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“How best to compute a multivariate polynomial using arithmetic opera-

tions?” – this is the central question that has driven the results in this thesis. Poly-

nomials are perhaps the most fundamental mathematical objects (after numbers).

In theoretical computer science alone, they are a crucial ingredient to applications

in cryptography, error-correcting codes, numerical analysis and approximation,

computer vision, robotics, machine learning, and much more. It is very natu-

ral to study their complexity, and algebraic circuits – directed acyclic graphs with

addition and multiplication gates, and variables as leaves, are the most natural

models of computing polynomials (in a syntactic way). In the late ‘70s, Valiant

(STOC, 1979) conjectured the algebraic analog of Cook’s P vs. NP – that there are

low-degree polynomials whose coefficients can be efficiently described (the class

VNP), but the polynomial itself cannot be computed by low-degree small-sized

circuits (the class VP).

Bounded-depth circuits. Unlike their Boolean counterparts, a surprising phe-

nomenon of “efficient parallelization” holds true for algebraic circuits. In an

influential line of studies beginning with the work of Agrawal and Vinay (FOCS
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2008), improved by Koiran (Theoret. Comput. Sci. 2012) and Tavenas (Inform.

and Comput. 2015), finally culminating in the work of Gupta et al. (SIAM J. Com-

put. 2016), it was shown that even algebraic circuits with just 3 or 4 layers of gates

are almost as powerful as general ones! Proving sufficiently strong lower bounds

for these constant-depth circuits can resolve Valiant’s conjecture, and has been the

focus of lower bounds research for the past decade in Algebraic Complexity.

Recently, in a breakthrough work, Limaye, Srinivasan, and Tavenas (FOCS

2021) proved superpolynomial lower bounds for all constant-depth circuits. As a

natural next step, we push their techniques further and prove stronger bounds

that are state of the art. We also exhibit a barrier to further improvement of the

bounds using the same techniques.

Algebraic branching programs. Models different from circuits have also been

studied. Algebraic formulas are circuits where the directed acyclic graph is a

tree. Algebraic branching programs are a model of computation intermediate in

power between formulas and circuits. Valiant’s conjecture is generally considered

the problem of showing superpolynomial lower bounds for any of these models.

Much as in the Boolean world, the lower bounds we know for these general models

are barely quadratic.

In this thesis, we show that proving strong enough lower bounds for the sum

of a very restricted type of algebraic branching program that is set-multilinear,

is enough to resolve Valiant’s conjecture. An analogous statement for bounded-

depth circuits was used by Limaye, Srinivasan and Tavenas (FOCS 2021) to prove

their superpolynomial lower bounds. Nisan (STOC 1991) had already studied

these restricted branching programs in the ‘90s and shown exponential lower

bounds against them. Our work shows that their sum is surprisingly powerful.

We prove exponential lower bounds for this ‘sum’ model (in fact, even the sum of

general branching programs) when the size of each program is sub-polynomial.
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Counting homomorphisms. In another seminal work, Valiant (Theoret. Com-

put. Sci. 1979) showed that counting the number of perfect matchings in bipartite

graphs is #P–hard. In general, the question of detecting and counting some “pat-

tern” graph in a “host” graph is very interesting and has many applications in

combinatorics, computer science (theoretical and otherwise) and even biology. If

the pattern graph is fixed, these problems can be solved in time polynomial in the

size of the host graph, which is usually large. So we would really prefer much

faster algorithms. An algebraic version of this problem is to consider the Ho-

momorphism polynomial that enumerates ‘adjacency-preserving’ maps from the

pattern graph to the host, and construct small algebraic circuits computing the

polynomial. The best known constructions are in fact monotone, where the circuit

never uses negative numbers. Recently, Komarath, Pandey and Rahul (Algorith-

mica 2023) showed that the treewidth of the pattern graph completely characterizes

the size of the best monotone circuit computing the polynomial.

We generalize their results to bounded-depth monotone circuits computing the

homomorphism polynomial. We introduce a bounded-depth version of treewidth

(where tree decompositions have bounded depth), and show that this parameter

characterizes the size of the bounded-depth monotone circuit computing the ho-

momorphism polynomial. Proving these fine-grained bounds further leads to an

optimal depth-hierarchy theorem for monotone circuits.

Polynomial factorization. In the 1980’s, Kaltofen (SICOMP 1985, STOC 1986,

STOC 1987, RANDOM 1989) showed a remarkable fact – factors of small multi-

variate circuits of low degree are small circuits themselves, i.e., VP is closed under

taking factors. This is indeed a splendid demonstration of the robustness and

naturalness of the algebraic circuit model. Via repeated squaring, small circuits

can also compute polynomials of exponential degree. An earlier result of Lipton

and Stockmeyer (J. Comput. System Sci. 1978) implies that such circuits are not

closed under taking factors.

Kaltofen (STOC 1986, 1987) wondered, and Bürgisser in his monograph (2000)
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conjectured, that at least the low-degree factors of small exponential-degree circuits

can be computed by small circuits. Except for certain special cases, the above

‘factor conjecture’ is open. Interestingly, Bürgisser (Found. Comput. Math 2004)

showed that these low-degree factors can be approximated by small circuits! Thus,

the factor conjecture can be seen as saying that approximation is not necessary.

These approximate circuits are in fact more structured, and when the underlying

field is finite, this structure can be exploited to show that these factors have

coefficients that are easy to describe. That is, the families defined by the factors

are in VNP (the factor conjecture says they are in VP). In this thesis, we suggest

natural conjectures to extend this result to infinite fields.
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Chapter 1

Introduction

Few ideas are as deeply pervasive in mathematics as the polynomial. The word itself

is derived from the Greek poly (meaning ‘many’), and the Latin nomen (meaning

‘names’ or in this case, ‘terms’). True to its etymology, a polynomial such as

b2 − 4ac in the variables a, b, and c is a very humble object – a sum of terms b2

and −4ac, that we call monomials. Nevertheless, we learn in high school that for a

quadratic univariate polynomial f = ax2+bx+c, the value b2−4ac tells us quite a

bit about the roots of f (whether they are real, imaginary, distinct, etc). This sort of

encoding of a problem as properties of a polynomial is extremely common. In the

case above, the discriminant polynomial b2 − 4ac encodes key information about

other quadratic polynomials! What makes polynomials fundamental is the vast

number of problems whose encoding and solution they facilitate. Surely then,

it is natural to study their various properties. In this thesis, we will mainly be

concerned with questions of a computational nature.

1. Are all polynomials easy to compute? How does one show a polynomial

cannot be computed efficiently?

2. Can polynomials help us count? Are such polynomials efficiently com-

putable?

3. What structure can be inferred about factors of polynomials that can be

computed efficiently?



2

f = (x1 + x3)[(x3 + π) + (x1 + x2)]

+

× ×

+ + +

x1 x2 x3 π

Figure 1.1: Example of an algebraic circuit

In order to study questions of algebraic computation and develop the algebraic

analog of NP-completeness, Valiant [Val79a; Val82] introduced arithmetic/algebraic

circuits (Definition 2.2.1), a natural model that has led to the development of a rich

and varied theory of algebraic complexity (see [Bür24]).

An algebraic circuit is essentially a Boolean circuit where the logical operations

AND andOR are replaced by addition and multiplication (Figure 1.1). It computes

a polynomial bottom up inductively with variables and field elements at the leaves.

If the underlying directed acyclic graph is a tree, we call the circuit a formula. The

size of the circuit in Figure 1.1 is 6, given by the number of vertices/gates in the

graph. Since the length of the longest path from the root to any leaf is 3, that is

the depth of the circuit. Many results are better stated in terms of the product-depth

(1 in our example) which counts the maximum number of multiplication gates

along any root–leaf path.

In Boolean complexity, the notion of efficient computation is captured by the

complexity class P of problems solvable in polynomial time. A complexity class in

the algebraic world is made of families/sequences of polynomials (fn)n∈N where

fn is a multivariate polynomial over some field F. We will mostly be interested

in families where the number of variables in fn grows as a polynomial function

of n. The algebraic analog of P is called VP (Definition 2.2.15) and consists of

all polynomial families where fn is of poly(n)-degree and the smallest circuit

computing fn has size poly(n). The underlying field of computation F is usually
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fixed beforehand, and we omit it from the notation. The notion of computation is

non-uniform – the circuits of fn for differentn need not be related to one another. A

prime example of a polynomial family in VP is (Detn), defined by the determinant

of the n× n symbolic matrix (xij)1≤i,j≤n:

Detn =
∑
σ∈Sn

(
sgn(σ)

n∏
i=1

xi,σ(i)

)
.

The algebraic analog of the class NP is called VNP (Definition 2.2.18). Infor-

mally, it consists of polynomial families which are ‘explicit’, in the sense that given

a monomial of fn, we can compute the corresponding coefficient efficiently, say

in polynomial time. Similar to the Boolean setting, it is not hard to show that

a ‘random’ polynomial cannot be computed by small circuits [HY11]. The long-

standing conjecture of Valiant [Val79a] is that there are explicit polynomial families

that cannot be computed efficiently, i.e., VP ⊊ VNP. A prominent candidate for

this separation is the family of permanents,

Pern =
∑
σ∈Sn

(
n∏
i=1

xi,σ(i)

)
.

The determinant and permanent families essentially characterize the classes

VP and VNP, respectively. Hence, Valiant’s conjecture is also sometimes called

the Permanent versus Determinant problem [Agr06]. It is the algebraic version

of Cook’s hypothesis [Coo71] – also known as the P vs. NP problem. There is

a formal sense in which the VP vs. VNP problem is a ‘stepping stone’ towards

the P vs. NP problem [Bür00b]. For details on the connection between Valiant’s

and Cook’s hypotheses, we encourage readers to consult [BCS97; Bür99; Bür00a].

Though the best known lower bounds of Ω(n logn) for general arithmetic circuits

by Baur and Strassen [BS83] and Ω(n2) for formulas by Kalorkoti [Kal85a] fall far

short of the superpolynomial lower bounds that we hope to prove, such bounds

are known for various restricted classes [NW96; Raz06; Raz09] (see [SY09; CKW10;

Mah14; Sap21] for excellent survey).
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1.1 Low depth circuits

One of the most interesting restrictions is that of bounding the depth of circuits

and formulas. When the depth is a constant, circuits and formulas are equivalent

up to polynomial blow up in their size and hence we use them interchangeably.

Unlike the Boolean world, a very curious phenomenon of depth reduction occurs

in arithmetic circuits [Val+83; AV08; Koi12; Tav15; Gup+16]. Essentially, circuits

of depth 3 and 4 are almost as powerful as general ones. More formally, any

degree d polynomial f that has a size s circuit can also be computed by a depth

4 homogeneous circuit or a depth 3 (possibly non-homogeneous) circuit of size

sO(
√
d). Hence, proving an nω(

√
d) lower bound against these special circuits is

enough to separate VP from VNP. The extreme importance of bounded depth

circuits has led to a large body of work proving lower bounds for these models

and their variants [SS96; SW01; Raz10; Kay12; Gup+14; KSS14; Fou+15; KS15;

KST16; Kay+17; KST18; GST20].

1.1.1 The LST breakthrough

In a remarkable recent work, Limaye, Srinivasan and Tavenas [LST21] proved

the first superpolynomial lower bound for general constant-depth circuits. More

precisely, they showed that there is a polynomial Pn,d on O(dn2) variables of

degree d = o(logn) which has no product-depth ∆ circuits of size ndexp(−O(∆)) .

The variable set X is partitioned into d sets (X1, . . . , Xd) of n2 variables each

(viewed asn×nmatrices). The polynomial Pn,d is the Iterated Matrix Multiplication

polynomial, obtained by picking a particular (say the (1, 1)-th) entry of the matrix

product X1 · X2 · · ·Xd:
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IMMn,d =




x1,1 . . . x1,n
... . . . ...

x1,n2−n+1 . . . x1,n2

 · · · · · ·


xd,1 . . . xd,n

... . . . ...

xd,n2−n+1 . . . xd,n2




(1,1)

.

As all monomials are of the same degree d, the polynomial is homogeneous. It is

also multilinear since every variable has individual degree at most 1. Additionally,

every monomial has exactly one variable from each of the d sets of the partition.

Such polynomials are called set-multilinear. An algebraic circuit is said to be set-

multilinear if every node in the circuit computes a set-multilinear polynomial with

respect to (a subset of) the variable sets.

For any∆ ≤ logd, IMMn,d has a set-multilinear circuit of product-depth∆ and

size nO(d1/∆), obtained via basic recursion. No significantly better upper bounds

are known, even if we allow general circuits. It makes sense to conjecture that

this upper bound is tight (see [CLS19] for limitations to improving the upper

bound when the matrices Xi are 2 × 2). The lower bound of [LST21] proceeds

by first transforming size s, product-depth ∆, general circuits computing a set-

multilinear polynomial of degree d to set-multilinear algebraic circuits of product-

depth 2∆ and size poly(s)dO(d) (which is not huge if d is small). Hence, in

the low-degree regime, lower bounds on bounded depth set-multilinear circuits

translate to bounded depth general circuit lower bounds, albeit with some loss1.

Finally, they use a measure which is high for IMMn,d and which they show is low

for small-size, bounded-depth set-multilinear circuits.

1.1.2 Our contribution: improved lower bound

In Chapter 3, we investigate the limits of the techniques introduced by Limaye,

Srinivasan, and Tavenas. Our first result (Theorem 3.0.1) is an improvement of
1Interestingly, set-multilinear lower bounds against arbitrary depth were known before [NW96;

Raz09; RY09], but degenerated to trivial bounds when the degree was small.
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their lower bound.

We show that in the low-degree regime (whend = O(logn/ log logn)),

any circuit of product-depth ∆ for IMMn,d must be of size at least

n
Ω
(
d1/(φ2)∆

)
, where φ = 1.618 . . . is the golden ratio.

This is an improvement over the n
Ω
(
d1/4∆

)
lower bound previously shown, since

φ2 < 4. Our lower bound, much like that of [LST21], proceeds by transforming

a general bounded-depth circuit to a set-multilinear one without increasing the

depth by much, or blowing up the size (when the degree is low). This trans-

formation originally required fields of characteristic zero. In a very nice work,

Forbes [For24] removed this restriction. Hence, the lower bound now holds over

all fields.

A crucial idea of the [LST21] result was to use set-multilinear polynomials

where each set in the variables’ underlying partition are of different sizes and

using this discrepancy. By picking the set sizes more carefully (depending on

the depth we are working with), we improve their nΩ
(
d1/2∆

)
set-multilinear lower

bound.

We show that any product-depth ∆ set-multilinear circuit for IMMn,d

(when d = O(logn)) needs size at least nΩ
(
d1/φ∆

)
.

In a further recent work, Tavenas, Limaye and Srinivasan [TLS22] proved a

product-depth∆ set-multilinear formula lower bound of (logn)Ω(∆d1/∆) for IMMn,d.

There is no degree restriction, but in the small degree regime, the bound is much

weaker than [LST21] and cannot be used for escalation. Improving on it, Kush and

Saraf [KS22] showed a lower bound of nΩ(n1/∆/∆) for the size of product-depth ∆

set-multilinear formulas computing an n2-variate, degree n polynomial family in

VNP from the Nisan-Wigderson design-based polynomial family. Later [KS23],

they showed the same bound for polynomial families in VP (and even lower,

though not IMMn,d). Unlike all these works, we are interested in the low-degree
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regime where set-multilinear lower bounds can be lifted, making these works

incomparable to ours.

1.1.3 Our contribution: proof barrier

We also show that these techniques cannot improve our lower bound significantly.

Since we could use two different (but dintict from [LST21]) set sizes and improve

the lower bound, it might seem plausible that using many more set sizes (out of

a total possible d) could improve the bound further. We show that this is false for

most cases (Theorem 3.4.1).

For any choice of O(1) set sizes, we show that there is a set-multilinear

product-depth ∆ circuit with size matching our lower bound. When

the number of sets is do(1), there exists a different set-multilinear circuit

that has product-depth ∆ and size almost matching our lower bound.

In both cases, the value of the measure used to prove the lower bound

is maximized.

This results in a barrier to further improvement since this particular measure

cannot prove a better lower bound, as there are small (matching our lower bound)

circuits that maximize the measure. Such a barrier was known for the two specific

variable set sizes considered in [LST21]. In a further work (that was almost

parallel to ours), Limaye, Srinivasan and Tavenas also showed similar barrier

results [LST22]. They simplified the proof framework of [LST21] and characterized

the lower bounds that can be proved via this technique using a combinatorial

property, which they termed Tree Bias. Their result works for any d set sizes,

but the size upper bound on the measure-maximizing circuits they obtain is

weaker. These barrier results suggest that new measures and techniques might

be necessary if we are to prove significantly better constant-depth lower bounds.
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f = −(x1x2x3 + x1x3x4 + x2x3x4)t

x4

−x2

x2 − x3

x3

x4

s

x1

x1 + x3

Figure 1.2: Example of an ABP

1.2 Algebraic branching programs

Intermediate in power, and in between circuits and formulas lie Algebraic Branch-

ing Programs (Definition 2.2.5). The computation of an ABP is slightly different,

and we explain it with an example (Figure 1.2). Each of the three paths from a

designated source vertex s to the sink t computes a polynomial that is the product

of the edge labels in that path: x1(x2−x3)x4, x1x3(−x2), and (x1+x3)x4(−x2). Edges

go from one layer to the next and are labeled by linear polynomials. Summing

up the polynomials computed by all s⇝ t paths gives the polynomial computed

by the ABP. The size of the ABP is 6, the total number of vertices in the graph.

The width of the ABP is 2, the maximum number of vertices in a layer. We can

also view the computation of the ABP in Figure 1.2 as a product of matrices with

entries coming from the edge labels:

f =

[
x1 x1 + x3

]x2 − x3 x3

0 x4


 x4

−x2

 .

Similar to circuits and formulas, the families of polynomials (fn) that have

poly(n)-sized ABPs make up the class VBP (Definition 2.2.17). It is known that

VF ⊆ VBP ⊆ VP, and conjectured that all the inclusions are strict. Valiant’s hy-

pothesis is considered more generally as the problem of separating any of the

classes VF, VBP or VP from VNP. Unfortunately (although probably not surpris-

ingly), general lower bounds in any of these models is hard to come by. In a recent
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t

xd,1

xd,2
... xd,n

. . .

. . .

. . .

. . .

...

x2,1

...

x2,n2

s

x1,1

x1,2

x1,n

Figure 1.3: An O(nd) sized ABP for IMMn,d

work, Chatterjee, Kumar, She and Volk [Cha+22] proved a lower bound of Ω(n2)

for ABPs. Evidently, the state of affairs is quite similar to that of circuits. In fact,

the polynomial
∑n

i=1 x
n
i used in the ABP lower bound is the same one that Baur

and Strassen [BS83] used for their circuit lower bound.

1.2.1 Our contribution: lower bounds for the sum of small ABPs

In Chapter 4, we prove a lower bound against the sum of general sub-polynomial

sized algebraic branching programs (Theorem 4.2.1).

We show that IMMn,d cannot be computed by the sum of poly(n, d)

ABPs, where each ABP is of size (nd)o(1).

Note that naive ABP for IMMn,d is of size O(nd) (Figure 1.3). Our result shows

that this is almost optimal: we cannot reduce the size significantly, even by using

a sum of polynomially many ABPs. When d = nΩ(1) is large, ABPs of size

(nd)o(1) cannot even produce monomials of degree d. Hence, the lower bound is

obtained trivially (in general, a lower bound of d is trivial for ABPs). But when

d = no(1) is small, the model is quite powerful. In fact, for d = no(1), the power

sum polynomial
∑n

i=1 x
d
i , that was used in previous ABP lower bounds can be

computed efficiently in our model: as a sum of n ABPs, each of size (nd)o(1).

Remark 1.2.1. A lower bound of n is not trivial for ABPs (unlike circuits and

formulas). Moreover, each edge label can be a general affine linear form, allowing

a single path to generate exponentially many monomials. Notwithstanding that,
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ABPs of size (nd)o(1) are still an incomplete model of computation. Nevertheless,

the sum of such ABPs is a complete model – every polynomial of degree d = no(1)

can be written as a sum of nO(d) width-1 ABPs (monomials). Our lower bound

also holds if we replace IMMn,d with an appropriate polynomial from the family

of Nisan-Wigderson design-based polynomials (see Section 4.2.1).

1.2.2 Our contribution: hardness bootstrapping for ABPs

Our next result (Theorem 4.1.1) is a reformulation of Valiant’s conjecture in terms

of a different model: the sum of set-multilinear ABPs (smABPs) on the set of

variables X = X1 ⊔ . . . ⊔ Xd.

In an (ordered) smABP, edge labels from a layer to the next are linear forms in

a single setXi from the partition, and all the sets occur (once) in some order (called

the order of the smABP). The most natural ABP for IMMn,d is also set-multilinear:

each layer (other than the first and the last) has n nodes and the edge connecting

the p-th node in layer i to the q-th node in layer i + 1 is labeled by xi,(p−1)n+q

(Figure 1.3). We denote by
∑

smABP the sum of set-multilinear ABPs, each in a

possibly different order. The width of a
∑

smABP is the sum of the widths of the

constituent smABPs.

We show that a superpolynomial lower bound against
∑

smABP for a

set-multilinear polynomial of very low degree d = O(logn/ log logn)

is enough to separate VNP from VBP.

The above result shows that the sum of set-multilinear ABPs, which looks quite

restrictive, is surprisingly powerful. This is a recurring theme in algebraic com-

plexity, as already seen in the context of depth-reduction. Interestingly, analogous

reductions to the set-multilinear case were known for formulas [Raz13, Theorem

3.1] and circuits [NW96, Lemma 2.11]. The above result is in a similar vein. It

also shows that the low-degree regime that was useful in proving lower bounds

for constant-depth circuits [LST21] is also useful for ABP lower bounds. The
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model of
∑

smABP is particularly appealing to study since a single smABP is

one of the most well-understood objects in algebraic complexity. If the matrices

defining the smABP were commutative, we can treat
∑

smABP as a single smABP,

against which we know how to prove exponential lower bounds (Section 1.2.3).

So in order to lift the lower bound to VNP, it is essential that we understand the

sum of smABPs with non-commuting matrices (see Section 1.2.4 for a detailed

discussion).

Recently, Kush and Saraf [KS23] proved near-optimal lower bounds against set-

multilinear formulas for a polynomial family in VBP. Surprisingly, if their hard

polynomial were computable by an (ordered) smABP, we would obtain general

formula lower bounds! This further illustrates the need to study smABPs.

Remark 1.2.2. In Section 4.1, we also give a smooth generalization of the above re-

sult using more general versions of both set-multilinear polynomials and smABPs

that are called set-multi-k-ic (Definition 2.2.8).

