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Kurzfassung

Ein Additions-Cayley-Graph ist ein Graph, dessen Knotenmenge eine abelsche Gruppe
ist, und der eine Kante zwischen zwei Knoten besitzt, wenn die Summe dieser Knoten
in einer gegebenen Untermenge S ⊆ G enthalten ist.

Trotz dieser intuitiven Konstruktion und ihrer engen Verwandtschaft zu den weit
verbreiteten normalen Cayley-Graphen, wurden Additions-Cayley-Graphen bisher nur
wenig untersucht: Nur etwa zehn Publikationen behandeln diese, unter einer Vielzahl
von Namen.

Wegen ihrer Konstruktion über abelsche Gruppen und dem impliziten Gebrauch von
Summenmengen (engl. sumsets) scheinen Additions-Cayley-Graphen ein hervorragendes
Instrument zur Verwendung in der Additiven Kombinatorik zu sein. Diese Arbeit wird
eine mögliche Verbindung dieser beiden Konzepte anstreben.

Kapitel 1 enthält eine kurze Einleitung zu einigen Grundlagen Additiver Kombina-
torik. Die dort bewiesenen Aussagen werden in den übrigen Kapiteln benötigt, werden
aber hier benutzt um die Methoden der Additiven Kombinatorik zu erläutern.

Da Additions-Cayley-Graphen eine Variante der üblichen Cayley-Graphen darstellen,
möchten wir untersuchen, inwiefern sich diese - vor Allem in Bezug auf Additive Kom-
binatorik - unterscheiden.

In Kapitel 2 werden wir daher einige Eigenschaften von Cayley-Graphen präsentieren.
Außerdem werden wir uns mit einem interessanten neuen Resultat über die Expander-
Eigenschaften von Cayley Graphen beschäftigen, welches 2008 von Gamburd und Bour-
gain unter Zuhilfenahme von Methoden aus der Additiven Kombinatorik bewiesen wurde.

In Kapitel 3 widmen wir uns dem zentralen Thema dieser Arbeit: dem Additions-
Cayley-Graphen. Wir werden begründen, wieso Additions-Cayley-Graphen ein nützliches
graphentheoretisches Werkzeug der Additiven Kombinatorik darstellen, das in Lage ist
Informationen aus der Graphentheorie auf Summenmengen und ähnliche Objekt zu
übertragen. In diesem Sinne präsentieren wir zwei Resultate: Eines von B. Green,
welches Methoden der Additiven Kombinatorik verwendet, um die Cliquenzahl von
Additions-Cayley-Graphen zu berechnen, und ein anderes von N. Alon, welches die
Unabhängigkeitszahl von Additions-Cayley-Graphen benutzt um die Größe bestimmter
Summenmenge zu determinieren. Wir werden begründen, warum es gerade diese wech-
selseitige Beziehung ist, die Additions-Cayley-Graphen von normalen Cayley-Graphen
mit Blick auf Additive Kombinatorik unterscheidet.

Da Additions-Cayley-Graphen nur verstreut in der Literatur zu finden sind, wurden
viele ihrer Eigenschaften entweder gar nicht, oder nur unzureichend studiert. Eine dieser
Eigenschaften ist die Hamiltonizität. Es ist eine bekannte Frage, ob Cayley-Graphen
Hamilton-Kreise besitzen. Viele Publikationen sind zu diesem Thema erschienen, für
Additions-Cayley-Graphen gibt es jedoch nur zwei, die sich mit diesem Thema auseinan-
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dersetzen [CGW03, Lev10].
In Kapitel 4 werden wir diese Frage sowohl für Cayley-Graphen, als auch für Additions-

Cayley-Graphen darlegen, und uns dann mit einer Vermutung beschäftigen, die Hamilton-
Kreise für alle Additions-Cayley-Graphen über endliche zyklische Gruppen und Unter-
mengen S von Kardinalität mindestens 4 postuliert.
Im letzten Abschnitt werden wir einige neue Resultate beweisen, welche Hamilton-

Pfade für eine große Klasse von Additions-Cayley-Graphen liefern. Diese Pfade werden
daraufhin benutzt, um zu argumentieren, dass die oben genannte Vermutung zu Unter-
mengen S von Kardinalität mindestens 3 verbessert werden kann, wenn |G| ≡ 1 mod 4.
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Introduction

An addition Cayley graph is a graph whose vertex set is an abelian group G, and which
has an edge between two vertices when the sum of these vertices is in a given subset of
G, namely S.

In spite of their very intuitive construction and their closely related well-known pen-
dant, the Cayley graph, these graphs have been subject to very little investigation. In
fact they are mentioned only in about ten publications under a variety of different names.

Because of their definition over an abelian group and the implicit use of sumsets,
addition Cayley graphs seem an ideal tool for additive combinatorics. Therefore, this
work will investigate possible links between these two concepts.

Chapter 1 is a short introduction to some of the basic definitions and instruments of
additive combinatorics. Here we will present some of the statements used in following
chapters, and thus try to convey a few of the methods used in additive combinatorics.

As addition Cayley graphs are a variation of Cayley graphs, it is interesting to see
in which way they differ from another, and to compare their relative use in additive
combinatorics.

Chapter 2 will therefore introduce Cayley graphs and list some of their properties.
We will also present a very interesting new result on Cayley graphs, namely a conclusive
expander-property that was given by Gamburd and Bourgain in 2008 [BG08], and which
makes strong use of additive combinatorics.

In Chapter 3, we will turn to our primary field of interest: the addition Cayley graph.
After a formal introduction, we will suggest that addition Cayley graphs constitute an
interesting graph theoretical tool in additive combinatorics, capable of transferring graph
theoretical results to statements about sumsets and similar objects. To this end, we
present two results: One by B. Green, which uses techniques from additive combinatorics
to prove a result on the clique number of addition Cayley graphs [Gre05], and another
result by N. Alon, which uses the independence number of an addition Cayley graph
to give an estimation on particular sumsets [Alo07]. We will suggest that exactly this
cross-reference distinguishes addition Cayley graphs from the regular Cayley graphs with
regard to additive combinatorics.

As addition Cayley graphs have attained only sparse mention in the literature, many
of their properties have not been properly examined. One of these is Hamiltonicity. It is
a well-known question whether regular Cayley graphs are Hamiltonian and many papers
have been published concerning this. For addition Cayley graphs, on the other hand,
there are only two papers concerned with this subject [CGW03, Lev10].

In Chapter 4, after illustrating this problem for both addition Cayley graphs and
regular Cayley graphs, we will deal with a conjecture that proposes Hamiltonicity for all
addition Cayley graphs over finite cyclic groups and set S of cardinality at least 4.
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In the last section we will prove some new results which yield Hamiltonian paths
for a large class of addition Cayley graphs over cyclic groups. We will then use these
Hamiltonian paths to motivate that the above mentioned conjecture can be improved to
sets S of cardinality at least three, if |G| ≡ 1 mod 4.
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1 Additive Combinatorics

The theory of additive combinatorics is a rather new and rapidly expanding field of
mathematics. Based on the work of mathematicians such as Szmerédi and Rusza in
the 1970’s, this area slowly developed, attracting the interest of many notable mathe-
maticians, among them three Fields medallists: Jean Bourgain, Timothy Gowers and
Terence Tao.

From the 1990’s up until now, many important results have been found, most famously
new proofs of Szemerédi’s Theorem (for example by T. Gowers [Gow01]), a generalisation
of Szemerédi’s Theorem by T. Tao and B. Green [GT08] and the Sum-Product Theorem
for Finite Fields ([BT04], [Kon03]).

The main objects of interest in additive combinatorics are additive sets and in partic-
ular their “additive structure”.

An additive set is a pair (A,Z), where Z is an additive group and A a subset of Z. To
explain the meaning of the term “additive structure”, we will need to make the following
definitions:

Definition 1.1. (sumset) Let A, B be additive sets in an ambient group Z. Then:

A+B := {a+ b : a ∈ A, b ∈ B}

Definition 1.2. (difference set) Let A, B be additive sets in an ambient group Z. Then:

A−B := {a− b : a ∈ A, b ∈ B}

Definition 1.3. (iterated sumset) Let A be an additive set in an ambient group Z,
k ∈ Z+. Then:

kA := {a1 + ...+ ak : a1, ..., ak}

Definition 1.4. (dilation) Let A be an additive set in an ambient group Z, k ∈ Z+.
Then:

k ·A := {ka : a ∈ A}

T. Tao and V. Vu [TV06] now give an informal criterion for a set A having additive
structure. The following statements are all criteria for additive structure, which turn
out to be “essentially equivalent” [TV06]:

• A+A is small

• A−A is small
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• A−A can be covered by a small number of translates of A

• kA is small for any fixed k

• there are many quadruples (a1, a2, a3, a4) ∈ A×A×A×A such that a1+a2 = a3+a4

• there are many quadruples (a1, a2, a3, a4) ∈ A×A×A×A such that a1−a2 = a3−a4

In the following, we will give a short introduction to additive combinatorics, giving
the basic definitions and explaining some of the tools used in this field. A comprehensive
overview of additive combinatorics can be found in [TV06].
We will also prove some of the lemmas and theorems, needed in the following, to

illustrate the use of the presented tools.

1.1 Sum Estimates

Our first job will be to give precise definitions to the properties listed above.
We will say that A+A (A−A) is small if its doubling constant (difference constant)

is small:

Definition 1.5. (doubling constant) For an additive set A, the doubling constant σ[A]
is defined to be the quantity:

σ[A] :=
|A+A|
|A|

The difference constant δ[A] is defined as:

δ[A] :=
|A−A|
|A|

As we are also interested in sums between two different sets, we will need a slightly
modified version of the above:

Definition 1.6. (Rusza distance) Let A and B be two additive sets with a common
ambient group Z. We define the Rusza distance d(A,B) between these two sets to be
the quantity:

d(A,B) := log
|A−B|
|A|

1
2 |B|

1
2

In many ways the Ruzsa distance behaves like a metric, in particular it fulfils the
triangle inequality:

Lemma 1.7. [TV06] (Ruzsa triangle inequality) The Ruzsa distance d(A,B) is non-
negative, symmetric, and obeys the triangle inequality

d(A,C) ≤ d(A,B) + d(B,C)

for all additive sets A, B, C with common ambient group Z.
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Proof. The Ruzsa distance is non-negative because:

max(|A|, |B|) ≤ |A−B|,

and symmetric because:

B −A = −(A−B).

Proving the triangle inequality we have:

a− c = (a− b) + (b− c).

Therefore we see that every element a− c ∈ A− C has at least |B| distinct represen-
tations of the form x+ y with (x, y) ∈ (A−B)× (B − C), implying that:

|A− C| ≤ |A−B||B − C|
|B|

.

This in turn yields the triangle inequality.

The only axiom of a metric not fulfilled by the Ruzsa distance is:

d(A,A) = 0 ⇔ A = A.

The other interesting value that arises between two additive sets is the additive energy
which was already implicitly mentioned in the introduction:

Definition 1.8. (additive energy) Let A and B be two additive sets with common
ambient group Z. We define the additive energy E(A,B) between A and B to be the
quantity:

E(A,B) := |{(a, a′, b, b′) ∈ A×A×B ×B : a+ b = a′ + b′}|

Proposition 1.9. [TV06] Let A,B be additive sets with ambient group Z. Then we
have the identities:

i) |A||B| =
∑

x∈A+B |A ∩ (x−B)|,

ii) E(A,B) =
∑

x∈A+B |A ∩ (x−B)|2 =
∑

y∈A−B |A ∩ (B + y)|2.

Proof. i) This is proved by the following:

|A||B| =
∑

x∈A+B

|{(a, b) ∈ A×B : a+ b = x}| =
∑

x∈A+B

|A ∩ (x+B)| .
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ii) We can prove this with a simple equation:

∑
x∈A+B

|A ∩ (x−B)|2 =
∑

x∈A+B

|{(a, b) ∈ A×B : a+ b = x}|2

=
∑

x∈A+B

∣∣{(a, a′, b, b′) ∈ A×A×B ×B : a+ b = a′ + b′ = x
}∣∣

=
∣∣{(a, a′, b, b′) ∈ A×A×B ×B : a+ b = a′ + b′

}∣∣ = E(A,B).

This proposition shows us that the additive energy effectively counts the intersections
of A with translates of B and −B, thus giving us a clue of how large A+B and A−B
are going to be.

Before introducing approximate groups we need this lemma which will be useful
throughout:

Lemma 1.10. [TV06](Ruzsa’s covering lemma) For any additive sets A,B with common
ambient group G there exists an additive set X ⊆ B with:

• B ⊆ A−A+X;

• |X| ≤ |A+B|
|A| ;

• |A+X| = |A||X|;

Proof. We choose a set X ⊆ such that {A+ x : x ∈ X} is a maximal disjoint sub-family
of {A+ b : b ∈ B}. Each of these A+ x has cardinality |A| and is contained in A+B.

Therefore the cardinality of X must be less than |A+B|
|A| . As we have a maximal disjoint

sub-family we also get |A+X| = |A||X|.
Now let b ∈ B. As our sub-family is maximal, A + b must intersect A + x for some

x ∈ X. Thus b is an element of A−A+x. Since b was arbitrary, we have B ⊆ A−A+X.

Definition 1.11. (approximate group) Let K ≥ 1. An additive set H is said to be a
K-approximate group if it is symmetric (H = −H), contains the origin and H +H can
be covered by at most K translates of H.

The importance of approximate groups stems from this proposition:

Proposition 1.12. [TV06] Let A be an additive set and let K ≥ 1. Then the following
statements are equivalent up to constants:

• σ[A] ≤ KC1;

• |nA−mA| ≤ KC2(n+m)|A|;
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• there exists a KC3-approximate group H such that A ⊆ x +H for all x ∈ A, and
furthermore |A| ≥ K−C3 |H|.

If B is in the same ambient group as A, then the following two statements are also
equivalent up to constants:

• d(A,B) ≤ C1 log(K);

• there exists a KC2-approximate group H such that A ⊆ H + a and B ⊆ H + b for
all a ∈ A, b ∈ B, and furthermore |A|, |B| ≥ K−C2 |H|.

As we only state this proposition to clarify the importance of approximate groups, we
will not give a proof here, but refer to [TV06].

Essentially, this proposition implies that everything we have seen so far can also be
interpreted in terms of approximate groups; sumset estimates are nothing other than
estimates of specific approximate groups.

This proves to be very helpful, as it is possible to classify approximate groups in a
similar manner to normal finite groups. However, this goes beyond the scope of this
work and we must again refer to [TV06].

1.2 The Balog-Szemerédi-Gowers Theorem

The Balog-Szemerédi-Gowers Theorem is very important and used throughout additive
combinatorics, but what makes it especially interesting in this context is the fact that
its proof is entirely graph-theoretical.

To state the theorem we will first need to define partial sumsets:

Definition 1.13. (partial sumset) If A, B are additive sets with common ambient group
Z and G is a subset of A×B we define the partial sumset to be:

A
G
+ B := {a+ b : (a, b) ∈ G}

and the partial difference set :

A
G
− B := {a− b : (a, b) ∈ G}

Supposing we have information about a partial sumset between two additive sets A
and B, we want to be able to use this information for our estimation of the actual sumset
A+B.

The Balog-Szemerédi-Gowers Theorem lets us do just that, although it will be neces-
sary to slightly modify A and B.

Theorem 1.14. (Balog-Szemerédi-Gowers theorem)[TV06]
Let A, B be additive sets in an ambient group Z, and let G ⊆ A×B such that:

|G| ≥ |A||B|/K and |A
G
+ B| ≤ K ′|A|1/2|B|1/2,

15



for some K ≥ 1 and K ′ > 0. Then there exist subsets A′ ⊆ A, B′ ⊆ B such that

|A′| ≥ |A|
4
√
2K

|B′| ≥ |B|
4K

|A′ +B′| ≤ 212K4(K ′)3|A|
1
2 |B|

1
2

In particular we have

d(A′,−B′) ≤ 5 log(K) + 3 log(K ′) +O(1)

Looking back on the definition of partial sumsets, we can see that a graph-theoretical
approach to this problem is quite natural, as G can be viewed as a bipartite graph with
partitioned vertex set A ·∪B and edge set G.

We will try to count elements a + b with a ∈ A and b ∈ B by excluding multiple
representations of a+ b of the form:

a+ b = (a+ b′)︸ ︷︷ ︸
x

− (a′ + b′)︸ ︷︷ ︸
y

+(a′ + b)︸ ︷︷ ︸
z

.

If x, y, z ∈ G we can identify this triple with a path of length three in our graph
construction.

So our first task will be to count the number of paths of length three. We will do this
by first counting the number of length two paths, and then extending these to paths of
length three:

Lemma 1.15. (paths of length two)[TV06] Let G be a bipartite graph with vertex set

V (G) = A ·∪B and edge set E(G), with |E(G)| ≥ |A||B|
K for some K ≥ 1. Then, for any

0 < ε < 1, there exists a subset A′ ⊆ A such that

|A′| ≥ |A|√
2K

and such that at least (1− ε) of the pairs of vertices a, a′ ∈ A′ are connected by at least
ε

2K2 |B| paths of length two in G.

Proof. By decreasing K if necessary we may assume |E(G)| = |A||B|
K . Using some combi-

natorial identities and Cauchy-Schwarz we get:

Ea,a′∈A
|N(a) ∩N(a′)|

|B|
≥ 1

K2

Let Ω be the set of all pairs such that a, a′ are not connected by at least ε
2K2 |B| paths

of length two, i.e. |N(a) ∩N(a′)| < ε
2K2 |B|. This leads to:
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Ea,a′∈AI((a, a′) ∈ Ω)
|N(a) ∩N(a′)|

|B|
<

ε

2K2
.

If we rearrange this equation and use the pigeon-hole principle we get the following:

1

|A|2
∑

a,a′∈N(b)

(
1− 1

ε
I((a, a′) ∈ Ω)

)
≥ 1

2K2
.

Now let A′ := N(b). Thus |A′| ≥ |A|
|
√
2K| and |{a, a′ ∈ A′ : (a, a′) ∈ Ω}| ≤ ε|A′|2

Lemma 1.16. (paths of length three)[TV06] Let G be a bipartite graph with vertex set

V (G) = A ·∪B and edge set E(G) with |E(G)| ≥ |A||B|
K for some K ≥ 1. Then there exist

A′ ⊆ A, B′ ⊆ B with |A|′ ≥ |A|
4
√
2K

and |B′| ≥ |B|
4K , such that every a ∈ A′ and b ∈ B′ is

connected by at least |A||B|
212K4 paths of length three.

Proof. To prove this lemma we will first apply Lemma 1.15 to get paths of length two.
Then we will choose some of these paths and extend them by one edge.

To apply Lemma 1.15 we need to reduce our graph to an induced subgraph, by only
using those vertices of A that have degree at least |B|

2K . We can use Lemma 1.15 to get
a set A∗ of size:

|A∗| ≥ |A|
2
√
2K

,

such that 1 − 1
16K of the pairs a, a′ ∈ A∗ are connected by at least C|B|

128K3 paths of
length two, where C is a constant that derives from constructing the induced subgraph.

We delete vertices from A∗ such that at least
(
1− 1

8K

)
pairs are connected by at least

L2|B|
8K2 paths of length two, to get a set A′ of size:

|A′| ≥ |A|
4
√
2K

.

Now we only need to construct a B′ ⊆ B such that all demands of the statement are
met:

B′ :=

{
b ∈ B : |{a ∈ A∗ : (a, b) ∈ E}| ≥ |A∗|

4K

}
By some easy counting arguments we can see that this set has the right size.

