))log r

= (2 min (‖sr‖, ‖s0‖))log r

≤ (‖sr‖+ ‖s0‖)log r

= ‖ f ‖log r

BNow we focus on degree ≤ 3 case. We can always show that quadratic irreducible
polynomials are of our interest as when we induct , we can easily get sparsity bound for
linear terms and so , if there is one degree 3 or 1 variable , we are done ! So , a factor where
all the degree = 2 and is irreducible is of our prime interest and if one can show some
significant bound on them, we would be done with the constant individual degree ≤ 3
case.

77

Chapter 10

Conclusion and Open Problems

The old Factors conjecture states that for a nonzero polynomial f : g | f =⇒ size(g) ≤
poly(size(f), deg(g)) (see Conjecture 2). Motivated by Theorem 2, we would like to
strengthen it to:

Conjecture 1 (radical). For a nonzero f : min{deg(rad(f)), size(rad(f))} ≤ poly(size(f)).

Is the Radical conjecture true if we replace size by size?

In low degree regime also there are many open questions. Can we identify a class “below”
VPthat is closed under factoring? We conclude with some interesting questions.

1. Are VF, VBP closed under factoring? We might consider Theorem 4 as a positive
evidence. Additionally, note that these classes are already closed under e-th root
taking. This is easy to see using the classic Taylor series of (1 + f)1/e, where f ∈ 〈x〉.

In fact, what about the classes which are contained in VF(nlog n) but larger than VF.
For example, is VF(nlog log n) closed under factoring?

2. Can we find a suitable analog of Strassen’s (non-unit) division elimination for
high degree circuits? This, by Theorem 3, will resolve Factors conjecture. In
fact it is left as an open question whether division elimination can be done in
poly(s, log d) size circuit (for reference see https://www.cs.tau.ac.il/~shpilka/

wact2016/concreteOpenProblems/openprobs.pdf). For example, one can show that
xn−1
x−1 = ∑n−1

i=0 xi has circuit of size O(log2 n) and thus it would be interesting to come
up with an counter example as well!

3. Our results weaken when F is not algebraically closed or has a small prime characteristic
(Sections 8.1, 8.2). Can we strengthen the methods to work for all F?

4. Is sparsity Conjecture 4 true? In particular can one improve the sparsity bound
proved in [BSV18]?

https://www.cs.tau.ac.il/~shpilka/wact2016/concreteOpenProblems/openprobs.pdf
https://www.cs.tau.ac.il/~shpilka/wact2016/concreteOpenProblems/openprobs.pdf

79

Bibliography

[Abe73] Oliver Aberth. Iteration methods for finding all zeros of a polynomial
simultaneously. Mathematics of computation, 27(122):339–344, 1973. 38

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators.
In International Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 92–105. Springer, 2005. 7

[AGS18] Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. Bootstrapping
variables in algebraic circuits. In 50th Annual ACM Symposium on the Theory of
Computing, STOC’18, June 25-29, 2018, Los Angeles, CA, 2018. 6, 8

[AV08] Manindra Agrawal and V Vinay. Arithmetic circuits: A chasm at depth four.
In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE
Symposium on, pages 67–75. IEEE, 2008. 6

[BCS13] Peter Bürgisser, Michael Clausen, and Amin Shokrollahi. Algebraic complexity
theory, volume 315. Springer Science & Business Media, 2013. 23, 32, 33, 34, 61

[Ber70] Elwyn R Berlekamp. Factoring polynomials over large finite fields.
Mathematics of computation, 24(111):713–735, 1970. 1

[BIZ17] Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. On algebraic
branching programs of small width. In 32nd Computational Complexity
Conference, CCC 2017, July 6-9, 2017, Riga, Latvia, pages 20:1–20:31, 2017. 61

[BOC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a
constant number of registers. SIAM Journal on Computing, 21(1):54–58, 1992. 5

[BOT88] Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse
multivariate polynomial interpolation. In Proceedings of the twentieth annual
ACM symposium on Theory of computing, pages 301–309. ACM, 1988. 6