1.2.3 The sum of ROABPs perspective

One can also view the above bootstrapping result through the lens of another

well-studied model in the literature, first defined by Forbes and Shpilka [FS13]. In

a Read-once Oblivious Algebraic Branching Program (ROABP) (Definition 2.2.9)

over the variables x1, . . . , xn, the edge labels from a layer to the next are univariate

polynomials in some variable xi, and the variables occur (once) in some order

(called the order of the ROABP).

The computation that an ROABP performs is essentially non-commutative

since the variables along a path get multiplied in the same sequence as the order

of the ROABP. Nisan [Nis91] introduced the powerful technique of using spaces of

partial derivatives to study lower bound questions in non-commutative models.

This technique can be used to calculate the exact width of the ROABP computing

a polynomial. Following our notation for smABPs, we denote by
∑

RO the sum

of ROABPs, each possibly in a different order. The width of a
∑

RO is the sum
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of the widths of the constituent ROABPs. In fact, ROABPs and smABPs are

essentially the same (up to an invertible map), and a version of the reduction

result to
∑

smABP model can also be stated for
∑

RO (Corollary 4.1.3). In

Section 4.1, we also show a generalization for the read-k versions of ROABP

(Definition 2.2.10). In contrast to the case of smABPs, we are interested in the dual

low-variate n = O(logd/ log logd) regime.

The low-variate regime2 has also recently been shown to be extremely im-

portant. The Polynomial Identity Testing (PIT) problem asks to efficiently test

whether a polynomial (given as an algebraic circuit, for example) is identically

zero. In the black-box setting, we are only allowed to evaluate the polynomial (cir-

cuit) at various points. Hence, PIT algorithms are equivalent to the construction

of hitting sets – a collection of points that witness the (non)zeroness of the poly-

nomial computed by the circuit (see [Sax09; Sax14; DG24] for a survey of PIT and

techniques used). Several surprising results [AGS19; KST23; Guo+22] essentially

conclude that hitting sets for circuits computing extremely low-variate polynomi-

als can be “bootstrapped” to obtain hitting sets for general circuits. The survey of

Kumar and Saptharishi [KS19] gives a lucid exposition of the ideas involved.

1.2.4 Proof techniques and previous work

Our proof of the first result on
∑

ABP lower bound uses the implicit reduction

from an ABP to the
∑

smABP model as shown in our second result. We show

how to simulate an ABP using a sum of dO(d) smABPs, which is not large when

the degree d = O(logn/ log logn) is small. Nisan’s characterization [Nis91] can

be used to prove exponential lower bounds against single smABPs (ROABPs), but

it does not extend to their sums.

There has been some exciting progress in handling the sums in recent years.

Arvind and Raja [AR16] proved a superpolynomial lower bound for the Per-
2In general forVNP, we require the degree to be polynomially related to the number of variables.

One way to make sense of the low variate case is to assume that the polynomial is defined on d
variables but only depends on the first n = O(logd/ log logd) many of them.
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manent polynomial against the sum of sub-linear many ROABPs (the bound is

exponential if the number of ROABPs is bounded by a constant). Ramya and Rao

[RR20] showed that a sum of sub-exponential size ROABPs computing the mul-

tilinear polynomial defined by Raz and Yehudayoff [RY08] needs exponentially

many summands. Ghosal and Rao [GR21] showed an exponential lower bound

for the sum of ROABPs computing the multilinear polynomial defined by Dvir,

Malod, Perifel and Yehudayoff [Dvi+12], provided each of the constituent ABPs

is polynomial in size.

Unfortunately, these results do not imply general ABP lower bounds using our

hardness escalation theorems, as they only work in regimes where the degree and

number of variables are comparable. Viewed differently, they cannot handle a

sum of d! smABPs (or n! ROABPs) which is necessary to prove lower bounds in

our low-degree (or low-variate) regime. In a very recent work Chatterjee, Kush,

Saraf and Shpilka [Cha+24] improve the bounds in the above works and also prove

superpolynomial lower bounds against the sum of smABPs when the degree is

d = ω(logn). Improving this to work for d = O(logn/ log logn) would have

dramatic consequences.

We demonstrate a way to handle our low-degree regime in certain cases. To

prove lower bounds for the sum of smABPs, we use the partial derivative method,

introduced in the highly influential work of Nisan and Wigderson [NW96]. We

show that the partial derivative measure µ(·) is large for our hard polynomial but

small for the model. In fact, a majority of the lower bounds in algebraic complexity

(including the results described earlier) use modifications and extensions of this

measure [CKW10; Sap21].

We work with the polynomial IMMn,d, which gives us more flexibility in

independently choosing n and d. Unfortunately, this choice creates a two-fold

problem. The fundamental one is that IMMn,d has a small smABP, as we saw

before. So we can never prove a superpolynomial lower bound for even a single

poly(n, d) sized smABP (let alone their sum). One might try to avoid this by
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choosing a different hard polynomial that gives similar flexibility, perhaps some-

thing from the family of Nisan-Wigderson design-based polynomials. But in fact,

the complexity measure µ is also maximal for IMMn,d. Hence, the usual partial

derivative method cannot be used to prove lower bounds against any model that

efficiently computes IMMn,d. Be that as it may, it might still be possible to use the

same technique to prove lower bounds for restrictions of the model. We are able to

do this when the smABPs are sub-polynomial in size. It also enables us to handle

extremely large sums of smABPs (including those that occur from considering

sums of multiple ABPs). This approach works in the low-degree regime, since

our reductions are efficient if the degree is very small. To handle higher degrees,

we note that IMMn,d ′ with d ′ small can be obtained as a set-multilinear restriction

of IMMn,d. Therefore, our lower bounds translate to higher degrees.

1.3 Counting Homomorphisms

Counting and deciding the existence of patterns in graphs play an important role

in computer science. In theoretical computer science, pattern counting was among

the first problems to be investigated in Valiant’s seminal paper on the class #P of

counting problems [Val79b], which showed #P-hardness for the permanent of

zero-one matrices, a problem that can equivalently be viewed as counting perfect

matchings in bipartite graphs.

1.3.1 Counting small patterns

In many applications, the pattern is smaller in comparison to the target graph.

Curticapean and Marx [CM14] modeled this setting by classifying the complexity

of counting subgraphs from fixed pattern classes: Given any fixed class of graphs

H, they defined a problem #Sub(H) that asks, given a graph H ∈ H and a general

graph G, to count the H-subgraphs in G. The parameter is |V(H)|. This problem

is known to be polynomial-time solvable when the graphs in H do not contain
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arbitrarily large matchings—if they do contain arbitrarily large matchings, then

#Sub(H) with parameter |V(H)| is complete for the parameterized complexity

class #W[1], i.e., the analogue of #P in parameterized complexity.

An analogously defined problem #Hom(H) of counting homomorphisms with

patterns drawn from H was also classified by Dalmau and Jonsson [DJ04]. Here,

the tractability criterion is a constant bound on the treewidth (Definition 2.3.1) of

graphs in H, a measure of the “tree-likeness” of H: The problem #Hom(H) is

polynomial-time solvable when all graphs in H admit a constant upper bound on

their treewidth, and the problem is #W[1]-hard otherwise with respect to the pa-

rameter |V(H)|. Here, a homomorphism fromH toG is a functionh : V(H) → V(G)

such thatuv ∈ E(H) impliesh(u)h(v) ∈ E(G). Homomorphism counts from small

patterns find direct applications in database theory, where they capture answer

counts to so-called conjunctive queries [CM16]. It was also shown that #Hom(H)

captures the complexity of other pattern counting problems, including that of

counting subgraphs [CDM17]: In a nutshell, (i) many pattern counting problems

can be expressed as unique linear combinations of homomorphism counts from

graphs H, and (ii) in many models of computation, such linear combinations

turn out to be precisely as hard as their hardest terms. This strongly motivates

understanding the complexity of these individual terms, i.e., of homomorphism

counts.

Following the classification of #Sub(H) and #Hom(H) under parameterized

complexity assumptions, almost-tight quantitative bounds were obtained un-

der the exponential-time hypothesis [IP01; LMS11]: For any graph H, there

is an O(ntw(H)+1) time algorithm for counting homomorphisms from H into

n-vertex target graphs, and assuming the exponential-time hypothesis, Marx

ruled out no(tw(H)/ log tw(H)) time algorithms [Mar10], recently revisited in [Kar+24;

CM14]. Through connections between homomorphism counts and other pattern

counts [CDM17], these bounds translate directly to other counting problems. For

example, there is an O(nvc(H)) time algorithm for counting H-subgraphs in an n-
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vertex graphG, where vc(H) is the vertex-cover number ofH. As a consequence of

the lower bound on counting homomorphisms, the exponential-time hypothesis

rules out no(vc(H)/ log vc(H)) time algorithms [CDM17].

Thus, some slack remains between the known upper and conditional lower

bounds on the exponents of pattern counting problems, even asymptotically: It

would be desirable to settle the log-factor in the exponent of the running time.

Moreover, one might also dare to ask for the precise exponent for concrete finite

graphs H, such as K3 (which amounts to triangle counting) or K4 or C6. Fi-

nally, let us stress that the lower bounds on the exponent are conditioned on the

exponential-time hypothesis, an assumption that is a priori stronger than P ̸= NP.

1.3.2 From counting problems to polynomials

Valiant’s seminal papers [Val79a; Val80] studied the problem of counting per-

fect matchings both via counting and algebraic complexity. Following the work

of Komarath, Pandey, and Rahul [KPR23], we consider an algebraic version of

pattern counting problems. For undirected graphs H and n ∈ N, we consider

the homomorphism polynomial HomH,n on variables xi,j for i, j ∈ [n] and its set-

multilinear version, the colorful subgraph polynomial ColSubH,n on variables x(e)i,j

for i, j ∈ [n] and e ∈ E(H). The latter can often be handled more easily in proofs,

while complexity results can be transferred between these two polynomials.3

The polynomial HomH,n can be viewed as the weighted homomorphism count

from H into a complete n-vertex graph with generic indeterminates as edge-

weights. Similarly, ColSubH,n can be viewed as counting the color-preserving

homomorphism count from a colorful graph H into a complete graph with inde-

terminate edge-weights andnvertices per color class. Formally, these multivariate
3Here, we deviate slightly from the notation used by Komarath, Pandey, and Rahul [KPR23],

who defined a polynomial ColIsoH,n with variable indices that differ from ours. Our polynomial
ColSubH,n and their polynomial ColIsoH,n can be obtained from each other by renaming variables.
We consider our notation more intuitive, as it can be obtained from the homomorphism polynomial
more directly and also highlights the set-multilinearity of the polynomial.
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polynomials are defined as

HomH,n =
∑

f:V(H)→[n]

∏
uv∈E(H)

xf(u),f(v),

ColSubH,n =
∑

f:V(H)→[n]

∏
uv∈E(H)

x
(uv)
f(u),f(v).

In a recent line of work [CLV21; Dur+16; MS18], homomorphism polynomials

have been used to obtain natural polynomials which are complete for several

well-studied algebraic circuit classes.

Monotone circuits over a field like Q are circuits that do not use negative con-

stants, and hence computations performed by them cannot feature cancellations

(Definition 2.2.11). Several important techniques for proving upper bounds on

the complexity of polynomials (e.g., dynamic programming) directly yield mono-

tone circuits. Compared to general computational models, lower bounds for

monotone computation are much better understood, and many exponential lower

bounds [Sch76; Val80; JS82; RY11; GS12; CKR22] and strong algebraic complexity

class separations [Sni80; HY16; Yeh19; Sri20] are known. As a striking example,

monotone variants of the algebraic complexity classes VP and VNP are proven to

be different [Sri20; Yeh19].

In a fascinating recent work, Komarath, Pandey and Rahul [KPR23] studied the

monotone arithmetic circuit complexity of the polynomials HomH,n and discov-

ered that this complexity is completely determined by the treewidth of the pattern

graph H. More precisely, they show that the smallest monotone circuit comput-

ing HomH,n is of size Θ(ntw(H)+1). Similarly, they show that algebraic branching

programs for HomH,n are of size Θ(npw(H)+1), where pw(H) is the pathwidth of H,

a linear version of treewidth. Moreover, they also consider the monotone for-

mula complexity of HomH,n and show that it is Θ(ntd(H)+1), where td(H) is the

treedepth of H, the minimum height of a tree on vertex set V(H) that contains all

edges of H in its tree-order. These results together show that, when considering

homomorphism polynomials for fixed patterns H, the power of monotone com-
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putation is precisely characterized by graph-theoretic quantities of H: For natural

and well-studied monotone computational models, the precise exponent cH in the

complexity Θ(ncH) is the value of a natural and well-studied graph parameter of

H.

1.3.3 Our contribution: monotone bounded-depth complexity

In Chapter 5, we investigate whether the correspondence between monotone

circuit complexity and graph parameters can also be established for bounded-

depth monotone circuits: Are there natural graph parameters that dictate the

bounded-depth monotone complexity of HomH,n? Studying this question naturally

leads us to define bounded-depth versions of treewidth, the ∆-treewidth tw∆(H)

for any fixed ∆ ∈ N. These graph parameters ask to minimize the maximum

bag size over all tree-decompositions of H, however with the twist that only

tree-decompositions with an underlying tree of height at most ∆ are admissible.

Their values interpolate between |V(H)| − 1 (when only height 1 is allowed) and

tw(H) (when no height restrictions are imposed), and they are connected to the

vertex-cover number in the special case ∆ = 2 (see Section 5.1).

Bounded-depth variants of treewidth implicitly appear in balancing tech-

niques for tree-decompositions [CIP16; BH98], and the ∆-treewidth of paths also

appears implicitly in divide-and-conquer schemes for iterated matrix multiplica-

tion in a bounded-depth setting [LST21]. A recent work of Adler and Fluck [AF24]

studied a notion that bounds the width and depth simultaneously, which they

call bounded depth treewidth. Our notion of tw∆(H) only bounds the height of

the tree decomposition to ∆. In particular, for a fixed ∆, there is always a tree

decomposition of height ∆ for any graph H, but with a possibly large treewidth.

We show that the∆-treewidth of graphs completely characterizes the complex-

ity of HomH,n for monotone circuits of product-depth at most ∆ (Theorem 5.1.7).

For technical reasons described later, it is however not the ∆-treewidth of H itself

that governs the complexity, but rather the ∆-treewidth of the graph H† obtained
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by removing all vertices of degree at most 1. We call this the pruned ∆-treewidth

ptw∆ of a graph H.

Our main result is that the monotone, product-depth ∆ circuit com-

plexity of HomH,n and ColSubH,n is Θ(nptw∆(H)+1).

Note that any fixed pattern graph H on k vertices gives a homomorphism poly-

nomial on nk monomials, which has a trivial poly(n) sized monotone circuit of

depth two. We stress that we wish to determine the precise exponent in this poly-

nomial size: In general, k could be much larger than the pruned ∆-treewidth of

H.

For a graph H, we also define a new graph parameter called ∆-pathwidth

pw∆(H) which asks to minimize the bag size over all path decompositions of H

where the underlying path is of length ∆. We defer the formal definitions of these

graph parameters to Section 5.1. Similar to the case of circuits, we show that the∆-

pathwidth of the pruned graph H† (obtained by removing degree 1 vertices from

H), which we call the pruned ∆-pathwidth ppw∆ of H characterizes the monotone

ABP of length ∆ computing HomH,n.

For a fixed pattern graph, it was shown in [KPR23] thatHomH,n andColSubH,n

have the ‘same’ monotone complexity. We observe that the reduction holds even

in the bounded-depth (bounded-length) case (Lemma 5.3.1). So, we prove our

results only for ColSubH,n. The upper bounds are shown in Section 5.2, while the

lower bounds are shown in Section 5.3.

1.3.4 Our contribution: monotone depth hierarchy

Finally, by turning our attention to pattern graphs of non-constant size, we can

prove a depth hierarchy theorem for monotone circuits (Theorem 5.4.2).

Using our tight characterization results and the properties of pruned

∆-treewidth, we are able to obtain a polynomial family (fn) where fn

can be computed by a product-depth (∆ + 1) circuit of size poly(n),
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but any monotone circuit of product-depth ∆ computing fn must be of

size nΩ(n1/∆).

By general depth-reduction results, any monotone circuit of size poly(n) comput-

ing a polynomial of degree n can be flattened to a monotone circuit of product-

depth ∆ and size nO(n1/∆), showing that our theorem is optimal. We also note

that a similar near-optimal statement with a lower bound of exp(nΩ(1/∆)) can be

obtained from earlier results provided the product-depth ∆ = o(logn/ log logn)

is small (see [Chi+18]). Our results improve upon this in two ways: Firstly, our

Ω appears in the first rather than second exponent, thus yielding a stronger and

optimal lower bound. Secondly, our results hold for any product-depth ∆.

1.4 Polynomial Factorization

The problem of finding a nontrivial factor of a polynomial is a classical and

fundamental one, with a rich history spanning centuries [Gat06]. Comprehensive

treatments of the problem can be found in [Kal82; Kal90; Kal92; GP01; Sho09;

GG13]. Erich Kaltofen, in a series of influential papers in the 80’s [Kal85b; Kal86;

Kal87; Kal89], showed that over fields of characteristic zero, the class VP is closed

under taking factors. This was a testament to the robustness and naturalness

of the algebraic circuit model. The attentive reader might have noticed that

the families of polynomials we considered till now had relatively low degree,

bounded by a polynomial in the number of variables. This was true for VP, VNP

and all the other classes we encountered, and there are good reasons for doing

so [Gro13]. However, a small size circuit can generate polynomials of high degree

by repeated squaring. It is natural to ask if small high-degree circuits are also

robust with respect to factoring.
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1.4.1 High degree circuits

In the context of algebraic complexity, Malod [Mal03; Mal07] first considered

the class VPnb that consists of all polynomial families where the smallest circuit

computing fn is of size poly(n) (Definition 2.2.21). Note that the degree of a

polynomial family in VPnb can be exponential in the size of the circuit. The

results of Kaltofen [Kal87] mentioned before actually shows that for an n-variate

polynomial f = geh where g and h are coprime and g has multiplicity e,

size(g) = poly(size(f),deg(g), e, n). (1.4.1)

Hence, the best size upper bound one can deduce for (exponential–degree)

factors of polynomials in VPnb from Kaltofen’s result is exponential. This is un-

avoidable in general: the polynomial x2n −1 =
∏2n

i=1(x−ξi) where ξ is a 2n–th root

of unity, can be computed by a circuit of size O(n). Lipton and Stockmeyer [LS78]

showed that a random exponential–degree factor
∏

i∈S(x − ωi) where S ⊂ [2n]

and |S| = exp(n) requires exp(n)–size circuits. So VPnb is not closed under taking

factors. Nevertheless, Bürgisser’s Factor Conjecture [Bür00a, Conj. 8.3] is that the

size of the factor g in Equation (1.4.1) should be independent of its multiplicity

e. In particular, poly(n)–degree factors of a family in VPnb should be in VP. The

conjecture also has applications to decision complexity [Bür04, Section 4].

Over the years, there has been some partial progress on the problem. In the

case when f is a power of g, i.e. f = ge, Kaltofen [Kal87] (cf. [Bür04, Proposition

6.1]) already showed that size(g) is independent of e. As another special case,

Dutta, Saxena and Sinhababu [DSS22] showed that the conjecture also holds if

the squarefree part of f is of low degree. Suppose f =
∏m

i=1 f
ei
i is the complete

factorization of f with fi’s irreducible. Then, they showed that the size of any

factor g of f is polynomially bounded in size(f), n and the degree of the radical

rad(f) :=
∏m

i=1 fi. Shortly after proposing the factor conjecture, Bürgisser [Bür04]

showed its plausibility: low-degree factors can be approximated by small circuits!
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1.4.2 Algebraic approximation

A natural notion of approximation for algebraic computation was defined by

Bürgisser [Bür04]. A polynomial f ∈ F[x] is approximated by a polynomial F ∈

F[ε][x] to an order of approximation M if

F(x, ε) = εMf(x) + εM+1 Q(x, ε), (1.4.2)

for some polynomial Q(x, ε) ∈ F[x, ε]. The approximate/border size of f,

denoted size(f), is defined as the size of the smallest circuit over the ring of constants

F[ε] computing a polynomial F ∈ F[ε][x] that approximates f.

Over fields like R or C, one can think of the above as an approximation in the

sense limε→0 ε
−MF = f. Another way of formulating the notion of approximation

is to consider Fε ∈ F(ε)[x] over the rational function field F(ε) instead, and require

an approximation of the form

Fε(x) = f(x) + εQε(x),

where Qε ∈ F[ε][x] is a polynomial. The border complexity of f is defined as

before, but with the circuit size now calculated over F(ε). In this case, although

Fε=0 = f is defined at ε = 0, the intermediate computations in the circuit for

F (over F(ε)) might not be. Scaling arguments show that these two notions of

approximation are equivalent [Bür04, Lemma 5.6]. For a detailed discussion on

other natural definitions of approximation (both topological and algebraic), and

their equivalence, we point the reader to [Bür04, Section 5] and [BIZ18, Section 2].

The notion of border complexity naturally suggests an approximation version of

the class VP called VP, that consists of families (fn) where fn can be approximated

by poly(n)-sized circuits (Definition 2.2.22).

It is clear that VP ⊆ VP. In an attempt to utilize sophisticated tools from alge-

braic geometry and representation theory to study Valiant’s conjecture, Mulmuley
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and Sohoni [MS01; MS08] proposed VP ⊈ VNP as the mathematically nicer (but

possibly harder) conjecture. Further details on the Geometric Complexity Theory

(GCT) program for proving lower bounds can be found in [Reg02; Mul11; Bür+11;

Mul12; Gro12; Lan17; BI25].

Returning to the factorization problem, Bürgisser showed that poly(n)-degree

factors of families in VPnb are in VP. In fact, the approximate circuit constructed

for the low-degree factor has additional structure. Note that a priori, the order

of approximation M for a polynomial f can be arbitrarily large. However, Bür-

gisser [Bür04; Bür20, Theorem 5.7] showed that over algebraically closed fields,

M = exp(size(f)). Therefore, the free constants from F[ϵ] used for approximation

can be assumed to be ‘only’ exponential in degree and hence, size. The circuit

for the factor g above is constructed by approximating the power series roots of g

(up to lower-order terms) efficiently via Newton Iteration. It can then be observed

that the constants in F[ε] are in fact circuits of size poly(size(f)) (but exponential

in degree).

Given the above fact, formally imposing a restriction on the size of the uni-

variate polynomials in ε is quite natural. We define the new class VPε, called

presentable VP (Definition 2.2.23), which is the same as VP, but with the addi-

tional restriction that the circuit size of the approximating polynomial over the

base field F is poly(n), thus also incorporating the size of the constants in F[ε].