If we pick an a ∈ A′ and a b ∈ B′ we can see that, by construction, b is adjacent to

at least |A∗|
4K elements of A∗ of which at least half are connected to a by at least L2|B|

8K2

paths of length two. Altogether we have at least:

|A||B|
212K4
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paths of length three.

Now that we have a bound for the paths of length three we can use this in the manner
implied in the beginning of this section:

Proof of Theorem 1.14. We can assume that A andB are disjoint, as this can be achieved
by modifying the ambient group. Let G be a graph with vertex set V (G) := A ·∪B and

edge set G. Using Lemma 1.16 we can find A′, B′ such that |A′| ≥ |A|
4
√
2K

, |B′| ≥ |B|
4K

and every pair a ∈ A′, b ∈ B′ is connected by at least |A||B|
212K4 paths of length three:

|{(a′, b′) ∈ A×B : (a, b′), (a′, b′), (a′, b) ∈ G}| ≥ |A||B|
212K4

.

By:

a+ b = (a+ b′)︸ ︷︷ ︸
x

− (a′ + b′)︸ ︷︷ ︸
y

+(a′ + b)︸ ︷︷ ︸
z

,

we can conclude that:

|{(x, y, z) : x, y, z ∈ A
G
+ B, x− y + z = a+ b}| ≥ |A||B|

212K4
. (1.1)

The total amount of triples (x,y,z) is bounded by:

|A
G
+ B|3 ≤ (K ′)3|A|

3
2 |B|

3
2 .

By dividing the right side of this inequality with the right side of 1.1 and thus elimi-
nating some of the multiple representations, we get:

|A′ +B′| ≤ 212K4(K ′)3|A|
1
2 |B|

1
2 .

If in practice there is difficulty in gaining any information even on the partial sumset,
the following proposition (which we will be needing later on) enables us to use the
additive energy between A and B to receive an estimate on a partial sumset.

Proposition 1.17. [TV06] Let A,B be additive sets in an ambient group Z. Then,
supposing:

E(A,B) ≥ |A|
3
2 |B|

3
2

K

for some K ≥ 1, then there exists G ⊆ A×B such that:

|G| ≥ |A||B|
2K

and |A
G
+ B| ≥ 2K|A

1
2 ||B|

1
2 .
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Proof. We set S to be:

S :=

{
x ∈ A+B : |A ∩ (x−B)| ≥ |A|

1
2 |B|

1
2

2K

}
.

This definition leads to the following:

|S||A|
1
2 |B|

1
2

2K
≤
∑
x∈S

|A ∩ (x−B)| ≤ |A||B|,

where the second inequality is implied by Proposition 1.9.

Now we can define the subset G that we are looking for:

G := {(a, b) ∈ A×B : a+ b ∈ S} .

Using the above inequalities, it is easy to show that G fulfils all the necessary proper-
ties.

1.3 Product Estimates

Up until now, we have been working with additive sets in commutative ambient groups.
Some of the results we have found can even be transposed into a non-commutative
setting.

In Chapter 1 we will rely heavily on product estimates as we will be dealing with
Cayley Graphs which are not necessarily defined over commutative groups. Most of the
results at the end of this section are prerequisites for Chapter 2 which are only proved
in this section to highlight the use of the concepts presented here.

We begin by defining the product set:

Definition 1.18. (product set) Let A, B be multiplicative sets in an ambient group G.
Then:

A ·B := {a · b : a ∈ A, b ∈ B}

Definition 1.19. (inverse set) Let A be a multiplicative set. Then:

A−1 := {a−1 : a ∈ A}

Definition 1.20. (iterated product set) Let A be a multiplicative set. Then:

A·n := A · ... ·A for n ≥ 1. A·0 := {1} and A·−n := (A·n)−1 = (A−1)·n

One obvious drawback in the non-commutative setting is the fact that, in general,
A ·B and B ·A will be very different sets with completely different cardinalities.
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The first manifestation of this fact arises with the non-commutative equivalent of the
Ruzsa distance, which will not be symmetric.
Thus we will have two different distances between the sets A and B, the left-invariant

Ruzsa distance d(A,B) and the right-invariant Ruzsa distance d∗(A−1, B−1).
It is standard to use the left-invariant version, which from now on, will be called the

Ruzsa distance and which is defined as follows:

Definition 1.21. ((left-invariant) Ruzsa distance) Let A, B be multiplicative sets in an
ambient group Z. Then:

d(A,B) := log

(
|A ·B−1|
|A|

1
2 |B|

1
2

)
Again this obeys the triangle inequality:

Lemma 1.22. ((left-invariant) Ruzsa triangle inequality) The left-invariant Ruzsa dis-
tance obeys the triangle inequality

d(A,C) ≤ d(A,B) + d(B,C)

for all multiplicative sets A, B, C with common ambient group Z.

Proof. As in the commutative case in Lemma 1.7 we get:

|AC−1| ≤ |AB−1||BC−1|
|B|

,

which yields the desired triangle inequality.

There is also a non-commutative equivalent of the additive energy:

Definition 1.23. (multiplicative energy) Let A, B be multiplicative sets with ambient
group Z. Then:

E(A,B) :=
∣∣{(a, a′, b, b′) ∈ A×A×B ×B : ab = a′b′}

∣∣ .
The properties of the multiplicative energy are not as strong as those of the additive

energy. But an equivalent version of Proposition 1.9 exists, and from this we can deduce
the following simple results, which are stated as an exercise in [TV06]:

Proposition 1.24. If A and B are multiplicative sets in the same ambient group, then:

i) E(A,B) ≥ |A|2|B|2
|A·B| ,

ii) E(A,A−1) = E(A−1, A).

Proof. i) This is just an implication of Proposition 1.9 and the Cauchy-Schwarz in-
equality.
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ii) For a, a′ ∈ A and b, b′ ∈ A−1 it is easy to see that a · b = a′ · b′ if and only if
b · (b′)−1 = a−1a′. Therefore (a, a′, b, b′) is in the set underlying the definition of
E(A,A−1) if and only if (b, a−1, (b′)−1, a′) is in the set underlying the definition of
E(A−1, A), proving the equation.

Before introducing theK-approximate group, we will quickly state a non-commutative
version of the Ruzsa covering lemma, which can be proved like the original:

Lemma 1.25. [TV06](non-commutative version of the Ruzsa covering lemma) Let A,
B be multiplicative sets in an ambient group G. Suppose that |A · B| ≤ K|A|. Then
there exists a finite set X ⊆ B of cardinality at most K, such that:

B ⊂ A−1 ·A ·X.

Proof. The proof is again an analogue of the commutative case.

Definition 1.26. (multiplicative K -approximate group) Let K ≥ 1. A multiplicative
set H is said to be a multiplicative K-approximate group if it is symmetric, contains the
identity, and is such that there is a set X of cardinality |X| ≤ K such that we have the
inclusions:

i) H ·H ⊆ X ·H ⊆ H ·X ·X, and

ii) H ·H ⊆ H ·X ⊆ X ·X ·H

As in the commutative setting, approximate groups can be used as an alternative to
describe product set estimates.

However, we must assume that |A ·A ·A| is small to avoid complications:

Lemma 1.27. [TV06] Let A be a multiplicative set in a group G, and let K ≥ 1. Then
the following statements are equivalent up to constants , in the sense that if the jth
property holds for some absolute constant Cj, then the kth property will hold for some
absolute constant Ck depending on Cj:

i) |A ·A ·A| ≤ KC1 |A|;

ii) there exists a KC2approximate group H containing A where |H| ≤ KC2 |A|.

Proof. i) ⇒ ii)
We define our approximate group H to be H ′ ·H ′ ·H ′ with H ′ = A ∪ {1} ∪A−1.
Using the Ruzsa triangle inequality and (i) we see that |H| ≤ KO(1)|A|.
As H is obviously symmetric and as A ⊆ H we only need to show the inclusions from

1.26. Again using the triangle inequality and (i) we see that |H ′ ·H ·H| ≤ KO(1). Thus
using the Ruzsa covering lemma, we can find a set Y ⊂ H · H and |Y | ≤ KO(1) such
that:
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H ·H ⊂ H ′−1 ·H ′ · Y ⊆ H · Y.

We embed Y in a symmetric set X = Y ∪ Y −1 to get:

H ·H ⊆ H ·X;H ·H ⊂ X ·H.

As X ⊂ H ·H:

H ·X ⊂ H ·H ·H ⊂ X ·H ·H ⊂ X ·X ·H.

ii) ⇒ i)

To prove this direction, we need to use the second inclusion from the definition from
1.26:

|A ·A ·A| ≤ |H ·H ·H| ≤ |H ·H ·X| ≤ |H ·X ·X| ≤ |H||X|2 ≤ KC2 |A||X|2.

As |X| ≤ KC2 there is a constant C1 only dependent on C2 such that this is less than
KC1 |A|.

We can also give an equivalent to Proposition 1.12:

Theorem 1.28. [TV06] Let A, B be multiplicative sets in a group G, and let K ≥ 1.
Then the following statements are equivalent up to constants, in the sense that if the jth
property holds for some absolute constant Cj, then the kth property will hold for some
absolute constant Ck depending on Cj:

i) d(A,B) ≤ C1(1 + log(K));

ii) there exists a C2K
C2-approximate group H such that |H| ≤ C2K

C2 |A|, A ⊂ X ·H
and B ⊂ Y ·H for some multiplicative sets X, Y of cardinality at most C2K

C2.

For the proof of this theorem we need the following lemma. As the equivalent state-
ment in [TV06] is faulty (mentioned in the errata), the author has modified the proof of
Proposition 4.5 in [Tao08] such that it is comprehensible in this context.

Lemma 1.29. [Tao08] Let A be multiplicative set such that d(A,A) ≤ log(K) for some

K ≥ 1. Then there exists a symmetric set S such that |S| ≥ |A|
2K and:

∣∣A · S·n ·A−1
∣∣ ≤ 2nK2n+1|A|,

for all integers n ≥ 1.
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Proof. We define S as:

S :=

{
x ∈ A−1 ×A : |A ∩ (A · x)| > |A|

2K

}
.

From Proposition 1.9 and Proposition 1.24 we can deduce that:

∑
x∈A−1·A

|A ∩ (A · x)|2 = E(A−1, A) = E(A,A−1) ≥ |A|4

A ·A−1
≥ |A|3

K
,

and that: ∑
x∈A−1·A

|A ∩ (A · x)| = |A|2.

Using these equations and bounding |A ∩ (A · x)| with |A| we get:

|A|
2K

≤ |S|.

Let x be an arbitrary element of A ·S·n ·A−1. We can write x = a0s1 . . . snb
−1
n+1, where

s1, . . . , sn ∈ S and a0, bn+1 ∈ A.

The value we will be interested in, is the cardinality of the following set:

Y :=
{
(y0, . . . , yn) ∈ (A ·A−1)×(n+1) : y0 · . . . · yn ∈ A · S·n ·A−1

}
Obviously, |A ·A−1|n+1 is an upper bound for this value.

For a lower bound, we need to take a look at a typical element x of A ·S·n ·A−1. This
can be written as:

x = a0s1 . . . snb
−1
n+1,

where a0, bn+1 ∈ A and s1, . . . , sn ∈ S.

We can expand x with arbitrary elements of the ambient group:

x = (a0c
−1
1 ) · (c1s1c−1

2 ) . . . · (cn−1sn−1c
−1
n ) · (cnsnbn+1),

where c1, . . . , cn ∈ Z.

For this to be a multiplication of n + 1 elements of A · A−1, it is necessary that
c1, . . . , cn ∈ A and c1s1, . . . , cnsn ∈ A. By the definition of S, this will be true in more

than
(

|A|
2K

)n
cases, giving us a lower bound for the cardinality of Y of |A·S·n·A−1|·

(
|A|
2K

)n
and thus proving the statement.

Now we are able to prove Theorem 1.28:
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Proof of Theorem 1.28. (i) ⇒ (ii):
By (i) we can deduce that d(A,A) = O(logK). Therefore we can apply Lemma 1.29

to A and get:

|A · S·3 ·A−1| ≤ KO(1)|A|. (1.2)

This implies that |S·3| ≤ KO(1)|S| and because of Lemma 1.27 we can find a O(KO(1))-
approximate group H of size at most KO(1)|A| containing S.
Equation 4.2 also implies that |A · S| ≤ KO(1)|A| and thus d(A,S) = O(logK).

Because H is a approximate group containing S we see that d(S,H−1) and the triangle
inequality yields:

|A ·H| ≤ KO(1)|A|.

Using this, we can apply the covering lemma to obtain a set Y of cardinality KO(1)

such that:

A ⊂ Y ·H ·H−1. (1.3)

As H is an approximate group, H = H−1 and H ·H ⊂ Z ·H for some set Z of size
KO(1). Thus, A ⊂ (Y · Z) ·H, with |Y · Z| ≤ KO(1).
The same property can be shown for B in an analogous way.
(ii) ⇒ (i):
This implication is a direct result of Lemma 1.27.

The Balog-Szemerédi-Gowers theorem retains its whole strength in the non-commutative
setting, as the proof is purely graph theoretical. It will be very important in Chapter 2,
were we will use its corollaries to examine expander-properties of Cayley graphs.

Theorem 1.30. (non-commutative version of the B-S-G theorem)[TV06]
Let A, B be multiplicative sets in an ambient group Z and let G ⊆ A×B be such that:

|G| ≥ |A||B|
K

and |A G· B| ≤ K ′|A|
1
2 |B|

1
2

for some K ≥ 1 and K ′ ≥ 0. Then there exist subsets A′ ⊆ A, B′ ⊆ B such that

|A′| ≥ |A|
4
√
2K

, |B′| ≥ |B|
4K

, |A′ ·B′| ≤ 212K4(K ′)3|A|
1
2 |B|

1
2

In particular we have:

d(A′, B′−1) ≤ 5 log(K) + 3 log(K ′) +O(1)

Proof. This theorem can be proved exactly the same way as the abelian version of the
BSG-Theorem, as the proof of that theorem was purely graph theoretical and did not
make any use of the assumed commutativity of the ambient group.
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As in the commutative case we have a link between the BSG-Theorem and the mul-
tiplicative energy:

Proposition 1.31. [TV06] Let A,B be multiplicative sets in an ambient group Z. Then,
supposing:

E(A,B) ≥ |A|
3
2 |B|

3
2

K

for some K ≥ 1, then there exists G ⊆ A×B such that:

|G| ≥ |A||B|
2K

and |A G· B| ≥ 2K|A|
1
2 |B|

1
2 .

Proof. The proof of this proposition is analogue to the commutative case.

Corollary 1.32. [TV06] Let A, B be multiplicative sets in an ambient group Z such
that:

E(A,B) ≥ |A|
3
2 |B|

3
2

K
,

for some K > 1. Then there exists a subset A′ ⊂ A such that:

• |A′| = Ω(K−O(1)|A|)

• |A′ · (A′)−1| = O
(
KO(1)|A|

)
for some absolute constant C.

Proof. As E(A,B) meets the prerequisites of Proposition 1.31, we get a set G ⊆ A×B
which lets us apply Theorem 1.30.

We receive A′, B′ with:

• |A′| = Ω
(
KO(1)|A|

)
• |A′ ·B′| ≤ 219K7|A|

1
2 |B|

1
2

• d(A′, B′−1) ≤ 8 log(2K)O(1)

Additionally we can use the triangle inequality of the Ruzsa-distance to get:

d(A′, A′) ≤ d(A′, B′−1) + d(A′, B′−1) = 2d(A′, B′−1)

Combining this, we get:

|A′ · (A′)−1| = O
(
KO(1)|A|

)
.
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There are also some interesting product estimates that are restricted to particular
groups.
A good example of such a theorem is the following:

Lemma 1.33. [Hel08] Let H be a subset of SL2(Fp). Assume that |H| < p3−δ for δ > 0
and that H is not contained in any proper subgroup of SL2(Fp). Then:

|H ·H ·H| > c|H|1+κ,

where c > 0 and κ > 0 depend only on δ.

The proof of this statement is very expansive and it will not be possible to present it
in this setting. Therefore we will present only the first step, which acts as a guide to the
further steps of the proof; in fact the following lemma already contains a very similar
statement.

Definition 1.34. Given a positive integer r and a subset A of a group G. We define Ar

to be the set of all products of at most r elements of A ∪A−1:

Ar :=
{
g1 · g2 · . . . · gr : gi ∈ A ∪A−1 ∪ {1}

}
.

Lemma 1.35. [Hel08] Let n > 2 be an integer. Let A be a finite subset of a group G.
Suppose that:

|An| > c|A|1+ε,

for some c > 0, ε > 0. Then

|A ·A ·A| > c′|A|1+ε′ ,

where c′ > 0, ε′ > 0 depend only on c, ε.

Proof. Using the inequality received in the proof of Lemma 1.22:

|AC−1| ≤ |AB−1||BC−1|
|B|

(1.4)

we get the following:

|An|
|A|

=
|An−2A2|

|A|
≤ |An−2A

−1|
|A|

|AA2|
|A|

≤ |An−1|
|A|

|A3|
|A|

.

By induction on n this leads to:

|An|
|A|

≤

(
|A3|
|A|

n−2
)
.

Now we need to bound A3 with a power of A ·A ·A. We can do this by bounding each
combination of |XY Z| where XY Z ∈ {A,A−1}.
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We will only bound two of these combinations here, the rest can be done easily by
taking inverses and replacing A by A−1.

Using equation 1.4 we get:

|AA−1A||A| = |AAA−1||A−1| ≤ |AAA||A−1A−1| ≤ |AAA|2,

and:

|AA−1A||A| ≤ |AA−1A−1||AA| = |AAA−1||AA| ≤ |AAA|2|AAA|.

Now we can adjust c′ and ε′ depending only on c, ε and n to get the desired statement.

Proving that |An| > c|A|1+ε is very hard and uses discrete Fourier-analysis. Thus we
must refer to [Hel08] for the rest of the proof.

Altogether, it can be said that while some of the results of additive combinatorics can
be transferred to a commutative setting, statements tend to be slightly weaker and some
results are missing completely. Many questions in this field are still open, and it is far
from being as conclusive as the theory of the commutative case.

1.4 Freiman Homomorphisms

In group theory it is often necessary to transfer a certain property or problem from one
group G to another group G′. We do this by using group homomorphisms.

Recall that:

Definition 1.36. (group homomorphism) Let G and G′ be two groups. We call a map
φ : G→ G′ a group homomorphism, if:

i) φ maps the unit element of G onto the unit element of G′,

ii) for all g1, g2 ∈ G we have φ(g1 + g2) = φ(g1) + φ(g2).

If in addition there is an inverse map φ−1 : G′ → G, which is a homomorphism, then
we say that φ is an isomorphism.

As the group homomorphisms are a very powerful tool, we want a similar construction
for additive sets. Group homomorphisms are not ideal with respect to additive sets;
firstly, we are not dealing with an additively closed group, and secondly, criterion (ii)
does not mirror any of the properties we have been interested in so far.

Therefore it is necessary to use a new construction, that of the Freiman homomor-
phism.

Definition 1.37. (Freiman homomorphism) Let s ≥ 1 and let A, B be additive sets
with ambient group Z and W respectively. A Freiman homomorphism φ, of order s,
from (A,Z) to (B,W ) is a map φ : A→ B with the property that:
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a1 + ...+ as = a′1 + ...+ a′s ⇒ φ(a1) + ...+ φ(as) = φ(a′1) + ...+ φ(a′s),

for all a1, ..., as, a
′
1, ..., a

′
s ∈ A. If in addition there is an inverse map φ−1 : B → A

which is a Freiman homomorphism of order s from (B,W ) to (A,Z), then we say that φ
is a Freiman isomorphism of order s, and that (A,Z) and (B,W) are Freiman isomorphic
of order s. We write this as (A,Z) ∼=s (B,W ).