[BSR+05] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole
Hamilton, and Greg Hullender. Learning to rank using gradient descent. In
Proceedings of the 22nd international conference on Machine learning, pages 89–96.
ACM, 2005. 29

80 BIBLIOGRAPHY

[BSS89] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and
complexity over the real numbers: NP-completeness, recursive functions and
universal machines. Bulletin (New Series) of the American Mathematical Society,
21(1):1–46, 1989. 12

[BSV18] Vishwas Bhargava, Shubhangi Saraf, and Ilya Volkovich. Deterministic
factorization of sparse polynomials with bounded individual degree. Private
Communication, 2018. 9, 13, 69, 77

[Bür01] Peter Bürgisser. The complexity of factors of multivariate polynomials. In In
Proc. 42th IEEE Symp. on Foundations of Comp. Science, 2001. 61, 62

[Bür04] Peter Bürgisser. The complexity of factors of multivariate polynomials.
Foundations of Computational Mathematics, 4(4):369–396, 2004. (Preliminary
version in FOCS 2001). 45, 56, 62, 63

[Bür13] Peter Bürgisser. Completeness and reduction in algebraic complexity theory,
volume 7. Springer Science & Business Media, 2013. 6, 7, 23

[CKS18] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Some closure results for
polynomial factorization and applications. 2018. 7, 54

[CRS96] Richard Courant, Herbert Robbins, and Ian Stewart. What is Mathematics?: an
elementary approach to ideas and methods. Oxford University Press, USA, 1996.
32

[CZ81] David G Cantor and Hans Zassenhaus. A new algorithm for factoring
polynomials over finite fields. Mathematics of Computation, pages 587–592,
1981. 1

[DB08] Germund Dahlquist and Åke Björck. Numerical methods in scientific
computing, volume I. Society for Industrial and Applied Mathematics, 2008.
38

[DdO14] Zeev Dvir and Rafael Mendes de Oliveira. Factors of sparse polynomials are
sparse. arXiv preprint arXiv:1404.4834, 2014. 9

[DMM+14] Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas
de Rugy-Altherre, and Nitin Saurabh. Homomorphism polynomials
complete for VP. In 34th International Conference on Foundation of Software
Technology and Theoretical Computer Science, FSTTCS, pages 493–504, 2014. 12

BIBLIOGRAPHY 81

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness
tradeoffs for bounded depth arithmetic circuits. SIAM Journal on Computing,
39(4):1279–1293, 2009. (Preliminary version in STOC’08). 6, 7, 39

[Dur60] Émile Durand. Solutions numériques des équations algébriques. Tome I,
Équations du type F(x)= 0, racines d’un polynôme. 1960. 38

[Ehr67] Louis W Ehrlich. A modified Newton method for polynomials.
Communications of the ACM, 10(2):107–108, 1967. 38

[FS15] Michael A. Forbes and Amir Shpilka. Complexity theory column 88:
Challenges in polynomial factorization1. SIGACT News, 46(4):32–49, 2015. 8

[FSTW16] Michael A Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson.
Proof complexity lower bounds from algebraic circuit complexity. In
Proceedings of the 31st Conference on Computational Complexity, page 32. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016. 7

[GMQ16] Joshua A. Grochow, Ketan D. Mulmuley, and Youming Qiao. Boundaries of
VP and VNP. In 43rd International Colloquium on Automata, Languages, and
Programming (ICALP 2016), volume 55, pages 34:1–34:14, 2016. 61

[GMS+86] Philip E Gill, Walter Murray, Michael A Saunders, John A Tomlin, and
Margaret H Wright. On projected Newton barrier methods for linear
programming and an equivalence to Karmarkar’s projective method.
Mathematical programming, 36(2):183–209, 1986. 29

[GS98] Venkatesan Guruswami and Madhu Sudan. Improved decoding of
reed-solomon and algebraic-geometric codes. In Foundations of Computer
Science, 1998. Proceedings. 39th Annual Symposium on, pages 28–37. IEEE, 1998.
6

[GTZ88] Patrizia Gianni, Barry Trager, and Gail Zacharias. Gröbner bases and
primary decomposition of polynomial ideals. Journal of Symbolic Computation,
6(2):149–167, 1988. 6

