Closure of algebraic classes under factoring

Nitin Saxena
CSE @ IIT Kanpur
[*Based on many works* / *Thanks to the artists*]

Institut Henri Poincaré @ Paris
Septembre 2023
The problem: Factoring polynomials — the base case

❖ **Question (factor)**: Given \(f \in \mathbb{F}[x] \), find a **nontrivial** factor \(g \)?
 ➢ Depends critically on \(\mathbb{F} \).

❖ \[\text{[Cantor, Zassenhaus’81]} \] Given \(f \in \mathbb{F}_q[x] \), factor it in **randomized** poly-time.
 ➢ Clever use of residuosity/ Euclid.

❖ \[\text{[Lenstra, Lenstra, Lovasz’82]} \] Given \(f \in \mathbb{Q}[x] \), factor in poly-time.
 ➢ Lattice basis reduction.

❖ \[\text{[Cantor, Gordon’00]} \] Given \(f \in \mathbb{Q}_p[x] \), factor in **randomized** poly-time.
 ➢ Newton polytope, p-adic analysis.

\[x^2 - 2 \in \mathbb{Q}[x] \text{ is irreducible, while } x^2 - 2 \equiv (x - 3)(x - 4) \mod 7 \]

\[X^{(q-1)/2} - 1 \equiv \prod_{\text{square } a \in \mathbb{F}_q^*} (X - a) \]

\[\sqrt{2} = 3 + 1 \times 7 + 2 \times 7^2 + 6 \times 7^3 + \ldots \]
The Model: Algebraic Circuits

- Valiant (1977) formalized computation via **algebraic circuits**.
 - Giving birth to his $\text{VP} \neq \text{VNP}$ question.
 - Or, algebraic **hardness**!

- Algebraic circuit has constants, variables, **size**, depth.
 - Ignores the size of constants
Factoring Multivariates

❖ Qn. (class): Given $f \in \mathbb{F}[x] := \mathbb{F}[x_1, ..., x_n]$ in class \mathcal{C}, find nontrivial factor g in \mathcal{C}?
 ➢ Is there an efficient algorithm?

❖ Class \mathcal{C} has to be strong enough to afford factoring techniques.

❖ Circuit of size-s can have $\exp(s)$ degree.
 ➢ Its high-degree factors can be hard.
 ➢ We’ll choose our closure questions carefully!

\[
\left(\sum_{i \in [n]} x_i^p \right) \mod p \text{ has sparsity } n, \text{ while its factor } \\
\left(\sum_{i \in [n]} x_i \right)^{p-1} \text{ has sparsity } \approx n^p.
\]

\[
x^{2^s} - 1 = \prod_{i \in [2^s]} (x - \zeta^i) \text{ has } 2^{2^s} \text{ factors!}
\]
Applications of factoring

❖ [Sudan’97] Decoding Reed-Solomon codes.
 ➢ [Guruswami, Sudan’06] List decoding.

❖ [Kabanets, Impagliazzo’04] Derandomization from hardness.
 ➢ [Kopparty, Saraf, Shpilka’14] Identity testing (PIT) equivalence.

❖ Cryptography.
 ➢ Cryptanalysis,
 ➢ Constructing fields; factoring integers.

❖ Computer Algebra.
 ➢ System solvers; Gröbner bases; Numerical methods.
 ➢ Cornerstone problem!
BIG IDEAS
(POLY-DEGREE)
Efficiently Factoring VP circuits

- [Kaltofen’86] Any factor g of size-s circuit f satisfies:
 \[\text{size}_{\text{ckt}}(g) \leq \text{poly}(s, \text{deg}(f)). \]
 - [Kaltofen, Trager’91] Blackbox for g can be found efficiently.

- The class VP contains polynomial family $f_n(x_n)$ of poly(n)-size and poly(n)-degree.
 - [Kaltofen’86] VP is closed under factoring.
 - **Corollary:** Any nonzero multiple of hard polynomial (g) is hard!

- **Tools:** Hensel lifting and division.

- **Preprocessing (monic in x_1):** Write $f(y, x_1, x_2, ..., x_n) = gh$, where
 - $g, h \text{ mod } y$ are univariate in x_1 and are coprime.
 - Eg. map x_1 to $(b_1 x_1 + a_1)$; x_2 to $yx_2 + (b_2 x_1 + a_2)$; ...; x_n to $yx_n + (b_n x_1 + a_n)$.
Efficiently Factoring VP circuits — Hensel lifts

Given: size-\(s\) degree-\(d\) circuit \(f(y, x_1, x_2, \ldots, x_n)\) as before. Find \(g, h\).