As an abbreviation we will sometimes denote a Freiman homomorphism of order s
simply as an s-homomorphism and, as before, we will mostly drop the ambient group,
writing A instead of (A,Z).
Comparing these two definitions, we see that the Freiman homomorphism is weaker

than a group homomorphism. In fact, every group homomorphism can be turned into a
Freiman homomorphism of arbitrary order by restriction.
Also every Freiman homomorphism of order k is also a Freiman homomorphism of

order k′, for all k′ < k.

Example 1.38. • As already mentioned, if φ : G → G′ is a group homomorphism,
then it induces a Freiman homomorphism from (A,G) to (φ(A), G) of any order.

• If x ∈ G, then the translation map φ : G→ G defined by φ(g) := g+x is a Freiman
homomorphism from (A,G) to (A+ x,G) of any order.

• The sets {0, 1, 10, 11} and {0, 1, 100, 101} are Freiman isomorphic of order k, for
any k < 10, but not Freiman isomorphic of order k for any k ≥ 10.

Proposition 1.39. [TV06] Let (A,G) be an additive set, and let φ : (A,G) → (φ(A),H)
be a surjective Freiman homomorphism of order k. Then we have:

|ε1φ(A1) + . . .+ εkφ(Ak)| ≤ |ε1A1 + . . .+ εkAk| ,

whenever A1, . . . , Ak are non-empty subsets of A and ε1, . . . , εk = ±1.
If φ is in fact a Freiman isomorphism of order k, then we may replace the inequality

with equality. In particular, if A and B are Freiman isomorphic of order k, then:

|lB −mB| = |lA−mA|,

whenever l,m ≥ 0 and l +m ≤ k.

Proof. Define an equivalence relation v on A1 × . . .×Ak by declaring:

(a1, . . . , ak) v (a′1, . . . , a
′
k) ⇔ ε1a1 + . . . εkak = ε1a

′
1, . . . εka

′
k.

Rewriting the right-hand-side as:∑
j:εj=1

aj +
∑

j:εj=−1

a′j =
∑

j:εj=−1

aj +
∑

j:εj=1

a′j ,

we can see that this equivalence relation is respected by a Freiman homomorphism of
order k.
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The number of equivalence classes in A1 × . . .×Ak is:

|ε1A1 + . . .+ εkAk|.

Applying a Freiman k-homomorphism can only reduce the number of equivalence
classes as it respects the relation; this proves the lemma.

This lemma shows that Freiman isomorphisms do exactly what we need them to do:
preserve all relevant quantities (i.e. the cardinality of iterated sums and of difference
sets, and also the doubling constant and the energy) from one additive set to another.

We will be using Freiman homomorphisms in Section 3.2 so we will prove some of
the results needed for that section in this chapter, to illustrate the application of these
objects.

We will start with a very simple result, and after defining the Freiman dimension go
on to some more complex statements.

Proposition 1.40. [Gre05] Suppose that A ∼=6 B. Then:

i) A+A ∼=3 B +B and

ii) any C ⊆ A + A is 3-isomorphic to a subset of B + B. In particular we have
A+̂A ∼=3 B+̂B.

Proof. i) As A ∼=6 B there is a 6-isomorphism φ : A → B, i.e. a map, such that for
any a1, . . . , a6, a

′
1, . . . , a

′
6 with:

a1 + . . .+ a6 = a′1 + . . .+ a′6

we have:

φ(a1) + . . .+ φ(a6) = φ(a′1) + . . . φ(a′6).

Also as φ is a isomorphism, we get the same for φ−1.

We now define a new map φ′ : A+A→ B +B by:

φ′(c) = φ(a1) + φ(a2),

where a1, a2 ∈ A, c ∈ A+A and c = a1 + a2.

Suppose there are a′1, a
′
2 ∈ A such that a′1 + a′2 = c = a1 + a2. Then, as φ is a

6-isomorphism, we have φ(a1)+φ(a2) = φ(a′1)+φ(a
′
2). Therefore φ

′ is well-defined.

Let c1, c2, c3, c
′
1, c

′
2, c

′
3 ∈ A+A such that:

c1 + c2 + c3 = c′1 + c′2 + c′3,
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and a11, a12, . . . , a32, a
′
11, . . . a

′
32 such that:

ci = ai1 + ai2

and

c′i = a′i1 + a′i2,

for i ∈ {1, 2, 3}.
Then we get:

φ′(c1) + φ′(c2) + φ′(c3) = φ′(a11) + . . . φ′(a32) = φ′(a′11) + . . . φ′(a′32)

= φ′(c′1) + φ′(c′2) + φ′(c′3).

This proves that φ′ is a 3-homomorphism. It is an isomorphism, because φ is an
isomorphism.

ii) This can be proven by restricting φ′ to C.

Another result in this vein that we will need in the Chapter 3 is the following:

Lemma 1.41. [Gre05] The number of s-isomorphism classes of subsets of a vector space
W of size k is at most k2sk.

To prove this we need a statement about s-isomorphic sets in vector spaces.
Now let F be a field, k ∈ Z+ and W a vector space over F . Let Vk be a k-dimensional

vector space over F with basis {e1, . . . , ek}. For any sequence σ := {a1, . . . , ak} with
a1, . . . , ak ∈W define the linear map φσ : Vk →W by:

φσ

(∑
λiei

)
=
∑

λiei

For the following results we will need some notation:

Notation 1.42. • We say that v ∈ V is satisfied by σ if v ∈ kerφσ

• A vector of the form
ei1 + . . .+ eis − ej1 − . . .− ejs

is called an s-relation.

• Denote the set of all s-relations in Vk by Rs.

Lemma 1.43. [Gre05] Suppose that σ = (ai)
k
i=1 and σ′ = (a′i)

k
i=1 are two sequences

of distinct elements of W , and suppose that Span (Rs ∩ kerφσ) = Span (Rs ∩ kerφσ′).
Then the sets A = {a1, . . . , ak} and A′ = {a′1, . . . , a′k} are s-isomorphic.
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Proof. Because Rs ⊆W and kerφσ is a subspace of W , we get:

Rs ∩ Span (Rs ∩ kerφσ) = Rs ∩ kerφσ,

and thus:

Rs ∩ kerφσ = Rs ∩ kerφσ′ .

Due to this fact the map ψ : A→ A′ with ai 7→ a′i is an isomorphism.

Proof of Lemma 3.22. Let A = {a1, . . . , ak} be a subset of W and σ := (a1, . . . , ak). By
Lemma 1.43 we know that the number of s-isomorphism classes A is at most the number
of subspaces of Vk spanned by s-relations. There are at most k2s s-relations in Vk, and
for reasons of dimension any subspace of Vk is spanned by at most k of these.

Up until now, we have talked about additive sets as the tuple of an ambient group and
a subset of this group, without specifying what these ambient groups are and whether
it is important which one we use.

The same set can have many different ambient groups, and the choice of an ambient
group can greatly influence on the properties of such a set:

Example 1.44. [TV06] The additive sets ({1, 2, 3},Z7)), ({1, 2, 3},Z6)) and ({1, 2, 3},Z))
are all Freiman isomorphic of order 2.

The same set {1, 2, 3} in another ambient group, ({1, 2, 3},Z3)), however is not Freiman
isomorphic to the above additive sets and has a different additive structure.

To simplify we will introduce the concept of the universal ambient group, which will
fix an ambient group up to a k-isomorphism:

Definition 1.45. (universal ambient group) Let (A,G) be an additive set and let the
order k of the Freiman homomorphism be fixed.

We say that G is a universal ambient group (of order k) for the additive set A, if
every Freiman homomorphism φ : (A,G) → (B,H) has a unique extension to a group-
homomorphism φext : G→ H.

Using this definition, we can say that an additive group G′ is a universal ambient group
for (A,G) if there exists an additive set (A′, G′) which is Freiman isomorphic to (A,G)
such that G′ is a universal ambient group for A′; we then call (A′, G′) an embedding of
(A,G) inside the ambient group G′.

With this in mind we are equipped to introduce the Freiman dimension:

Definition 1.46. (Freiman dimension) Let A be an additive set. We define the Freiman
dimension of A to be the unique non-negative integer rZA = d such that G/Tor(G) is
group isomorphic to Zd+1 for every universal ambient group G of A.

The Freiman dimension is dependent on the order of the Freiman homomorphism used
for the universal ambient group (see Definition 1.45).
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We have given the definition of the Freiman dimension a very general form which will
not be very useful in practice. As we will only need the Freiman dimension of vector
spaces W over a field F , we give an equivalent definition, which holds only in this case:

Definition 1.47. Let W be a vector space over the field F and A ⊆ W . Then the
Freiman dimension of A is:

rF (A) = dimHom2(A,F )− 1,

where Homs(A,W
′) is the vector space of Freiman s-homomorphisms φ : A→W ′, for

a vector space W ′.

Using this definition, it is easy to see that:

dimHom2(A,W
′) = (rF (A))

dimW ′
. (1.5)

The statement we want to present in this context is:

Theorem 1.48. [Gre05] Let W and W ′ be finite-dimensional vector spaces over a field
F and let A ⊆W be a finite non-empty set of Freiman dimension r := rF (A).
Then there is a subset {a1, . . . , ar+1} ⊆ A with the following properties:

i) For any w′
1, . . . , w

′
r+1 ∈ W ′ there is a unique φ ∈ Hom2(A,W

′) with φ(ai) = w′
i

for i = 1, . . . , r + 1.

ii) If w′
1, . . . , w

′
r+1 from (i) are linearly independent, then φ is an isomorphism.

iii) If a ∈ A then there are λ1, . . . , λr+1 ∈ F (depending only on a) with:

λ1 + . . .+ λr+1 = 1F and

φ(a) = λ1φ(a1) + . . .+ λr+1φ(ar+1), for any φ ∈ Hom2(A,W
′).

However, first we will have to show this basic result on maps in general:

Lemma 1.49. [Gre05] Let F be a field and let A be a finite non-empty set. By Ψ we
denote the vector space of all maps from A to F and by Φ a subspace of Ψ.
If d = dimΦ, then there exists a subset {a1, . . . , ad} ⊆ A with the following properties:

i) For any f1, . . . , fd ∈ F there is a unique φ ∈ Φ with φ(ai) = fi, for all i ∈
{1, . . . , d};

ii) If a ∈ A then there are λ1, . . . , λd ∈ F (depending only on a) such that:

φ(a) = λ1φ(a1) + . . .+ λd(ad),

for any φ ∈ Φ.

If the constant map, which sends everything in A to 1F , lies in Φ then we may
assume that λ1 + . . .+ λd = 1.
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Proof. i) Let A = {a1, . . . , ak}. As a basis for Ψ we can choose the set {α1, . . . , αk},
where αi is the map defined by αi(aj) = δij .

As Φ has dimension d, we can find k − d of the αi which together with Φ span Ψ.
By relabelling we can assume the following:

Ψ = Φ⊕ Span(αd+1, . . . , αk). (1.6)

Therefore for any f1, . . . , fd ∈ F there are φ ∈ Φ and ed+1, . . . , ek ∈ F such that:

f1α1 + . . .+ fdαd = φ+ ed+1αd+1 + . . .+ ekαk,

and thus φ(ai) = fi, for all i ∈ {1, . . . , d}. φ is unique because we have a direct
sum in 1.6.

ii) Let tx(φ) : Φ → F be a linear functional such that tx(φ) = φ(x). As the space
of linear functionals from Φ to F has dimension d, ta, ta1 , . . . , tad are linearly de-
pendent for a fixed a. Thus we can find µ, µ1, . . . , µd ∈ F , not all zero, such
that:

µta(φ) + µ1ta1(φ) + . . .+ µdtad(φ) = 0, (1.7)

for any φ ∈ Φ.

If µ were zero, we would get a contradiction to (i). Thus we have the wanted
equation with λi = −µ−1µi.

Suppose the constant map lies in Φ. Then 1.7 implies that:

λ1 + . . . λd = 1.

Now we have the necessary instruments to prove Theorem 1.48

Proof of Theorem 1.48. As we have:

Hom2(A,F
n) ∼= (Hom2(A,F ))

n ,

we can prove (i) and (iii) by applying Lemma 1.49.

For (ii) suppose that φ ∈ Hom2(A,W
′) is not an isomorphism, i.e. that there are

b1, b2, b3, b4 ∈ A such that:

φ(b1) + φ(b2) = φ(b3) + φ(b4) and b1 + b2 6= b3 + b4

By the previous part we get λ1i , λ2i , λ3i , λ4i ∈ F , for b1, b2, b3, b4 respectively, such
that:
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ψ(b1) + ψ(b2)− ψ(b3)− ψ(b4) =

r+1∑
i=1

(λ1i + λ2i − λ3i − λ4i)ψ(ai),

for all vector spaces V over F and all ψ ∈ Hom2(A, V ). As b1 + b2 − b3 − b4 6= 0, by
setting V to W and ψ to id we see that not all the (λ1i + λ2i − λ3i − λ4i) are equal to
zero.
So, let ψ = φ and V = W ′. We then see that φ(a1) = w′

1, . . . , φ(ar+1) = w′
r+1 is

linearly dependent.
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2 Cayley Graphs and Expanders

2.1 Cayley Graphs

Cayley graphs were employed for the first time by Arthur Cayley in 1878 to visualize
groups. Both Dehn, in 1911, and Schreier, in 1927, noticed that the concept of Cayley
graphs could be used for more than mere visualization, using it to prove results in
algebra.

Since then Cayley graphs have undergone several waves of interest. In 1969 the Lovasz
conjecture, stating that every connected vertex transitive graph contains a Hamiltonian
path [Lov70], renewed the attraction of Cayley graphs.

Soon it was conjectured that every connected Cayley graph with three or more vertices
is Hamiltonian [GM05].

This conjecture resulted in many publications proving Hamiltonicity for different types
of groups, the full conjectures though (both the Lovasz conjecture and the above) are
still open.

The next wave of interest came with the advent of expanders in the 1970’s. In fact,
the first construction of an explicit family of expander graphs by Margulis [Mar73] is
implicitly derived from Cayley graphs on SL3(p) of 3 × 3 matrices with determinant 1
over Fp [HLW06].

Since then many Cayley graphs have been shown to be expanders, for example some
Cayley graphs on SL2(p) in [Lub94] or more recently in [BG08].

In this chapter we will concentrate on the expander properties of Cayley graphs. We
will begin with a formal definition of a Cayley graph:

Definition 2.1. (Cayley graph) Let G be a finite group and S a subset of G such that
e /∈ S and for every s ∈ S we have s−1 ∈ S.

Then the Cayley graph induced by S on G, Cay(G,S), is the graph with vertex set G
and edge set E(Cay(G,S)) := {{x, y} : xy−1 ∈ S}

Remark 2.2. The following properties of Cayley graphs can be shown very easily:

• Every Cayley graph Cay(G,S) is |S|-regular

• Cayley graphs are vertex transitive

• A Cayley graph is connected if and only if S generates the group G

Definition 2.3. (adjacency matrix) Let G be a graph and |G| = n. The adjacency
matrix of G, A(G), is a |G| × |G| matrix with rows and columns indexed by the vertices
of G, such that the i, j entry is 1 if and only if {i, j} ∈ E(G).
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With λ0 ≥ λ1 ≥ . . . ≥ λn−1 we shall denote the eigenvalues of of the adjacency matrix
A(G) in descending order.

The set of eigenvalues of A(G), {λ0, λ1, . . . , λn−1} is called the spectrum of G. The
value λ0 − λ1 is called the spectral gap.

The adjacency matrix of an undirected graph is symmetric. Therefore all the eigen-
values are real.

Further on we will be interested in the eigenvalues of Cayley graphs and addition
Cayley graphs. For this purpose we need to introduce characters:

Definition 2.4. (character) A character of a group G is a homomorphism χ : G→ C∗.

Our use of characters will only be very superficial. Therefore we will not delve too far
into this rather complicated subject, but instead state some necessary properties:

Remark 2.5. Characters of groups have the following simple properties:

• The trivial character maps all elements of G to 1.

• Because χ is a homomorphism we have χ(gh) = χ(g)χ(h) for all g, h ∈ G.

• If G is the cyclic group Zn we have:

χk(g) = e
2πikh

n ,

for g ∈ G.

Using characters we can completely describe the eigenvalues of Cayley graphs (but
whether they can be efficiently calculated is dependent on the group):

Lemma 2.6. [HLW06] Let Â be the normalized adjacency matrix of the Cayley graph
Cay(G,S) and χ a character of G. Then the vector (χ(h))h∈G is an eigenvector of Â,
with eigenvalue:

1

|S|
·
∑
s∈S

χ(s),

and the trivial character corresponds to the trivial eigenvalue.

Proof. This can be proved in the following way:

(
Â · χ

)
(h) =

1

|S|
∑
s∈S

(χ(h)χ(s)) =
1

|S|

(∑
s∈S

χ(s)

)
· χ(h).
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2.2 Expanders

Cayley graphs have many interesting properties. One of these is that they can be used
to construct families of expander graphs.

Roughly, an expander is a graph which is both sparse and highly connected. There
are many ways to characterise expanders and in this section we want to introduce two
of these: the standard characterisation, and an algebraic variant.

Expanders are an important tool in many fields of mathematics, but also in computer
science and physics. For example, they are used to construct communication networks,
for error-correcting codes and also to create pseudo-randomness.

As mentioned, one way to construct expanders is to use Cayley graphs, in fact the
first construction of an explicit family of expander graphs [Mar73] used methods derived
from Cayley graphs on the groups SL3(p) [HLW06].

In 1994 a similar construction for SL2(p) was found by Lubotzky [Lub94]. In the next
section we will explain this in more detail, as the result which we want to present will
be an improvement on this construction, which was made by Bourgain an Gamburd in
2008 [BG08] using methods from additive combinatorics.

In the following we will give a short introduction to expanders and explain the con-
nection between these and Cayley graphs. A more thorough introduction to this field
can be found in a paper by Hoory, Linial and Widgerson [HLW06].

From now on in this section, all graphs will be d-regular.

To give an explicit definition of expanders, we first have to define the expansion ratio:

Definition 2.7. (expansion ratio) Let G be a graph. The expansion ratio of G is defined
as:

c(G) := min
{S:|S|≤n

2
}

|δS|
|S|

The expansion ratio is also sometimes called the expansion of G.

Obviously we now want to examine the size of c(G) for a given graph G, or for a family
of graphs {Gi∈N}.

In particular, it will be of interest whether the expansion ratio can be zero. If we can
exclude this for a whole family of graphs, then we have a family of expanders:

Definition 2.8. (family of expanders) A sequence of d-regular graphs {G}i∈N of size
increasing with i is a family of expander graphs if there exists ε > 0 with:

c (Gi) > ε, for all i.

Sometimes it is useful to know whether the expansion ratio of a family of expanders
is larger or equal than a given constant C. Then we speak of a family of C-expanders:

Definition 2.9. (C-expander) A family of d-regular graphs Gn,d forms a family of C-
expanders if there is a fixed positive constant C, such that:
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lim inf
n→∞

c(Gn,d) ≥ C

Now we are able to give some examples of expanders:

Example 2.10. We let {Gi∈N} be a family of expanders with:

• V (Gi) := Zi × Zi;

• d = 8;

• every vertex (x, y) has edges to: (x + y, y), (x − y, y), (x, y + x), (x, y − x) and
(x+ y + 1, y), (x− y + 1, y), (x, y + x+ 1), (x, y − x+ 1).