[IKRS12] Gábor Ivanyos, Marek Karpinski, Lajos Rónyai, and Nitin Saxena. Trading
grh for algebra: algorithms for factoring polynomials and related structures.
Mathematics of Computation, 81(277):493–531, 2012. 6

[Jan11] Maurice J Jansen. Extracting roots of arithmetic circuits by adapting numerical
methods. In 2nd Symposium on Innovations in Computer Science (ICS 2011),
pages 87–100, 2011. 7

82 BIBLIOGRAPHY

[Kal85] Erich Kaltofen. Computing with polynomials given by straight-line programs
I: greatest common divisors. In Proceedings of the 17th Annual ACM Symposium
on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages
131–142, 1985. 6

[Kal86] Erich Kaltofen. Uniform closure properties of p-computable functions. In
Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May
28-30, 1986, Berkeley, California, USA, pages 330–337, 1986. 6, 47, 56

[Kal87] Erich Kaltofen. Single-factor hensel lifting and its application to the
straight-line complexity of certain polynomials. In Proceedings of the nineteenth
annual ACM symposium on Theory of computing, pages 443–452. ACM, 1987. 6,
10, 11, 12, 19, 45, 47, 55, 56

[Kal89] Erich Kaltofen. Factorization of polynomials given by straight-line programs.
Randomness and Computation, 5:375–412, 1989. 6, 7, 10, 12, 53

[Kal90] Erich Kaltofen. Polynomial factorization 1982-1986. Dept. of Comp. Sci. Report,
pages 86–19, 1990. 53

[Kar89] Gregory Karpilovsky. Topics in field theory, volume 155. Elsevier, 1989. 70

[Kay11] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial
equivalence problem. In Proceedings of the twenty-second annual ACM-SIAM
symposium on Discrete Algorithms, pages 1409–1421. Society for Industrial and
Applied Mathematics, 2011. 6

[Ker66] Immo O Kerner. Ein Gesamtschrittverfahren zur Berechnung der Nullstellen
von Polynomen. Numerische Mathematik, 8(3):290–294, 1966. 38

[KI03] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial
identity tests means proving circuit lower bounds. In Proceedings of the
thirty-fifth annual ACM symposium on Theory of computing, pages 355–364. ACM,
2003. 6, 7, 8

[KK08] Erich Kaltofen and Pascal Koiran. Expressing a fraction of two determinants
as a determinant. In Proceedings of the twenty-first international symposium on
Symbolic and algebraic computation, pages 141–146. ACM, 2008. 7

[KP12] Steven G Krantz and Harold R Parks. The implicit function theorem: history,
theory, and applications. Springer Science & Business Media, 2012. 39

BIBLIOGRAPHY 83

[KS01] Adam R Klivans and Daniel Spielman. Randomness efficient identity testing
of multivariate polynomials. In Proceedings of the thirty-third annual ACM
symposium on Theory of computing, pages 216–223. ACM, 2001. 6, 8, 9

[KS06] Neeraj Kayal and Nitin Saxena. Complexity of ring morphism problems.
computational complexity, 15(4):342–390, 2006. 6

[KS09] Zohar S Karnin and Amir Shpilka. Reconstruction of generalized depth-3
arithmetic circuits with bounded top fan-in. In Computational Complexity, 2009.
CCC’09. 24th Annual IEEE Conference on, pages 274–285. IEEE, 2009. 6

[KS16] Mrinal Kumar and Shubhangi Saraf. Arithmetic circuits with locally low
algebraic rank. In 31st Conference on Computational Complexity, CCC 2016, May
29 to June 1, 2016, Tokyo, Japan, pages 34:1–34:27, 2016. 39

[KSS15] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of
polynomial identity testing and polynomial factorization. computational
complexity, 24(2):295–331, 2015. 8, 12, 16, 53, 54, 66

[Lec02] Grégoire Lecerf. Quadratic newton iteration for systems with multiplicity.
Foundations of Computational Mathematics, 2(3):247–293, 2002. 38