Over finite fields, we show [BDS24a] that VPε is in fact in VNP, something that

is not known about VP. Combining this with our earlier observation about the

(truncated) roots being ‘presentable’, we can conclude that over finite fields, the

low-degree truncation of separable roots (whose multiplicity is coprime to the field

characteristic) can be computed by a hypercube sum of small circuits. The factors

can be recovered by multiplying appropriate truncated roots. Thus, families of

low-degree factors (that are generated by few roots), of high-degree circuits are in

VNP [BDS24a, Corollary 1.3]. It is an open problem to extend these results to all

fields.
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1.4.3 Our contribution: the reverse Kronecker conjecture

For a polynomial F(z1, . . . , zn) with individual degree r, the Kronecker map re-

places the variable zi with a power of a new variable: ε(r+1)i−1 . This ensures that

each monomial of F is mapped to a unique and distinct power of ε [Kro82]. In

order to extend the above factoring result to all fields, we propose a ‘reverse’

Kronecker conjecture (Conjecture 6.1.1).

A version of our conjecture is that over any field, a univariate circuit of

size s (and degree exp(s), possibly) can be obtained via a Kronecker

substitution to a poly(s)-variate circuit of size poly(s).

We will show in Chapter 6 that the above conjecture implies VPε ⊆ VNP over

all fields. Weaker versions of the conjecture also suffice for our applications. Using

our observations about being able to approximate roots of small circuits of high

degree in a presentable way, this in turn implies that these roots are computable

by hypercube sums of small circuits, over all fields.



Chapter 2

Preliminaries

2.1 Notation

We record some standard notation used in the thesis.

• We will denote by N,Z,Q,R,C, the set of natural numbers, integers, ratio-

nals, reals, and complex numbers, respectively.

• A field will usually be denoted by F. We will use Fq to denote a finite field

of order q.

• For a natural number n ∈ N, we will use [n] to refer to the set {1, . . . , n}.

• For any real number r, we will denote the nearest integer by ⌊r⌉.

• A list of objects will be denoted by bold letters. For e.g., x will usually denote

the set of variables (x1, . . . , xn), and |x| will denote its size, n.

• For a vector e ∈ Zn, we denote by xe the monomial xe11 · · · xenn .

We now define some algebraic complexity and graph-theoretic preliminaries.

Readers comfortable with these notions can safely skip these sections.
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f ∈ F[x1, . . . , xn]

+
∑

× ×
∏

+ + +
∑

x1 x2 . . . xn

Circuit

f ∈ F[x1, . . . , xn]

+

× ×

+ + +

x1 x1x2 . . . xn

Formula

Figure 2.1: An algebraic circuit and a formula of depth 3.

2.2 Algebraic complexity theory

Algebraic circuits are analogous to Boolean circuits, where logical operators are

replaced with underlying field operations. See Figure 2.1 for an illustration.

Definition 2.2.1 (Algebraic Circuits and Formulas). An algebraic circuit, defined

over a field F, is a layered directed acyclic graph with alternating layers of ‘+’ and ‘×’

gates, and a single root, called the ‘output’ gate. The ‘input’ leaf gates are labeled

by either a variable from x1, . . . , xn or a constant from F. If the graph is a tree, then

we call it a formula.

A circuit computes a polynomial f ∈ F[x] in the natural way: a ‘+’ gate sums

up the polynomials from its children, whereas a ‘×’ gate computes their product,

with the root finally computing f. The size of a circuit is the total number of vertices

in the graph. The depth δ of the circuit is the number of layers in the circuit, or

equivalently, the length of the longest path from the root to a leaf. The number

of layers of multiplication gates (usually denoted by ∆) is called the product-depth

(depth is roughly twice the product-depth).

A polynomial is called homogeneous if all its monomials have the same degree.

Definition 2.2.2 (Homogenous Circuits). A circuit is called homogeneous if every

gate in the circuit computes a homogeneous polynomial.
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t
...

. . .

. . .

. . .

p
......

s

edge labels: linear polynomials.

fp = prod. of edge labels in p

f =
∑

p:s⇝t fp

Figure 2.2: Algebraic Branching Program (ABP)

Consider a partition of the variable set X = X1 ⊔ X2 ⊔ . . . ⊔ Xd. A polynomial

f is called set-multilinear with respect to X if for every monomial m (seen as a

multiset), it holds that |m ∩ Xi| = 1 for all i ∈ [d].

Definition 2.2.3. A circuit is called set-multilinear if every gate in the circuit com-

putes a set-multilinear polynomial with respect to (a subset of) the variable sets.

We will also encounter circuits that are lopsided.

Definition 2.2.4 (Skew Circuits). An algebraic circuit is called skew if, for every

multiplication gate, at most one of its children is an internal (non-input) gate.

Algebraic Branching Programs (Figure 2.2) are a model of computation differ-

ent from (but related to) circuits and formulas.

Definition 2.2.5 (Algebraic Branching Programs). An Algebraic Branching Program

(ABP) is a directed acyclic graph with edges labeled by a variable or a field

constant. It has a designated source node s (of in-degree 0) and a sink node t (of

out-degree 0). A path from s to t computes the product of all edge labels along

the path. The polynomial computed by the ABP is the sum of the terms computed

along all the paths from s to t. The size of an ABP is the total number of vertices in

the graph, and the length of the longest path from s to t is the length of the ABP.

An ABP of length ℓ with ni vertices in the i-th layer can be written as a product

of ℓ−1 matrices
∏ℓ−1

i=1 Mi in a natural way: the matrix Mi is of dimension ni×ni+1
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and contains the edge labels between layers i and i + 1 as entries. The size of

an ABP is equivalently the sum of the number of rows of the matrices in matrix

representation.

Any vertex v in an ABP can be thought of as computing a polynomial cor-

responding to the ‘sub-ABP’ between the source s and the vertex v. An ABP is

homogenous if the polynomial computed at every vertex is homogenous.

Lemma 2.2.6 (ABP homogenization). Let f(x1, . . . , xn) be a degree d polynomial.

Suppose that f can be computed by an ABP of size s. Then there is a homogeneous ABP

of width s and length d that can compute the same polynomial. Furthermore, all the edge

labels are linear forms.

The above lemma is “folklore” with the proof idea already present in [Nis91].

We provide a proof for completeness, based on the exposition of [IL17].

Proof of Lemma 2.2.6. For every vertex v (other than the start vertex), we replace it

with d + 1 vertices v(0), v(1), . . . , v(d). Each v(i) corresponds to the homogeneous

degree i component of the polynomial computed at v. In the original ABP, say an

edge from vertex u to v is labelled ℓ + δ (ℓ is a linear form and δ is a constant).

We replace it with 2d + 1 edges. We add edges from u(i) to v(i) with label δ for

0 ≤ i ≤ d. And we add edges from u(i) to v(i+1) with the label ℓ for 0 ≤ i ≤ d− 1.

This ABP now computes the same polynomial as before and is homogeneous.

vu
ℓ+ δ −→

v(0)

v(1)

...

v(d)

u(0)
δ

ℓ

u(1)
δ

ℓ

...

u(d)

δ

To make the length d, we modify it so that all vertices computing degree i

polynomials are in the layer i (this makes the width s). If some of these vertices
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have no incoming edges from layer i − 1, we can safely remove them. Note that

the edges between layers will be linear forms. But we may have edges labeled

with constants between two vertices in the i-th layer due to our reorganisation.

w(i+1)

v(i)

ℓ ′
u(i)

ℓ

δ

−→ w(i+1)

v(i)

ℓ ′
u(i)

ℓ+ δℓ ′

So for every vertex u in the i-th layer, and vertex w in the (i + 1)-th layer, we

add an edge with a linear form obtained by the sub-ABP between u and w. Then

we drop all the in-layer edges. This gives a homogeneous ABP of d layers with all

edges being linear forms. Indeed, the edges we added initially were already linear

forms, and the sub-ABPs all compute linear forms as well since every path is of

length 2 with one edge label being a constant and the other being a linear form.

Note that there are multiple output vertices now. In layer i for example, the sum

of the polynomials computed at vertices with no outgoing edges is the degree i

homogeneous component of f.

There are also set-multilinear versions of ABPs where the variable set is parti-

tioned as before: X = X1 ⊔ . . . ⊔ Xd.

Definition 2.2.7 (Set-multilinear ABPs). An smABP in the natural order is a (d+1)

layered ABP with edges between layers i and i + 1 labeled by linear forms only in

Xi. More generally, for a permutation π ∈ Sd of the variable sets, we say that an

smABP is in the order π if the edges between i-th and (i+ 1)-th layer are labeled

by linear forms in Xπ(i).

Remark. The above definition differs slightly from that of Forbes [For14] as it does

not allow affine linear forms as edge labels. We use this definition as the ABPs we

encounter are of this more restricted form and proving lower bounds for them

is sufficient. Our definition is more in line with the earlier work of Klivans and

Shpilka [KS06].
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We can also define more general versions of set-multilinear polynomials and

ABPs. A polynomial g is called set-multi-k-ic with respect to X if every monomial

of g has exactly k variables (with multiplicity) from each of the d sets. That is, for

a monomial m (seen as a multiset) in the support of g, |m ∩ Xi| = k. When k = 1,

the polynomial g is set-multilinear.

Definition 2.2.8 (Set-multi-k-ic ABPs). We call anABP of length kd a set-multi-k-ic

ABP (denoted sm(k)ABP) if every layer has edges labeled by linear forms from

exactly one of the sets Xi, and there are exactly k layers corresponding to each Xi.

As a special case, an sm(1)ABP is just a set-multilinear ABP as defined before.

The set-multi-k-ic ABP is inspired from the well-studied multi-k-ic depth-

restricted circuits and formulas, initiated by Kayal and Saha [KS17]. We encourage

readers to consult [Sap21, Chapter 14] and references therein for a comprehensive

discussion.

There is also a model closely related (and essentially equivalent) to smABPs.

An algebraic branching program over the variables (x1, . . . , xn) is said to be obliv-

ious if, for any layer, all the edge labels are univariate polynomials in a single

variable. It is further called a read-once oblivious ABP (or an ROABP) if every

variable appears in at most one layer.

Definition 2.2.9 (ROABP). An ROABP in the natural order is an (n+1)-layered ABP

where the edges between layers i and i+ 1 are labeled by univariate polynomials

in xi of degree d. If, instead, the labels were univariate polynomials in xπ(i) for

some permutation π ∈ Sd of the variables, then we say that the ROABP is in the

order π.

We also define a more general version of ROABPs.

Definition 2.2.10 (Read-k Oblivious ABPs). An oblivious ABP is said to be read-k

(denoted R(k)O) if every layer has edges labeled by univariate polynomials in a

single variable xi, and each xi appears in k layers. As a special case, an R(1)O is

just an ROABP.
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We denote the sum of read-koblivious ABPs as
∑

R(k)O. Once again, the width

of a
∑

R(k)O is the sum of the widths of the constituent branching programs.

Monotone algebraic computation, which is free of cancellations, can be simu-

lated by circuits (branching programs) by restricting the choice of field constants.

Definition 2.2.11 (Monotone Circuits and ABPs). A monotone circuit (ABP) is an

algebraic circuit (ABP) where all the field constants are non-negative. The circuit

(ABP) computes a monotone polynomial, where coefficients of all the monomials

are non-negative.

Remark 2.2.12. It is not hard to show that skew circuits and ABPs are essentially

the same model, up to constant factors (for e.g., see the discussion in [Mah14]).

In particular, an ABP of size s and length ℓ can be converted to a skew circuit of

size O(s) and product-depth ℓ. If the original ABP is monotone, the skew circuit

is monotone as well.

Parse trees model the computation of each monomial in a circuit. The notion has

been quite useful in algebraic complexity [All+98; JS82; KPR23; MP08; Ven92].

Definition 2.2.13 (Parse Trees). A parse tree T of an algebraic circuit C is obtained

as follows:

• We include the root gate of C in T .

• For every + gate in T , we arbitrarily include any one of its children in T .

• For every × gate in T , we include all of its children in T .

We call a parse tree reduced if we ignore every + gate, and its parent and (only)

child are directly connected by an edge.

Remark 2.2.14. It is easy to see that every (reduced) parse tree is associated with

a monomial of the polynomial computed by the circuit. For a (reduced) parse

tree T , let val(T ) be its output. Then the polynomial computed by the circuit C is∑
T val(T ), where the sum is over all the parse trees ofC. From here on, whenever

we use the term parse tree, we mean the reduced parse tree.
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2.2.1 Algebraic complexity classes

A number of complexity classes have been studied based on the models described

earlier. We provide a non-exhaustive list here. All the complexity classes are

defined with respect to an underlying field F, where the computation occurs. We

will not make this dependence explicit in our notation, unless necessary.

We begin by defining the classes that encapsulate efficient algebraic compu-

tation. The algebraic version of the Boolean class P is defined by considering

polynomial families with small circuit size and low degree.

Definition 2.2.15 (VP). A polynomial family f = (fn) is in the class VP if both the

number of variables and degree of fn are bounded by poly(n) and moreover, the

size of the smallest circuit computing fn, denoted size(fn) is bounded by poly(n).

As a formula of size s can only compute polynomials of degree O(s), we do

not need any explicit degree restriction.

Definition 2.2.16 (VF). A family of polynomials f = (fn) is said to be in VF if the

minimum size of the formula computing fn is bounded by poly(n).

The degree restriction is also not necessary for algebraic branching programs.

Definition 2.2.17 (VBP). A polynomial family f = (fn) is said to be in the class

VBP if the number of variables, and the size of the smallest algebraic branching

program computing fn are bounded by poly(n).

The Boolean class NP (or rather, its non-uniform version) can be thought of as

a logical OR of small Boolean circuits. The algebraic analog is defined by instead

considering a hypercube sum of small algebraic circuits.

Definition 2.2.18 (VNP). A family of polynomials f = (fn) is said to be in VNP if

there exist functions k, ℓ,m : N → N all polynomially bounded, and a polynomial

family g = (gn) ∈ VP with gn ∈ F[x1, . . . , xk(n), y1, . . . , ym(n)] such that for all n,

fn(x1, . . . , xk(n)) =
∑

a∈{0,1}m(n)

gℓ(n)(x1, . . . , xk(n), a1, . . . , am(n)).
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The following criterion by Valiant [Val79a] provides a way to test if a polyno-

mial family is in VNP, and was the basis of the informal definition for VNP we

gave in Chapter 1. We denote by ⟨a⟩ the boolean encoding of any mathematical

object a. For more on Boolean complexity, refer [AB09].

Proposition 2.2.19 (Valiant’s Criterion). Consider a polynomial family f = (fn) with

the number of variables and degree of fn bounded by poly(n). Suppose fn =
∑

e cexe. If

for every n, there exists a function ϕn ∈ #P/poly such that given any exponent vector e,

we have ϕn(⟨e⟩) = ⟨ce⟩, then f ∈ VNP.

The converse is only true over finite fields. We also state few useful closure

properties of VNP [Val82].

Proposition 2.2.20 (Closure properties of VNP). Suppose f = (fn), g = (gn) are two

polynomial families in VNP. Then,

1. (Sum and product) f+ g and (f · g) are also in VNP.

2. (Coefficient) If hn is the coefficient of some monomial in fn with respect to a subset

of the variables, then h = (hn) is also in VNP.

We will also consider classes where the degree of the circuits is large. If we

only require the size of the circuits to be small, we obtain a version of VP where

the degree in not bounded.

Definition 2.2.21 (VPnb). A family of polynomials f = (fn) is said to be in VPnb

if the number of variables and the size of the smallest circuit computing fn are

bounded by poly(n).

If we allow the polynomials to be approximated (as in Equation (1.4.2)) by small-

size circuits over F[ε], we obtain the closure of VP.

Definition 2.2.22 (VP). A polynomial family f = (fn) is in the class VP if the

number of variables of fn, its degree, and the size of the smallest circuit (over F[ε])

approximating fn are bounded by poly(n).
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If we further impose the restriction that even the constants in F[ε] have small

circuits, we get a presentable version of VP.

Definition 2.2.23 (VPε). A polynomial family f = (fn) is in the class VPε if the

number of variables of fn, its degree, and the size of the smallest circuit over F

approximating fn are bounded by poly(n).

2.3 Graph theory

In the following, let H be a graph. A vertex cover of H is a subset C ⊆ V(H)

such that for every edge e ∈ E(H), some vertex v ∈ C is an endpoint of e. The

vertex-cover number of H is the minimum size of a vertex-cover in H.

Definition 2.3.1 (Tree-decomposition and treewidth). A tree-decomposition of H

is a tree T whose vertices are annotated with bags {Xt}t∈V(T), subject to the following

conditions:

1. Every vertex v of H is in at least one bag.

2. For every edge (u, v) in H there is a bag in T that contains both u and v.

3. For any vertex v of H, the subgraph of T induced by the bags containing v is

a subtree.

The width of a tree decomposition T is maxt∈V(T) |Xt|−1. The treewidth of the graph

H, denoted tw(H), is the minimum width over all tree decompositions of H.

Definition 2.3.2 (Path-decomposition and pathwidth). A path-decomposition of

a graph H is a tree-decomposition where the underlying tree is a path. The width

of a path decomposition P is maxt∈V(P) |Xt| − 1. The pathwidth of the graph H,

denoted pw(H), is the minimum width over all path decompositions of H.

We usually consider trees with a designated root vertex. The height of such a

tree is the number of vertices on a longest root-to-leaf path. We assume trees in

tree-decompositions to be rooted so as to minimize their height.
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Constant Depth Circuits

In this chapter, we improve the lower bound for IMM against constant-depth cir-

cuits shown by Limaye, Srinivasan and Tavenas [LST21]. We also exhibit barriers

to further improving the bound using these techniques, which is important as this

is the only known approach to achieve super polynomial lower bounds for general

circuits of low depth. The results in this chapter appeared in [BDS24a]. The lower

bound result based on the conference version was also reported in [Dut23]. We

simplify and fix remaining issues here, in addition to proving the barrier results.

For the rest of this chapter, let µ(∆) = 1/(F(∆) − 1) where F(n) = Θ(φn) is the

n-th Fibonacci number (starting with F(0) = 1, F(1) = 2) and φ = (1 +
√
5)/2 =

1.618 . . . is the golden ratio.

Theorem 3.0.1. (General circuit lower bound) Suppose N,d,∆ are integers such that

d = O(logN/ log logN). Then, any product-depth ∆ circuit computing IMMn,d on

N = dn2 variables must have size at least NΩ(dµ(2∆)/∆).

Remark 3.0.2. Theorem 3.0.1 improves on the lower bound of NΩ
(
d1/(22∆−1)/∆

)
of

[LST21] since F(2∆) = Θ(φ2∆) ≪ 22∆.

To prove Theorem 3.0.1, we use the hardness escalation given by [LST21, Propo-

sition 9], which allows for the conversion of general circuits to set-multilinear ones

without significant blow-up (provided the degree is small). We will use the ver-

sion from the result of Forbes [For24] that works over all fields.
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Lemma 3.0.3. [For24, Corollary 27] Let s,N, d, ∆ be growing parameters with s ≥ Nd.

If C is a circuit of size at most s and product-depth at most ∆ computing a set-multilinear

polynomial P over the sets of variables (X1, . . . , Xd) (with |Xi| ≤ N), then there is a

set-multilinear circuit C̃ of size dO(d)poly(s) and product-depth at most 2∆ computing

the same polynomial P.

The actual lower bound is for set-multilinear circuits.

Theorem 3.0.4. (Set-multilinear circuit lower bound) Let d ≤ (logn)/4. Any product-

depth ∆ set-multilinear circuit computing IMMn,d must have size at least nΩ(dµ(∆)/∆).

Remark 3.0.5. Theorem 3.0.4 is an improvement over the n
Ω
(
d1/(2∆−1)/∆

)
bound

of [LST21, Lemma 15]. The result holds over any field F, same as [LST21]. The

difference between µ(2∆) in Theorem 3.0.1 and µ(∆) in Theorem 3.0.4 is due to

the doubling of product-depth during the conversion from a general circuit to a

set-multilinear one (Lemma 3.0.3).

We now prove Theorem 3.0.1 à la [LST21, Corollary 4]:

Proof of Theorem 3.0.1. From Lemma 3.0.3 and Theorem 3.0.4, for a circuit of product-

depth ∆ and size s computing IMMn,d we get that

dO(d)poly(s) ≥ NΩ(dµ(2∆)/2∆).

Since d = O(logN/ log logN), it follows that dO(d) = NO(1). Therefore,

poly(s) ≥ NΩ(dµ(2∆)/2∆)/dO(d) ≥ NΩ(dµ(2∆)/4∆)

implying the required lower bound on s and, thus, the theorem.

Remark 3.0.6. Theorem 3.0.1 also holds whend = O(logN)and∆ ≤ 1/4 log
φ

logd.

This is because the above bound on ∆ implies that dµ(2∆)/∆ ≥ dΩ(1/φ2∆)/∆ ≥

dΩ(1/
√

logd)/ log logd = ω(logd). Using this inequality together with the as-

sumption d = O(logN), we get dO(d) = 2O(d logd) ≤ 2o(logN·dµ(2∆)/∆) = No(dµ(2∆)/∆) we

can then proceed similarly to the proof of Theorem 3.0.1.
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3.1 Preliminaries

For any positive integer n, we denote by F(n) the n-th Fibonacci number with

F(0) = 1, F(1) = 2 and F(n) = F(n − 1) + F(n − 2). The nearest integer to any

real number r is denoted by ⌊r⌉. We follow the notation of [LST21] as much as

possible for better readability.

We consider words that are tuples (w1, . . . , wd) of length d where 2|wi| are

integers. These words define the set sizes of the set-multilinear polynomials we

will work with. Given a word w, let X(w) denote the tuple of sets of variables

(X1(w), . . . , Xd(w)) where the size of each Xi(w) is 2|wi|. We denote the space of

set-multilinear polynomials over X(w) by Fsm[X(w)].

For a word w and any subset S ⊆ [d], the sum of elements of w indexed by S

is denoted by wS =
∑

i∈Swi. For all t ≤ d, if it holds that |w[t]| ≤ b, then we call w

‘b-unbiased’. Denote byw|S the sub-word indexed by S. The positive and negative

indices of w are denoted Pw = {i | wi ≥ 0} and Nw = {i | wi < 0} respectively with

the corresponding collections {Xi(w)}i∈Pw and {Xi(w)}i∈Nw being the positive and

negative variable sets. We denote by MP
w (resp. MN

w ) the set of all set-multilinear

monomials over the positive (resp. negative) variable sets.

The partial derivative matrix Mw(f) of f has rows indexed by MP
w and columns

by MN
w . The entry corresponding to row m+ ∈ MP

w and m− ∈ MN
w is the

coefficient of the monomial m+m− in f. The complexity measure we use is the

relative rank, same as [LST21]:

relrkw(f) :=
rank(Mw(f))√
|MP

w| · |MN
w |

=
rank(Mw(f))

2
1
2

∑
i∈[d] |wi|

≤ 1 .

The following properties of relrkw will be useful (for proofs, see [LST21]).

1. (Imbalance) For any f ∈ Fsm[X(w)], relrkw(f) ≤ 2−|w[d]|/2.