Example 2.11. We let {Gp∈N}, p prime, be a family of expanders with:

• V (Gp) := Zp;

• d = 3;

• every vertex x has edges to x+ 1, x− 1 and x−1, where 0−1 := 0 (Figure 2.1).

0

1

6

2

34

5

Figure 2.1: G7
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With these definitions in mind, we can now progress to give an algebraic definition of
expander graphs. To do this we will use the spectrum of G, i.e. the eigenvalues of A(G),
defined in the last section.

As already mentioned, it will be of interest to describe the size of c(G) and using the
spectrum of G, we can give first upper and lower bounds:

Theorem 2.12. [Dod84, AM85, Alo86] Let G be a d-regular graph. Then:

d− λ1
2

≥ c(G) ≥
√

2d(d− λ1)

Using this theorem, we can formulate an algebraic expansion criterion, as the expan-
sion of G can only be zero, if d = λ1. Thus we have:

Definition 2.13. (family of expanders, algebraic version) A family of graphs Gi forms
a family of C-expanders if:

lim sup
i→∞

λ1(A(Gi)) < d,

where λ1 denotes the second largest eigenvalue of the adjacency matrix A(Gi).

We call d− λ1 the spectral gap.

We can see that by determining or bounding the spectral gap, we can also bound the
expansion ratio from both sides.

In the following we will present some bounds for the spectral gap. The first will be
the Expander Mixing Lemma:

Definition 2.14. (E(S, T )) Let G be a graph. For S, T ⊂ V (G) we denote the set of
edges from S to T , by:

E(S, T ) := {{u, v} : u ∈ S, v ∈ T, {u, v} ∈ E(G)}

Definition 2.15. Let G be a graph and let {λ0, . . . , λn−1} be its spectrum. Then
λ := max (λ1, λn−1).

Lemma 2.16. (expander mixing lemma)[HLW06] Let G be a d-regular graph with n
vertices and let λ := max (λ1, λn−1). Then for all S, T ⊆ V (G):∣∣∣∣|E(S, T )| − d|S||T |

n

∣∣∣∣ ≤ λ
√
|S||T |.

As defined above |E(S, T )| is the number of edges between S and T . On the other

hand, d|S||T |
n denotes the expected number of edges between S and T in a random graph.

Thus when λ is small, i.e. the spectral gap large, the number of edges between S and
T in G is very similar to that of a random graph.
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Proof of Lemma 2.16. We begin with some notation:
Let A denote the adjacency matrix of G. Then λ0, . . . , λn−1 are the eigenvalues in

order of their size and v0, . . . , vn−1 respective eigenvectors that form an orthonormal
basis. 1S and 1T are the characteristic vectors of S and T respectively, i.e. the vectors
that are 1, if a vertex is in S (respectively T ) and zero otherwise.
We can represent these vectors with the above basis: 1S =

∑n−1
i=0 αivi, 1T =

∑n−1
i=0 βivi

Now we have:

|E(S, T )| = 1SA1T =
n−1∑
i=0

αiviA
n−1∑
i=0

βivi.

Using the fact that {vi}i is an orthonormal basis of eigenvectors we get:

n−1∑
i=0

λiαiβi.

We know from Section 2.1 that v0 =
1√
n
1 and λ0 = d, because G is d-regular. Therefore

α0 =
〈
1S ,

1√
n
1

〉
= |S|√

n
and β0 =

〈
1T ,

1√
n
1

〉
= |T |√

n
. So we get:

|E(S, T )| = d
|S||T |
n

+

n−1∑
i=1

λiαiβi.

Finally we can use the definition of λ and Cauchy-Schwarz to get our result:

∣∣∣∣|E(S, T )| − d
|S||T |
n

∣∣∣∣ =
∣∣∣∣∣
n−1∑
i=1

λiαiβi

∣∣∣∣∣ ≤ λ
n−1∑
i=1

|αiβi| ≤ λ ‖α‖2 ‖β‖2

= λ ‖1S‖2 ‖1T ‖2 = λ
√

|S||T |.

As we have seen, the spectrum of a graph is critical for its expander properties. Hence
the following concept is very useful in the theory of expansion:

Definition 2.17. ((n, d, λ)-graph) A (n, d, λ)-graph is a d-regular graph on n vertices,
in which the absolute value of each non-trivial eigenvalue of its adjacency matrix is at
most λ.

An upper bound for the spectral gap was given by Alon, Boppana, Nilli, and Fried-
mann:

Theorem 2.18. [Nil91, Fri93] There exists a constant c, such that for every d-regular
graph G with |V (G)| = n and diameter ∆:

λ1 ≥ 2
√
d− 1 ·

(
1− c

∆2

)
.
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2.3 Expander Properties of Cayley Graphs over SL2(Z)

Let S be a subset of SL2(Z). Then by using the natural projection of S modulo p (p being
an arbitrary prime number), i.e., Sp, we can generate a Cayley graph: Cay(SL2(Fp), Sp).

The question to be answered in this section is whether these Cayley graphs are ex-
panders.

In [Lub95] Lubotzky formulated this question in a slightly different manner, as the
1-2-3 question:

Problem 2.19. Let p ≥ 5 be a prime. Define

S1
p :=

{(
1 1
0 1

)
,

(
1 0
1 1

)}

S2
p :=

{(
1 2
0 1

)
,

(
1 0
2 1

)}

S2
p :=

{(
1 3
0 1

)
,

(
1 0
3 1

)}
and let Gi

p := Cay(SL2(Fp), S
i
p), for i ∈ {1, 2, 3}. The question is whether any of the

Gi
p form a family of expanders.

As
〈
S1
〉
and

〈
S2
〉
have finite index in SL2(Z), G1

p and G2
p are families of expanders as

p→ ∞ (this is shown in Theorem 4.3.2 of [Lub94]).〈
S3
〉
on the other hand, has infinite index and is thus not covered by [Lub94]. So the

question remains whether G3
p is a family of expanders.

Fortunately, it was resolved in a recent result by Bourgain and Gamburd [BG08], who
give a necessary and sufficient criterion for S, such that Cay(SL2(Fp), Sp) forms a family
of expanders:

Theorem 2.20. [BG08] Let S be a set of elements in SL2(Z). Then the the Cayley
graphs Cay(SL2(Fp), Sp) form a family of expanders if and only if 〈S〉 is non-elementary,
i.e. the limit set of 〈S〉 consists of more than two points (equivalently 〈S〉 does not contain
a solvable subgroup of finite index).

This theorem is a result of Theorem 2.21 stated below.

Theorem 2.21. [BG08] Fix k ≥ 2 and suppose that Sp = {g1, g−1
1 , . . . , gk, g

−1
k } is a

symmetric generating set for SL2(Fp) such that:

girth(Cay(SL2(Fp), Sp)) ≥ τ log2k(p),

where τ is a fixed constant independent of p.
Then the Cayley graphs Cay(SL2(Fp), Sp) form a family of expanders.

A large part of the proof of this theorem uses additive combinatorics. Therefore, as we
are particularly interested in the connection between additive combinatorics and Cayley
graphs, we will present the part of the proof using additive combinatorics in detail, while
sketching the rest of the proof to give an idea how the result is achieved.
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Proof of Theorem 2.21. To prove this theorem we need to show two things:

• We need to show that all the non-trivial eigenvalues of A(SL2(Cay(Fp)), Sp) appear
with a high multiplicity, and

• We need to give an upper bound of the number of short closed cycles, i.e. the
number of returns to identity for random walks of length of order log (|SL2(Fp)|).

We will begin by bounding the number of short closed cycles.
To find an upper bound of the short closed cycles, we will use methods from additive

combinatorics. As we are dealing with sets which are not necessarily commutative, we
will use some of the non-commutative product set estimates which were presented in
Chapter 1.
While proving spectral gap results (and thus results on expanders) in the above way

was already used in [SX91] in 1991, the idea of using additive combinatorics in this
context is novel to the paper by Bourgain and Gamburd ([BG08]) presented in this
section.
By W2l we denote the number of closed walks from identity to itself of length 2l. It

will now be our aim to bound this value.
First we need to define the following probability measure :

Definition 2.22. Let G be a group and S ⊆ G a generating set. Then we define µS as:

µS(x) :=
1

|S|
∑
g∈S

δg(x),

where

δg(x) :=

{
1, if x = g,
0, if x 6= g;

We let µ(l) denote:

µ(l) := µ ∗ · · · ∗ µ︸ ︷︷ ︸
l

where:

µ ∗ ν(x) :=
∑
g∈G

µ(xg−1)ν(g).

And we define ‖ν‖2 and ‖ν‖∞ as:

‖ν‖2 :=

∑
g∈G

ν2(g)

 1
2

,

and
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‖ν‖∞ := max
g∈G

ν(g).

With this notation in mind, we need to examine the value µ
(2l)
Sp

(1). By writing this
expression out and comparing it to the definition of the Cayley graph, we can see that this
value effectively counts the number of closed walks from identity to itself, the δ-operator
checking if the necessary edges are in place. Thus we get the following equation:

µ
(2l)
Sp

(1) =
W2l

(2k)2l

Now we can reduce searching for a bound of closed walks from identity to itself to

bounding the probability µ
(2l)
Sp

(1):

Lemma 2.23. [BG08] Suppose G (SL2(Fp), Sp) with |Sp| = 2k satisfies:

girth(G (SL2(Fp), Sp)) ≥ τ log2k(p).

Then for any ε > 0 there is C(ε, τ) such that for l > C(ε, τ) log2k(p):∥∥∥µ(l)Sp

∥∥∥
2
< p−

3
2
+ε.

Before we prove this lemma we will finish the proof of Theorem 2.21.
We have:

µ
(2l)
Sp

(1) =
∑
g∈G

µ(l)(g)µ(l)(g−1) =
∑
g∈G

(
µ(l)(g)

)2
=
∥∥∥µ(l)∥∥∥2

2
,

as Sp is a symmetric generating set.
We can use the bound obtained in Lemma 2.23:

W2l = µ
(2l)
Sp

(1)(2k)2l <
(2k2l)

p3−2ε
.

Let N = |SL2(Fp)|. It can be shown that for p large enough Sp generates all of
SL2(Fp), implying that Cay(SL2(Fp), Sp) is connected. Therefore we can write the
eigenvalues of the adjacency matrix A as:

2k = λ0 > λ1 ≥ . . . ≥ λN−1 ≥ −2k.

Also it can be shown, using a result by Frobenius [Fro96], that the multiplicity of each
of these eigenvalues can be bounded in the following way:

mp(λi) ≤
p− 1

2
,

for 0 ≤ i < N , where mp(λ) denotes the multiplicity of λ.
Now we need to link W2l to the eigenvalues. The following equation can be easily

shown by induction, as the left side is simply the trace of A2l:
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N−1∑
j=0

λ2lj = NW2l.

As all summands of the left hand side are positive we get:

N−1∑
j=0

λ2lj > mp(λ1)λ
2l
1 .

Now we apply the lower bound for the multiplicity and for l > C(ε) log(p) we have:

p− 1

2
λ2l1 <

N−1∑
j=0

λ2lj = NW2l < |SL2(Fp)|
(2k2l)

p3−2ε
.

Now |SL2(Fp)| = p(p2 − 1) < p3 and thus we have:

λ2l1 <<
(2k)2l

p1−2ε
.

For l = C(ε, τ) log(p) we get:

λ1 < (2k)
1− 1−2ε

C(ε) < 2k,

proving that:

lim sup
n→∞

λ1(An,d) < 2k = d,

and therefore that we have a family of expander graphs.

The only statement that remains to be shown to prove Theorem 2.21, is Lemma 2.23.
To prove Lemma 2.23 we will need the following:

Lemma 2.24. [BG08] Suppose ν ∈ P(G) is a symmetric probability measure on G; that
is,

ν(g) = ν(g−1),

satisfies the following three properties for fixed positive γ, 0 < γ < 3
4 :

i)
‖ν‖∞ < p−γ ,

ii)

‖ν‖2 > p−
3
2
+γ ,

iii)
ν(2)[G0] < p−γ, for every proper subgroup G0.
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Then for some ε(γ) > 0, for all sufficiently large p:

‖ν ∗ ν‖2 < p−ε ‖ν‖2

Lemma 2.24 is of the most interest to us, as its proof contains the aforementioned
arguments from additive combinatorics.

Therefore, we will prove this statement in detail, and then pass quickly through the
proof of Lemma 2.23 which is highly technical and not of interest in this context.

Proof of Lemma 2.24. We will prove this lemma by contradiction. Assuming that:

‖ν ∗ ν‖ ≥ p−ε ‖ν‖2 (2.1)

and show that this assumption implies that there is a proper subgroup G0 such that:

ν(2)[G0] > p−γ . (2.2)

Our task is to construct a subgroup G0 that leads to this desired contradiction to (iii).
To do this we will apply methods from additive combinatorics and some of the results
shown in Chapter 1.

The first result we need to use is the Balog-Szemerédi-Gowers Theorem (Theorem
1.30), so it is necessary to find a link between the probability measures from the lemma
and the multiplicative energy E(A,B) which is one of the prerequisites of the BSG-
Theorem. This link is given by the following equation:

E(A,B) =
∣∣{(a, a′, b, b′) ∈ A×A×B ×B : ab = a′b′}

∣∣ = ‖1A ∗ 1B‖22 ,

which can easily be deduced from the definition of ‖1A ∗ 1B‖2.
Set J := 10 log(p). Our next step is to define a new probability measure with the

above equation in mind:

ν̃ :=

J∑
j=1

2−jmathbbm1Aj ,

where Aj are the level sets of the measure ν:

Aj := {x : 2−j < ν(x) ≤ 2−j+1},

for 1 ≤ j ≤ J .

After some easy computations we obtain:

ν̃(x) ≤ ν(x) ≤ 2ν̃(x) +
1

p10
,

which in turn implies:

‖ν̃ ∗ ν̃‖2 > p−ε ‖ν̃‖2 ,
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as 2.1 holds for ε arbitrarily small.

As ν̃ was constructed with the definition of the multiplicative energy in mind, we are
now able to find two sets A and B which fulfil the prerequisites of the BSG-Theorem.

We can find j1 and j2 such that:

p−2ε|Aj1 |
3
4 |Aj2 |

3
4 ≤

∥∥∥1Aj1
∗ 1Aj2

∥∥∥
2
= E(Aj1 , Aj2),

and:

min
(
2−j1 |Aj1 |, 2−j2 |Aj2 |

)
≥ p−ε

J2
(2.3)

Let A := Aj1 and B := Aj2 , then we have:

E(A,B) ≥ p−4ε|A|
3
2 |B|

3
2 .

Thus we can apply Corollary 1.32 which yields a set A1 ⊂ A such that:

|A1| > p−ε1 |A| and
∣∣A1A

−1
1

∣∣ < pε1 |A1|,

where ε1 := 4C1ε with an absolute constant C1.

Using these properties we get the following bound for the Rusza distance between A1

and A−1
1 :

d(A1, A
−1
1 ) = log

(∣∣A1A
−1
1

∣∣
|A1|

)
< ε1 log(p).

The set A1 is the first step to constructing a proper subgroup which fulfils Equation
2.2. Using the bound for the Rusza distance, we will construct an approximate group
H which in the end will be contained in our proper subgroup.

Theorem 1.28 can be used to make a connection between the Rusza distance and
approximate groups.

Let ε2 := C2ε1 with an absolute constant C2. We apply Theorem 1.28 to obtain a
pε2-approximate group H with the following properties:

• |H| < pε2 |A1|,

• A1 ⊂ XH and

• A1 ⊂ HY with |X||Y | < pε2 ,

where Y and X are sets that result from the application of the theorem.

We need to find a x0 ∈ X such that ν(x0H) is as large as we need it to be. We can
exploit the construction of A = Aj1 ⊃ A1 to calculate ν(A) > 2−j1 |A|. Also there is a
x0 ∈ X such that:

|A1 ∩ x0H| > p−ε2 |A1|,
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because A1 ⊂
⋃

x∈X xH and |X| < p−ε2 .

Combining this we get:

ν(x0H) > ν(A1 ∩ x0H) > 2−j1p−ε2p−ε1 |Aj1 |.

Due to 2.3 we can reduce this inequality to:

ν(x0H) > p−(ε1+ε2+2ε) (2.4)

As ε1 and ε2 depend on ε we can choose γ sufficiently small such that:

ν(x0H) > p−
γ
2 . (2.5)

Because of the definition of ν(2), this would yield the desired contradiction 2.2 if H
were a proper subgroup. The final step of this proof will then be to find a subgroup G0

which contains H, immediately contradicting (iii) and proving the result.

To find a proper subgroup we will use Lemma 1.33. If we can show that:

• |H| < p3−δ for some δ > 0 and

• |H ·H ·H| < c|H|1+κ with c > 0 and κ > 0 depending only on δ,

then Lemma 1.33 equips us with a proper subgroup G0 of SL2(Fp) containing H and
we are done.

Due to the construction of the Aj we can rewrite 2.4 as:

|H| < pε3 |A1| ≤ pε3 |Aj1 | ≤ pε22j1

After some more computations we can give a bound for 2j1 :

2j1 ≤ p3−2γ+4ε.

Combining these two inequalities yields:

|H| ≤ p3−2γ+4ε+ε2 ,

which proves the first property.

To prove the second property we use this fact about approximate groups which was
shown in Chapter 1:

|H ·H ·H| < p2ε2 |H|

Using (i) and 2.5 we get:

p−ε3 < ν(x0H) ≤
∑

x∈x0H

ν(x) < |H| ‖ν‖∞ < |H|p−γ

Altogether we have:
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|H ·H ·H| < |H|1+
2ε2

γ−ε3 ,

as desired.

Using Lemma 2.24 we can prove Lemma 2.23:

Proof of Lemma 2.23. To prove this lemma we need to apply Lemma 2.24 to ν = µ
(l)
Sp

for l log(p) and a symmetric set of generators Sp of cardinality 2k, such that the large
girth condition of the lemma is fulfilled.

We will just assume that µ
(l)
Sp

obeys all the conditions of Lemma 2.24, as proving this
is highly technical and not of interest in this context.

Because µ(2l)(1) =
∥∥∥µ(l)Sp

∥∥∥2
2
, as shown before, we can see that

∥∥∥µ2lSp

∥∥∥
2
=
∥∥∥µ(l)Sp

∥∥∥2
2
which

implies: ∥∥∥µ(l)Sp

∥∥∥ < p−δ,

for some δ > 0 depending only on γ from Lemma 2.24, which proves the statement.

This concludes the proof of Theorem 2.21. We still need to explain why Theorem 2.21
implies Theorem 2.20. Most of the work of this is done in the following lemma:

Lemma 2.25. [Gam02] Let S be a symmetric set of elements in SL2(Z) such that 〈S〉
is a free group. Let α(S) := maxL∈S ‖L‖. Then we we have:

girth(Cay(SL2(Fp), Sp)) ≥ 2 logα

(p
2

)
As the proof of this lemma is mostly algebraic in nature, we will not state it here, but

refer to [Gam02].
Now we have all the prerequisites for the proof of Theorem 2.20 and all that remains

is to combine these:

Proof of Theorem 2.20. If 〈S〉 is a free group then Lemma 2.25 furnishes us with the
lower bound of the girth that we need to apply Theorem 2.21. Thus the Cay(SL2(Fp), Sp)
form a family of expanders.
Otherwise we look at 〈S〉 ∩H, where H denotes the Sanov group which is generated

by the following elements: (
1 0
2 1

)
,

(
1 2
0 1

)
.