[LLL82] Arjen Klaas Lenstra, Hendrik Willem Lenstra, and László Lovász. Factoring
polynomials with rational coefficients. Mathematische Annalen, 261(4):515–534,
1982. 1

[LLMP90] Arjen K Lenstra, Hendrik W Lenstra, Mark S Manasse, and John M Pollard.
The number field sieve. In Proceedings of the twenty-second annual ACM
symposium on Theory of computing, pages 564–572. ACM, 1990. 6

[LN97] Rudolph Lidl and Harald Niederreiter. Finite Fields. Cambridge University
Press, Cambridge, UK, 1997. 21

[LS78] Richard J Lipton and Larry J Stockmeyer. Evaluation of polynomials with
super-preconditioning. Journal of Computer and System Sciences, 16(2):124–139,
1978. 6

[LV16] Anand Louis and Santosh Srinivas Vempala. Accelerated newton iteration
for roots of black box polynomials. In IEEE 57th Annual Symposium on
Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency,
New Brunswick, New Jersey, USA, pages 732–740, 2016. 40

84 BIBLIOGRAPHY

[Mul17] Ketan Mulmuley. Geometric complexity theory V: Efficient algorithms
for Noether normalization. Journal of the American Mathematical Society,
30(1):225–309, 2017. 6

[MV97] Meena Mahajan and V Vinay. A combinatorial algorithm for the determinant.
In SODA, pages 730–738, 1997. 17

[MY73] Joel Moses and David Y. Y. Yun. The ez gcd algorithm. In Proceedings of the
ACM Annual Conference, ACM ’73, pages 159–166, New York, NY, USA, 1973.
ACM. 45

[New69] Isaac Newton. De analysi per aequationes numero terminorum infinitas [on
analysis by infinite series] (in latin). 1669. (published in 1711 by William
Jones). 38

[Oli16] Rafael Oliveira. Factors of low individual degree polynomials. Computational
Complexity, 2(25):507–561, 2016. (Preliminary version in CCC’15). 7, 39, 54, 63

[OR00] James M Ortega and Werner C Rheinboldt. Iterative solution of nonlinear
equations in several variables. SIAM, 2000. 29

[Pau01] Sebastian Pauli. Factoring polynomials over local fields. Journal of Symbolic
Computation, 32(5):533–547, 2001. 66

[Pla77a] David Alan Plaisted. New NP-hard and NP-complete polynomial and
integer divisibility problems. In Foundations of Computer Science, 18th Annual
Symposium on, pages 241–253. IEEE, 1977. 11

[Pla77b] David Alan Plaisted. Sparse complex polynomials and polynomial reducibility.
Journal of Computer and System Sciences, 14(2):210–221, 1977. 1, 7, 11

[Pla84] David A Plaisted. New np-hard and np-complete polynomial and integer
divisibility problems. Theoretical Computer Science, 31(1-2):125–138, 1984. 43

[PSS16] Anurag Pandey, Nitin Saxena, and Amit Sinhababu. Algebraic independence
over positive characteristic: New criterion and applications to locally low
algebraic rank circuits. In 41st International Symposium on Mathematical
Foundations of Computer Science, MFCS 2016, August 22-26, 2016 - Kraków,
Poland, pages 74:1–74:15, 2016. 39

[Sap16] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit
complexity. URL https://github. com/dasarpmar/lowerbounds-survey/releases.
Version, 3(0), 2016. 18, 19, 50

BIBLIOGRAPHY 85

[Sch77] Claus-Peter Schnorr. Improved lower bounds on the number of
multiplications/divisions which are necessary to evaluate polynomials. In
International Symposium on Mathematical Foundations of Computer Science, pages
135–147. Springer, 1977. 6

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial
identities. J. ACM, 27(4):701–717, October 1980. 17, 18, 22, 32

[Sin16] Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In
31st Conference on Computational Complexity, 2016. 6

[SSS13] Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. A case of depth-3
identity testing, sparse factorization and duality. Computational Complexity,
22(1):39–69, 2013. 8

[Str73] Volker Strassen. Vermeidung von divisionen. Journal für die reine und
angewandte Mathematik, 264:184–202, 1973. 11, 17, 59