Hensel lift (1st): \(f(0, x_1, x_2, \ldots, x_n) =: g_1 h_1 \mod y\).

➢ Use univariate factoring over \(\mathbb{F}\).

Hensel lift (2nd): \(f(y, x_1, x_2, \ldots, x_n) =: g_2 h_2 \mod y^2\).

➢ Extract coef(y) in circuit \(f\). Use perturbation formula on \(g_1, h_1\).

Hensel lift (\(k\)-th): \(f(y, x_1, x_2, \ldots, x_n) =: g_k h_k \mod y^k\).

➢ Extract coef\((y^{k-1})\) in circuit \(f\). Use perturbation formula on \(g_{k-1}, h_{k-1}\).

Go up to \(k := d+1\).

Question: Is \(g_k\) factor of \(f\)?

➢ Lift is messy: \(g_k\) may’ve extra degree in \(y, x_1\).

Perturbation: \(f \equiv (g_1 + e \cdot v_1) \cdot (h_1 + e \cdot u_1) \mod y^2, \) where \(e := (f - g_1 \cdot h_1)\) and \(1 =: u_1 \cdot g_1 + v_1 \cdot h_1\).
Efficiently Factoring VP circuits — monic lifts

- Given \((k=d+1)\): \[f(y, x_1, x_2, \ldots, x_n) = g_k h_k \mod y^k \]

- Keep monic [Clean-up]: Since \(g\) is monic (in \(x_1\)), we can use monic perturbation, at each lift.
 - Divide: Reduce \(ev_1 \mod g_1\), before adding to \(g_1\), to get \(g_2\). [Strassen’73]

- \(g_k, h_k\) are monic (in \(x_1\)).
 - \(\deg_{x_1}(g) = \deg_{x_1}(g_k)\).

- Fact 1: \(g_k\) is circuit of size \(\text{poly}(s,d)\).

- Fact 2: \(g = g_k\) is actual factor of \(f\)!

- Trick Qn: Without the promise of \(g\), what does \(g_k\) signify?

Perturbation: \(f \equiv (g_1 + e \cdot v_1) \cdot (h_1 + e \cdot u_1) \mod y^2\), where \(e := (f - g_1 \cdot h_1)\) and \(1 =: u_1 \cdot g_1 + v_1 \cdot h_1\).
Efficient Factoring in VBP

- [Sinhababu,Thierauf’21] Any factor g of size-s algebraic branching program (ABP) f satisfies: $\text{size}_{\text{abp}}(g) \leq \text{poly}(s)$.
 - ABP is a matrix–product expression, or equivalently, the determinant model.

- The class VBP contains polynomial family $f_n(x_n)$ of poly(n)-size ABP.
 - [Sinhababu,Thierauf’21] VBP is closed under factoring.
 - Corollary: Any nonzero multiple of ABP-hard g is ABP-hard!

- **Tools:** Fast Hensel-lifting and Linear-system solving.

- **Preprocessing (monic in x_1):** Write $f(y,x_1,x_2,\ldots,x_n)=gh$, where
 - g,h mod y are univariate in x_1 and are coprime.
 - Eg. map x_1 to $(b_1x_1+a_1)$; x_2 to $yx_2+(b_2x_1+a_2)$; \ldots; x_n to $yx_n+(b_nx_1+a_n)$.

Efficient Factoring in VBP — Fast Hensel lifts

- **Given:** size-s degree<s ABP \(f(y, x_1, x_2, \ldots, x_n) \) as before. Find \(g, h \).

- **Hensel lift (1st):** \(f(0, x_1, x_2, \ldots, x_n) =: g_1 h_1 \mod y \).
 - Use univariate factoring over \(\mathbb{F} \).

- **Hensel lift (2nd):** \(f(y, x_1, x_2, \ldots, x_n) =: g_2 h_2 \mod y^2 \).
 - Extract coef\((y)\) in circuit \(f \). Use perturbation formula on \(g_1 \) and \(h_1 \).