It is a well known fact that H is a free group generated by these two elements [San47].
Therefore 〈S〉 ∩ H is a free group and also a subgroup of 〈S〉, so that the large girth
condition from Lemma 2.25 holds.

48



Theorem 2.20 completely resolves the question raised by Lubotzky, but Theorem 2.21
also has another interesting implication for random Cayley graphs, i.e. for Cayley graphs,
whose set S is chosen independently at random:

Corollary 2.26. [BG08] Fix k ≥ 2. Let g1, . . . , gk be chosen independently at random in
SL2(Fp) and set Srand

p := {g1, g−1
1 , . . . , gk, g

−1
k }. There is a constant, κ(k), independent

of p such that as p→ ∞ asymptotically almost surely:

λ1(A(Cay(SL2(Fp), S
rand
p ))) ≤ κ < 2k

For the proof of this corollary we need the following lemma, whose proof however will
not be presented here, as it deviates from our main interest:

Lemma 2.27. [GHS09] Let d be a fixed integer greater than 2. As p → ∞, asymp-
totically almost surely the girth of the d-regular random Cayley graph of SL2(Fp) is at
least: (

1

3
− o(1)

)
· logd−1 (|G|) .

Proof of Corollary 2.26. As Cay(SL2(Fp), S
rand
p ) is a 2k-regular random Cayley graph

Lemma 2.27 supplies us with a lower bound of the girth of this graph. This bound is
enough to apply Theorem 2.21, which implies that the Cay(SL2(Fp), S

rand
p ) are a family

of expanders. The statement in the theorem follows from the algebraic characterisation
of expanders.

As stated in the beginning of this section, the additive combinatorial approach to this
type of problem was novel in [BG08].

This raises the question of whether similar techniques to the ones applied here might
find use in the theory of expanders. Especially Lemma 2.24 seems very general and may
even be applied outside the context of SL2(Z).

For this to be possible, however, it is necessary to find statements in the vein of
Lemma 1.33 for other groups than SL2(Z). The theory of product estimates is still not
as advanced as its commutative counterpart, but the statements found so far, indicate
that, particularly for special groups, strong results are possible.
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3 Addition Cayley Graphs and Additive
Combinatorics

The former chapter has shown that additive combinatorics can be used to prove state-
ments about Cayley graphs. However, it has not been possible to find any results on
additive combinatorics using Cayley graphs in their proofs.

Even in the proof just shown for the expanding properties of Cayley graphs, it was
necessary to use the non-commutative theory of additive combinatorics, which is in no
way as advanced as the commutative theory.

Therefore, we will turn to a rather new variant of the Cayley graph: the addition
Cayley graph. To differentiate more clearly between these two, we will sometimes refer
to Cayley graphs as regular Cayley graphs.

By an addition Cayley graph we understand a particular variation on the Cayley
graphs. In contrast to these, the addition Cayley graphs are only defined over abelian
groups: The elements of an abelian group G form the vertex set, and two vertices are
connected by an edge, if their sum is in a given set S ⊆ G.

While regular Cayley graphs are widely studied and there is a great expanse of liter-
ature concerning these, addition Cayley graphs have been largely disregarded or over-
looked. In fact it is possible to give a nearly conclusive list of all the literature on
addition Cayley graphs [GLS07]:

• One of the earliest papers by Chung concerns expander properties and the diameter
[Chu89];

• On the Hamiltonicity [CGW03];

• On the clique number [Gre05];

• On the independence number [Alo07].

To the papers above mentioned in [GLS07] we can add:

• On connectivity [GLS07];

• More on Hamiltonicity [Lev10];

• and a conjecture on the Hamiltonicity [CL]

• A paper on (3, 6)-fullerenes [DGMS09];

• in this paper [AABL09] addition Cayley graphs are used to prove a result on
expanders;
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Addition Cayley graphs are known in the literature under several different names:

• sum graphs [Gre05];

• addition graphs [CGW03];

• Cayley sum graphs [Alo07];

• addition Cayley graphs [GLS07], [Lev10].

Here we will adopt the name of addition Cayley graph, as [GLS07] gives the most
conclusive definition. This way we can also avoid confusion with the related (integral)
sum graphs and mark the relation to regular Cayley graphs.

In section 3.1 we will formally introduce addition Cayley graphs and show some basic
properties.

In section 3.2 and 3.3 we will present results by B. Green [Gre05] and N. Alon [Alo07],
respectively. The aim of these two sections is to show that there is a two-way relationship
between the theories of additive combinatorics and addition Cayley graphs, hopefully
establishing addition Cayley graphs as a useful tool to transfer results from graph theory
to additive combinatorics and vice versa.

While [Gre05] uses methods of additive combinatorics to gain information on the clique
number of addition Cayley graphs, [Alo07] exploits results from graph theory to estimate
the number of independent sets in addition Cayley graphs, which he in turn uses to give
an upper bound to the size of sumsets in Zp.

3.1 Addition Cayley Graphs

Definition 3.1. (addition Cayley graph) Let G be a finite abelian group and S ⊆ G a
subset of G. We define the addition Cayley graph induced by S on G, Cay+G(S), to be
the undirected graph with the vertex set G and the edge set E(Cay+G(S)) := {{g1, g2} ∈
G×G : g1 + g2 ∈ S}.

In the special case that the set S ⊆ G is square free, i.e. contains no elements of the
form g = h+h with h ∈ G, the graph Cay+G(S) is regular of degree |S|. In general every
vertex g ∈ G has either degree |S| − 1 if and only if g + g ∈ S or degree |S| otherwise
(that is if we do not count loops). Figures 3.1 and 3.2 are examples for Z9 and Z10

respectively.

Remark 3.2. The definition of addition Cayley graphs already reveals a close resemblance
to the standard Cayley graphs. But there also some differences between these two
objects:

• If G is an abelian group we can define the edge set of standard Cayley graphs as
E (Cay(G,S)) := {{v, w} : v − w ∈ S}, which definition is well founded as the set
S is symmetric.
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Figure 3.1: Cay+Z9
({2, 5, 7}) without self-loops

• The square of an addition Cayley graph Cay+G(S) is in fact the standard Cayley
graph Cay(G,S − S\{0}).

• In contrast to standard Cayley graphs, addition Cayley graphs are not vertex
transitive.

The following theorem shows for which subsets S ⊆ G the graph Cay+G(S) is connected:

Theorem 3.3. [Lev10] Let G be a finite abelian group and let S ⊆ G. Cay+G(S) is
connected if and only if one of the following statements is true:

i) S is not contained in a coset of a proper subgroup of G.

ii) S is contained in the non-zero coset of an index 2 subgroup of G, but not contained
in any other coset.

Proof. The cases where G is trivial and where S is empty are easy to check. Assume
that G is non-trivial and that S is not empty. Let H be the smallest subgroup of G such
that S is contained in a coset of H, i.e. H is the subgroup generated by the difference set
S−S. The connected component of Cay+G(S) containing 0 consists of all those elements
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Figure 3.2: Cay+Z10
({3, 5, 7}) without self-loops

of G representable as s1 − s2 + s3 − . . . + (−1)k+1sk with k ≥ 0 and s1, . . . , sk ∈ S.
Therefore this component is the set H ∪ (S +H). Thus Cay+G(S) is connected if and
only if either H = G or H is a subgroup of index 2, implying that S ⊆ G\H.

The following is a generalisation of a result in [CGW03]:

Proposition 3.4. Let G be a group and S be contained in the non-zero coset of an index
2 subgroup of G, but not in any other coset. Then the graph Cay+G(S) is bipartite.

Proof. Let S be contained in the non-zero coset of the index 2 subgroup of H. Then
H = 〈S − S〉 and G = H ·∪H + s, where s ∈ S.
Let e = {g1, g2}, g1, g2 ∈ G, e ∈ E

(
Cay+G(S)

)
:

Suppose g1 ∈ H. As e ∈ E
(
Cay+G(S)

)
, g2 = s∗ − g1 for an s∗ ∈ S. Therefore

g2 ∈ H + s.
Suppose g1 ∈ H + s. Again g2 = s∗ − g1 for an s∗ ∈ S. As g1 ∈ H + s, we see that

g1 = h+ s for some h ∈ H. Therefore g2 = (s ∗ −s)− h and g2 ∈ H.
Thus Cay+G(S) is bipartite with partition V

(
Cay+G(S)

)
= H ·∪H + s.

As with regular Cayley graphs, it is possible to compute the eigenvalues of Cay+G(S)
using characters:
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Theorem 3.5. [DGMS09] Let G be a finite abelian group and S ⊆ G. The multiset of
eigenvalues of Cay+G(S) is:{∑

s∈S
χ(s) : χ ∈ R

}
∪

{
±|
∑
s∈S

χ(s)| : χ ∈ C

}
,

where R := {χa : a+ a = 0} is the set of real valued characters of Cay+G(S) and

C is the set containing exactly one character from {χa, χ−a} for each a ∈ G with
a+ a 6= 0.

Proof. Let χ be a character of G and u ∈ G a vertex of Cay+G(S). Then:

∑
v∈N(u)

χ(v) =
∑
s∈S

χ(s− u) =

(∑
s∈S

χ(s)

)
· χ(u)

Therefore every real valued character is an eigenvalue corresponding to the eigenvalue∑
s∈S χ(s).

If χ ∈ C, then it is not an eigenvector. Choose α ∈ C, such that |α| = 1 and
α2
∑

s∈S χ(s) =
∣∣∑

s∈S χ(s)
∣∣. Let u ∈ G:

∑
v∈N(u)

αχ(v) =

(
α2
∑
s∈S

χ(s)

)
· α−1χ(u) =

∣∣∣∣∣∑
s∈S

χ(s)

∣∣∣∣∣ · αχ(s)
Therefore Re(αχ) and Im(αχ) are real eigenvectors to eigenvalues

∣∣∑
s∈S χ(s)

∣∣ and
−
∣∣∑

s∈S χ(s)
∣∣, respectively.

3.2 The Clique Number and Small Sumsets

Having introduced the addition Cayley graphs in the former section, we would like to
show that there is a strong tie between these graphs and the field of additive combina-
torics.

Therefore, in this section we will present a result by B. Green [Gre05], which gives
an estimate for the clique number of a random addition Cayley graph using additive
combinatorics.

The result is the following:

Theorem 3.6. [Gre05] Let S ⊆ ZN be chosen randomly from ZN . Let ω denote the
clique number of Cay+ZN

(S).Then we have:

lim
N→∞

P (ω ≤ 160 log(N)) .

If we are able to prove this, we get the following result in Ramsey theory as a corollary:

55



Corollary 3.7. [Gre05] For all sufficiently large integers N there exists a set S ⊆ ZN

for which the addition Cayley graph Cay+ZN
(S) has no cliques or independent sets of size

160 log(N).

A clique in graph theoretical terms is just a subset of V (G), say X, such that for each
v, w ∈ X we have {v, w} ∈ E(G).
To use additive combinatorics to find the clique number of an addition Cayley graph,

we need a characterisation of a clique using terms from this field.
A clique of an addition Cayley graph Cay+G(S) is a set X ⊆ G such that for each

g1, g2 ∈ X with g1 6= g2 we have g1 + g2 ∈ S. This characterisation relates to a notion
named the restricted sumset:

Definition 3.8. (restricted sumset) Let A be an additive set in an ambient group Z.
Then:

|A+̂A| := {a1 + a2 : a1, a2 ∈ A; a1 6= a2}

Using this, it is easy to see that the following two statements are equivalent:

i) X is a clique of Cay+G(S)

ii) X+̂X ⊆ S.

To prove Theorem 3.6 we need to estimate the number of such sets, i.e. the number
of cliques in the graph.

Notation 3.9. By Sm
k (G) we will denote the collection of sets X with |X| = k and

|X+̂X| = m. We will call |X+̂X| = m the small doubling property.

Using this notation we can calculate the expected number of k-cliques in a random
addition Cayley graph Cay+G(S), which we denote by E(G, k):

E(G, k) =
∑

X⊆G:|X|=k

P(X is a clique in Cay+G(S))

=
∑

m≥k−1

∑
X∈Sm

k (G)

P(X+̂X ⊆ S)

=
∑

m≥k−1

∑
X∈Sm

k (G)

2−m

=
∑

m≥k−1

|Sm
k (G)| 2−m,

(3.1)

as Sm
k (G) is empty for m < k − 1.

Thus we only need to bound the last element of this equation, i.e. bound Sm
k . Because

the doubling constant (or in our case |X+̂X|) is invariant under 2-Freiman isomorphisms,
it will be enough to estimate the number of subsets of G that are 2-isomorphic to X,
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with X ⊂ G, |X| = k and |X+̂X| = m (i.e. the size of an isomorphism class with the
small doubling property) and then multiply this value with the number of isomorphism
classes.

As we are interested in addition Cayley graphs over the group ZN , we can lift X ⊂ ZN

to the integers using an unfolding map. This enables us to estimate the sets 2-isomorphic
to the lift of X, which in practice is more efficient.

The first step, estimating the size of the isomorphism classes has already been shown in
Theorem 1.48. Therefore, we only need to estimate the number of isomorphism classes,
as explained above.

This will be done in Lemma 3.12. The following Lemmas 3.10 and 3.11 are just
necessary prerequisites.

Lemma 3.10. [Gre05] Suppose that A ⊆ W has sufficiently large cardinality k = |A|
and let m = |A+̂A|. Then there exists a∗ ∈ A and A0, A1 ⊆ A such that:

• |A0| ≤ 4k−
1
15m

• |A\A1| ≤ 4k−
4
5m

• a∗ +A1 ⊆ A0+̂A0

Proof. Let C :=
⌊
k

1
5

⌋
and c := k−

1
15 . We construct a graph G the following way: Let

V (G) := A and let there be an edge between to vertexes x, y ∈ A, if the number of pairs
(w, z) ∈ A×A with w + z = x+ y and w 6= z is less than C.

As there are no more than Cm edges in G, there is a vertex a∗ which has degree at
most 2Cm

k . Pick a set X ⊆ A by choosing independently and at random each a ∈ A to
be in X with probability c.

Let Z:= {a ∈ A : a∗ + a /∈ X+̂X}. If {a, a∗} /∈ E(G) then there are at least C
3 disjoint

pairs (a1, a2) ∈ A×A with a1 + a2 = a∗ + a and a1 6= a2. The probability that both a1
and a2 are in X is c2 and thus:

P(a ∈ Z) ≤
(
1− c2

)C
3 ≤ e−cC

3 .

Therefore we get:

E|Z| ≤ 2Cm

k
+ e−q2 C

3 k ≤ 3k−
4
5m,

and with E|X| = ck = k1415:

E
(
|X|+ k

14
15 |Z|

)
≤ 4k−

1
15m.

Now we can pick a set X ⊆ A such that |X| + k
14
15 |Z| ≤ 4k−

1
15m. The result follows

by setting A0 = X and A1 = A\Z.
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Lemma 3.11. [Gre05] Fix a non-negative integer t and a set B ⊂ W of cardinality
|B| = l. Then the number of mutually non-isomorphic sets A of cardinality |A| = l + t,
such that there exists a subset A0 ⊆ A satisfying A0

∼=3 B, is at most l3t
4
.

Proof. Suppose we have A of cardinality l+ t such that there exists subset A0 ⊂ A with
A ∼=3 B. Denote B := {b1, . . . , bl}, A0 := {a1, . . . , al} and A := A0 ∪ {al+1, . . . , al+t},
such that for all i1, . . . , i6 ∈ {1, . . . , l}:

bi1 + bi2 + bi3 = bi4 + bi5 + bi6

if and only if

ai1 + ai2 + ai3 = ai4 + ai5 + ai6 ,

which is possible as A0
∼=3 B.

Now we have the necessary information to give an estimate on the size of an isomor-
phism class with the small doubling property:

Lemma 3.12. [Gre05] Let k be a sufficiently large positive integer and let m ≤ k
31
30 .

Then the number of isomorphism classes of A ⊆ F k with |A| = k and |A+̂A| ≤ m is at

most
(
em
k

)k
ek

31/32
.

Proof. Let A ⊆ F k with |A| = k and |A+̂A| ≤ m: Then by Lemma 3.10 there exists an
a∗ ∈ A and A0, A1 ⊆ A such that:

• |A0| ≤ 4k−
1
15m,

• |A1| ≥ |A| − 4k−
4
5m, and

• a∗ +A1 ⊆ A0+̂A0.

The numberM of possible Freiman 6-isomorphism classes to which A0 can belong can
be determined with Lemma 1.41. After some computations we get M < ek

30/31
and we

can pick representatives of these classes X1, . . . , XM .
We know that A0+̂A0 is Freiman 3-isomorphic to Xi+̂Xi for all 1 ≤ i ≤ M (Lemma

1.40). Also, as a∗ + A1 ⊆ A0, there is a non-empty subset of some Xi+̂Xi which is
Freiman 3-isomorphic to a∗ +A1.
The number of Freiman 3-isomorphism classes in Xi+̂Xi will certainly be less than

the number of subsets of cardinality k which is
(
m
k

)
≤
(
em
k

)k
. As |A1| ≤ k it can belong

to at most Mk
(

em
k

)k
.

We use Lemma 3.11 to see that for each of the 3-isomorphism classes and for any
t ≤ 4k−

4
5m there are at most ek

31/32
isomorphism classes for A. Thus we have the

following number of isomorphisms altogether:

ek
30/31 · k

(em
k

)k
· 4k−

4
5 · ek29/30 <

(em
k

)k
ek

31/32
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This result, however, is not very useful if the doubling constant is very small, in our
case m ≤ 7k. Lemma 3.13 and Corollary 3.14 will show us, that we do not need to
consider sets with such small doubling.

Lemma 3.13. [Gre05] Let k be a sufficiently large positive integer and let A be a subset
of an abelian group with |A| = k. Let ε > 0 be sufficiently small. Then there is a set
B ⊆ A with:

|B| ≤
3 log

(
1
ε

)
ε

√
k

and |B+̂B| ≥ (1− ε)k.

Proof. Let p = 3ε−1

√
log( 6

ε
)

2k . Choose a set B ⊆ A by picking each element of k indepen-
dently at random with probability p. Using arguments from the probabilistic method,
which we will not state here (see [Gre05]), we get the following estimate:

P
(
||B| − pk| ≥ εpk

3

)
< 2e−

2ε2p2k
9 =

ε

3
. (3.2)

For x ∈ B+̂B we define s(x) to be the number of ordered pairs (b1, b2) ∈ B2 with b1 6=
b2 and b1 + b2 = x. It is easy to see that the sum

∑
x∈B+̂B s(x)

2 equals the cardinality

of the set Ê(B) (a sort of restricted additive energy) of quadruples (b1, b2, b3, b4) ∈ B4

with b1 + b2 = b3 + b4 and b1 6= b2, b3 6= b4.

We now need to calculate the expected size of Ê(B). For this we turn our attention
to Ê(A). We can split this set into two disjoint sets Ê(A) = E1 ·∪E2 where:

E1 := {(a1, a2, a3, a4) ∈ A4 : a1 6= a2 6= a3 6= a4}

and

E2 := {(a1, a2, a3, a4) ∈ A4 : a1 = a3, a2 = a4 ∨ a1 = a4, a2 = a3}.

Obviously we have |E1| ≤ k3 and |E2| ≤ 2k2. The probability that an element x is
contained in E1∩B4 is less than k3p4, while the probability that x is in E2∩B4 is 2k2p2.