[Sud97] Madhu Sudan. Decoding of reed solomon codes beyond the error-correction
bound. Journal of complexity, 13(1):180–193, 1997. 6

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent
results and open questions. Foundations and Trends® in Theoretical Computer
Science, 5(3–4):207–388, 2010. 17, 18

[Tay15] Brook Taylor. Methodus incrementorum directa et inversa [direct and reverse
methods of incrementation] (in latin). 1715. (Translated into English in
Struik, D. J. (1969). A Source Book in Mathematics 1200–1800. Cambridge,
Massachusetts: Harvard University Press. pp. 329–332.). 10

[Val79] L. G. Valiant. Completeness classes in algebra. In Proceedings of the Eleventh
Annual ACM Symposium on Theory of Computing, STOC ’79, pages 249–261,
New York, NY, USA, 1979. ACM. 4

[Val82] L Valiant. Reducibility by algebraic projections in: Logic and algorithmic. In
Symposium in honour of Ernst Specker, pages 365–380, 1982. 10, 20

[Vol15] Ilya Volkovich. Computations beyond exponentiation gates and applications.
In Electronic Colloquium on Computational Complexity (ECCC), volume 22,
page 42, 2015. 9, 73

[VSBR83] Leslie G. Valiant, Sven Skyum, Stuart Berkowitz, and Charles Rackoff. Fast
parallel computation of polynomials using few processors. SIAM Journal on
Computing, 12(4):641–644, 1983. 5, 12

86 BIBLIOGRAPHY

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra.
Cambridge university press, 2013. 21, 39, 65, 66

[vzGK85] Joachim von zur Gathen and Erich Kaltofen. Factoring sparse multivariate
polynomialsa. Journal of Computer and System Sciences, 31(2):265–287, 1985. 7,
8, 9

[Wan80] Paul S. Wang. The eez-gcd algorithm. SIGSAM Bull., 14(2):50–60, May 1980.
46

[Zas69] Hans Zassenhaus. On Hensel factorization, I. Journal of Number Theory,
1(3):291–311, 1969. 39

[ZS75] Oscar Zariski and Pierre Samuel. Commutative algebra. II. Reprint of the 1960
edition, volume 29. Graduate Texts in Mathematics, 1975. 16

	Declaration of Authorship
	Abstract
	Introduction
	Arithmetic Circuits, Formulas and ABPs
	Algebraic Complexity Classes
	Previously known closure results
	Sparsity and Algebraic Complexity Theory
	Contribution of the thesis
	Factorization over Power Series Ring
	Closure Results
	Sparsity Bound

	Organization of the thesis

	Preliminaries
	Formal Power Series
	Randomized algorithm for linear algebra using PIT
	Basic operations on formula, ABP and circuit
	Upper bound on derivative computation
	Lower bound on derivative computation

	Sylvester matrix & resultant
	Monic Transformation
	Closure properties for VNP
	Matrix and Series Inverse
	Holomorphic function and Order of zero
	Newton-Puiseux Series

	Newton Iteration and Factoring Polynomials
	Power series factorization of polynomials
	Factoring reduces to approximating power series roots
	Approximating Roots
	Recursive root finding via matrices (allRootsNI)
	Rapid Newton Iteration with multiplicity

	Algebraizing Accelerated Newton Iteration

	GCD in Algebraic Complexity
	Computing GCD for bounded degree complexity classes
	Complexity of Low Degree GCD
	Strassen's Problem on computing Numerator and Denominator

	Closure of restricted complexity classes
	PIT is equivalent to factoring
	Factors of constant individual degree polynomials have small complexity

	Complexity of factor and square-freeness
	Special case f=ge
	Complexity of factors polynomially related to degree of radical: Proof of Theorem 2
	Low degree factors of general circuits: Proof of Theorem 3

	Closure of Approximative Complexity classes
	Factoring in Field Extension
	When field F is not algebraically closed
	Multiplicity issue in prime characteristic

	Sparsity bound of factors
	General Upper Bound
	Sparsity bound for special class of Polynomials

	Conclusion and Open Problems