2. (Sub-additivity) For any f, g ∈ Fsm[X(w)], relrkw(f + g) ≤ relrkw(f) +

relrkw(g).
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3. (Multiplicativity) Suppose we have f = f1f2 · · · ft where fi ∈ Fsm[X(w|Si)],

and (S1, . . . , St) is a partition of [d]. Then, relrkw(f) = relrkw(f1f2 · · · ft) =∏
i∈[t] relrkw|Si

(fi).

We now define the hard polynomials for which we prove lower bounds. For

any monomial m ∈ Fsm[X(w)], let m+ ∈ MP
w and m− ∈ MN

w be its “positive”

and “negative” parts. As |Xi| = 2|wi|, the variables of Xi can be indexed using

Boolean strings of length |wi|. This gives a way to associate a Boolean string with

any monomial. Let σ(m+) and σ(m−) be the strings associated with m+ and m−

respectively. We write σ(m+) ∼ σ(m−) if one is a prefix of the other.

Definition 3.1.1. [LST21, Word polynomials] Let w be any word. The polynomial

Pw is defined as the sum of all monomialsm ∈ Fsm[X(w)] such thatσ(m+) ∼ σ(m−).

The matrices Mw(Pw) have full rank (equal to either the number of rows or

columns, whichever is smaller), and hence relrkw(Pw) = 2−|w[d]|/2. We note (with-

out proof) that these polynomials can be obtained as set-multilinear restrictions of

IMMn,d.

Lemma 3.1.2. [LST21, Lemma 8] Let w be any b-unbiased word. If there is a set-

multilinear circuit computing IMM2b,d of size s and product-depth ∆, then there is

also a set-multilinear circuit of size s and product-depth ∆ computing the polynomial

Pw ∈ Fsm[X(w)]. Moreover, relrkw(Pw) ≥ 2−b/2.

3.2 Proof outline

From the discussion in Section 1.1 and Lemma 3.1.2 and Lemma 3.0.3, to prove

general circuit lower bounds, it suffices to prove that there is a word polynomial

of high rank that needs large set-multilinear formulas. For a word (and hence set

sizes) of our choice, we show that relrkw is small for set-multilinear formulas of

a certain size.

Let k be an integer close to log
2
n. In [LST21], the authors choose the positive

entries of the word w as an integer close to k/
√
2 and the negative entries as −k.



39

Evidently, these entries are independent of the product-depth ∆. We instead take

the positive entries as (1−p/q)k and the negative entries as −k where p and q are

suitable integers dependent on ∆. This depth-dependent construction of the word

enables us to improve the lower bound. We demonstrate the high-level proof

strategy of the lower bound for the case of product-depth 3.

3.2.1 Proof overview of Theorem 3.0.4 for ∆ = 3

Define G(i) = 1/µ(i) = F(i) − 1 for all i and let λ = ⌊d1/G(3)⌋. Consider a set-

multilinear formulaC of product-depth 3 and let v be a gate in it. Suppose that the

subformula C(v) rooted at v has product-depth δ ≤ 3, size s and degree ≥ λG(δ)/2.

We will prove that relrkw(C
(v)) ≤ s2−kλ/48 by induction on δ. This will give us the

desired upper bound of the form s2−kλ/48 = sn−Ω(dµ(3)) on the relative rank of the

whole formula when v is taken to be the output gate. Write C(v) = C1 + · · · + Ct

where each Ci is a subformula of size si rooted at a product gate. Because of the

subadditivity of relrkw, it suffices to show that relrkw(Ci) ≤ si2
−kλ/48 for all i.

Base case: If δ = 1, then Ci is a product of linear forms. Thus, it has a rank of

1 and a low relative rank.

Induction step: δ ∈ {2, 3}. Write Ci = Ci,1 . . . Ci,ti where each Ci,j is a sub-

formula of product-depth δ − 1. If any Ci,j has degree ≥ λG(δ−1)/2, then by the

induction hypothesis, the relative rank of Ci,j and hence Ci will have the desired

upper bound, and we are done.

Otherwise eachCi,j has degreeDij < λG(δ−1)/2. As the formula is set-multilinear,

there is a collection of variable sets (Xl)l∈Sj with respect to which Ci,j is set-

multilinear. For j ∈ [ti], let aij be the number of positive indices in Sj i.e. the

number of positive sets in the collection (Xl)l∈Sj . Then the number of negative

indices is (Dij − aij).

We consider two cases: if aij ≤ Dij/3, thenwSj ≤ (Dij/3)·(1−p/q)k+(2Dij/3)·

(−k)

≤ −Dijk/3. Otherwise, aij > Dij/3 and if we can prove that |wSj | ≥ aijk/(4λ
G(δ)−1),
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then in both of the above cases, we would have |wSj | ≥ Dijk/(12λ
G(δ)−1). By the

multiplicativity and imbalance property of relrkw, it would follow that relrkw(Ci) ≤

2
∑ti

j=1 −
1
2
|wSj

| ≤ 2−kλ/48 and we would be done. Thus, we now only have to show

that |wSj | ≥ aijk/(4λ
G(δ)−1). We have

|wSj | = |aij(1− p/q) − (Dij − aij)|k .

Notice that |wSj |/k is the distance of aijp/q from some integer, so it must be

at least the minimum of {aijp/q} and 1− {aijp/q} where {.} denotes the fractional

part. The number aijp/q being rational, has a fractional part ζ = (aijp mod q)/q,

and hence it comes down to solving the following system of inequalities:

min (ζ, 1− ζ) ≥ aij/(4λ
G(δ)−1) for δ ∈ {2, 3} when aij ≤ Dij < λG(δ−1)/2 .

Assignp = λ, q = λ2+1. The δ = 2 case is clearly satisfied as (aijλ mod (λ2+1)) =

aijλ when 0 ≤ aij ≤ λ/2.

Consider the case of δ = 3 and aij < λ2/2. Write aij = y1λ+ y0 for integers

y1 = ⌊aij/λ⌋ < λ/2 and y0 ≤ λ−1. Thus, aijλ ≡ −y1+y0λ mod (λ2+1). Through

some case analysis, one can show that min
(
|y0λ − y1|, λ

2 + 1 − |y0λ − y1|

)
≥ y1

which immediately implies the inequality for the δ = 3 case as y1 = ⌊aij/λ⌋ ≥

aij/(2λ).

We can attempt to extend this proof technique to product-depth 4 as follows:

We would similarly want to express aij as aij = y2λ
2 + y1λ + y0 for integers

y2 = ⌊aij/λ
2⌋, y0 ≤ λ − 1 and y1 ≤ λ − 1. Ideally, we would want that for some

q ≈ λ4,

pλ2 ≡ 1 mod q, pλ ≡ −λ2 mod q and p ≡ λ3 mod q

so thataijp ≡ y2−y1λ
2+y0λ

3 mod q and then we can carry out a similar analysis as

in the ∆ = 3 case. But this is impossible since multiplying the second congruence

equation by λ gives pλ2 ≡ −λ3 mod q, which contradicts the first congruence

equation. So we decide to express aij as aij = y2b2 + y1b1 + y0b0 where b2, b1, b0
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are close to λ2, λ, 1 respectively, instead of being precisely equal to these powers

of λ. Then we choose c2 ≈ 1, c1 ≈ −λ2, c0 ≈ λ3 and we assign values to p and q

such that

pb2 ≡ c2 mod q, pb1 ≡ c1 mod q and pb0 ≡ c0 mod q.

It is easy to verify that all these conditions are satisfied if we define

b0 = 1, b1 = λ, b2 = b1(λ− 1) + b0; c2 = 1, c1 = −λ2, c0 = c2 − c1(λ− 1);

p = c0 and q = pb1 − c1.

This inspired our construction of the sequences {bm} and {cm} for general product-

depth ∆.

3.2.2 Proof overview of Theorem 3.4.1

As previously mentioned, we would like to find a family of polynomials for which

our lower bound is tight. All the same, we want to maintain a high relative rank

of these polynomials. If we can achieve this and find the appropriate small-sized

formulas for the said polynomials, we will have that the lower bound cannot be

improved using the relative rank measure.

The polynomial P we define will be a close variant of the word polynomials

from before. This will ensure that the partial derivative matrix has the maximum

possible rank for a matrix of its dimension. From the Imbalance property, the

relative rank we obtain is 2−|w[d]|/2 where we have ensured that w[d] is small. We

want to construct the formula F for P with a nice inductive structure. We also want

the polynomials computed by the subformulas of F to have a high relative rank.

This will help us construct a formula from its sub-formulas while maintaining a

high relative rank.

Suppose a subformula F ′ of F is set multilinear with respect to a subtuple T of

the sets of variables X(w). Let these sets in T be indexed by a set ST ⊆ [d]. As

we would like high relative rank of F ′, the Imbalance property again suggests that
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|wST | be small. And we desire this of every subformula, their subformulas, and

so on. So roughly, we want a way to partition our initial index set [d] into some

number of index sets S1, . . . , Sr such that each |wSi | is small. Suppose we can then

create subformulas of rank 2−|wSi
|/2. We will have to roughly add 2

∑
i |wSi

| many

of them to get a polynomial of high relative rank. So, to control the size of the

formula, we would like
∑

i |wSi | to be small as well.

In their Depth Hierarchy section, [LST21] use Dirichlet’s approximation prin-

ciple [Sch91] to pick these nice index sets {Si}. Their procedure only works for the

particular two variable-set sizes they choose. We extend this to any two set sizes

in Claim 3.4.8. Interestingly, we do not use Dirichlet’s approximation to pick the

index sets but rather to obtain a lower bound on the size of the sets we eventually

pick. We think of picking sets as an investment process: when we pick a set S, we

buy the |S| elements in it for a cost of |wS|. Hence, the cost per element is |wS|/|S|.

At each product-depth, we are only allowed to pick sets of size under a certain

threshold, and we pick the ones with the lowest cost per element. It turns out

that this lowest cost decreases exponentially as the depth increases, which helps

us build a small formula. The decrease is captured by the Fibonacci numbers and

is the reason why they emerge in our lower bound and upper bound.

Making these ideas precise requires substantial notation, and we postpone

further discussion to Section 3.4.

3.3 The lower bound: Proof of Theorem 3.0.4

Fix the product-depth ∆ for which we want to prove the set-multilinear formula

lower bound. Define G(i) := F(i) − 1 for all i and λ = ⌊d1/G(∆)⌋. We can assume

that λ ≥ 3 because otherwise dµ(∆) < 3, and in that case, the lower bound is trivial.

The lower bound we aim to prove is nΩ(d1/G(∆)).
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3.3.1 The sequences {bm}, {cm} and the integers p, q

We first define the sequences of integers {bm} and {cm} mentioned in the proof

overview:

Let rm := λG(m+1)−G(m) − 1 for 0 ≤ m ≤ ∆− 2.

Define

b0 := 1, b1 := λ and bm := bm−2 + rm−1bm−1 for 2 ≤ m ≤ ∆− 2 .

Define

c∆−2 := (−1)∆−2, c∆−3 := (−1)∆−3λG(∆−1)−G(∆−2) and

cm := (−1)m(|cm+2|+ rm+1|cm+1|) for ∆− 4 ≥ m ≥ 0 .

Note that the sign parity of cm is (−1)m for all m.

Thus, cm−2 = (−1)m−2(|cm|+ rm−1|cm−1|) = cm − rm−1cm−1 which implies

cm = cm−2 + rm−1cm−1 for 2 ≤ m ≤ ∆− 2 .

Observe that as m increases, bm increases and |cm| decreases.

Define

p := c0 and q := pb1 − c1 = c0(r0 + 1) − c1 .

By defining the integersp andq this way, we have ensured thatpb0 ≡ c0 mod q

and pb1 ≡ c1 mod q. Hence from the relations bm = bm−2 + rm−1bm−1 and

cm = cm−2 + rm−1cm−1, it inductively follows that

pbm ≡ cm mod q for 0 ≤ m ≤ ∆− 2 . (3.3.1)

3.3.2 Bounds on the values of bm and |cm|

Each bm is close to λG(m) and each |cm| is close to λG(∆−1)−G(m+1):
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Lemma 3.3.1. Let λ ≥ 3 be as defined in Section 5.3. Then for 0 ≤ m ≤ ∆ − 2,
λG(m)

2
≤ bm ≤ λG(m), and λG(∆−1)−G(m+1)

2
≤ |cm| ≤ λG(∆−1)−G(m+1).

To prove these bounds, we use a generalized version of the well-known

Bernoulli’s inequality [Mit70, Section 2.4]:

Claim 3.3.2 (Bernoulli’s inequality). Let x1, . . . , xr be real numbers all greater than −1

and all with the same sign. Then,

(1+ x1)(1+ x2) . . . (1+ xr) ≥ 1+ x1 + . . .+ xr .

Proof of Lemma 3.3.1. Clearly, bm satisfies the bounds when m = 0 or 1. For m ≥ 2,

bm = (λG(m)−G(m−1) − 1)bm−1 + bm−2

≤ λG(m)−G(m−1)bm−1

≤ λG(m)−G(m−1).λG(m−1)−G(m−2) . . . λG(2)−G(1)b1

= λG(m).

bm = (λG(m)−G(m−1) − 1)bm−1 + bm−2

≥ (λG(m)−G(m−1) − 1)bm−1

≥ (λG(m)−G(m−1) − 1).(λG(m−1)−G(m−2) − 1) . . . (λG(2)−G(1) − 1)b1

= λG(m)−G(1)b1.

(
1−

1

λG(m)−G(m−1)

)(
1−

1

λG(m−1)−G(m−2)

)
. . .

(
1−

1

λG(2)−G(1)

)
≥ λG(m).

(
1−

1

λG(m)−G(m−1)
− · · ·− 1

λG(2)−G(1)

)
[by Claim 3.3.2]

≥ λG(m).

(
1−

1

λm−1
−

1

λm−2
− · · ·− 1

λ

)
[since G(i) ≥ i]

= λG(m).

(
1−

1

λ− 1

(
1−

1

λm−1

))
≥ λG(m)

2
.
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Clearly, |cm| satisfies the bounds when m = ∆− 2 or ∆− 3. For m ≤ ∆− 4,

|cm| = (λG(m+2)−G(m+1) − 1)|cm+1|+ |cm+2|

≤ λG(m+2)−G(m+1)|cm+1|

≤ λG(m+2)−G(m+1) · λG(m+3)−G(m+2) . . . λG(∆−2)−G(∆−3)|c∆−3|

= λG(∆−2)−G(m+1) · λG(∆−1)−G(∆−2) = λG(∆−1)−G(m+1).

|cm| = (λG(m+2)−G(m+1) − 1)|cm+1|+ |cm+2|

≥ (λG(m+2)−G(m+1) − 1)|cm+1|

≥ (λG(m+2)−G(m+1) − 1) · (λG(m+3)−G(m+2) − 1) . . . (λG(∆−2)−G(∆−3) − 1)|c∆−3|

= λG(∆−2)−G(m+1)|c∆−3| ·
(
1−

1

λG(m+2)−G(m+1)

)(
1−

1

λG(m+3)−G(m+2)

)
. . .

. . .

(
1−

1

λG(∆−2)−G(∆−3)

)
≥ λG(∆−2)−G(m+1)|c∆−3|.

(
1−

1

λG(m+2)−G(m+1)
− · · ·− 1

λG(∆−2)−G(∆−3)

)
[by Claim 3.3.2]

≥ λG(∆−2)−G(m+1)|c∆−3|.

(
1−

1

λm+1
−

1

λm+2
− · · ·− 1

λ∆−3

)
= λG(∆−1)−G(m+1).

(
1−

1

λm(λ− 1)

(
1−

1

λ∆−3−m

))
≥ λG(∆−1)−G(m+1)

2
.

3.3.3 Constructing the word and proving the lower bound

Defineα = 1−p/q. As p

q
≤ c0

c0(r0 + 1)
= 1/λ, we haveα ≥ 1/2. Since q = c0λ−c1,

it implies that

q ≤ |c0|λ+ |c1| ≤ 2λG(∆−1) ≤ d < ⌊log
2
n⌋/2

where the second inequality follows from the upper bound on each |cm| in

Lemma 3.3.1. Therefore, there exists a multiple ofq in the interval
[
⌊log2 n⌋

2
, ⌊log

2
n⌋
]
.

Let k be this multiple of q.
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Then αk is an integer. We can construct a word w over the alphabet {αk,−k} such

that w is k-unbiased. This can be done using induction: if |w[i]| ≤ 0, set wi+1 = αk,

otherwise set wi+1 = −k.

With these definitions in place, we can prove Theorem 3.0.4. Assume the

following lemma:

Lemma 3.3.3. Let δ ≤ ∆ be an integer and α, k be as defined above. Let w be any word of

length d over the alphabet {αk,−k}. Then any set-multilinear formula C of product-depth

δ, degree D ≥ λG(δ)/8 and size at most s satisfies

relrkw(C) ≤ s2−kλ/256.

Proof of Theorem 3.0.4. Note that by Lemma 3.1.2, there exists a set-multilinear

projection Pw of IMM2k,d such that relrkw(Pw) ≥ 2−k. Consider a set-multilinear

circuit of size s and product-depth ∆ computing IMMn,d. We can expand it to a

set-multilinear formula of size at most s2∆ which computes the same polynomial.

Hence, we will also have a set-multilinear formula of size at most s2∆ computing

Pw. As d ≥ λG(∆)/8, taking the particular case of δ = ∆ in Lemma 3.3.3, we obtain

relrkw(Pw) ≤ s2∆2−kλ/256. This gives the desired lower bound

s2∆ ≥ 2−k2kλ/256 ≥
(√

n

2

)⌊d1/G(∆)⌋/256

/n = nΩ(dµ(∆)).

Proof of Lemma 3.3.3. We proceed by induction on δ. We can writeC = C1+· · ·+Ct

where each Ci is a subformula of size si rooted at a product gate. Because of the

subadditivity of relrkw, it suffices to show that

relrkw(Ci) ≤ si2
−kλ/256 for all i.

Base case: C has product-depth δ = 1 and degree D ≥ λ/8. Then Ci is a

product of linear forms. If L is linear form on some variable set X(wj), then
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relrkw(L) ≤ 2−|wj|/2 ≤ 2−k/4. Therefore, by the multiplicativity of relrkw,

relrkw(Ci) ≤ 2−kD/4 ≤ 2−kλ/32 .

Induction hypothesis: Assume that the lemma is true for all product-depths

≤ δ− 1.

Induction step: Let C be a formula of product-depth δ and degree D ≥ λG(δ)/8.

We can write Ci = Ci,1 . . . Ci,ti where each Ci,j is a subformula of product-depth

δ− 1.

If Ci has a factor, say Ci,1, of degree ≥ λG(δ−1)/8, then by induction hypothesis,

relrkw(Ci) ≤ relrkw(Ci,1) ≤ si2
−kλ/256 .

Otherwise every factor ofCi has degree< λG(δ−1)/8. LetCi = Ci,1 . . . Ci,ti where

each Ci,j has degree Dij < λG(δ−1)/8. If Ci is set-multilinear with respect to (Xl)l∈S,

then let (S1, . . . , Sti) be the partition of S such that each Ci,j is set-multilinear with

respect to (Xl)l∈Sj .

For j ∈ [ti], let aij be the number of positive indices in Sj. We have two cases:

If aij ≤ Dij/2, then

wSj ≤
Dij

2
· αk+

Dij

2
· (−k) = −

Dijp

2q
k ≤ −

Dijk

4λ
,

where the last inequality follows from p
q

≥ c0
2c0(r0+1)

= 1
2λ

. The other case is

aij > Dij/2. If we can prove that |wSj | ≥ aijk/(8λ
G(δ)−1), then in both of the

above cases, we would have |wSj | ≥ Dijk/(16λ
G(δ)−1). By the multiplicativity and

imbalance property of relrkw and the assumption D ≥ λG(δ)/8, it would follow

that

relrkw(Ci) ≤
∏ti

j=1
2
− 1

2
|wSj

| ≤ 2−
∑ti

j=1 Dijk/(32λ
G(δ)−1) = 2−Dk/(32λG(δ)−1) ≤ 2−kλ/256
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and we would be done. Thus, we now only have to show that |wSj | ≥ aijk/(8λ
G(δ)−1).

|wSj | = |aij · αk+ (Dij − aij) · (−k)| =

∣∣∣∣aij

p

q
− (2aij −Dij)

∣∣∣∣k as α = 1− p/q

≥
∣∣∣∣aijp

q
−

⌊
aijp

q

⌉∣∣∣∣k where ⌊.⌉ denotes the nearest integer.

The fractional part of aijp

q
is aijp mod q

q
. Hence to prove that |wSj | ≥ aijk/(8λ

G(δ)−1),

it is enough to verify that the following inequality is satisfied:

min
(
aijp mod q

q
, 1−

aijp mod q

q

)
≥ aij

8λG(δ)−1
. (3.3.2)

Showing that the p, q we defined satisfy the inequality in Equation (3.3.2):

We will first find what we call the base (b0, . . . , b∆−2) representation of the

number aij. For 0 ≤ m ≤ ∆ − 2, inductively define ym to be the integer quotient

when
(
aij −

∆−2∑
m ′=m+1

bm ′ym ′

)
is divided by bm. Then we can express aij as aij =

∆−2∑
m=0

bmym. Since bm ≥ λG(m)/2 for all m (Lemma 3.3.1) and aij ≤ Dij < λG(δ−1)/8,

we have the following bounds on the values of ym:

ym = 0 for m ≥ δ− 1, (3.3.3)

yδ−2 =

⌊
aij

bδ−2

⌋
<

λG(δ−1)

8

λG(δ−2)

2

≤ λG(δ−1)−G(δ−2) − 1

2
=

rδ−2

2
, (3.3.4)

ym ≤
⌊
bm+1 − 1

bm

⌋
= rm for m < δ− 2 . (3.3.5)

By Equation (3.3.1), aijp ≡
∆−2∑
m=0

cmym mod q.

Define f to be the highest index such that yf ≥ 1 (by Equation (3.3.3), f ≤ δ−2)

and e to be the smallest index such that ye ≥ 1. Then aijp ≡
f∑

m=e

cmym mod q.

Therefore,

min
(
aijp mod q

q
, 1−

aijp mod q

q

)
= min

(∣∣∣∣∣
f∑

m=e

cmym

∣∣∣∣∣ /q, 1−
∣∣∣∣∣

f∑
m=e

cmym

∣∣∣∣∣ /q
)

(3.3.6)
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if
∣∣∣∑f

m=e cmym

∣∣∣ /q ≤ 1, which is true by the upper bound in the following claim

(See the end of this section for the proof):

Claim 3.3.4. If 0 ≤ ym ≤ rm for all m and ye ≥ 1, then |c2⌊(f−e+1)/2⌋+e| ≤
∣∣∣∣ f∑
m=e

cmym

∣∣∣∣ <
q− c0 and the sign parity of

f∑
m=e

cmym is (−1)e.