Thus the expected size of our set is:

E

 ∑
x∈B+̂B

s(x)2

 = E(|Ê(B)|) = E(|E1 ·∪E2|) ≤ 2k2p2 + k3p4.

From this inequality we get:

P

 ∑
x∈B+̂B

s(x)2 ≤ 2k2p2 + k3p4

1− ε
3

 ≥ ε

3
. (3.3)

Because of 3.2 and 3.3 we can pick a set B with the following properties:
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||B| − pk| ≤ εpk

3
and

∑
x∈B+̂B

s(x)2 ≤ 2k2p2 + k3p4

1− ε
3

.

With Cauchy-Schwarz we get:

∑
x∈B+̂B

s(x)2 ≥ |B|2 (|B| − 1)2

|B+̂B|
,

which leads to:

|B+̂B| ≥ (1− ε)k.

By combining all of these inequalities and after some computation we get:

|B| ≤ pk(1 +
ε

3
) ≤

3 log
(
1
ε

)
ε

√
k

Corollary 3.14. [Gre05] Let k be a sufficiently large positive integer and let A be a
subset of an abelian group with |A| = k. Then A contains a subset C, with:

• |C| ≥ k
8 and

• |C+̂C| ≥ 7|C|.

Proof. Apply Lemma 3.13 with ε = 1
9 . We get a set B with |B| ≤ 100

√
k, such that

|B+̂B| ≥ 8k
9 . We get C by adding elements of A to B until k

8 ≤ |C| ≤ 8k
63 .

We now have efficient estimates for both number and size of isomorphism classes,
which have the small doubling property. Lemma 3.16 will show us how to deal with the
aforementioned lift to the integers. It is a direct result of this classic result by Freiman:

Proposition 3.15. [Fre73] Let A ⊆ Z have cardinality k and Freiman dimension rQ(A).
Then we have the inequality:

|A+̂A| ≥ r

(
k − r + 1

2

)
.

The proof of this proposition is only a simple induction, but as it uses convex polyhe-
dra, which we do not wish to introduce here, we refer to [Fre73].

Lemma 3.16. [Gre05] Suppose that A ⊆ ZN has cardinality k and that |A+̂A| = m.
Let A be the image of A under the unfolding map ZN ↪→ Z. Then we have:

rQ(A) ≤
4m

k
.
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Proof. We get rQ(A) ≤ k− 1, as A is a set of k integers. Applying Proposition 3.15, we
have:

2m ≥ |A+̂A| ≥ rQ(A)

(
k − r + 1

2

)
≥ 1

2
krQ(A).

We will first bound |Sm
k (ZN )| and then go on to bound the whole sum of Equation

3.1 in the proof of Theorem 3.6.

Lemma 3.17. [Gre05] We have the bounds:

|Sm
k (ZN )| ≤ N1+ 4m

k

(
2em

k

)k

ek
31
32

if m ≤ k
31
30

2 and

|Sm
k (ZN )| ≤ N1+ 4m

k k4k

whatever the value of m.

Proof. To prove this lemma we need to find bounds for the number of sets A ∈ Sm
k (ZN ).

By the definition of Sm
k we have |A| = k and |A+̂A| = m. It will prove to be easier to

count not the sets A directly, but their image Ā under the unfolding map ZN ↪→ Z. We
pick X1, . . . , XM to be a complete set of representatives of the Freiman 2-isomorphism
classes of subsets X ⊆ Z with |X| = k and |X+̂X| ≤ 2m. We get:

M ≤ k4k

by Lemma 1.41. When m ≤ k
31
32 we get:

M ≤
(
2em

k

)k

ek
31/32

.

As X1, . . . , XM is a complete set of representatives every Ā is the image of some Xi

under a Freiman 2-isomorphism ψ : Xi → {1, . . . , N}. By Theorem 1.48(i) there are at
most N rQ(Xi)+1 such isomorphisms.

By applying Lemma 3.16 we get the necessary inequalities.

Now we have all the information we need to prove Theorem 3.6:

Proof of Theorem 3.6. Let k = b20 log(N)c. As mentioned in the beginning of this
section we need to give an upper bound for:∑

m≥7k

|Sm
k (ZN )| 2−m.
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To be able to use the bounds from Lemma 3.17, we need to split this sum into two
parts according to whether m ≤ k

31
32 or not. With some computations we get this upper

bound:

⌊
k31/32

2

⌋
∑
m=7k

2m((
4
k
+ 1

m) log(N)+ k
m

log( 2em
k

)−1+o(1)) +
∑

m≥
⌊
k31/32

2

⌋ 2
m
(

4 log(N)
k

−1+o(1)
)
.

As log(2eC)
C−1 ≤ −0.2499 when C ≥ 7 (where C loosely represents m

k ), both of these last

sums, in that case, are bounded from above by N−2 for N sufficiently large.
Let S be a random subset of ZN . If there is aX with cardinality k for whichX+̂X ⊆ S,

then by Lemma 3.14 there exists a set Y with:

• Y +̂Y ⊆ S,

• |Y | ≥ k
8 and

• |Y +̂Y | ≥ 7|Y |.

But in such a case the expected number of sets Y that are contained in S is bounded
by N−2, as m

k ≥ 7. Therefore, A almost surely does not contain any X+̂X with |X| =
d160 log(N)e, proving the theorem.

In [Gre05] B. Green remarks that the the number 160 in the statement of Theorem
3.6 could be reduced to as far as (3 + ε) using more refined methods than in this proof.
It would be interesting to discuss this question for other groups than the ones presented

here (i.e. ZN ) and in [Gre05] (i.e. Zn
2 ), although this appears to be very difficult.

In [Gre05] B. Green only deals with random Cayley graphs. Using the observation
that cliques are equivalent to particular restricted sumsets, it is also possible to make
statements on non-random addition Cayley graphs using results on the restricted sumset;
for instance in [NA95] and [NA96] it is shown that:

|A+B| ≥ min{p, |A|+ |B| − 2− δ}.
Also in [Lev05] V.F. Lev conjectures that:

Conjecture 3.18. [Lev05] Let G be an abelian group and let A and B be finite non-
empty subsets of G and let νA,B(c) denote:

νA,B(c) = |{(a, b) ∈ A×B : a+ b = c}|.
Then we have:

|A+̂B| ≥ |A|+ |B| − 2− min
c∈A+B

νA,B(c).

Either of these two statements can be used to gain more information on the clique
number of addition Cayley graphs.
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3.3 The Independence Number and Large Sumsets

In this section we will prove a result about sumsets by means of addition Cayley graphs.
Before we can state this result, however, we need to introduce some notation:

Notation 3.19. From now on in this chapter we will call a subset S of Zp, with p > 2
prime, a sumset, if there is a set A ⊂ Zp such that A+A = S.

With f(p) we shall denote the maximum integer f such that every S ⊂ Zp of size at
least p− f is a sumset.

It will be our aim to bound f(p) from above as follows:

Theorem 3.20. [Alo07] For all sufficiently large p there exists an F ⊂ Zp of cardinality

16 p
2
3

log
1
3 p

so that S = Zp − F is not a sumset. Thus there exists a positive constant c and

an integer p0 so that for all p > p0:

f(p) < c
p

2
3

log
1
3 p
.

In [Alo07] N. Alon also establishes a lower bound for f(p). But we are only interested
in the application of addition Cayley graphs, and will thus concentrate on the upper
bound.

To prove this upper bound we need to find a set F ⊂ Zp of size |F | ≤ O
(

p
2
3

log
1
3 (p)

)
such that T := Zp − F is not a sumset. We will view T as the disjoint union of sets S

and S′ each of size O
(

p
2
3

log
1
3 (p)

)
.

We will choose the set S first. For any S′ suppose that T = Zp − (S ∪S′) is a sumset,
say A+A. Obviously A+A and S must be disjoint. Now all we have to do is compare
the number of sets A ⊆ Zp whose square is disjoint with S to the number of possibilities
for S′. If we can show that there are less options for a set A, than for S′, then there has
to be a set S′ such that Zp − F = Zp − (S ∪ S′) is not a sumset, which is what we want
to prove. So to prove the result we will need to find an upper bound for the number of
sets A with (A+A) ∩ S = ∅.

To do this we will use addition Cayley graphs. It is easy to see that our property
(A+A)∩S = ∅ is equivalent to A being an independent set in Cay+G(S). So finding the
needed upper bound will be equivalent to finding an upper bound of independent sets
in addition Cayley graphs.

Addition Cayley graphs for which loops have been allowed are a special case of (n, d, λ)-
graphs.

As (n, d, λ)-graphs are an important part of the theory of expanders, there are many
results about their properties and in particular one about the number of independent
sets:

Lemma 3.21. [AR05] Let G be a (n, d, λ)-graph, and suppose m ≥ 2n log(n)
d . Then the

number of independent sets of size m in G is at most:
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(
emd2

4λn log(n)

) 2n log(n)
d

(
2eλp

md

)m

To prove this result we will need the following lemma:

Lemma 3.22. [AR05] Let G be a (n, d, λ)-graph, and let B ⊂ V (G) be a subset of bn
vertices of G. Define:

C = {u ∈ V (G) : |N(u) ∩B| ≤ db

2
},

where N(u) includes u itself, if there is a loop at u. Then:

|B||C| < 4λ2

d2
n2.

In particular, if |B| ≥ 2λ
d n then |C| < 2λ

t n, and consequently for every B ⊂ V (G),
|B ∩ C| < 2λ

d n.

Proof. Let A := A(G) and define a vector x = (xv : v ∈ V (G)) by xv = −b if v /∈ B and
xv = 1− b if v ∈ B. We get:

‖Ax‖22 = xtAtAx ≤ λ2xtx.

We can compute the value of xxt = (n−|B|)b2+ |B|(1− b)2 = b(1− b)n and therefore
we have:

‖Ax‖22 =
∑
v∈V

(|N(v) ∩B|(1− b)− (d− |N(v) ∩B|)b)2 =
∑
v∈V

(|N(v) ∩B| − db)2

Combining all this results in:∑
v∈V

(|N(v) ∩B| − db)2 ≤ λ2xtx = λ2b(1− b)n.

Because of the choice of C we can infer that:

|C|d
2b2

4
< λ2b(1− b)n < λ2bn,

slightly modifying this inequality leads to the desired result.

Now we are able to prove the statement about independent sets in (n, d, λ)-graphs:
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Proof of Lemma 3.21. In the following we will choose an ordered set v1, . . . , vm of m
vertices that form an independent set for G. The vertex vi+1 will always be chosen from
the set Bi, which is still to be defined. To prove the result we need to find out how many
ways there are to choose such a set.

We define sets Bi inductively in the following way: Let B0 := V (G). We then let Bi

denote the set of all vertices that are not adjacent to the first i chosen vertices v1, . . . , vi.
Obviously we have Bj ⊂ Bi for all j > i.

Next we define the following sets:

Ci := {u ∈ V : |N(u ∩Bi)| ≤
d|Bi|
2n

}.

Suppose we have vertices v1, . . . , vi as described above. Then, if the vertex we choose
next, vi+1, is not a member of Ci, we have: |Bi+1| <

(
1− d

2n

)
|Bi|. If we choose more than

r := 2n
d log(n) vertices of this type our corresponding Bi (the set of all non-neighbours)

will be empty, making it impossible to choose another vertex for our ordered set.

Thus with at most r possible exceptions, each vertex vi+1 must lie in Bi ∩ Ci and by
Lemma 1.41 the set Bi ∩ Ci is of size at most 2λ

d n.

The number of possibilities to choose the indices of vertices that are not in Bi ∩ Ci

can be bounded by
(
m
r

)
, and there are at most n possibilities for every single vertex. For

the vertices we choose from the sets Bi ∩ Ci there are 2λ
d n possibilities.

Altogether we get the following upper bound for the number of such ordered sets:(
m

r

)
nr
(
2λ

d
n

)m−r

.

By dividing by m! to break up the order, and some calculations, we get the following
upper bound for the number of unordered independent sets of G of size m:

(
emd2

4λn log(n)

) 2n log(n)
d

(
2eλp

md

)m

,

thus proving the lemma.

As we will discuss addition Cayley graphs of groups with prime order induced by sets
S ⊆ Zp of cardinality t, and thus t-regular, it will be convenient from now on to refer to
(n, d, λ)-graphs as (p, t, λ)-graphs.

To use this result, we have to find out more about the eigenvalues of addition Cayley
graphs, so as to find a good value for λ. Because of Theorem 3.5 we know that the
absolute values of the eigenvalues of A(Cay+G(S)) are just the sums

∣∣∑
s∈S χ(s)

∣∣, where
χ denotes a character of G.

As in our case G = Zp and because these sums are in fact
∣∣∑

s∈S ω
s
∣∣, where ω is a

non-trivial p-th root of unity. If we can find a good bound for
∣∣∑

s∈S ω
s
∣∣ then we can

use this as our value for λ:
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Lemma 3.23. [Alo07] For every integer t ≤ p
2
3 there exists a subset S ⊂ Zp of cardi-

nality t so that for every non-trivial p-th root of unity ω:∣∣∣∣∣∑
s∈S

ωs

∣∣∣∣∣ ≤ 3
√
t
√

log(10p).

Proof. As the proof of this lemma uses arguments from probability theory that we do
not want to deal with here, we refer to [Alo07].

With this estimate we can apply Lemma 3.21 to addition Cayley graphs:

Corollary 3.24. [Alo07] There exists an addition Cayley graph Cay+Zp
(S) with |S| =

t = 9 p
2
3

log
1
3 (p)

, that has at most

e(2+o(1))p
2
3 log

2
3 p

independent sets.

Proof. Let t = 9 p
2
3

log
1
3 (p)

. According to Lemma 3.23 there is a subset S ⊂ Zp of cardinality

t such that for every non-trivial p-th root of unity ω:∣∣∣∣∣∑
s∈S

ωs

∣∣∣∣∣ ≤ 3
√
t
√

log(10p).

Therefore Cay+Zp
(S) is a (p, t, λ)-graph with λ = 3

√
t
√

log(10p). By Lemma 3.21 the

number of independent sets of cardinality m in Cay+Zp
(S) for each m ≥ 2p log(p)

t is at
most:

(
emt2

4λp log(p)

) 2p log(p)
t

(
2eλp

m

)m

.

This can be bounded by:

e
O
(
p
1
3 log

7
3 (p)

)
e(2+o(1))p

2
3 log

2
3 (p)

The number of independent sets of size m ≤ 2p log(p)
t = O

(
p

1
3 log

4
3 (p)

)
is at most

p
O
(
p
1
3 log

4
3 (p)

)
(which is a bound for all possible sets of size m). Summing over all values

of m, we see that the number of independent sets of Cay+Zp
(S) is at most:

e(2+o(1))p
2
3 log

2
3 (p)
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As motivated in the beginning of this section, we can use this upper bound on inde-
pendent sets in Cay+Zp

(S) to prove Theorem 3.20:

Proof of Theorem 3.20. Let S ⊂ Zp with cardinality t be as in Corollary 3.24. Set

t′ = 7 p
2
3

log
1
3 p
. There are: (

p− t

t′

)
= e(

7
3
−o(1))p

2
3 log

1
3 (p)

subsets S′ of cardinality t′ in Zp −S. As this number exceeds the number of indepen-
dent sets A (see Corollary 3.24) in Cay+Zp

(S), it follows that there is a set S′ such that

there exists no independent set A in Cay+Zp
(S) for which A+A = Zp − (S ∪ S′).

Suppose there is a non-independent set A in Cay+Zp
(S) such that A+A = Zp−(S∪S′).

Then (A+A) ∩ S = ∅, which is a contradiction to A being non-independent.

Theorem 3.20 shows us that addition Cayley graphs are not only interesting in them-
selves, but can also be used to give a rather easy and comprehensible proof to a complex
additive combinatorial statement.

As very little is known about addition Cayley graphs, this proof uses properties of
(n, d, λ)-graphs as a substitute (addition Cayley graphs are just a special case of the
very general (n, d, λ)-graphs).

Using similar arguments as the ones applied here, it should be possible to find new
results, or simplify some proofs of additive combinatorics.

However, before any of this can be done, many properties and graph-invariants of
addition Cayley graphs need to be examined, to lay a solid foundation for further inves-
tigations.

In the next chapter we will deal with one of these graph properties, the Hamiltonicity.
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4 Hamiltonicity of Cayley Graphs

In this chapter we will move away from additive combinatorics, and instead concentrate
on one particular property of addition Cayley graphs, the Hamiltonicity.

In Section 4.1 we will give a short introduction to this problem and present a result
for Cayley graphs over abelian groups.

Section 4.2 will deal with Hamiltonian circuits in addition Cayley graphs. In [CGW03]
results are made to this end by restricting the set S to square-free sets. We will present
some of those results and discuss the implications of the restriction to square-free sets.

In the final section we will drop the restriction to square-free sets and make some new
results which yield Hamiltonian paths for a large class of addition Cayley graphs over
cyclic groups. We will then use these Hamiltonian paths to motivate that the above
mentioned conjecture can be improved to sets S of cardinality at least three, if |G| ≡ 1
mod 4.

Throughout this chapter we will need the following notation:

Notation 4.1. Let G be a graph. In the following we will understand a walk W to be
a sequence (v1, . . . , vk) such that {vi, vi+1} ∈ E(G) for all 1 ≤ i ≤ k − 1. If, in addition
to this, vi 6= vj for all 1 ≤ i, j ≤ k, i 6= j, we call W a path.

A circle will denote a closed walk, i.e. one where v1 = vk, and a closed path will be
called a circuit (here we obviously have to allow v1 = vk in the definition of path).

4.1 Hamiltonian Circuits in Cayley Graphs

The problem of finding Hamiltonian circuits in Cayley graphs was probably first studied
by Rapaport-Strasser in an attempt to solve the “chess problem of the knight” in 1959
[RS59].

In 1969 Lovasz, inspired by a problem, which was posed by Gallai [Gal68], conjectured
that every connected vertex-transitive graph contains a Hamiltonian path:

Conjecture 4.2. (Lovász Conjecture)[Lov70] Every connected vertex-transitive graph
contains a Hamiltonian path.

This conjecture has still not been resolved.

Another conjecture though, that all connected vertex-transitive graphs with three
or more vertices contain a Hamiltonian circuit, was soon discarded, as there are four
counterexamples: the Petersen graph, the Coxeter graph, and the two graphs obtained
from these by exchanging every vertex with a triangle [GM05].

Yet none of these graphs is a Cayley graph, giving rise to the following conjecture:
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Conjecture 4.3. [GM05] Every connected Cayley graph with three or more vertices
contains a Hamiltonian circuit.

Only partial progress has been made on this conjecture: For some groups the con-
jecture has been proved to be true and no counterexample has been found, but the full
conjecture is far from being proved and there is some doubt that it is actually true.

For abelian groups the question is completely resolved:

Theorem 4.4. [Mar83] Every connected Cayley graph of an abelian group of order at
least three is Hamiltonian.

Proof. This proof is based on [Mar83], but it has been strongly modified to make it more
understandable and to avoid unnecessary notation.

We will prove this theorem using induction over |S|.
If |S| = 1, then Cay(G,S) is not connected, as |G| ≥ 3.

Let |S| = 2. As Cay(G,S) is 2-regular and connected the graph just forms a Hamil-
tonian circuit.

Let S > 2. Then S = {s1, . . . , sk}. Let s ∈ S, then S′ := S\{s, s−1}. Cay(〈S′〉 , S′) is
a connected Cayley graph.