Now, we prove a lower bound on the RHS of Equation (3.3.6). We have three

cases:

• If f < δ− 2, then yδ−2 = 0 i.e. aij < bδ−2. By Claim 3.3.4, we have

min
(∣∣∣∣∣

f∑
m=e

cmym

∣∣∣∣∣ /q, 1−
∣∣∣∣∣

f∑
m=e

cmym

∣∣∣∣∣ /q
)

≥ 1

q
min(|c2⌊(f−e+1)/2⌋+e|, c0)

≥ |cδ−2|

q
>

∣∣∣∣cδ−2aij

bδ−2q

∣∣∣∣
where the second inequality follows from 2⌊(f−e+1)/2⌋+e ≤ f+1 ≤ δ−2.

• If e = f = δ− 2, then aij = bδ−2yδ−2. Hence,

min
(∣∣∣∣∣

f∑
m=e

cmym

∣∣∣∣∣ /q, 1−
∣∣∣∣∣

f∑
m=e

cmym

∣∣∣∣∣ /q
)

=
|cδ−2|yδ−2

q

=

∣∣∣∣cδ−2aij

bδ−2q

∣∣∣∣ ,
where the first equality is true since |cδ−2|yδ−2 ≤ |cδ−2|rδ−2

2
≤ c0r0

2
< q/2.

• If e < f = δ− 2, then use the bounds of Lemma 3.3.1 to see that

|cδ−3| >
λG(∆−1)−G(δ−2)

2
>

λG(∆−1)−G(δ−1)

λG(δ−2)/2
· λ

G(δ−1)

8
>

|cδ−2|

bδ−2

aij .

Thus, Claim 3.3.4 implies that

1−

∣∣∣∣∣
f∑

m=e

cmym

∣∣∣∣∣ /q >
c0

q
≥ cδ−3

q
>

∣∣∣∣cδ−2aij

bδ−2q

∣∣∣∣ .
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If e and f have the same parity, then

∣∣∣∣∣
f∑

m=e

cmym

∣∣∣∣∣ /q ≥ 1

q
|cfyf|

=
1

q

∣∣∣∣cδ−2

⌊
aij

bδ−2

⌋∣∣∣∣ ≥ ∣∣∣∣ cδ−2aij

2bδ−2q

∣∣∣∣ ,
where the first inequality holds since

f−1∑
m=e

cmym has same sign parity as cfyf

by Claim 3.3.4. If e and f have different parity, then

∣∣∣∣∣
f∑

m=e

cmym

∣∣∣∣∣ /q ≥ 1

q

(∣∣∣∣∣
f−1∑
m=e

cmym

∣∣∣∣∣− |cfyf|

)

≥ 1

q

(
|c2⌊(f−e)/2⌋+e|−

|cf|rf

2

)
by Claim 3.3.4

>
|cf−1|

2q
since |c2⌊(f−e)/2⌋+e| = |cf−1| > |cf|rf

>

∣∣∣∣ cδ−2aij

2bδ−2q

∣∣∣∣ since f− 1 = δ− 3 .

Thus in all three cases,

min
( ∣∣∣∣∣

f∑
m=e

cmym

∣∣∣∣∣ /q, 1−
∣∣∣∣∣

f∑
m=e

cmym

∣∣∣∣∣ /q
)

≥
∣∣∣∣ cδ−2aij

2bδ−2q

∣∣∣∣ .
By Lemma 3.3.1, we have

|cδ−2| ≥ λG(∆−1)−G(δ−1)/2, bδ−2 ≤ λG(δ−2), q ≤ |c0|λ+ |c1| ≤ 2λG(∆−1) .

Hence,

min
( ∣∣∣∣∣

f∑
m=e

cmym

∣∣∣∣∣ /q, 1−
∣∣∣∣∣

f∑
m=e

cmym

∣∣∣∣∣ /q
)

≥ aij

8λG(δ−1)+G(δ−2)
=

aij

8λG(δ)−1
,

which together with Equation (3.3.6) implies Equation (3.3.2).

We now show the technical Claim 3.3.4 used in the above proof.

Proof of Claim 3.3.4. Define c−1 = |c0|r0 + |c1|. Then from the definition of cm, for
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all m ≥ 0, |cm|rm = |cm−1|− |cm+1|. Hence, by a telescopic sum,

∣∣∣∣∣
t∑

i=0

ca+2iya+2i

∣∣∣∣∣ ≤
t∑

i=0

|ca+2i|ra+2i = |ca−1|− |ca+2t+1| .

Consequently,

(−1)e
f∑

m=e

cmym ≥ |ce|−

⌊(f−e−1)/2⌋∑
i=0

ce+1+2iye+1+2i

≥ |ce|− (|ce|− |c2⌊(f−e−1)/2⌋+e+2|)

= |c2⌊(f−e+1)/2⌋+e|

where the first inequality holds since ye ≥ 1 and the sign parity of cm is (−1)m.

This proves the second part and the lower bound on
∣∣∣∣ f∑
m=e

cmym

∣∣∣∣ in the first part of

the claim. As the sign parity of
∑f

m=e cmym is (−1)e, we also have

∣∣∣∣∣
f∑

m=e

cmym

∣∣∣∣∣ ≤
∣∣∣∣∣∣
⌊(f−e)/2⌋∑

i=0

ce+2iye+2i

∣∣∣∣∣∣ ≤ |ce−1|− |c2⌊(f−e)/2⌋+e+1| ≤ q− c0 .

3.4 Limitations on improving the bounds: Proof of

Theorem 3.4.1

Theorem 3.4.1. (Barrier) Let s1, . . . , sγ be positive integers. Fix sets X1, . . . , Xd where

for all i, |Xi| ∈ {s1, . . . , sγ}. For any fixed positive integer ∆, there exist polynomials P∆

and Q∆ that are set-multilinear with respect to X1, . . . , Xd such that P∆ can be computed

by product-depth ∆ circuits of size nO(∆γdµ(∆)) and Q∆ can be computed by product-depth

∆ circuits of size nO(∆dµ(∆−1)+γ). Moreover, P∆ and Q∆ maximize the measure used to

prove lower bounds.

Remark 3.4.2. The two different polynomials with slightly different sizes will

imply barriers to improving the lower bound in different regimes of γ. Suppose
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that ∆ = O(1) is small. When γ = O(1), the size of P∆ matches our lower bound,

essentially implying its tightness. When γ is do(1), the size of Q∆ is only slightly

larger than our lower bound (note µ(∆− 1) vs µ(∆)). Hence, even when multiple

set sizes are used, the scope for improvement is tiny.

We will show here that the techniques of [LST21] cannot hope to prove much

stronger lower bounds. We do this by constructing polynomials for which the

lower bound we proved earlier is tight. We begin by showing this in the case

of two different set sizes. We can normalize with respect to the bigger set size

to assume that the weights are −k and αk (α ∈ [0, 1]) without loss of generality.

Clearly, k ≤ logn.

Lemma 3.4.3. Let n, d,∆ be such that d ≤ n. For any α ∈ [0, 1] let w ∈ {−k, αk}d be

a word with |w[d]| ≤ k. There is a polynomial P∆ ∈ Fsm[X(w)] which is computable by

a set-multilinear formula of product-depth at most ∆, size at most nO(∆dµ(∆)) and has the

maximum possible relative rank.

Remark 3.4.4. We can replace αk with ⌊αk⌋ and assume that the weights in w are

integers. It can be shown that this will not change the arguments in any significant

way (see Claim 3.4.10).

We will need the extensive notation from [LST21], which we restate here.

3.4.1 Notation

• As in Section 3.1 and from the remark above, we assume |X(wi)| = 2|wi| and

that the variables are indexed by binary strings {0, 1}|wi|.

• Given any subset S ⊆ [d], we denote by S+ = {i ∈ S | wi > 0} the positive

indices of S and similarly by S−, the negative indices.

• We let K =
∑

i∈[d] |wi|, k+ =
∑

i∈S+ |wi| and k− =
∑

i∈S− |wi|. We say S is

P-heavy if k+ ≥ k− and N -heavy otherwise.
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• Setting I = [K], we partition the set I = I1 ∪ · · · ∪ Id where Ij is an interval of

length |wj| that starts at
(∑

i<j |wj|
)
+1. Given a T ⊆ [d], we let I(T) =

⋃
j∈T Ij.

• Let m = m+m− ∈ MS
w be a monomial supported on variable sets indexed

by S, with m+ ∈ MS+
w and m− ∈ MS−

w . The Boolean string σ(m+) associated

with the positive monomial (as defined in Section 3.1) can be thought of as a

labeling of the elements of I(S+) in the natural way - σ(m+) : I(S+) → {0, 1}.

Similarly, for σ(m−).

Given a set S, we define a sequence of polynomials that we will later show to

have set multilinear formulas of small size but large rank.

Fix J+ ⊆ I(S+) and J− ⊆ I(S−) such that |J+| = |J−| = min{k+, k−}. Let π be

a bĳection from J+ to J−. Such a tuple (S, J+, J−, π) is called valid. Fix a valid

(S, J+, J−, π).

A string τ ∈ {0, 1}|k+−k−| defines a map I(S+) \ J+ → {0, 1} if S is P-heavy and a

map I(S−) \ J− → {0, 1} if S is N -heavy.

The polynomial P(S,J+,J−,π,τ) is the sum of all monomials m such that

1. σ(m+)(j) = σ(m−)(π(j)) for all j ∈ J+, and

2. σ(m+)(j) = τ(j) for all j ∈ I(S+) \ J+ if S is P-heavy or σ(m−)(j) = τ(j) for

all j ∈ I(S−) \ J− if S is N -heavy.

As observed in [LST21], these polynomials have desirable properties that help

build formulas for them inductively.

(P1) For any valid (S, J+, J−, π)and anyτ ∈ {0, 1}|k+−k−| the matrixMw|S
(P(S,J+,J−,π,τ))

has the maximum possible rank for a matrix with its dimensions:

rank(Mw|S
(P(S,J+,J−,π,τ))) = min{| MS+

w |, | MS−
w |} = 2min{k+,k−}

(P2) Let (Si, Ji,+, Ji,−, πi) (i ∈ [r]) be valid tuples with Si(i ∈ [r]) being all P-heavy

and pairwise disjoint. Also assume that we have τi ∈ {0, 1}ki,+−ki,− where
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ki,+ =
∑

j∈I(Si,+) wj. We can construct a new polynomial using these. Let

S =
⋃

i Si (also P-heavy by definition), J+ =
⋃

i Ji,+, J− =
⋃

i Ji,−, π =
⋃

i πi

and τ =
⋃

i τi. Then, (S, J+, J−, π) is a valid tuple and moreover

P(S,J+,J−,π,τ) =

r∏
i=1

P(Si,Ji,+,Ji,−,πi,τi)

If each Si is N -heavy, an analogous fact can be shown to hold.

(P3) Say S ′, S ′′ are disjoint sets where S ′ is P-heavy and S ′′ is N -heavy. Also fix

any valid (S ′, J ′+, J
′
−, π

′) and (S ′′, J ′′+, J
′′
−, π

′′).

Assume that S = S ′ ∪ S ′′ is P-heavy. Let J− = I(S−) and J+ = J ′+ ∪ J ′′+ ∪ J ′′′

where J ′′′ ⊆ I(S ′
+) is any set of size |I(S ′′

−)| − |I(S ′′
+)| disjoint from J ′+ ∪ J ′′+ (As

S is P-heavy, a set like this exists). Fix any bĳection π ′′′ : J ′′′ → I(S ′′
−) \ J ′′−

Assume π : J+ → J− is defined to be (π ∪ π ′′ ∪ π ′′′)(j) for j ∈ J ′+ ∪ J ′′+ ∪ J ′′′

Also, fix any τ : I(S+)\J+ → {0, 1}. Any τ ′ : I(S ′
+)\J

′
+ → {0, 1} is said to extend

τ if τ ′ restricts to τ on the set I(S+) \ J+ (note that J+ contains J ′′+ = I(S ′′
+) and

hence I(S+) \ J+ ⊆ I(S ′
+) \ J

′
+, so this definition makes sense). We denote by

τ ′ \ τ the restriction of τ ′ to the set J ′′′. We thus obtain

P(S,J+,J−,π,τ) =
∑

τ ′ extends τ

P(S ′,J ′+,J ′−,π ′,τ ′) · P(S ′′,J ′′+,J ′′−,π ′′,(τ ′\τ)◦π ′′′−1)

The size of this sum is 2|J
′′′| = 2k

′′
−−k ′′

+ . An analogous identity holds when S is

N -heavy.

3.4.2 Cost of building formulas

To proceed, we introduce a few notions that help make the ideas in the proof

overview (of Section 3.2.2) precise. We will only consider the case where |w[d]| ≤ k,

i.e., ||Pw|α − |Nw|| ≤ 1. Fix ∆ as in Lemma 3.4.3, and recall that ⌊r⌉ denotes the

nearest integer to the real number r.



55

Definition 3.4.5 (Fractional Cost). Set fc(0) = 1 and for 1 ≤ δ ≤ ∆− 1,

fc(δ) := min
q<dµ(∆)/fc(δ−1)

|qα− ⌊qα⌉|/q,

where q ∈ N is a natural number. In case fc(δ ′) = 0 for some δ ′ ≤ ∆ − 1, we

set fc(δ) = 0 for all δ > δ ′ as well. Let ∆̂ ≤ ∆ − 1 be the largest integer such that

fc(∆̂) ̸= 0.

For 1 ≤ δ ≤ ∆̂, we denote by pδ the (least) value of q for which the expression

for fc(δ) attains the minimum. Note that, by definition,

pδ ≤ dµ(∆)/fc(δ− 1). (3.4.1)

We also denote by nδ := ⌊pδα⌉ the nearest integer to pδα. We first observe that

the fractional cost falls exponentially with depth.

Claim 3.4.6 (Exponential decline). For 0 ≤ δ ≤ ∆− 1,

fc(δ) ≤ 1/(dµ(∆))F(δ+1)−2.

Proof of Claim 3.4.6. Note that when δ = 0, the claim holds since 1 = fc(0) ≤

1/(dµ(∆))F(1)−2 = 1. The claim also holds trivially if fc(δ) = 0. To prove the claim

when 1 ≤ δ ≤ ∆̂, we will use Dirichlet’s approximation principle ([Sch91, Theorem

1A]), which essentially implies that for any real numbersα, andN ≥ 1, there exists

an integer q ≤ N such that the distance from qα to the nearest integer is bounded

by 1/N. Consequently, we get that there exists an integer q ′ ≤ dµ(∆)/fc(δ−1) such

that

|q ′α− ⌊q ′α⌉| < fc(δ− 1)/dµ(∆) . (3.4.2)

When δ = 1, the claim now follows from the definition since

fc(1) = min
q<dµ(∆)/fc(0)

|qα− ⌊qα⌉|/q ≤ |q ′α− ⌊q ′α⌉|/q ′ < 1/dµ(∆),
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where we used the fact that q ′ ≥ 1.

When δ ≥ 2, we claim that the q ′ obtained in Equation (3.4.2) isn’t too small:

q ′ ≥ dµ(∆)/fc(δ− 2) . (3.4.3)

Indeed, if not, then

fc(δ− 1) = min
q<dµ(∆)/fc(δ−2)

|qα− ⌊qα⌉|
q

≤ fc(δ− 1)/dµ(∆). from Equation (3.4.2), and q ′ is now a candidate

This leads to a contradiction sincedµ(∆) > 1. Hence, Equation (3.4.3) holds, and

we obtain the following bound on fc(δ)using Equation (3.4.2) and Equation (3.4.3):

fc(δ) ≤ |q ′α− ⌊q ′α⌉|
q ′ ≤ fc(δ− 1)

dµ(∆)
· fc(δ− 2)

dµ(∆)
. (3.4.4)

Solving Equation (3.4.4) readily gives

fc(δ) ≤ 1

df(δ)µ(∆)
where f(i) ≥ f(i− 1) + f(i− 2) + 2 . (3.4.5)

Rearranging, we have, f(i) + 1 ≥ (f(i− 1) + 1) + (f(i− 2) + 1) + 1 whence we

see that setting f(i− 1)+ 1 := F(i)− 1 satisfies the required constraints and proves

the claim.

We make an additional useful observation. Recall that |Pw| is the total number

of positive sets of variables, and |Nw| is the total number of negative sets. Now,

µ(∆) = 1
F(∆)−1

implies µ(∆)f(∆) = 1 + µ(∆). Combining this with Claim 3.4.6, we

get fc(∆− 1) ≤ 1/d1−µ(∆) = dµ(∆)/d. Further noting that d ≥ |Pw|, we find

fc(∆− 1) ≤ dµ(∆)/|Pw|. (3.4.6)

Let ∆ ′ be the smallest integer for which fc(∆ ′) ≤ dµ(∆)/|Pw| holds (such a

∆ ′ exists and is bounded above by ∆ − 1 from Equation (3.4.6)). In fact, note
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that ∆ ′ ≤ ∆̂ + 1 since fc(∆̂ + 1) = 0. We will now (re)define p∆ ′+1 := |Pw| and

n∆ ′+1 := |Nw|.

With the notation in place, we can now state the following central claim that

constructs the polynomial needed for Lemma 3.4.3:

Claim 3.4.7. Let ∆,∆ ′ be as fixed above. For any integer δ ≤ ∆ ′ + 1, if S ⊆ [d] satisfies

|wS| ≤ k, |S+| ≤ pδ and |S−| ≤ nδ, then there exist J+, J−, π such that (S, J+, J−, π)

is valid and for all τ ∈ {0, 1}|k+−k−|, the polynomial P(S,J+,J−,π,τ) can be computed by a

set-multilinear formula of product-depth δ and size at most |S|δ25kδdµ(∆) .

We finish the proof of Lemma 3.4.3 assuming the above claim:

Proof of Lemma 3.4.3. We know that |w[d]| ≤ k. Recall that p∆ ′+1 = |Pw| and n∆ ′+1 =

|Nw|. We can now apply Claim 3.4.7 with S = [d] and δ = ∆ ′ + 1. This gives

a polynomial P∆ ′+1 ∈ Fsm[X(w)] with relrkw(P∆ ′+1) = 2−|w[d]|/2. The polynomial

P∆ ′+1 is computable by a set-multilinear formula of product-depth at most∆ ′+1 ≤

∆, and size at most d∆25k∆d
µ(∆) ≤ nO(∆dµ(∆)).

The following claim is the main technical result that helps prove Claim 3.4.7.

It is in the same spirit as [LST21, Claim 28], but we show the existence of a better

partition with a more careful analysis. Furthermore, our analysis holds for any

α ∈ [0, 1].

Claim 3.4.8. Fix 1 ≤ δ ≤ ∆ ′ + 1. Let S ⊆ [d] with |wS| ≤ k such that |S+| ≤ pδ

and |S−| ≤ nδ. Then there exists a partition of S as S1 ∪ S2 ∪ . . . Sr where the following

conditions hold:

1. |Si,+| ≤ pδ−1 and |Si,−| ≤ nδ−1 for all i ∈ [r].

2.
∑r

i=1 |wSi | ≤ 5kdµ(∆).

3. |wSi | ≤ k for all i ∈ [r].

Proof of Claim 3.4.8. As long as possible, pick sets Si with |Si,+| = pδ−1 positive

indices and |Si,−| = nδ−1 negative indices. For all such sets picked, we have
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|wSi | =
∣∣∣∑

j∈Si
wj

∣∣∣ = k · |pδ−1α− nδ−1| ≤ k . (3.4.7)

Suppose that the sets chosen after the procedure are S1, . . . , Sm, where m =

min
{⌊

|S+|

pδ−1

⌋
,
⌊

|S−|

nδ−1

⌋}
and we are left with the set S ′. Since we cannot pick the sets

anymore, we must have that |S ′
+| < pδ−1 or |S ′

−| < nδ−1 (or both). We will have to

deal with two cases to pick the next sets.

Case 1: α|S ′
+| ≤ |S ′

−| .

We pick a set Sm+1 with |S ′
+| positive indices and b = ⌊α|S ′

+|⌉ negative indices

(notice that b ≤ |S ′
−|) so that

|wSm+1
| = k |α|S ′

+|− b| ≤ k. (3.4.8)

Note that if |S ′
+| > pδ−1, then |S ′

−| ≥ ⌊α|S ′
+|⌉ ≥ ⌊αpδ−1⌉ = nδ−1 which contradicts

with the fact that either |S ′
+| < pδ−1 or |S ′

−| < nδ−1. Therefore, we have |S ′
+| ≤ pδ−1

and b = ⌊α|S ′
+|⌉ ≤ ⌊αpδ−1⌉ = nδ−1 which ensures that condition (1) is satisfied for

i = m+ 1.

The remaining set T = S ′ \ Sm+1 has only negative values which we split into

singletons Sm+2, . . . , Sr (there are (|S ′
−|− b) of these sets). As these are singletons,

for m+ 2 ≤ j ≤ r, we trivially have |wSj | ≤ k.

We also note that

|S ′
−|− b = (|S ′

−|− α|S ′
+|) + (α|S ′

+|− b)

= (|S−|−m · nδ−1 − α|S+|+ αm · pδ−1) + (α|S ′
+|− b)

≤ ||S−|− α|S+||+m|pδ−1α− nδ−1|+ |α|S ′
+|− b|

where the first term is at most 1 since |wS| ≤ k and the last term is at most 1 as

well. Putting it all together,

r∑
i=m+2

|wSi | = (|S ′
−|− b)k ≤ (m|pδ−1α− nδ−1|+ 2)k.
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Case 2: α|S ′
+| > |S ′

−| .

Observe that if |S ′
−| > nδ−1, then we must have |S ′

+| < pδ−1 implying |S ′
−| ≤

⌊α|S ′
+|⌉ ≤ ⌊αpδ−1⌉ = nδ−1. This is a contradiction. Therefore, we have |S ′

−| ≤ nδ−1.

Since |S ′
−| ≤ nδ−1 = ⌊αpδ−1⌉ and |S ′

−| ≤ ⌊α|S ′
+|⌉, there exists c ≤ min(pδ−1, |S

′
+|)

such that ⌊αc⌉ = |S ′
−|. Pick a set Sm+1 with |S ′

−| negative indices and c positive

indices so that

|wSm+1
| = k|αc− |S ′

−|| ≤ k .

Condition (1) is clearly satisfied for i = m+ 1.

The remaining set T = S ′ \ Sm+1 has only positive values which we split into

singletons Sm+2, . . . , Sr (there are (|S ′
+|− c) of these sets). As these are singletons,

for m+ 2 ≤ j ≤ r, we trivially have |wSj | ≤ k.

Similar to the earlier case,

r∑
i=m+2

|wSi | = (|S ′
+|− c)αk

= ((α|S ′
+|− |S ′

−|) + (|S ′
−|− αc))k

≤ (|α|S+|− |S−||+m|pδ−1α− nδ−1|+ ||S ′
−|− αc|)k

≤ (m|pδ−1α− nδ−1|+ 2)k .

Therefore, in both of the above cases,

r∑
i=1

|wSi | =

m∑
i=1

|wSi |+ |wSm+1
|+

r∑
i=m+2

|wSi |

≤ km|pδ−1α− nδ−1|+ k+ (m|pδ−1α− nδ−1|+ 2)k

≤ k

(
2

⌊
|S+|

pδ−1

⌋
|pδ−1α− nδ−1|+ 3

)
≤ k

(
2|S+|

|pδ−1α− nδ−1|

pδ−1

+ 3

)
≤ k (2pδ · fc(δ− 1) + 3) (By definition of fc)

≤ 5kdµ(∆)

where the last inequality is true because fc(δ − 1) ≤ dµ(∆)/pδ holds for δ ≤ ∆ ′

from Equation (3.4.1); it also holds for δ = ∆ ′ + 1 by the definition of ∆ ′.
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Armed with all this, the proof of Claim 3.4.7 becomes quite similar to the proof

of Claim 27 in [LST21].

Proof of Claim 3.4.7. The proof is by induction on the product-depth δ for all 1 ≤

δ ≤ ∆ ′ + 1 where ∆ ′ + 1 is as defined above.

• Base case: When δ = 1, we use the trivial expression for P(S,J+,J−,π,τ) as a sum

of monomials. This is a product-depth one
∑∏

set-multilinear formula of

size at most 2k|S| ≤ 2k(p1+n1). Note that since |wS| ≤ k, |p1αk− n1k| ≤ k. This

givesn1 ≤ p1α+1 ≤ p1+1. Using the boundp1 ≤ dµ(∆) from Equation (3.4.1),

we obtain a size bound of 22k(dµ(∆)+1) ≤ |S|25kd
µ(∆) , as required.

• Induction step: Consider some δ > 1. Let k+ := |I(S+)| and k− := |I(S−)|.

Without loss of generality, we can assume S is P-heavy. We know that

|wS| ≤ k, |S+| ≤ pδ and |S−| ≤ nδ. Thus, using Claim 3.4.8, we obtain a

partition of S = S1 ∪ . . . ∪ Sr where for all i ∈ [r], we have |wSi | ≤ k, |Si,+| ≤

pδ−1, |Si,−| ≤ nδ−1 and
r∑

i=1

|wSi | ≤ 5kdµ(∆) . (3.4.9)

By induction hypothesis, for every i ∈ [r], there exist Ji,+, Ji,−, πi such that

(Si, Ji,+, Ji,−, πi) is valid and for each τi ∈ {0, 1}|ki,+−ki,−|, the polynomial

P(Si,Ji,+,Ji,−,πi,τi) has a set-multilinear formula Fi,τi of product-depth δ− 1 and

size si ≤ |Si|
δ−125k(δ−1)dµ(∆) .

We can assume that S1, . . . , Sγ are P-heavy and Sγ+1, . . . , Sr are N -heavy

where γ ∈ [r]. Using (P2) above, we get that

P(S ′,J ′+,J ′−,π ′,τ ′) =

γ∏
i=1

P(Si,Ji,+,Ji,−,πi,τi) , P(S ′′,J ′′+,J ′′−,π ′′,τ ′′) =

r∏
i=γ+1

P(Si,Ji,+,Ji,−,πi,τi)

(3.4.10)



61

where

(S ′, J ′+, J
′
−, π

′) =

⋃
i∈[γ]

Si,
⋃
i∈[γ]

Ji,+,
⋃
i∈[γ]

Ji,−,
⋃
i∈[γ]

πi

 ,

(S ′′, J ′′+, J
′′
−, π

′′) =

(
r⋃

i=γ+1

Si,

r⋃
i=γ+1

Ji,+,

r⋃
i=γ+1

Ji,−,

r⋃
i=γ+1

πi

)

and for i ∈ [γ], each τi is a restriction of τ ′ to I(Si,+) \ Ji,+ whereas for

i ∈ {γ+ 1, . . . , r}, each τi is a restriction of τ ′′ to I(Si,−) \ Ji,+.

Note that both these tuples are valid and S ′ is P-heavy and S ′′ is N -heavy.

Then, using (P3), we construct the polynomial

P(S,J+,J−,π,τ) =
∑

τ ′ extends τ

P(S ′,J ′+,J ′−,π ′,τ ′) · P(S ′′,J ′′+,J ′′−,π ′′,τ ′′)

=
∑

τ ′ extends τ

r∏
i=1

P(Si,Ji,+,Ji,−,πi,τi)

(3.4.11)

where (S ′, J ′+, J
′
−, π

′) and (S ′′, J ′′+, J
′′
−, π

′′) are constructed as in (P3). We can

now use the formulas Fi,τi we had before from induction and construct a

set-multilinear product-depth δ formula for P(S,J+,J−,π,τ) of size at most

r · 2|k ′′
−−k ′′

+| · max
i∈[r]

si ≤ |S| · 2
∑

i |wSi
| · |Si|

δ−125k(δ−1)dµ(∆)

≤ |S| · 25kdµ(∆) · |S|δ−125k(δ−1)dµ(∆)

≤ |S|δ25kδd
µ(∆)

(3.4.12)

where the second inequality follows from Equation (3.4.9).

3.4.3 Handling more than two weights

With multiple weights, we partition the index set [d] into sets {Si} such that the

sub-word indexed by each Si contains at most two distinct weights. This allows

us to reduce the case of multiple weights to that of two weights, for which the
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machinery we built in the previous section can be used to prove upper bounds.

We start by describing this reduction.

Lemma 3.4.9. Let w ∈ {α1, . . . , αγ}
d (|αi| ≤ k for all i) be a word with γ ≤ d different

weights and |w[d]| ≤ k. Then, the index set [d] can be partitioned as S1 ∪ . . . ∪ Sη with

η ≤ 6γ such that for all i ∈ [η], the sub-word w|Si has at most two distinct weights and

further, |wSi | ≤ k.

Proof. Let {T1, . . . , Tγ} be a partition of [d] where every set Tj in the partition

corresponds to one weight (i.e., for every I ∈ Tj, wi = αj). We give an algorithm

to obtain the desired partition of [d]. The basic idea is to take two distinct weights

and group as many buckets corresponding to these set sizes as possible while

maintaining the constraint on the sum of weights.

1. Initialize j = 1 and π := {T1, . . . , Tγ}. Repeat the following steps until π is

empty.

2. If possible, pick sets Tp and Tn from π such that αp is positive and αn is

negative.

3. If |Tp|αp + |Tn|αn ≤ 0, then it is easy to see that we can pick a subset T ′
n ⊆ Tn

such that
∣∣∣∣|Tp|αp + |T ′

n|αn

∣∣∣∣ ≤ k since |αp|, |αn| ≤ k.

4. Set Sj := Tp ∪ T ′
n. We have |wSj | =

∣∣∣∣|Tp|αp + |T ′
n|αn

∣∣∣∣ ≤ k as required. Set

Tn := Tn \T
′
n. Drop Tp from π. If |Tp|αp+ |Tn|αn ≥ 0, proceed in a similar way.

5. If we can’t pick two sets Tp and Tn as above, it means that for the remaining

sets in π, either their corresponding weights are all positive or all negative.

We consider the case when they are all positive (the other case can be dealt

with analogously).

(a) If there exists a set Tp such that |Tp|αp ≤ k, then set Sj := Tp and drop Tp

from π.
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(b) Otherwise, consider any remaining set Tp. We have |Tp|αp > k. Since

αp ≤ k, there exist T ′
p ⊆ T ′

p ∪ {q} ⊆ Tp such that |T ′
p|αp ≤ k and (|T ′

p| +

1)αp > k. Set Sj := T ′
p, Sj+1 = {q} and Tp := Tp \ (T ′

p ∪ {q}). Increment

j = j+ 1.

6. Increment j = j+ 1 and continue.

We have ensured that |wSi | ≤ k for all i. It suffices to show that the steps 2-6 are

repeated at most 3γ times. Every time step 4 or step 5.a is executed, the size of π

reduces by at least 1. Hence, they can be repeated at most γ times in total. When

step 5.b is executed for the first time, we know that the remaining collection of sets

is π = {T1, . . . , Tβ} where each Tj corresponds to a positive weight. Let us denote

the weight of this collection by wπ =
∑β

j=1 wTj =
∑β

j=1 |Tj|αj. Suppose till now

we have picked the sets S1, . . . , Sβ ′ for some β ′ ≤ γ. Then wπ = wS −
∑β ′

i=1 wSi .

Using the triangle inequality, wπ ≤ |wS| +
∑β ′

i=1 |wSi | ≤ k + γk. Every time we

remove two sets Sj = T ′
p and Sj+1 = {q} as in step 5.b, the value of wπ reduces by

(|T ′
p|+ 1)αp > k. Hence, this can be repeated at most γ+ 1 times.

We can now construct polynomials with small set-multilinear formula size but

large rank, even when the number of distinct set sizes is not two. We construct

two different polynomials that are useful in different regimes of the number of set

sizes (see Remark 3.4.2).

Proof of Theorem 3.4.1. As |w[d]| ≤ k, by Lemma 3.4.9, we get a partition of the

index set [d] into sets S1, . . . , Sη (η ≤ 6γ) such that the sub-word corresponding

to each Si ⊆ [d] contains at most two weights and |wSi | ≤ k.

• Constructing P∆: Coresponding to each set Si, we have a size parameter αi

and the corresponding fractional cost function fci. As in Section 3.4.2, we

also have a ∆ ′
i ≤ ∆− 1 and sequences {pi

δ}
∆−1
δ=0 and {ni

δ}
∆−1
δ=0 with p∆ ′

i+1 = |Si,+|

and n∆ ′
i+1 = |Si,−|.

We apply Claim 3.4.8 to each Si to get a partition Si = Si1 ∪ . . . ∪ Siri ,

with |Sij,+| ≤ p∆ ′
i
, |Sij,−| ≤ n∆ ′

i
and |wSij | ≤ k for all j ∈ [ri]. Moreover,
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∑
j∈[ri] |wSij | ≤ 5k|Si|

µ(∆). Applying Claim 3.4.7 to each of the Sijs, we get

that there exist Jij,+, Jij,−, πij such that (Sij, Jij,+, Jij,−, πij) is valid, and for all

τij ∈ {0, 1}|k+−k−|, the polynomial P(Sij,Jij,+,Jij,−,πij,τij) can be computed by a set-

multilinear formula of depth at most ∆−1 (all the ∆ ′
is are at most ∆−1) and

size

sij ≤ |Sij|
∆−125k(∆−1)|Si|

µ(∆) ≤ |Sij|
∆−125k(∆−1)dµ(∆)

.

We club all the P-heavy sets together, and all the N -heavy sets together

across all the Sis. Now, using the exact same construction (which we skip)

as in the induction part of the proof of Claim 3.4.7, we obtain a polynomial

P∆ of product-depth at most ∆ and size at most

∑
i

ri · 2k
′′
−−k ′′

+ · max
i∈[η],j∈[ri]

sij ≤ d · 2
∑

i∈[η],j∈[ri]
|wSi,j

| · d∆−125k(∆−1)dµ(∆)

≤ d∆230kγ∆d
µ(∆) ≤ nO(γ∆dµ(∆)).

• Constructing Q∆: Once we have the sets S1 . . . , Sη with |wSi | ≤ k, we can

apply Lemma 3.4.3 directly to each of these Sis where we set the product-

depth to ∆ − 1. For all i ∈ [η], we obtain polynomials P(Si,Ji,+,Ji,−,πi,τi) with

formulas of size

|Si|
∆−125k(∆−1)dµ(∆−1)

,

and product-depth ∆− 1.

Again using the same construction as in the proof of Claim 3.4.7, we obtain

the polynomial Q∆ of product-depth ∆ and size at most

η · 2k ′′
−−k ′′

+ · max
i∈[η]

si ≤ d · 2
∑

i∈[η] |wSi
| · d∆−125k(∆−1)dµ(∆−1)

≤ d∆25k(∆−1)dµ(∆−1)+6γk ≤ nO(∆dµ(∆−1)+γ).

Note that by the properties described earlier, both these polynomials have the
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maximum possible relative rank relrkw(P∆) = relrkw(Q∆) = 2−|w[d]|/2.

Finally, we show that in the above proofs, without loss of generality, it can

be assumed that all entries of w are integers. We can always consider a word

w ′ with integer entries such that the small-sized formula maximizing the relative

rank for w ′ also nearly maximizes it for w, by which we mean that it differs from

the maximum attainable relative rank by at most a factor of 2d, which isn’t much

since d = o(logn). We formalize this now.

Claim 3.4.10. Let S ⊆ [d] and letw ∈ {α1k, . . . , αγk,−β1k, . . . ,−βγ ′k}d,(|αi|, |βi| ≤ 1

for all i) be a word with γ ≤ d different weights. Consider the word w ′ where every αik of

w is replaced by ⌊αik⌋ and every−βjk ofw is replaced by−⌊βjk⌋. LetP ′ be the polynomial

obtained in the proof of Theorem 3.4.1 for the word w ′. Then, relrkw(P
′) ≥ 2−d2−|w[d]|/2.

Proof. From the definition of w ′, we have |w ′
i | ≤ |wi| ≤ |w ′

i | + 1. Hence
∑

i(|wi| −

|w ′
i |) ≤ d. Using the definition of relative rank and noting that rank(Mw(P

′)) =

rank(Mw ′(P ′)) ,

relrkw(P
′)/relrkw ′(P ′) = =

1

2
∑

i(|wi|−|w ′
i |)/2

≥ 2−d/2.

As P ′ is the polynomial obtained in Theorem 3.4.1 for the word w ′, we have

relrkw ′(P ′) = 2
−|w ′

[d]
|/2
.

Thus it suffices to show that |w ′
[d]| ≤ |w[d]|+ d.

By the triangle inequality, |
∑

i w
′
i | ≤ |

∑
i wi|+ |

∑
i w

′
i −wi| which implies

|w ′
[d]| ≤ |w[d]|+

∣∣∣∣∣∑
i

wi −w ′
i

∣∣∣∣∣ ≤ |w[d]|+
∑
i

|wi|− |w ′
i | ≤ |w[d]|+ d

where the second inequality holds because |wi| ≥ |w ′
i | for all i.



Chapter 4

Algebraic Branching Programs

This chapter is focused on showing superpolynomial lower bounds for the poly-

nomial IMMn,d against the sum of sub-polynomial sized ABPs. The results ap-

peared in [BDS25b]. As the main conceptual tool, we show that hardness for the

seemingly weaker model of sum of set-multilinear ABPs can be escalated in the

low-degree regime to general ABP hardness.

4.1 Hardness Bootstrapping Spectrum

In this section, we will show the following reformulation of Valiant’s conjecture.

Theorem 4.1.1 (Hardness bootstrapping). Let n, d be integers such that

d = O(logn/ log logn). Let Pn,d be a set-multilinear polynomial in VNP of degree

d. If Pn,d cannot be computed by a
∑

smABP of width poly(n), then VBP ̸= VNP.

We begin by proving that in the low-degree regime, a small-sized ABP can be

simulated by a
∑

smABP of small width. This is very much in the spirit of the set-

multilinearization result of Limaye, Srinivasan and Tavenas [LST21, Proposition

9] for small-depth circuits.

Lemma 4.1.2 (ABP set-multilinearization). Let Pn,d be a polynomial of degree d, set-

multilinear with respect to the partition X = X1 ⊔ . . . ⊔ Xd where |Xi| ≤ n for all i ∈ [d].
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If Pn,d can be computed by an ABP of size s, then there is a
∑

smABP of width dO(d)s

computing the same polynomial.

We immediately have

Proof of Theorem 4.1.1. Suppose that the polynomial Pn,d ∈ VNP can be computed

by an ABP of size s. By Lemma 4.1.2, the polynomial can also be computed by

a
∑

smABP of width dO(d)s. The width of any
∑

smABP computing Pn,d is, by

assumption nω(1).

Consequently, our desired separation is obtained by first noting that the

above discussion implies dO(d)s ≥ nω(1), whereby the degree bound d =

O(logn/ log logn) gives dO(d) = poly(n) and hence s ≥ nω(1).

We also get a corollary for the low variate sum of ROABP model.

Corollary 4.1.3 (Low variate
∑

RO). Let n, d be integers such that

n = O(logd/ log logd). Let f ∈ VNP be a polynomial on n variables of individual

degree d. If f cannot be computed by a
∑

RO of width poly(d), then VBP ̸= VNP.

Proof. Consider the invertible map ϕ : xji 7→ xij for the indices i ∈ [n] and j ∈ [d].

This transforms an ROABP on n variables (x1, . . . , xn) of individual degree d and

order π, to an smABP in the same order that is set-multilinear with respect to

X = X1 ⊔ . . . ⊔ Xn with |Xi| ≤ d.

We apply the map ϕ to the
∑

RO computing f. This gives us a
∑

smABP

of the same width that computes a set-multilinear polynomial Qd,n over O(nd)

variables with n = O(logd/ log logd). Since f does not have a
∑

RO of width

poly(d), Qd,n does not have
∑

smABP of width poly(d). Now Theorem 4.1.1

gives us our desired separation.

In order to prove Lemma 4.1.2, we first homogenize the ABP (similar to the

approach of Raz [Raz13] and Limaye, Srinivasan and Tavenas [LST21]). Since Pn,d

is a degree-d polynomial computed by an ABP of size s, using Lemma 2.2.6, we

have that there is a homogeneous ABP of width s and length d that computes Pn,d
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and has linear forms as edge labels. As our central argument, we show that this

homogeneous ABP can be efficiently set-multilinearized.

Proposition 4.1.4. Consider a set-multilinear polynomial Pn,d over the variable set X =

X1 ⊔ . . . ⊔ Xd (with |Xi| ≤ n for all i ∈ [d]) computed by a homogeneous ABP of width

w and length d. Then, there is a
∑

smABP of width d!w computing Pn,d.

Proof. We begin by writing the homogeneous ABP in its matrix form

Pn,d =

d∏
i=1

Mi, (4.1.1)

where each Mi is a w × w matrix with entries that are linear forms in the

variables X. We further write each Mi as a sum
∑d

j=1 Mij, where for all j, Mij is

an w × w matrix with entries that are linear forms, but now in the Xj variables.

Doing this for every Mi yields

Pn,d =

d∏
i=1

d∑
j=1

Mij. (4.1.2)

Note that since Pn,d is a homogeneous set-multilinear polynomial, the non-set-

multilinear products in this expression can be ignored. The matrices only contain

linear forms, and thus non-set-multilinear products in the above equation only

produce non-set-multilinear monomials. We can ignore any product of the form

(· · ·Mij · · ·Mi ′j · · · ) for different i, i ′. We can rearrange to obtain

Pn,d =
∑
π∈Sd

d∏
i=1

Miπ(i). (4.1.3)

This represents Pn,d as the sum of d! set-multilinear ABPs, each of widthw.

With this transformation in hand, we can complete the reduction and obtain

Lemma 4.1.2.

Proof of Lemma 4.1.2. Suppose that the ABP for the polynomial Pn,d has size s.

Using Lemma 2.2.6, we can homogenize it to obtain a d-layered homogeneous ABP
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of width s. By Proposition 4.1.4, we obtain a
∑

smABP of width d!s = dO(d)s.

The bootstrapping result can be generalized to set-multi-k-ic models.

Theorem 4.1.5 (Hardness bootstrapping spectrum). Let n, d, k be integers such that

exp(kd logd) = poly(n), and let Pn,d,k be a set-multi-k-ic polynomial inVNP of degree

kd. IfPn,d,k cannot be computed by a
∑

sm(k)ABP of widthpoly(n), thenVBP ̸= VNP.

Remark 4.1.6. We note that Theorem 4.1.1 is an immediate consequence of Theo-

rem 4.1.5 when k = 1. An added advantage of this generalization is the flexibility

with the degree of the hard polynomial.

The proof of Theorem 4.1.5 follows the template of Theorem 4.1.1. We be-

gin with ABP homogenization, followed by a structural transformation to the

sum of set-multi-k-ic ABP. The superpolynomial lower bound assumption on∑
sm(k)ABP gives the desired separation result. The following lemma is analo-

gous to Lemma 4.1.2.

Lemma 4.1.7 (ABP to
∑

sm(k)ABP). Let P be a set-multi-k-ic polynomial with respect

to the partition X = X1 ⊔ . . . ⊔ Xd where |Xi| ≤ n for all i ∈ [d]. If P can be computed

by an ABP of size s, then there is a
∑

sm(k)ABP of width s · (kd)!/(k!)d computing the

same polynomial.

Proof. Using Lemma 2.2.6 on the ABP of size s computing the polynomial P of

degree kd, we obtain a kd-layered homogeneous ABP of width s. Consider the

homogeneous ABP in its matrix form:

P =

kd∏
i=1

Mi,

where each Mi is a s × s matrix with entries that are linear forms in the variable

X. Express each Mi as a sum
∑d

j=1 Mij, where for all j, Mij is a s × s matrix with

entries that are linear forms only in Xj variables. Doing this for every Mi yields

P =

kd∏
i=1

d∑
j=1

Mij.
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Since P is a homogeneous set-multi-k-ic polynomial, products of the form

(· · ·Mij · · ·Mi ′j · · · ) for different i, i ′ are allowed in the expression, but not more

than k. Formally, we say a tuple j := (j1, . . . , jkd) ∈ [d]kd is k-unbiased if all the

elements in the tuple repeat exactly k times. Let S be the set of such k-unbiased

tuples. We rearrange to obtain

P =
∑
j∈S

kd∏
i=1

Miji .

Noting that |S| = (kd)!/(k!)d, the expression above represents P as sum of

(kd)!/(k!)d set-multi-k-ic ABPs, each of width s.

It is straightforward to prove Theorem 4.1.5 using the above lemma. The proof

is similar to Theorem 4.1.1.

Proof of Theorem 4.1.5. Suppose that the polynomialPn,d,k ∈ VNP can be computed

by anABP of size s. Using Lemma 4.1.7, it can also be computed by a
∑

sm(k)ABP

of width s ·(kd)!/(k!)d. By assumption, the width of any
∑

sm(k)ABP computing

P is nω(1). We obtain the desired separation s ≥ nω(1) by observing that:

s · (kd)!/(k!)d = s · exp(kd logd) ≥ nω(1),

since exp(kd logd) = poly(n).

We also obtain the corresponding corollary for
∑

R(k)O, the sum of read-k

oblivious ABPs.

Corollary 4.1.8. Let n, d, k be integers such that exp(kn logn) = poly(d). Let f ∈

VNP be a polynomial on n variables of individual degree d. If f cannot be computed by a∑
R(k)O of width poly(d), then VBP ̸= VNP.

Proof. Consider the invertible map ϕ : xji 7→ xij for the indices i ∈ [n] and j ∈ [d].

This transforms anR(k)OABP onn variables (x1, . . . , xn) of individual degreed, to
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an sm(k)ABP of width d and length kn wrt variable partitioning X = X1⊔ . . .⊔Xn

with |Xi| ≤ d.