Suppose | 〈S′〉 | ≥ 3. Then by the induction hypotheses Cay(〈S′〉 , S′) is Hamiltonian
and we can choose a Hamiltonian path (h1, . . . , hl), where l := | 〈S′〉 | and hi ∈ | 〈S′〉 |. If
〈S′〉 = G, then we are done. Otherwise let j be the smallest integer such that sj ∈ 〈S′〉.
Then H,Hs,Hs2, . . . , Hsj−1 are all the cosets of H, they are all disjoint and their

union is G. So for every coset of H we get a similar Hamiltonian path:

(h1, . . . , hl); (h1s, . . . , hls) ; . . . ; (h1s
j−1, . . . , hls

j−1)

Now we join these paths together in the following order to get a Hamiltonian circuit:

If j is odd:

h1 // h2 // . . . // hl

s

��
h1s

s−1

OO

h2s

s
��

. . .oo hlsoo

h1s
2

s−1

OO

h2s
2 // . . . // hls

2

s

��. . .

s−1

OO

. . . . . . . . .

s
��

h1s
j−1

s−1

OO

h2s
j−1oo . . .oo hls

j−1oo

If j is even:
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h1 // h2 // . . . // hl

s

��
h1s

s−1

OO

h2s

s
��

. . .oo hlsoo

h1s
2

s−1

OO

h2s
2 // . . . // hls

2

s

��. . .

s−1

OO

. . .

s
��

. . . . . .

h1s
j−1

s−1

OO

h2s
j−1 // . . . // hls

j−1
gg

If 〈S′〉 < 3, then S must be of the form S = {s1, s2, s3} with s1 = s−1
1 and s = s3 6=

s2 = s−1. Then we can look at the set S′ := S\{s1}. As 〈S′〉 ≥ 3 we can do the induction
step as above.

As the question of Hamiltonicity in Cayley graphs has received so much attention in
literature, it is natural to ask the same question for addition Cayley graphs; i.e. is every
connected addition Cayley graph with three or more vertices Hamiltonian?

As addition Cayley graphs are only defined over abelian groups and we have just seen
that for standard Cayley graphs over abelian groups the question is quickly resolved,
there seems to be some hope that this might be easily answered.

However, addition Cayley graphs are not vertex transitive, not even necessarily regu-
lar, disqualifying them even for the Lovasz conjecture.

In fact, there is a simple counterexample to the statement, even for sets S of cardinality
three, as can be seen in Figure 4.1.

The question remains whether it is possible to restrict the group G or the set S in any
way to gain Hamiltonicity.

In the next section we will present some results made in [CGW03] by restricting the
set S to square-free sets (sets without elements of the form s = h + h, h ∈ G). While
these results are quite conclusive, the restriction to square-free sets is very strong and
discounts most of the possible addition Cayley graphs.

In [Lev10] V. Lev comes to the conclusion that for any Hamiltonian addition Cayley
graph Cay+G(S) we have:

|S| ≥ rk(G),

where rk(G) denotes the minimum cardinality of a generating set of G.
This suggests that we have to look at groups with small generating sets to gain inter-

esting results on the Hamiltonicity of addition Cayley graphs.
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Figure 4.1: Cay+Z7
({1, 2, 4}) without self loops

The most natural type of group fulfilling this criterion are obviously cyclic groups.
It is easy to see that the cardinality of S must be at least two for there to be any kind

of circuit at all. The example previously shown furnishes us with a non-Hamiltonian
addition Cayley graph over a cyclic group with |S| = 3.
E. Croot and V. Lev give the following conjecture in [CL]:

Conjecture 4.5. [CL] Let G be a finite cyclic group and S a subset of G of cardinality
at least four, such that Cay+G(S) is connected. Then Cay+G(S) is Hamiltonian.

This conjecture is still open and, as motivated above, is best-possible for arbitrary
cyclic groups.
In the next two sections we will present some of the results on the Hamiltonicity of

addition Cayley graphs already mentioned, and then attempt to make some progress
toward this conjecture.

4.2 Addition Cayley Graphs over Square-Free Sets

We begin with the following definition:

Definition 4.6. (square) Let G be an abelian group and g ∈ G. Then we will call g a
square, if there is h ∈ G such that g = h + h; we will call h a root of g. A square-free
subset of G will therefore be a subset not containing any squares.

If we restrict the set S from the definition of addition Cayley graphs to square-free sets,
we ensure that there are no self-loops in Cay+G(S), thus making the graph |S|-regular.
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Addition Cayley graphs of this form are more similar to regular Cayley graphs, in fact
connected bipartite addition Cayley graphs over square free sets are in fact nothing other
than regular Cayley graphs [CGW03]. This makes the search for Hamiltonian circuits
somewhat easier and in the following we will present some of the possible results. More
on this subject can be found in [CGW03].

For this section we will need the following notation for paths (and walks):

Notation 4.7. • Let P1 := (v1, . . . , vm) and P2 := (vm, . . . , vn) be paths in a graph
G. Then P1 ∗ P2 is the path (v1, . . . , vm, vm+1, . . . , vn).

• Let G be an abelian group and S ⊆ G. For g ∈ G and s1, . . . , sn ∈ S we denote
by (g; s1s2 . . . sn) the path (v0, . . . , vn) in Cay

+
G(S) where v0 := g and vi := si − vi

for i ∈ {1, . . . n}.

To find Hamiltonian circuits and paths in addition Cayley graphs we will first need a
better understanding of what a path and a circuit (walks and circles behave in the same
way) in the graph actually imply for the elements of the group. To illustrate this we
begin with a path of length 2 (Figure 4.2).

g1 g2 g3

s1 s2

Figure 4.2: Path of length 2

As g1 + g2 = s1 and g2 + g3 = s2 we get g1 − g3 = s1 − s2. If we iterate this principle
for a path of even length l we get:

g1 − gl+1 = s1 − s2 + s3 − . . .+ sl−1 − sl.

For a path of odd length say 3 we get a slightly different picture (Figure 4.3).

g1 g2 g3 g4

s1 s2 s3

Figure 4.3: Path of length 3

As above we have g1 + g2 = s2, g2 + g3 = s2 and g3 + g4 = s3. Computation yields
g1 + g4 = s1 − s2 + s3, and thus by iteration we receive for odd length l:

g1 + gl = s1 − s2 + s3 − . . .− sl−1 + sl.

If we view a circuit in the graph as a path from a given vertex g to itself, the above
equations yield:

0 = s1 − s2 + s3 − . . .+ sl−1 − sl,
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for a circuit off even length l, and:

g + g = 2g = s1 − s2 + s3 − . . .− sl−1 + sl,

for a circuit of odd length l.
All of the above disregards the existence of loops which appear in many addition

Cayley graphs. As they will sometimes be useful to simplify the notation, we will not
completely disregard self-loops, but be consciously ambivalent, so as to be able to use
them, when they are needed. In this section none of the graphs will contain self-loops, as
we are dealing with square free sets, but in the next section they will play an important
role.
Using a square-free subset of G to construct an addition Cayley graph we get a stronger

characterisation of bipartition:

Proposition 4.8. [CGW03] Let G be an abelian group and S a square-free subset of G
such that Cay+G(S) is connected. Then the following statements are equivalent:

i) Cay+G(S) is bipartite

ii) S is contained in the non-zero coset of an index 2 subgroup of G, but not contained

in any other coset (especially |〈S − S〉| = |G|
2 ).

Proof. ii) ⇒ i) is a special case of Proposition 3.4.
Suppose Cay+G(S) is bipartite. Then G = A ·∪B such that E

(
Cay+G(S)

)
= {{a, b} :

a ∈ A, b ∈ B}. We can assume that 0 ∈ A.
As Cay+G(S) is connected, one of the following must hold:

1. S is not contained in a coset of a proper subgroup of G, or

2. S is contained in the non-zero coset of an index 2 subgroup of G, but not in any
other coset.

Suppose (1) holds. Then 〈S − S〉 = G. Let b ∈ B. Then we can write b as:

b = (s1 − s2)± (s3 − s4)± . . .± (sk−1 − sk),

with k even and s1, . . . , sk ∈ S. As G is abelian, we can rewrite this equation as:

b = s′1 − s′2 + s′3 − s′4 + . . .+ s′k−1 − s′k.

This implies that there is a path of even length between 0 and b, which is a contra-
diction to Cay+G(S) being bipartite. Thus we get 2).

From now on we will only be interested in cubic addition Cayley graphs, i.e. over
square-free sets of cardinality three.
In this case we can give an alternative characterisation of bipartition:
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Proposition 4.9. [CGW03] Let G be a group and S = {s1, s2, s3} a square-free subset
of G of cardinality three. Then Cay+G(S) is bipartite if and only if s1 + s2 + s3 is a
square.

Proof. Suppose s1 + s2 + s3 = 2g is a square. Then the vertices g1 = g− s1, g2 = g− s2
and g3 = g − s3 form a triangle. Thus Cay+G is not bipartite, as bipartite graphs do not
contain odd circuits.

Suppose Cay+G(S) is not bipartite. Then it contains an odd circuit, (g0, g1, . . . , gn =
g0).

For 1 ≤ i ≤ n, let ai = gi−1 + gi. Obviously all the ai are elements of S. As we have
an odd circuit, there exists a g ∈ G with:

2g = a1 + a2 + . . .+ an = ks1 + ls2 +ms3,

where k + l +m = n is odd.

Supposing that two of these numbers are even, for instance l and k, we see that:

s3 = 2g − ks1 − ls2 − (m− 1)s3

is a square, which is a contradiction.

Thus k, l and m are odd and:

s1 + s2 + s3 = g − (k − 1)s1 − (l − 1)s2 − (m− 1)s3

is a square, proving the statement.

With these statements in mind we can move to the first result on Hamiltonicity:

Theorem 4.10. [CGW03] Let G be an abelian group with |G| ≡ 0 mod 4 and let S
be a square-free subset of G of cardinality three. If Cay+G(S) is connected and bipartite,
then it is Hamiltonian.

Why the unusual condition |G| ≡ 0 mod 4 is necessary, will be made clearer by the
proof. But just claiming that the graph is bipartite, by Proposition 4.8 implies that |G|
is divisible by 2.

For the proof of this theorem we first need the following technical lemma:

Lemma 4.11. [CGW03] Let G1 be an abelian group of odd order and let G2 be a non-
trivial abelian 2-group. Let G := G1 ×G2 and S a square-free subset of G of cardinality
three. If either of the following holds:

i) G2 is not isomorphic to either Z2 or Z2
2,

ii) G2 is isomorphic to Z2
2 and the sum of the three elements of S is a not square,

then there exist distinct s1, s2 ∈ S such that (G : 〈s1 − s2〉) ≡ 0 mod 4.
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Proof. Let G1 = H1 × . . . ×Hl, where Hi is a cyclic group of order 2ki with 1 ≤ k1 ≤
. . . ≤ kl.
Every g ∈ G has order 2k ·m with 0 ≤ k ≤ kl and m odd. Therefore, if s ≥ 3 or l = 2

and k1 ≥ 2, then (G : 〈g〉) ≡ 0 mod 4 for every g ∈ G.
Thus there are only three special cases left to clarify:

1. l = 2, k1 = 1 and k2 ≥ 2.

We represent every g ∈ G as g = (g0, g2, g3) with g0 ∈ G0, g1 ∈ {0, 1}, and
g2 ∈ {0, 1, . . . , 2k2 − 1}. Among any three elements of G, one can choose two
whose last components are of the same parity. If s1 and s2 are such elements, then
| 〈s1 − s2〉 | divides 2k1−1 · |G0|, and therefore (G : 〈s1 − s2〉) ≡ 0 mod 4.

2. l = 2, k1 = k2 = 1 and the sum of the three elements of S = {s1, s2, s3} is not a
square.

We represent every g ∈ G as g = (g0, g1, g2) with g0 ∈ G0 and g1, g2 ∈ {0, 1}. As
a, b, c and a+ b+ c are not squares, at least one of the two last elements of each of
these has to be equal to 1. This implies that | 〈s1 − s2〉 | is odd and therefore that
(G : 〈s1 − s2〉) ≡ 0 mod 4.

3. s = 1 and k1 ≥ 2

We represent every g ∈ G as g = (g1, g2) with g0 ∈ G0 and g2 ∈ {0, 1, . . . , 2k1 − 1}.
As the three elements of S are not squares, their last components are odd. There-
fore one can chose two elements of S, s1 and s2, whose second components are con-
gruent modulo 4. Then | 〈s1 − s2〉 | divides 2k1−2 ·|G0| resulting in (G : 〈s1 − s2〉) ≡
0 mod 4.

Proof of Theorem 4.10. Let S = {s1, s2, s3} be square free, such that Cay+G(S) is a

connected bipartite graph. Then | 〈S − S〉 | = |G|
2 . By Lemma 4.11 we know that

(G : 〈s1 − s2〉) = 2n, where n is even. Let m := | 〈s1 − s2〉 |. Therefore |G| = 2nm.
It is easy to see, that:

| 〈S − S〉 | = 〈s1 − s2, s1 − s3〉 ,

both of cardinality nm. This implies that n(s3 − s1) ∈ 〈s2 − s1〉 and hence:

n

2
(2s3 − s1 − s2) = n(s3 − s1) +

n

2
(s1 − s2) ∈ 〈s2 − s1〉 .

We then know that there exists a q ∈ {0, . . . ,m− 1} such that:

n

2
(2s3 − s1 − s2) = q(s2 − s1).

We will now construct a circle in Cay+G(S) and then show that this is in fact a Hamil-
tonian circuit.
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The first thing we need to do, is split the group G up into easily manageable subsets,
which will later enable us to check our circle for Hamiltonicity.

Let Γs1,s2 be the graph with vertex set:

V (Γs1,s2) = G/ 〈s1 − s2〉 ,

and edge set:

E(Γs1,s2) = {{π(x), π(y)} : π(x) + π(y) ∈ π(S), π(x) 6= π(y)},

where π is the natural injection from G to G/ 〈s1 − s2〉.
As Cay+G(S) is connected, it is easy to see that Γs1,s2 is connected.
This graph has maximum degree two, as π(s1) = π(s2). Suppose π(s1) is a square.

Then s1 = 2u+k(s1−s2), where u ∈ G/ 〈s1 − s2〉 and k ∈ Z is odd (as s1 is not a square).
This implies that s2 = 2u+ (k − 1)s1 − (k − 1)s2 is square, which is a contradiction.

Suppose π(s3) is a square. Again we get s3 = 2u+ k(s1 − s2) with k ∈ Z is odd. This
implies that s1 + s2 + s3 = 2u+ (k− 1)s1 − (k− 1)s2 is a square, which is contradiction
to Cay+G(S) being bipartite due to Proposition 4.9.

Thus π(S) is square free making Γs1,s2 a connected 2-regular graph, i.e. a circuit of
length 2n. By X1, Y1, . . . , Xn, Yn we denote the consecutive vertices of Γs1,s2 , such that
X1 + Y1 = π(s1). We use capitals for these vertices to emphasise that they are also sets
of elements of G. Also we can see that:

X1 ·∪Y1 ·∪ . . . ·∪Xn ·∪Yn = G. (4.1)

Let d := gcd(q,m), m = pd and x ∈ X1. For i ∈ {0, . . . , p−1} we set zi := x+iq(b−a).
The circle we want to construct will consist of s− 1 consecutive walks P (zi), defined as:

P (zi) :=

(
zi;
(
(s2s1)

d−1s2s3

)n
2
(
(s1s2)

d−1s1s3

)n
2

)
Every one of these walks visits alternating 2(d − 1) vertices in X1 and Y1 using s1-

and s2-edges, to then take a s3-edge to X2 and Y2. This goes on until we are in Xn and
Yn, where the last s3 edge takes us back to X1.

It remains to show that P (z0) ∗ P (z1) ∗ . . . P (zp−1) is a Hamiltonian circuit.
First we need to show that the last vertex of every P (zi−1), say v(zi−1), is the first

vertex of every P (zi) for i ∈ {1, . . . , p − 1}, and that the last vertex of P (zp−1) is the
first vertex of P (z0).

Calculating the v(zi−1) and v(zp−1)we get:

v(zi−1) = zi−1 +
n

2
(2s3 − s1 − s2) = zi−1 + q(s2 − s1) = zi,

and

v(zp−1) = zp−1 + q(s2 − s1) = x+ pq(s2 − s1) = x = z0,

because s2 − s1 has order m. Thus P (z0) ∗ P (z1) ∗ . . . P (zp−1) is a circle in Cay+G(S).

77



To prove that it is Hamiltonian we need to show that every vertex in this circle is
distinct.

Let uj(zi) be the first vertex of P (zi) that is inXj . Then u1(zi) = zi, and for 2 ≤ j ≤ n
we have:

uj(zi) :=

{
uj−1(zi) + (d− 1)(s1 − s2) + s3 − s2, if j ≤ n

2 + 1
uj−1(zi) + (d− 1)(s2 − s1) + s3 − s1, if j > n

2 + 1

For zi, zi+1 ∈ X1 this implies that:

uj(zi)− uj(zi+1) = zi − zi+1.

Let V (zi) denote all vertices of P (zi) excluding the last one. Then the following
equations hold:

V (zi) ∩Xj =

{
{uj(zi) + l(s1 − s2) : 0 ≤ l ≤ d− 1}, if j ≤ n

2
{uj(zi) + l(s1 − s2) : 0 ≤ l ≤ d− 1}, if j > n

2

,

and

V (zi) ∩ Yj =
{
s2 − (V (zi) ∩Xj) , if j ≤ n

2
s1 − (V (zi) ∩Xj) , if j > n

2

.

These equations imply that all vertices in a given V (zi) are distinct and that V (zi) ∩
V (zi+1) = ∅, for all 0 ≤ i < p− 1, as zi − zi+1 = s1 − s2.

Finally we know that:

p−1∑
i=0

|V (zi)| = p|V (z0)| = p · 2nd = 2mn = |G|,

proving that P (z0) ∗ P (z1) ∗ . . . P (zp−1) is a Hamiltonian circuit.

If we claim that |G| ≡ 0 mod 8 we can show a similar statement for non-bipartite
graphs. In the proof we will explain, why this added requirement is necessary.

Theorem 4.12. [CGW03] Let G be an abelian group with |G| ≡ 0 mod 8 and let S
be a square-free subset of G of cardinality three. If Cay+G(S) is connected, then it is
Hamiltonian.

Proof. Let S = {s1, s2, s3} be square free such that Cay+G(S) is a connected graph.
Because of Theorem 4.10 we can assume that Cay+G(S) is not bipartite and thus, because
S square free, that s1 + s2 + s3 is a square. Applying Lemma 4.11 we know that
(G : 〈s1 − s2〉) = 2n, where n is even. Let m := |〈s1 − s2〉|.
As in Theorem 4.10 we construct the graph Γs1,s2 and as in Theorem 4.10 we see that

π(s1) is not a square. However, as the graph is bipartite, and thus s1 + s2 + s3 is a
square, we see that π(s3) in this case is in fact a square.
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As a result, Γs1,s2 this time takes the shape of a path, as it is connected but not
2-regular. We denote this path as X1, Y1, . . . , Xn, Yn, and because π(s3) is a square
X1 + Y1 = π(s1).

Every element of X1 is connected by a s3-edge to another element of X1 in Cay+G(S)
and therefore |X1| = m is even. This fact motivates why |G| is assumed to be divisible
by 8, as opposed to 4 in Theorem 4.10.