We apply the mapϕ to the
∑

R(k)O computing f. This gives us a
∑

sm(k)ABP

of length kn that computes a set-multi-k-ic polynomial Qd,n,k over nd variables.

Since f does not have a
∑

R(k)O of width poly(d), the transformation induced

by the map implies that Qd,n,k does not have
∑

sm(k)ABP of width poly(d).

Moreover, exp(kn logn) = poly(d). Then Theorem 4.1.5 gives us our desired

separation.

Few lower bounds are known for read-k oblivious ABPs. They were studied

by Anderson et al. [And+18] as a natural generalization of ROABPs and a lower

bound of exp(n/kO(k)) for a single read-k oblivious ABP was shown. It remains

open to improve this result to prove non-trivial lower bounds when k is large,

as well as to prove lower bounds for sums of read-k oblivious ABPs. When k

is small, the results of Ramya and Rao [RR20] extend to the sum of multilinear

k-pass ABPs, a restriction of read-k oblivious ABPs in which the variables are read

k times in sequence, each time in a possibly different order.

4.2 Lower Bound for the sum of ABPs

We are now ready to show that in the low degree regime, the Iterated Matrix

Multiplication polynomial IMMn,d cannot be computed even by a polynomially

large sum of ABPs, provided that each of the ABPs is small in size.

Theorem 4.2.1 (
∑

ABP lower bound). Let d = no(1). The polynomial IMMn,d cannot

be computed by the sum of poly(n, d) ABPs, each of size (nd)o(1).

We begin by showing a lower bound for
∑

smABP in the low-degree regime.

Note that in this regime, IMM has an smABP of width O(nd). The lemma shows

that even using the sum of multiple smABPs cannot help in reducing the width.

Lemma 4.2.2. Any
∑

smABP computing the polynomial IMMn,d with

d = O(logn/ log logn), must have width at least nΩ(1).
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Proof. Let the maximum width of any smABP in the sum be w. Every path in

a particular set-multilinear ABP is of length d and computes a product of linear

forms. Using the definition of ABP computation, we sum over all paths to obtain a

depth-3 set-multilinear circuit1 of top fanin wd. Doing the same for all the smABPs,

we get a depth-3 set-multilinear circuit of top fan-in at most d!wd.

We now apply the partial derivative method. Split X = X1⊔ . . .⊔Xd into ‘even’

and ‘odd’ parts. That is, we consider the partition X = X(0) ⊔ X(1), with

X(0) = X2 ⊔ X4 ⊔ . . . ⊔ Xk, and X(1) = X1 ⊔ X3 ⊔ . . . ⊔ Xk ′ , (4.2.1)

where k = 2⌊d/2⌋ and k ′ = 2⌈d/2⌉− 1.

The partial derivative matrix M(f) for any polynomial f has rows indexed by

set-multilinear monomials in X(0) and columns indexed by set-multilinear mono-

mials in X(1). Consider now monomials m0,m1 that are set-multilinear in X(0), X(1)

respectively. For any set-multilinear polynomial f, the (m0,m1) entry in M(f) is

the coefficient of the monomialm0 ·m1 in f. It is straightforward to see that the par-

tial derivative matrix of IMMn,d is of full rank, that is, rank(M(IMMn,d)) = nd/2.

On the other hand, when we consider a set-multilinear
∑∏∑

circuit, the

linear forms at the bottom have a rank of at most 1 with respect to any partition

of X. Consequently, taking products of linear forms cannot result in a polynomial

of rank greater than 1. Finally, subadditivity of matrix rank implies that the rank

of the set-multilinear circuit is at most the top-fanin d!wd, giving

nd/2 ≤ d!wd. (4.2.2)

Using the fact that d! = O(dd) = poly(n) for our degree regime, it now follows

that w = nΩ(1) and we obtain the
∑

smABP lower bound.

Suppose we had to prove the lower bound of Theorem 4.2.1 for a single ABP
1Every vertex in a set-multilinear circuit computes a set-multilinear polynomial with respect

to a subset of the variable sets.
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computing IMM. We could then use Lemma 4.2.2 above in conjunction with

Lemma 4.1.2 to conclude the result. But when we are dealing with a sum of ABPs,

we need to be more careful in how we set-multilinearize since the ABPs no longer

need to compute set-multilinear or even homogeneous polynomials.

Proof of Theorem 4.2.1. Suppose that IMMn,d (with d ≤ no(1)) can be written as the

sum of m ABPs of size s = no(1) each2. In the corresponding matrix form, we have

IMMn,d =

m∑
i=1

ℓ∏
j=1

Mij, (4.2.3)

where each Mij is an s× s matrix and ℓ ≤ s.

Consider now the polynomial IMMn,d ′ with d ′ = O(logn/ log logn). This

polynomial can be obtained as a restriction of IMMn,d by setting all matrices

other than the first d ′ in the definition of IMM to the identity matrix In. Corre-

spondingly, Equation 4.2.3 now becomes

IMMn,d ′ =

m∑
i=1

ℓ∏
j=1

M ′
ij, (4.2.4)

where just like in (4.2.3), each M ′
ij is an s×s matrix and ℓ ≤ s. Note that any lower

bound on IMMn,d ′ also holds for IMMn,d.

We would like to set-multilinearize Equation 4.2.4. But we cannot directly

apply Lemma 4.1.2 since the ABPs in the sum need not compute a set-multilinear

polynomial anymore. In fact, they need not even compute a homogeneous poly-

nomial. Nevertheless, we are only interested in the homogeneous component of

degree d ′ of the polynomials that these ABPs compute, the rest vanishing in the

final sum.

Consider a single ABP A of size s = no(1) from the sum of m ABPs above.

Suppose that it computes a (possibly non-homogenous) polynomial of degree dA.

Using Lemma 2.2.6, we can homogenize A to obtain an ABP of length dA and
2When d > no(1), the lower bound trivially holds.
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width s, with linear forms on the edges. Consider now the (possibly empty) set T

of vertices in layer d ′ of this ABP that have no outgoing edges. For every v ∈ T ,

the sub-ABP between the start vertex s and the vertex v computes a homogeneous

polynomial of degree d ′, monomials of which might occur in the final polynomial

IMMn,d ′ . Vertices not in T can be safely ignored as they have outgoing edges

with linear forms on them and hence will only contribute to monomials of degree

greater than d ′ in the polynomial computed by A.

We now identify all the vertices in T with a single vertex t. Furthermore,

we replace all the possible multi-edges generated between a vertex u in layer

d ′ − 1 and the vertex t, with a single edge that has as its edge label the sum

of all the multi-edge labels. This gives us a homogeneous ABP of width s and

length d ′ computing the homogeneous component of degree d ′ of the polynomial

computed by A. Performing this operation for each of the m ABPs, we can write

IMMn,d ′ =

m∑
i=1

d ′∏
j=1

M ′
ij, (4.2.5)

where the new matrices obtained after homogenization have been renamed to M ′

for brevity. As before, we split each M ′
ij as a sum

∑d ′

k=1 M
′
ijk where for all k ∈ [d ′],

M ′
ijk is an s× s matrix with entries that are linear forms in the Xk variables3.

IMMn,d ′ =

m∑
i=1

d ′∏
j=1

d ′∑
k=1

M ′
ijk, (4.2.6)

In the proof of Proposition 4.1.4, we were crucially using the fact that the poly-

nomial computed by the ABP was set-multilinear in order to ignore non-set-

multilinear products. Although this is not the case any longer, we can still ignore

all the non-set-multilinear products since they only produce non-set-multilinear

monomials and the sum of the ABPs is IMMn,d ′ , a set-multilinear polynomial.
3Alternately, we can directly convert each of the m ABPs to a homogenous depth-3 circuit and

use the result of [NW96] to prove our result.
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We obtain an expression similar to Equation 4.1.3:

IMMn,d ′ =

m∑
i=1

∑
π∈Sd ′

d ′∏
j=1

M ′
ijπ(j). (4.2.7)

That is, IMMn,d ′ can be written as the sum of md ′! smABPs, each of width s. We

now analyze similarly to the proof of Lemma 4.2.2. We convert the
∑

smABP to a

depth 3 set-multilinear circuit of top-fanin at most md ′!sd
′ . Using the exact same

partition of X into X(0) and X(1) as in (4.2.1), we construct the partial derivative

matrix M for IMMn,d ′ and the set-multilinear
∑∏∑

circuit that we obtained.

The rank calculation results in

nd ′/2 ≤ md ′!sd
′
, (4.2.8)

which along with s = no(1) and d ′! = poly(n) gives m = nω(1).

4.2.1 Lower Bound for NWn,d

We show that the lower bound of Theorem 4.2.1 also holds for a polynomial from

the family of Nisan-Wigderson design-based polynomials.

Let Fn be a field of size n (we assume that n is a power of a prime). We will

work in the low-degree regime. For d = O(logn/ log logn), consider the set of

variables X = X1 ⊔ . . .⊔Xd where Xi = {xij | j ∈ [n]} for all i ∈ [d]. Let F be the set

of all univariate polynomials f(y) ∈ Fn[y] of degree less than d/2. The polynomial

NWn,d on the above nd variables is defined as

NWn,d(X) =
∑
f∈F

∏
i∈[d]

xif(i).

Each monomial encodes a univariate polynomial of degree less than d/2.

Consider the partitionX = X(0)⊔X(1) from (4.2.1). For a monomialm0 = x2j2 · · · xkjk

(with all j indices in [n]) that is set-multilinear in X(0), there is a unique “extension

monomial” m1 (set-multilinear in X(1)) such that m0m1 is a monomial of NWn,d.
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This is because m0 encodes the evaluations of some univariate polynomial on

points {2, . . . , k}. As the length of m0 is at least d/2, interpolating these values

gives a unique polynomial f which then determines the corresponding m1 –

obtained by evaluating f on the remaining points {1, 3, . . . , k ′} in [d].

This implies that the partial derivative matrix M(NWn,d) of size nd/2 × nd/2

has full rank. The same rank analysis as before on sums of ABPs gives us Theo-

rem 4.2.1, but with NWn,d as the hard polynomial. Nevertheless, the techniques

used seem to not be enough to get us any better lower bounds. In particu-

lar, the loss of information in the conversion of an smABP (an essentially non-

commutative model) to a set-multilinear circuit seems to be too large.

4.3 Discussion and Open problems

In order to separate VBP from VNP, we need to prove super-polynomial lower

bounds against
∑

smABP for a polynomial in VNP that we expect to be hard.

As noted above, the IMM polynomial is in VBP (in fact, it is a canonical way

to define the class VBP) and cannot be used for such a separation. Since our

Theorem 4.2.1 also holds for a polynomial from the Nisan-Wigderson family of

design-based polynomials that is in VNP but not conjectured to be in VBP, it is a

better candidate.

A first step toward proving ABP lower bounds would be to prove any non-

trivial lower bounds against the sum of smABPs in the low degree regime, i.e.

prove some lower bound for the sum of d! smABPs. Another interesting direction

is to show a reduction from ABPs to the sum of fewer than d! smABPs, with a

possibly super polynomial blow up in the smABP size. This would still lead to

ABP lower bounds if we can prove strongly exponential lower bounds against the

sum of (fewer) smABPs. This question remains open as well.



Chapter 5

Counting Homomorphisms

In this chapter, we study the montone bounded-depth complexity of the homo-

morphism and colored subgraph polynomials

HomH,n =
∑

f:V(H)→[n]

∏
uv∈E(H)

xf(u),f(v) and

ColSubH,n =
∑

f:V(H)→[n]

∏
uv∈E(H)

x
(uv)
f(u),f(v),

where we fix our field to be the rational numbers Q1. For simplicity, we will

assume the pattern H to be a simple, connected graph.

5.1 Bounded versions of treewidth and pathwidth

We begin by defining the bounded-depth version of treewidth (Definition 2.3.1). We

stress that a tree with a single node has height 1 according to our definition.

Definition 5.1.1. For fixed ∆ ∈ N, the ∆-treewidth of a graph H, denoted by

tw∆(H), is the minimum width over all tree decompositions of H with underlying

tree T of height at most ∆.

While depth-restricted tree-decompositions did arise before in the litera-

ture [CIP16], their depth was not fixed to concrete constants in these contexts,
1Our results hold for any field by making appropriate changes to the definition of monotone

computation so that cancellations are avoided.
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but rather to, say, O(log |V(H)|). In particular, differences between ∆-treewidth

and (∆− 1)-treewidth were not considered.

5.1.1 Connections to other graph parameters

The notion of ∆-treewidth of graphs is connected to other parameters that have

been studied:

• The 1-treewidth of a graph H is merely its number of vertices |V(H)|, as

the requirement on the height forces the tree-decomposition to consist of

a single bag. On the other extreme, the |V(H)|-treewidth of H equals the

treewidth of H.

• The 2-treewidth is already more curious: For any vertex-cover C, a tree-

decomposition of height 2 for H can be obtained by placing C into a root bag

Xr that is connected to bags Xt for t ∈ V(H) \ C, where Xt contains t and

its neighbors, all of which are in C. This shows that the 2-treewidth of H is

at most the vertex-cover number vc(H) of H. In fact, the 2-treewidth of H

equals the so-called vertex-integrity of H (minus 1). This graph parameter is

defined as minS⊆V(H)(|S| + maxC |V(C)|), where C ranges over all connected

components in the graph H− S, see [BES87; Gim+25].

• By balancing tree-decompositions [CIP16], a universal constant c can be

identified such that, for all graphs H on k vertices, the c logk-treewidth of

H is bounded by 4tw(H) + 3. That is, at the cost of increasing width by a

constant multiplicative factor, tree-decompositions can be assumed to be of

logarithmic height.

Our upper bound proof will show that vertices of degree 1 can be removed

safely from H without changing the bounded-depth complexity of HomH,n. This

holds essentially because such vertices and their incident edges can be assumed

to be present in the leaves of a tree-decomposition; these leaves then do not
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contribute to the product-depth of the constructed circuit. This naturally leads to

the notion of pruned ∆-treewidth.

Definition 5.1.2. The pruned ∆-treewidth of a graph H, denoted by ptw∆(H), is

the ∆-treewidth of the graph H with all vertices of degree at most 1 removed.

We also define analogous bounded-length version of pathwidth (Defini-

tion 2.3.2).

Definition 5.1.3. For fixed ∆ ∈ N, the ∆-pathwidth of a graph H, denoted by

pw∆(H), is the minimum width over all path decompositions ofHwith underlying

path P of length at most ∆.

There is also a corresponding pruned version.

Definition 5.1.4. The pruned ∆-pathwidth of a graph H, denoted by ppw∆(H), is

the ∆-pathwidth of the graph H with all vertices of degree at most 1 removed.

5.1.2 Full d-ary trees

We conclude this section by exhibiting a pattern H whose ∆-treewidth shows a

strong phase transition that we can exploit in our depth hierarchy theorem: Its

∆-treewidth is low, but even its (∆ − 1)-treewidth is high. As it turns out, H can

be chosen to be the full d-ary tree.

Theorem 5.1.5. Let ∆, d be positive integers and let T∆ be the full d-ary tree of height ∆.

Then tw∆(T∆) = 1 whereas tw∆−1(T∆) ≥ d− 1.

In order to prove the theorem, we first prove the following useful lemma for

inductively bounding the ∆-treewidth of a given graph.

Lemma 5.1.6. For any integersd and∆, if a graphG contains at leastd disjoint connected

subgraphs G1, G2,...,Gd, and the (∆− 1)-treewidth of each of them is at least d− 1, then

the ∆-treewidth of G is at least d− 1.
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Proof. Suppose T is a rooted tree-decomposition of graph G, and R is the root bag

of T . We are going to prove that either the height of T is larger than ∆ or the width

of T is at least d− 1. There are two cases to consider:

1. R contains at least one vertex from each of the subgraphs G1, G2, . . . , Gd.

2. R does not contain any vertex from (at least) one of the subgraphs

G1, G2, . . . , Gd.

In the first case, the size of R is at least d, so the width of T is at least d−1. In the

second case, we can assume without loss of generality that R does not contain any

vertex from G1. Let T1, T2, . . . , Tk be the subtrees obtained by removing R from T .

Since R does not contain any vertex of G1, at least one of T1, T2, . . . , Tk must contain

some vertex from G1. Suppose that subtree is T1. For any vertex v contained in

both T1 and G1, since v is not in the root bag R, it must be the case that v is not

contained in any other T2, . . . , Tk as well. Similarly, every neighbor u of v in G1 is

also contained in T1 as u is not contained in R, and there must be a bag in T which

contains both u and v. Proceeding this way, we get that T1 contains the whole of

G1, and the vertices from G1 appear nowhere else.

Removing vertices not in G1 from each bag of T1, we obtain a new tree T ′
1 . We

claim that T ′
1 is a tree-decomposition of G1. Indeed, all vertices of G1 are in T1 and

the bags in T1 that contain a vertex v form a connected component since T was a

tree decomposition of G. So the same holds for T ′
1 . Moreover, for every edge (u, v)

in G1, there is a bag in T1 that contain both u and v, so the same holds for T ′
1 .

Since the (∆ − 1)-treewidth of G1 is at least d − 1, either the height of T ′
1 is

larger than ∆ − 1 or the width of T ′
1 is at least d − 1. Since T ′

1 was formed by

removing vertices from T1, the same holds for T1. Consequently, either the height

of T is larger than ∆ or the width of T is at least d − 1. In both cases, the lemma

holds.

We are now ready to prove Theorem 5.1.5.
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Proof of Theorem 5.1.5. It is evident that tw∆(T∆) = 1 for all ∆, since T∆ is a tree.

As for the lower bound, consider the base case ∆ = 2. The height-1 tree-

decomposition of the height-2 full d-ary tree T2 has only one bag, and this bag

contains all the vertices from T2. Hence, its treewidth is d ≥ d− 1.

Assume by induction that the theorem holds for all 2 ≤ ∆ ≤ k for some natural

number k. Then, for ∆ = k + 1, consider the height-(k + 1) full d-ary tree Tk+1.

Removing the root node of Tk+1 yields d pairwise disjoint height-k full d-ary trees.

By our inductive assumption, the (k−1)-treewidth of each of these trees is at least

d− 1. Then by Lemma 5.1.6, the k-treewidth of Tk+1 is at least d− 1.

In the next two sections, we will prove our main characterization theorem for

bounded-depth monotone circuits.

Theorem 5.1.7. Let H be a fixed graph and let ∆ and n be natural numbers. Then

the polynomials HomH,n and ColSubH,n have monotone circuits of size O(nptw∆(H)+1)

and product-depth ∆. Moreover, any monotone circuit of product-depth ∆ has size

Ω(nptw∆(H)+1).

We also show a similar characterization for bounded-length monotone branch-

ing programs.

Theorem 5.1.8. Let H be a fixed graph and let ∆ and n be natural numbers such

that ∆ ≥ |E(H)|. Then the polynomials HomH,n and ColSubH,n can be computed by

monotone algebraic branching programs of size O(nppw∆(H)+1) and length ∆. Moreover,

any monotone algebraic branching program of length ∆ has size Ω(nppw∆(H)+1).

Note that for a length-∆ ABP to compute the polynomial HomH,n (or

ColSubH,n), we need the length to be at least the degree of the polynomial (which

is |E(H)|) since otherwise, we cannot even compute a single monomial. We note

that the above theorem also implies a bound on the width of the ABP.
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5.2 Upper bounds in Theorem 5.1.7 and Theorem 5.1.8

We prove the upper bound in Theorem 5.1.7. First, we require additional standard

notation for tree-decompositions: We consider T to be rooted with a choice of root

that minimizes its height. Given a tree-decomposition of H with underlying tree

T and bags {Xt}t∈V(T), write γ(t) :=
⋃

s≥t Xs for the cone at t, where s ranges over

all descendants of t in the tree T .

Our second definition is more technical and specific to the dynamic program-

ming approach we use to compute homomorphism polynomials in a bottom-up

manner: It allows us to track where in the tree-decomposition an edge contributes

to a monomial of the final polynomial. We say that an edge-representation of H in

T is a function rep : E(H) → V(T) that assigns to each edge of H a node in T such

that {u, v} ⊆ Xrep(uv) for all uv ∈ E(H). Note that each edge uv ∈ E(H) is already

entirely contained in at least one bag by the definition of a tree-decomposition; the

function rep simply chooses one such bag for each edge.

Given an edge-representation rep, we define the rep-height of T (which will be

the product-depth of the constructed circuit) as the maximum number of “active”

nodes t on a root-to-leaf path in T , where we call a node t active iff

• there are distinct e, e ′ ∈ E(H) with rep(e) = rep(e ′) = t, or

• there is at least one e ∈ E(H) with rep(e) = t and t has a child, or

• t has at least two children.

In our dynamic programming approach that proceeds bottom-up on a tree-

decomposition, only active nodes require multiplication gates; the rep-height

will thus amount to the overall product-depth of the circuit.

Lemma 5.2.1. Let H be a graph with a tree-decomposition consisting of tree T and bags

{Xt}t∈V(T), and let rep be an edge-representation of H in T . Then there are circuits for

HomH,n and ColIsoH,n with product-depth equal to the rep-height of T andO(|V(T)|·nw)

gates for maxt∈V(T) |Xt| = w.
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Proof. We describe the circuit forHomH,n and remark that the circuit forColSubH,n

can be constructed analogously. Considering T to be rooted, and proceeding from

the leaves of T to the root, we inductively compute polynomials Restrt,h for nodes

t ∈ V(T) and functions h : Xt → [n]. The polynomials are defined as

Restrt,h =
∑

f:γ(t)→[n]
f extends h

∏
uv∈E(H)

rep(uv)≥t

xf(u),f(v).

Here, we write s ≥ t to denote that s is a descendant of t in T . Note that

Restrt,h is the restriction of HomH,n to homomorphisms f that extend a given

homomorphism h for the bag at t, such that only those edges feature in the

monomials that are represented in the cone γ(t). Then HomH,n is the sum of

Restrr,h over all h : Xr → [n] at the root r of T .

We show how to compute the polynomials Restrp,h for nodes p ∈ V(T). Let

p ∈ V(T) be a node with children N ⊆ V(T), possibly with N = ∅ if p is a leaf.

Assume that Restrt,h ′ is known for all t ∈ N and functions h ′ : Xt → [n]. Then we

have

Restrp,h =

 ∏
uv∈E(H)

rep(uv)=p

xh(u),h(v)

 ·
∏
t∈N

∑
h ′:Xt→[n]

agreeing with h
on Xt∩Xp

Restrt,h ′ . (5.2.1)

From this construction of the circuit, the size bound claimed in the lemma is

obvious. Let us investigate its product-depth: In the final circuit computing

HomH,n, every path from the output gate to an input gate corresponds to a path in

T from the root to a leaf. Analyzing (5.2.1), we see that every node t on this path

contributes 1 to the product-depth iff t is active under the edge-representation rep.