Because Cay+G(S) is not bipartite, 〈S − S〉 = 〈s1 − s2, s1 − s3〉 = G and thus is of
cardinality 2nm. This also implies that |〈s1 − s3〉| = 2n and:

n(2s3 − s1 − s2) = 2n(s3 − s1) + n(s1 − s2) = n(s1 − s2) ∈ 〈s1 − s2〉 .
We know that there exists a q ∈ {0, . . . ,m− 1} such that:

n(2s3 − s1 − s2) = q(s2 − s1).

Then q ≡ n mod m and is therefore even. Let d = gcd(q,m) (so d ≥ 2) and m = dp.
We define the walks P (zi) for i ∈ {0, . . . , p− 1} as follows:

P (zi) := (zi;w1, . . . , w2n) ,

where

wj :=


s2s3, if j ≤ n and j is odd,
s1s3, if j ≤ n and j is even,
(s1s2)

d−2s1s3, if j > n and j is odd,
(s2s1)

d−2s2s3, if j > n and j is even.

As in Theorem 4.10 the Hamiltonian circuit will be the conjunction of these walks.
However, proving that the walks are disjunct, although very similar, is much more
intricate, which is why we refer to [CGW03] for the rest of the proof.

Although the results from this section seem rather satisfying and conclusive (in [CGW03]
the bipartite case is even nearly completely resolved), they are strongly restricted by their
setting.

Not only are all addition Cayley graphs over non-square-free sets disregarded, we
have also restricted ourselves to groups of even order as a result of the strong reliance
on bipartition (which with square free sets implies a group of even order).

Therefore, in the next section we will examine whether any results are possible if we
leave the setting of square-free sets.

4.3 The Hamiltonicity of addition Cayley graphs over cyclic
groups

In the last section, we discussed the Hamiltonicity of addition Cayley graphs under the
assumption that the underlying set S is square-free. This assumption results in the
graph containing no loops and thus being strictly regular.
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This assumption though is, of course, very restrictive, as most subsets of groups will
contain at least one square.

On the other hand, if we drop this assumption we get small and easy counterexamples
of addition Cayley graphs over sets of cardinality 3, which are biconnected but not
Hamiltonian; for example Cay+Z7

with S = {1, 2, 4}(Figure 4.4).

0

1

2

4

3

6

5

Figure 4.4: Cay+Z7
({1, 2, 4}) without self loops

This graph is not Hamiltonian because the vertex 0 is connected to all three vertices
of degree 2, namely 1, 2, and 4, making a Hamiltonian circuit impossible.

To make any kind of plausible conjecture concerning Hamiltonicity over general addi-
tion Cayley graphs, we will have to restrict ourselves to a particular type of group, so
as to be able to determine the amount of squares in our set S.

The easiest type of abelian group is a cyclic group, and already in this setting the only
statement in the literature (apart from [Lev10], which is in a completely different vein)
is the following conjecture:

Conjecture 4.13. [CL] Let G be a finite cyclic group and S a subset of cardinality at
least 4 such that Cay+G(S) is connected. Then Cay+G(S) is Hamiltonian.

The question arises, why the set S has to be of cardinality 4 as opposed to 3, as in
the last section.

There are two reasons for this: Firstly if S were to be of cardinality 3 and one of its
elements a square, the graph would be less than cubic, and for a graph to be at least
cubic is an assumption often used in regard to Hamiltonicity.

The other (and decisive) reason is the existence of counterexamples.
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Above we have already given one example of an addition Cayley graph over a cyclic
group and a set of cardinality 3, which is not Hamiltonian. Furthermore in [Lev10] it
is stated that ”it can be shown that if n ≡ 3 mod 4, G = Zn, and S = {0, 1, 3} ⊆ G
(Figure 4.5), then Cay+G(S) is 2-connected, but not Hamiltonian”; a fact that we will
examine further on.
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Figure 4.5: Cay+Z7
({0, 1, 3})without self-loops

As already mentioned, the number of squares in S and thus the number of self-loops
in Cay+G(S) will be very important in determining whether Cay+G(S) is Hamiltonian.

For cyclic groups this question is quickly answered:

Proposition 4.14. Let G be a cyclic group.

i) If G is of odd order, then every element of G is a square and has a unique root.

ii) If G is of even order, then all elements of G that are squares are contained in the
unique subgroup of index 2, and have exactly two roots.

This proposition suggests that it is convenient to treat the case of odd-order groups
separately from that of even-order groups.

While addition Calyey graphs over cyclic groups of odd order will always have |S|
self-loops, the even order case is more complicated. Thus, from now on we will only be
interested in cyclic groups of odd order.

Lemma 4.15. Let G be a cyclic group of odd order. Let S = {s1, s2} be a subset of G
with cardinality 2, then Cay+G(S) consists of one path and circuits, which are pairwise
vertex-disjoint.
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Let m denote the period of s1 − s2. Then the length of the path is m − 1, leads from
the root of s1 to the root of s2. The length of a circuit is 2m.

Proof. As G has odd order, every element of G is a square. Thus there are g1, g2 ∈ G
such that s1 = g1 + g1 and s2 = g2 + g2.
Every vertex of Cay+G(S) has degree 2, while g1 and g2 have degree 1. Therefore the

graph must consist of one path from g1 to g2 and circuits otherwise. Also for reasons of
degree, the circuits and the path must be pairwise vertex-disjoint.
As m is the period of s1 − s2 we get:

2g1 + 2g2 = s1 − s2 = (m+ 1)(s1 − s2).

As G has odd order, m must be odd. Therefore the above can be written as:

g1 − g2 =
m+ 1

2
(s1 − s2). (4.2)

The path from g1 to g2 must have alternating s1- and s2-edges, where g1 is incident
to a s2-edge and g2 incident to a s1-edge.
Now if l describes the length of the path (l is obviously even), by using the s1-loop we

get the equation:

g1 − g2 =
l + 2

2
(s1 − s2).

Because m is the period of s1 − s2 we see that m− 1 ≤ l.
On the other hand, we can construct a walk from Equation 3.2 which has lengthm−1,

implying that the path does in fact have exactly length m− 1.
To calculate the length of a circuit, we must choose one of its vertices g. As g is an

element in a circuit, there must be a path from g to itself; this path must have alternating
s1 and s2 edges and must w.l.o.g begin with an s1-edge and end in an s2 edge (and thus
is of even length).
From these observations we get the following equation:

0 =
l

2
(s1 − s2),

where l denotes the length of the circuit.
Hence l

2 must be a multiple of m, as m is the period of s1 − s2. Like above, this
suffices to show that l is in fact exactly 2m.

A useful result of this lemma is the following corollary:

Corollary 4.16. Let G be a cyclic group of odd order and S a subset of G.
If S contains a pair of elements s1, s2 such that 〈s1 − s2〉 = G, then Cay+G(S) contains

a Hamiltonian path.

Proof. This is an easy consequence of Lemma 4.15.
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Using this corollary we can even make a stronger statement for addition Cayley graphs
over sets S with cardinality at least two:

Lemma 4.17. Let G be a cyclic group of odd order. Let S = {s1, . . . , s2m} be a subset of
even cardinality such that Cay+G(S) is connected and such that s1−s2, s3−s4, . . . , s2m−1−
s2m all generate G (after appropriate reordering).

Then the edge set of Cay+G(S) can be partitioned into m pairwise edge-disjoint Hamil-
tonian paths.

Proof. Consider Cay+G({s1, s2}), . . . , Cay
+
G({s2m−1, s2m}). Everyone of these graphs is a

subgraph of Cay+G(S) and because of Corollary 3.24 they are all Hamiltonian paths.

For groups of prime order, a connected addition Cayley graph will thus always contain
a Hamiltonian path. For cyclic groups in general this has not been shown yet. But
computations by the author suggest that the following conjecture is true:

Conjecture 4.18. Let G be a cyclic group of odd order, an S a subset of cardinality 3
such that Cay+G(S) is connected. Then Cay+G(S) contains a Hamiltonian path.

What these computations are, and why they are convincing will be explained when
we introduce Conjecture 4.23.

On the other hand, connected addition Cayley graphs over p-groups will always contain
a Hamiltonian path:

Proposition 4.19. Let G be a cyclic p-group of odd order, i.e. |G| = pm. Let S be
a subset of G, such that Cay+G(S) is connected, then Cay+G(S) contains a Hamiltonian
path.

Proof. Let S = {s1, . . . , sk}. Suppose that for all 1 ≤ i, j ≤ k si − sj does not generate
G. Then for all 1 ≤ i, j ≤ k there is a subgroup of G, namely Hij , such that si−sj ∈ Hij .

As G is a p-group, all subgroups of G are contained in the unique subgroup of order
pm−1 which we define as H∗. Therefore for every 1 ≤ i, j ≤ k we have si − sj ∈ H∗.

As a consequence we get:

H∗ + s1 = H∗ + s2 + . . .+H∗ + sk.

This implies that S is a subset of H∗s1, and thus that Cay+G(S) is not connected.
As this is a contradiction, there must be a pair of elements whose difference generates

G. According to Corollary 3.24, Cay+G(S) must contain a Hamiltonian path.

The next step will be to use these Hamiltonian paths to construct a Hamiltonian
circuit. Because the Hamiltonian circuit problem is even NP-complete when we are
given a Hamiltonian path, it is not immediately clear how this information can help,
but the Hamiltonian paths will give us an insight on the rather symmetric structure of
graphs over groups of prime order.
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Before moving on to Conjecture 4.13 we will first consider addition Cayley graphs,
where G is cyclic of odd order, and S has cardinality 3.

As we have seen in Corollary 4.16, Cay+G(s) will contain a Hamiltonian path if there
is a pair si, sj ∈ S such that si − sj is a generator of G. If G is of prime order, every
element is a generator, and we can take a Hamiltonian path for granted. Thus the case
of |G| prime seems to be the best place to start.

As G cyclic of prime order p is isomorphic to Zp, it is a field and every element has
a multiplicative inverse. If in the following we make any calculations with elements of
such a G these are meant to be performed in the field arithmetic, and if 1, 2, 3 . . . are
used in these calculations we will mean elements of Zp.

Lemma 4.20. Let G be a cyclic group of order p, where p is an odd prime, and S =
{s1, s2, s3} and S′ = {s′1, s′2, s′3} subsets of G of order 3.

Then Cay+G(S) and Cay+G(S
′) are isomorphic if and only if there is an ordering of S

and S′ such that:

s3 − s2
s1 − s2

=
s′3 − s′2
s′1 − s′2

.

Proof. As s1 − s2 generates G, there is a Hamiltonian path from the root of s1 to the
root of s2 in Cay+G(S), namely P = (g1, . . . , gp).

As s′1− s′2 also generates G we get a Hamiltonian path from the root of s′1 to the root
of s′2 in Cay+G(S

′), namely P ′ = (g′1, . . . , g
′
p).

To get the desired isomorphism from Cay+G(S) to Cay+G(S
′) we map gi to g

′
i for all

1 ≤ i ≤ p.

For this map to be an isomorphism the following must hold:

{gi, gj} ∈ E
(
Cay+G(S)

)
⇔ {g′i, g′j} ∈ E

(
Cay+G(S

′)
)
,

for all 1 ≤ i, j ≤ p.

For all s1 and s2 edges this is true, as we are mapping the two Hamiltonian paths
containing all s1- and s2-edges upon each other.

Thus it is sufficient to show:

gi + gj = s3 ⇔ g′i + g′j = s′3,

for all 1 ≤ i, j ≤ p.

So let gi + gj = s3 and l := s3−s2
s1−s2

. Then we get gi + gj = l(s1 − s2) + s2. This implies
a walk from gi to gj along the Hamiltonian path P .

As we projected P onto P ′ we have an equivalent walk from g′i to g
′
j along P ′, which

implies that g′i + g′j = l(s′1 − s′2) + s′2 = s′3 and hence proves the statement.

This lemma implies that for G of prime order there are only few different addition
Cayley graphs, as most of these are isomorphic. At first glance it seems that there are
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p− 2 different graphs, one for each value of s3−s2
s1−s2

apart from 0 and 1 (which both imply
that si = sj for some 1 ≤ i, j ≤ 3). In fact, there are even less possibilities than this.

For convenience sake we make the following definition:

Definition 4.21. (ratio) Let G be a cyclic group of order p, where p is an odd prime,
and S = {s1, s2, s3} a subset of G of cardinality 3.

Then we define:

r
(
Cay+G(S)

)
=
s3 − s2
s1 − s2

to be the ratio of Cay+G(S).

Obviously the ratio of Cay+G(S) depends on the ordering of the three elements of S
and is thus not uniquely defined.

If we set r to be the ratio of Cay+G(S) we get the following equations:

• s3−s2
s1−s2

= r

• s1−s2
s3−s2

= 1
r

• s3−s1
s2−s1

= 1− r

• s2−s1
s3−s1

= 1
1−r

• s2−s3
s1−s3

= r
r−1

• s1−s3
s2−s3

= r−1
r

Therefore addition Cayley graphs of ratio r, 1
r , 1− r,

1
1−r ,

r
r−1 ,

r−1
r are all isomorphic

to one another. Again, for the sake of convenience, we will call such a selection of ratios
a ratio-cluster. Of course not every ratio-cluster has to contain six distinct elements, as
some might appear double or triple.

This places the number of non-isomorphic addition Cayley graphs over G of order p,
prime, somewhere between p

6 and p− 2.
With this in mind we can return to the counterexamples given before. Figure 4.6 is

an example with p = 19 ≡ 3 mod 4 and S = {3, 5, 6} and thus also with ratio p−1
2 .

For reasons of degree all dashed edges in this example would have to be contained
in a Hamiltonian circuit. But using all these edges makes it impossible to include
the highlighted vertex into the circuit, making this graph non-Hamiltonian. The same
argument holds for all p ≡ 3 mod 4 if the ensuing addition Cayley graph has ratio p−1

2 .

If we now insert p−1
2 into the above equations as r, we get:

• r = p−1
2

• 1
r = p− 2

• 1− r = p−1
2 + 2
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Figure 4.6: Cay+Z19
({3, 5, 6}) without self-loops; the 3-edges are blue, the 5-edges green

and the 6-edges red; the highlighted vertex is the root of 6

• 1
1−r = 2

3

• r
r−1 = 1

3

• r−1
r = 3

and thus the following proposition:

Proposition 4.22. Let G be a cyclic group of order p, where p is an odd prime with
p ≡ 3 mod 4, and S = {s1, s2, s3} a subset of G of cardinality 3.
If r

(
Cay+G(S)

)
is equal to one of the values:

• p−1
2
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• p− 2

• p−1
2 + 2

• 2
3

• 1
3

• 3,

then Cay+G(S) is not Hamiltonian.
We will call this ratio-cluster the 3-cluster.

Naturally, the question arises whether this is the only ratio-cluster which causes
Cay+G(S) to be non-Hamiltonian. Using an exhaustive search, based on the above,
for primes less than and including 79, the author came to the following results: For
p = 7, 11, 31, 67, 71, 79 the only ratio-cluster leading to non-Hamiltonian graphs is the
3-cluster. For p = 19, 23, 43, 47, 53 we receive one more cluster each:

• p = 19: {8, 12}

• p = 23: {4, 6, 9, 15, 18, 20}

• p = 43: {7, 37}

• p = 47: {4, 12, 17, 31, 36, 44}

• p = 53: {4, 15, 21, 39, 45, 56}.

In the statement of Conjecture 4.13 in [CL] the cardinality of 4 for the subset S
is motivated by the fact that there are counterexamples for this conjecture for S of
cardinality 3. But the counterexamples we have seen so far are all over groups of order
|G| ≡ 3 mod 4, and in fact no other such examples are known.

This gives rise to the following conjecture:

Conjecture 4.23. Let G be a finite cyclic such that |G| ≡ 1 mod 4.
Suppose S ⊆ G with cardinality at least 3 such that Cay+G(S) is connected, then

Cay+G(S) is Hamiltonian.

The author has verified this statement and Conjecture 4.18 for a few hundred instances
over different groups of order less than 100 (as checking for Hamiltonicity is NP-complete)
using random numbers as elements for S.

This can only be used as an argument if there is a small likelihood of isolated counterex-
amples which are unlikely to be reached using a random approach. But the structure of
these graphs, as motivated by the preceding, seems to imply that the existence of one
counterexample would lead to a large number of counterexamples through isomorphy.

For groups of prime order we have shown that there are very few different graphs, so
that the following weaker statement can be justified much more effectively:
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Conjecture 4.24. Let G be a finite cyclic group with |G| ≡ 1 mod 4 prime.
Let S be a subset of G with cardinality at least 3 such that Cay+G(S) is connected, then

Cay+G(S) is Hamiltonian.

This statement has been checked by the author using an exhaustive search (i.e. check-
ing all instances) for primes up to and including 89.
What we have seen so far suggests a possible strategy for proving Conjecture 4.13:
The easiest statement to prove seems to be Conjecture 4.24, as these graphs have a

strong structure. This information could then in turn be used to prove Conjecture 4.23,
answering our question for all odd numbers ≡ 1 mod 4.
For odd numbers ≡ 3 mod 4 the statement is probably harder to show. One would

have to find a structure in the ratio-clusters that are unequal to the 3-cluster and mo-
tivate why, in these cases, adding one element to S would lead to Hamiltonicity. If we
have shown the statement for primes, it should then again be possible to expand this
result to all other odd numbers.
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Conclusion

In the course of this work, we have seen that addition Cayley graphs are not only
interesting because of their simple and pleasing construction, but that these graphs also
have relevance to other important fields of mathematics, such as additive combinatorics.

In the first part of this work, we have shown that addition Cayley graphs furnish
us with a new tool to combine graph theory and additive combinatorics. Therefore, it
seems pertinent to examine their properties closer.

In the last chapter, we have made some progress toward solving the problem of Hamil-
tonicity. We have shown the existence of Hamiltonian paths on addition Cayley graphs
over cyclic groups of prime and prime-power cardinality. Further, we have made some
progress toward a conjecture [CL] about Hamiltonicity of addition Cayley graphs on
cyclic groups in general, by making observations on the structure of the special case of
prime cardinality groups.

Also, we have given new conjectures (4.23 and 4.24) which strengthen Conjecture 4.13,
but make a new prerequisite on the size of the underlying cyclic group.

While computations and heuristic arguments show that these conjectures are likely
to hold, they are still far from being proven. However, this work has shown where
Hamiltonicity does not hold for addition Cayley graphs over cyclic groups and sets S of
cardinality 3, i.e. for specific sets S (see Proposition 4.22). Therefore, it would be a big
step to show why adding another element to S makes addition Cayley graphs over these
sets Hamiltonian.

To prove Conjecture 4.13 fully, it will also be necessary to inspect addition Cayley
graphs over cyclic groups of even cardinality. In this context, it is possible to use the
results from [CGW03] for square-free sets S. The other cases seem to be quite difficult,
as one will need to make case-distinctions on the number of squares contained in S.

If the conjectures given in this work should be proved, it would be the logical step
to examine addition Cayley graphs over other groups with small generating sets, for
example of size two or three. As [Lev10] states that the size of S must be at least the
rank of G, feasible results for groups with large generating sets are out of the question.

Not only the question of Hamiltonicity should be further clarified, many graph invari-
ants, such as the chromatic number, are still completely unstudied. Other properties,
such as the diameter, the independence number (see Section 3.3) and the clique number
(see Section 3.2) have only been treated partially and still remain unclear.

The more discovered about these properties, the more the relationship to additive
combinatorics can be exploited, to find new results or possibly simpler graph-theoretical
proofs for old results.

Summing up, addition Cayley graphs offer a variety of open questions, and their
structure make it likely that interesting results can be found.
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