Indeed, a leaf p only contributes to the product-depth if two edges e, e ′ ∈ E(H)

are represented in its bag, i.e., rep(e) = rep(e ′) = p, as then there is a nontrivial

product in the first product (over uv, shown in parentheses in (5.2.1)). A node p

with one child only contributes if at least one edge is represented in its bag, as
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then the product between the parentheses and the remaining factor is nontrivial.

A node p with at least two children always contributes to the product-depth.

To show that the circuit correctly computes HomH,n, we need to show that

the recursive expression for Restrp,h in (5.2.1) is correct. Note that every edge

is represented by rep in exactly one bag and thus appears precisely once in a

monomial. Because Xp is a separator in H, any function f : γ(p) → [n] gives rise

to |N| functions ft : γ(t) → [n] for t ∈ N that all agree on their values for Xp

(that is, on their values on Xp ∩ Xt) and can otherwise be chosen independently.

Conversely, any ensemble of such consistent functions can be merged to a function

h : γ(p) → [n]. The product over all t ∈ N as in (5.2.1) thus yields Restrp,h.

Finally, to prove the upper bound in Theorem 5.1.7, letH† be the graph obtained

from H by removing all degree-1 vertices. Given a tree-decomposition for H† with

underlying tree T of height ∆ and width w witnessing that ptw∆(H) = w, we

obtain a tree-decomposition with some tree T ′ for H and an edge-representation

rep of H in T ′ of rep-height ∆ as follows: For each vertex v ∈ V(H) of degree 1,

with neighbor u ∈ V(H), choose some node t ∈ T with u ∈ Xt and add a node t ′

as a neighbor of t to T with bag Xt ′ = {v, u}. Choose an arbitrary representation

rep of H in the resulting tree-decomposition with tree T ′ and observe that its

rep-height is at most the height ∆ of T , even though the height of T ′ may be ∆+ 1:

The bags added for degree-1 vertices and their incident edges do not contribute

towards the rep-height, as they are leaf nodes and represent single edges. The

upper bound thus follows from Lemma 5.2.1.

Remark 5.2.2. The construction from Lemma 5.2.1 also yields an ABP of length

|V(T)| and size O(|V(T)| ·nw) when given a path-decomposition T of H with max-

imum bag size w. To see this, note that the product over t ∈ N in (5.2.1) involves

only a single factor when T is a path-decomposition, so (5.2.1) overall amounts

to a skew-multiplication of a single monomial with the recursively computed

polynomial.
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5.3 Lower bounds in Theorem 5.1.7 and Theorem 5.1.8

We adapt the lower bound proofs of [KPR23] to prove the lower bounds in our

theorems. Recall that proving the lower bound for ColSubH,n is enough, since

we can use a circuit computing HomH,n to obtain a circuit computing ColSubH,n

without changing the depth of the circuit using [KPR23, Lemma 8]. We summarize

the results here for completeness.

Lemma 5.3.1. Let k,∆ be positive integers and H be a fixed pattern graph on k vertices.

• If there is a monotone circuit of product-depth ∆ and size s for ColSubH,n, then

there is such a circuit of size O(s) for HomH,n.

• If there is a monotone circuit of product-depth ∆ and size s for HomH,n ′ , then there

is such a circuit of size O(s|E(H)|) for ColSubH,n, where n ′ = kn.

The results also hold if circuits are replaced by ABPs, and product-depth is replaced by the

length of the ABP, provided the length is at least the degree of the polynomials.

Proof. Given a monotone circuit of product-depth ∆ that computes ColSubH,n,

we replace each variable x
(uv)
f(u),f(v) with xf(u),f(v) if f(u) ̸= f(v) and 0 otherwise. The

circuit now computes HomH,n.

For the other direction, let C be the monotone circuit of product-depth ∆

computing the HomH polynomial over the vertex set [k]× [n]. Note that a homo-

morphism ϕ from H to the complete graph on [k] × [n] maps a vertex u ∈ [k], to

(v, p) where v ∈ [k] and p ∈ [n]. We introduce auxiliary variables yuv for each

edge uv ∈ E(H). For u, v ∈ [k] and p, q ∈ [n], we replace the variable x(u,p),(v,q)

with x
(uv)
p,q yuv if uv ∈ E(H) and 0 otherwise.

Let C ′ be the new circuit obtained after the replacement, and consider the

partial derivative D := ∂|E(H)|

∂ye1
···∂ye|E(H)|

C ′, with respect to all the edge variables of H.

Note that every monomial in D contains at least one variable corresponding to

each edge of H. Further, set yuv = 0 in D for all uv ∈ E(H). This ensures that every

monomial in D|yuv=0 contains exactly one variable corresponding to every edge



86

of H, i.e., it counts only the color-preserving homomorphisms. The coefficient of

each monomial is |aut(H)|, the number of automorphisms of H, and dividing by

this number gives us ColSubH,n.

We can compute D using partial derivatives’ sum and product rules applied

to every gate in a bottom-up fashion. For a gate g, we maintain both g and

∂yeg. The partial derivative of a sum gate, ∂ye

∑
i gi =

∑
i ∂yegi is straightforward

and does not increase the depth. For a product gate, the derivative ∂ye

∏
i gi =∑

i

(
∂yegi

∏
j̸=i gj

)
increases the depth by one, but this can be absorbed in the sum

layer above. Note that the product-depth does not change in both cases. A partial

derivative with respect to a single variable increases the circuit size by a factor of

s. Hence, the final circuit for D is of size O(s|E(H)|), and has product-depth ∆, the

same as C.

We also note that both the constructions preserve monotonicity. Moreover, if

the original circuit C was skew (i.e. an ABP), then so is the final circuit D. From

Remark 2.2.12, we obtain the same results for ABPs as well.

5.3.1 Tree decompositions from parse trees

Consider a pattern graph H on vertex set V(H) := [k]. An alternate and more

intuitive way to think about the n-th colored subgraph isomorphism polynomial

ColSubH,n is to consider the blown-up graph G, where each vertex u ∈ [k] of H is

replaced by a ‘cloud’ of n vertices Cu := {(u, 1), . . . , (u,n)}. Every edge uv ∈ E(H)

is replaced by a complete bipartite graph between Cu and Cv with an appropriate

label for each of the n2 edges; that is, an edge between (u, i) and (v, j) is labeled

x
(uv)
i,j where u, v ∈ [k] and i, j ∈ [n]. The polynomial ColSubH,n is now obtained by

choosing a copy of H in G by picking a vertex from every cloud using a function

f : V(H) → [n], and adding the monomial

m =
∏

uv∈E(H)

x
(uv)
f(u),f(v).
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We say that the monomial m above is supported on a set S ⊆ [k]× [n] if every

element of S looks like (u, f(u)) for u ∈ [k]. The polynomial ColSubH,n is the sum

over all such monomials m

ColSubH,n =
∑

f:V(H)→[n]

∏
uv∈E(H)

x
(uv)
f(u),f(v).

Claim 5.3.2. Let ∆ be a natural number and T be a monotone parse tree of product-depth

∆ computing a monomial m of ColSubH,n. Let H† be the pruned graph obtained by

removing all degree-1 vertices from H. We can extract from T , a tree decomposition of H†

with an underlying tree T † of height ∆.

Proof. Suppose that the monomial m is supported on vertices (u, f(u)) where

u ∈ [k] and f : [k] → [n] is a function. The parse tree T has height ∆ + 1. Note

that since ColSubH,n has 0/1 coefficients, we can assume that a multiplication

gate has only non-constant terms as its children. We build the tree decomposition

bottom-up. We ‘mark’ certain vertices in the bags created during this procedure.

All such marks are dropped at the end (see fig. 5.1).

1. For an input gate x
(uv)
f(u),f(v), we add the bag {u, v} as a leaf in the tree decom-

position. We mark all the vertices of degree 1. The rest are unmarked.

2. Let g be a multiplication gate. Suppose X1, . . . , Xm are the bags correspond-

ing to the children of g (that we have already constructed) and let Ui ⊆ Xi

be the unmarked elements of Xi. We then add the bag Xg :=
⋃

i∈[m] Ui as

the root of X1, . . . , Xm. If there are vertices (u, f(u)) such that the monomial

computed at g includes all the edges incident on (u, f(u)) in the copy of H

that f picked, we mark all such vertices u in the bag Xg.

3. Finally, after applying the procedure in the previous step to all the gates, we

drop the bags (and edges) corresponding to input gates.

We claim that the tree decomposition we just constructed with underlying tree

T † and bags {Xu}u∈V(T†) is a tree decomposition of H†. Note that all the edges of H
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{2, 3, 4}

T †
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1

2

3

4
H†

Figure 5.1: Extracting a tree decomposition

Extracting a tree decomposition of height 2 for H† from a parse-tree of product-depth 2

for a monomial of ColSubH,n. We have for all i ∈ [6], fi := f(i) ∈ [n].

were covered at the leaf bags (that we finally dropped), as they must be present

in the monomial. Since only the degree-1 vertices in a leaf bag were marked, the

parent bags of the leaves (which we include in our tree decomposition) will exactly

have the vertices of H†, and thus cover all its edges.

We mark (forget) a vertex only after multiplying all its incident edges. Hence,

the sub-graph induced by a vertex u (in H†) is connected in T † and is, in fact, a

subtree. As every multiplication gate of the parse tree has exactly one associated

bag, the procedure does indeed result in a tree decomposition of H† of height

∆.

5.3.2 Lower bounds for ColSubH,n

Theorem 5.3.3. Let ∆ be a natural number and H be a pattern graph. Any monotone cir-

cuit of product-depth ∆ computing the polynomial ColSubH,n has size Ω(nptw∆(H)+1).

Proof. Let C be the monotone circuit computing ColSubH,n, and let the pruned
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∆-treewidth of H, ptw∆(H) = t. Consider a monomial m of ColSubH,n supported

on vertices (u, f(u)) for u ∈ [k] and f : [k] → [n]. Let T be a parse tree of C

associated with m. Now, Claim 5.3.2 gives a tree decomposition of H† with tree

T † and bags {Xu}u∈V(T†). Consequently, there is a bag X of size at least t + 1 in the

tree decomposition. Without loss of generality, we assume that |X| = t + 1. If

it is greater, we will only obtain a better lower bound. We also assume that the

vertices in the bag are 1, . . . , t+ 1 (relabeling the vertices of H does not change the

complexity of ColSubH,n). Let the corresponding gate in T associated with X be

g.

We show that only a ‘few’ monomials can contain g in their parse tree. More

precisely, we claim that any monomial m ′ (other than m) that contains g in its

parse tree is supported on vertices {(u, f(u))}u∈[t+1]. Suppose not. Let m ′ have

a parse tree T ′ with gate g in it but vertex (u, f ′(u)) for some u ∈ [t + 1], with

f(u) ̸= f ′(u). Recall that we obtained the tree decomposition using the parse tree

T of m. For a gate g in a parse tree, we denote by Tg the subtree rooted at g. Note

that if two parse trees contain a multiplication gate g, all the children of g are the

same in both the parse trees. We now analyze two cases:

1. The vertex u is marked at the bag associated with g: There are at least two

children g1, g2 of g in T that compute monomials with (u, f(u)) in them.

This holds because there are no degree-1 vertices in the bags. If g1 in T ′

contains the vertex (u, f ′(u)), we replace T ′
g2

with Tg2 . Similarly, in the other

case, when g2 contains (u, f ′(u)). If both g1, g2 do not contain (u, f ′(u)) in

T ′, we arbitrarily replace T ′
g1

(say) with Tg1 .

2. The vertex u is not marked at the bag associated with g: The vertex (u, f(u))

appears in Tg as well as outside Tg. In T ′, if (u, f ′(u)) appears in T ′
g , we

replace Tg with T ′
g in T . Otherwise, we replace T ′

g with Tg in T ′.

In all cases, we obtain a valid parse tree T ′′ of C that produces a monomial

supported on (u, f(u)) and (u, f ′(u)). This leads to a contradiction, since the

monomial produced by T ′′ is spurious and cannot be cancelled because the circuit
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is monotone. Every monomial (parse tree) m has a gate g whose corresponding

bag has at least t + 1 vertices. And any other monomial m ′ (parse tree) that

contains this gate g must share at least t+ 1 vertices in its support with m. Thus,

the maximum number of monomials containing this gate g equals the number of

colored isomorphisms that fix t+ 1 vertices, which is nk−t−1. Recall that there are

nk monomials in ColSubH,n, and so we need at least nt+1 gates in the circuit.

The lower bound proof for algebraic branching programs is very similar.

Theorem 5.3.4. Let ∆ be a positive integer and H be a pattern graph such that ∆ ≥

|E(H)|. Any monotone ABP of length ∆ computing the polynomial ColSubH,n has size

Ω(nppw∆(H)+1).

Proof. As mentioned earlier in Remark 2.2.12, the size-smonotone ABP of length∆

computingColSubH,n has an equivalent monotone skew-circuitC of sizeO(s) and

product-depth ∆. Consider a monomial m of ColSubH,n supported on vertices

(u, f(u)) for u ∈ [k] and f : [k] → [n]. Let T be a parse tree of C associated with m.

We observe that the procedure described in the proof of Claim 5.3.2 extracts

a length-∆ path decomposition of the pruned graph H† instead: as the circuit is

skew, all the multiplication gates in T have at most one non-leaf child. Since we

finally dropped the bags corresponding to input gates in our procedure, the tree

decomposition we obtain is in fact a path decomposition!

Taking the pruned ∆-pathwidth of H to be t, the same proof implies that the

number of monomials containing a particular gate g is nk−t−1, thus implying a

size lower bound of nt+1.

5.4 Monotone depth hierarchy

Combining our previous results allows us to prove a depth-hierarchy theorem for

bounded-depth monotone algebraic circuits.2

2A similar hierarchy can also be shown for monotone ABPs.
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Theorem 5.4.1. For all integers n and ∆, there exists a pattern graph H∆ such that

ColSubH∆,n can be computed by a monotone product-depth (∆+1) circuit of sizeO(n|H∆|)

but any product-depth ∆ monotone circuit computing the polynomial needs size nΩ(|H|1/∆).

Proof. For an integer d, let H∆ := T∆+2 be the full d-ary tree of height ∆ + 2.

Note that d = Θ(|H∆|
1/∆). The pruned (∆ + 1)-treewidth of H∆ is equal to the

(∆ + 1)-treewidth of the full d-ary tree of height (∆ + 1). That is, ptw∆+1(H∆) =

tw∆+1(T∆+1) = 1. So by Lemma 5.2.1, there exist a monotone circuit of product-

depth ∆+ 1 and size O(n|H∆|), which computes ColSubH∆,n.

On the other hand, ptw∆(H∆) = tw∆(T∆+1) ≥ d−1by Theorem 5.1.5. Hence, by

Theorem 5.3.3, any monotone circuit of product-depth ∆ computing ColSubH∆,n

has size at least Ω(nptw∆(H∆)+1) = nΩ(|H∆|
1/∆).

If we consider the case when the pattern graph is of sizeΘ(n) in Theorem 5.4.1,

we obtain our main depth hierarchy result.

Theorem 5.4.2. For any natural numbers n and ∆, there exists a pattern graph H∆ of

size Θ(n) such that ColSubH∆,n can be computed by a monotone circuit of size poly(n)

and product-depth (∆ + 1), but any monotone circuit of product-depth ∆ computing the

polynomial needs size nΩ(n1/∆).

As an aside, we note that an analogous depth hierarchy cannot be obtained for

the polynomials HomH,n using our methods, as the blow up in the size given by

Lemma 5.3.1 is exponential, when |H| = Θ(n) is not a constant.



Chapter 6

Polynomial Factorization

In this chapter, we suggest natural conjectures and conditional results that make

progress towards resolving the Factor Conjecture of Bürgisser. From the discus-

sion in Section 1.4, it is enough to study the presentable border class VPε. We

begin with a brief proof sketch of the VPε ⊆ VNP result over finite fields. For full

details, refer [BDS24b] or [Dwi24].

Theorem 6.0.1 ([BDS24a, Theorem 1]). Let F be a finite field, and f ∈ F[x] be an

n–variate polynomial of degree d such that the size of the smallest circuit (over F) approx-

imating f is of size s. Then, f can be written as

f(x) =
∑

b∈{0,1}m
g(x,b),

where m, and sizeF(g(x,y)) are bounded by poly(s, n, d).

Proof Sketch. The main idea is to use Valiant’s criterion (Proposition 2.2.19) to show

that the polynomial f =
∑

e cexe has coefficients ce that are “easy to describe”.

Notice that the polynomial F approximating f has a small circuit but exponential

degree, where the high degree is only due to ε.

In the approximating expression for f (Equation (1.4.2)), we interpolate F on

all the variables (including ε) using appropriate powers of unity. Consequently,

each coefficient ce of f can be written as a hypercube sum over a small-size high-
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degree circuit. When F is a finite field, we can simulate this algebraic circuit using

a small boolean circuit. As a result, we obtain that the coefficient function of f is

in #P/poly, whence we can apply Valiant’s criterion.

It is not clear how to use Valiant’s criterion over fields of characteristic zero

since in this case, there are polynomial families in VPε with very large coefficients.

Hence, we cannot hope to show that the coefficient function is in #P/poly. We

suggest a different approach.

6.1 The reverse Kronecker conjecture

Conjecture 6.1.1 (Reverse Kronecker). Let F be any field and suppose F ∈ F[ε] is a

univariate polynomial computed by a circuit of size s. Then, there is a polynomial

F̃ ∈ F[z,w] whose number of variables |z|+ |w|, its individual degree r, and its size

s̃ are all bounded by poly(s) satisfying

F(ε) = F̃(z, a)
∣∣
z=φ(z) ,

under the Kronecker map φ : zi 7→ ε(r+1)i−1 applied to the z variables, and some

assignment a ∈ F|w| to the w variables.

Remark 6.1.2. If the univariate circuit is of low-degree, then the conjecture holds.

For e.g., if the circuit is of constant depth and size s, then the degree, and hence

number of monomials is itself small. Each univariate monomial (and hence the

whole polynomial) can be obtained via Kronecker substitution to a small circuit.

The Reverse Kronecker conjecture helps in debordering presentable classes over

any field. We begin by demonstrating this when we have a small circuit (over the

base field) approximating our polynomial.

Theorem 6.1.3. Let F be any field, and let f ∈ F[x] be a polynomial such that there an



94

approximating polynomial F ∈ F[ε][x] with sizeF(F) = s, and for some integer M,

F(x, ε) = εMf(x) + εM+1Q(x, ε).

Suppose now that Conjecture 6.1.1 is true. Then, f can be written as

f(x) =
∑

b∈{0,1}ℓ
g(x,b),

where ℓ and size(g) are both bounded by poly(n, s).

Proof. We are given that f(x) can be approximated by a polynomial F ∈ F[ε][x]

with sizeF(F) = s:

F(x, ε) = εMf(x) + εM+1Q(x, ε) (6.1.1)

Assuming Conjecture 6.1.1 to be true, we can replace all the univariate circuits

of ε in F with poly(s)-sized circuits that agree with the univariate circuit under

the Kronecker map. Replacing every F[ε]-circuit in this way, we get that there is a

poly(n, s)-variate polynomial F̃ ∈ F[x, z,w] of individual degree r = poly(s) and

size s̃ = poly(s) that agrees with F under the Kronecker map φ : zi 7→ ε(r+1)i−1 ,

and an assignment a ∈ F|w| to the w variables:

F(x, ε) = F̃(x, z, a)
∣∣
z=φ(z) . (6.1.2)

Combining Equation (6.1.1) and Equation (6.1.2), we also have

F̃(x, z, a)
∣∣
z=φ(z) = εMf(x) + εM+1Q(x, ε). (6.1.3)

We claim that even without the map φ, f(x) occurs as the trailing coefficient

in F̃(x, z, a). More precisely, we claim that the following equation holds.

F̃(x, z, a) = zMf(x) + z≻MQ̃(x, z), (6.1.4)
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for some polynomial Q̃, and M = (M1,M2, . . . ,M|z|) comes from the ‘digits’

in the base-(r+ 1) expansion: M = M1 +M2(r+ 1) + . . .+M|z|(r+ 1)|z|−1.

To see that Equation (6.1.4) holds, note that the mapφ assigns different powers

of ε to different z monomials of individual degree at most r [Kro82]. Hence, zM is

the only monomial that gets mapped to εM. Since we know that Equation (6.1.3)

holds under φ, we must have the term zMf(x) appearing somewhere in F̃. More-

over, this has to be the trailing term since any other term zL for L ≺ M would be

mapped to a lower power of ε than M and hence not vanish in Equation (6.1.3).

Crucially, Equation (6.1.4) is much better than Equation (6.1.1) for the purpose

of debordering since the low-degree small-size circuit F̃ is amenable to interpola-

tion (Proposition 2.2.20). We can extract f as a hypercube sum

f(x) =
∑

b∈{0,1}ℓ
g(x,b),

where ℓ is bounded by poly(|z|+ |w|) = poly(n, s) and size(g) is bounded by

poly(size(F̃)) = poly(n, s).

Let (fn) be a polynomial family in VPε. Then, the size s in Theorem 6.1.3 is

poly(n) and thus we get that for any n ∈ N, we can write fn as a hypercube

sum fn(x) =
∑

b∈{0,1}ℓ gn(x,b), where ℓ and size(g) are both bounded by poly(n).

Hence, we get

Corollary 6.1.4 (of Theorem 6.1.3). Let F be any field, and suppose Conjecture 6.1.1

holds. Then, we have VPε ⊆ VNP.

Remark 6.1.5. Note that in the proof of Theorem 6.1.3, we did not necessarily

need F̃ to be a small circuit. Even if it was a hypercube sum of small circuits, the

proof would still go through. Hence, we can relax Conjecture 6.1.1 to allow the

univariate circuit to be equivalent under the Kronecker map, to a hypercube sum

of small circuits instead.
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We also note that Conjecture 6.1.1 cannot be used to show VPε ⊆ VP since

our proof works by extracting coefficients, and VP is not closed under taking

coefficients, unless VP = VNP [Bür00a, Section 2.3].

For our problem of polynomial factorization, we also get the following explic-

itness of roots over all fields, assuming the reverse Kronecker conjecture.

Corollary 6.1.6 (of Theorem 6.1.3). Let F be any field, and suppose Conjecture 6.1.1 is

true over F. Let f(x, y) be an (n+ 1)-variate polynomial computed by a circuit of size s.

Suppose ϕ(x) is a power series root of f with respect to y (i.e., f(x, ϕ(x)) = 0). Then the

truncation of ϕ up to degree d = poly(s) can be written as

[ϕ]≤d =
∑

b∈{0,1}m
g(x,b),

where m, and sizeF(g(x,y)) are bounded by poly(s, n, d).

Proof. We know that [ϕ]≤d can be approximated by a presentable circuit of size

poly(s). Applying Theorem 6.1.3 then gives the required result.

As a consequence of the above corollary, assuming Conjecture 6.1.1 also implies

that over any field, low-degree factors of polynomial families with small circuits

(of high degree) are in VNP.
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