- **Hensel lift \((\log_2(D)-th)\):** \(f(y, x_1, x_2, \ldots, x_n) =: g_D h_D \mod y^D \).
 - Extract coef\((y^{D-1})\) in circuit \(f \). Use perturbation formula on \(g_{D/2}, h_{D/2} \).

- **Go up to** \(D := (2s^2 + 1) \). [ABP-size grows 4-times per lift.]

- **Question:** Is \(g_D \) factor of \(f \)?
 - **Lift is messy:** Non-monic \(g_D \) may’ve extra degree in \(y, x_1 \).

 Perturbation: \(f \equiv (g_1 + e \cdot v_1) \cdot (h_1 + e \cdot u_1) \mod y^2 \), where \(e := (f - g_1 \cdot h_1) \) and \(1 =: u_1 \cdot g_1 + v_1 \cdot h_1 \).
Efficient Factoring in VBP – Linear-system

- Given \((D=2s^2+1)\): \(f(y,x_1,x_2,...,x_n) =: g_D h_D \mod y^D\).
- Solve linear-system [Clean-up]: \(g' = g_D \ell \mod y^D\), where
 - \(\deg_{x_1}(g') \leq \deg_{x_1}(g), \deg_y(g') \leq \deg_y(g)\),
 - \(\deg_{x_1}(\ell) \leq \deg_{x_1}(h_D), \deg_y(\ell) < D\).
 - It’s ABP friendly.

- **Fact 3**: \(g'\) is ABP of size \(\text{poly}(s)\).
 - So is its leading-coeff (wrt \(x_1\)), say \(c = c(y,x_2,...,x_n)\).
- **Fact 4**: \(g = g'/c\).
- **Eliminating** division (merely once!), finishes the proof.

\[\text{QED}\]
“Efficient” Factoring in VNP — Witness/formula trick

Proof similar to factoring in VP. Except,

\[f(y,x) = \sum_{w \in \{0,1\}^m} V(w,y,x), \] where \(V \) is verifier-circuit on witness \(w \).

In VP proof: \(f(y,x) =: g_k h_k \mod y^k \), gives circuit \(C(f) \) for \(g_k = g \).

[Valiant’82] There is small verifier-formula \(F \): \(C(f) =: \sum_{w \in \{0,1\}^m} F(w',f) \).

Composition gives: \(g = \sum_{(w,w') \in \{0,1\}^{m+m'}} F(w',V(w,y,x)) \), thus proving—

Fact 5: \(g \) in VNP, with size-parameter poly(s,d).

[Chou,Kumar,Solomon’18] VNP is closed under factoring.

QED

Overlooked: need large field; characteristic? OK for coprime \(g,h \).
Factoring in shallow depths? — Introducing Newton

- [Oliveira’15] Let f has individual-degree r and size-s. In just depth+4, any factor g of f has: $\text{size}(g) \leq \text{poly}(s^r)$.
 - Constant-ind.degree, constant-depth model is closed under factoring.

Tools: Newton-iteration.

Preprocessing (monic in x_1): Write $f(y, x_1, x_2, \ldots, x_n) = (x_1 - \varphi(yx_2, \ldots, yx_n)) \cdot h$, where
 - φ is power-series in $\mathbb{F}[[yx_2, \ldots, yx_n]]$ and $h(y=0, x_1=\varphi) \neq 0$ [coprime].
 - Eg. map x_1 to $(b_1x_1+a_1)$; x_2 to $yx_2+(b_2x_1+a_2)$; \ldots; x_n to $yx_n+(b_nx_1+a_n)$.

Newton-iteration specifies the simple-root φ of f.

Requires: one derivation, many compositions.

Newton-iteration: Approximant up to degree m of φ is $\varphi_{m+1} := \varphi_m - f(\varphi_m)/\partial_{x_1} f(\varphi_m(0))$.
Factoring in shallow depths? — Introducing Newton

- Newton-iteration: The coefficients of f are $C_0(y, x_2, ..., x_n), ..., C_r(y, x_2, ..., x_n)$.
- Inductively, ϕ_{m+1} can be written as degree-m function in these.
- **Fact 6**: ϕ_{m+1} is depth-2 circuit of size m^r, in C_i's.
- Once we’ve roots, we’ve factors!
- **Fact 7**: g requires depth-4 circuit, of size $\text{poly}(s^r)$, on top of f.

QED

Newton-iteration: Approximant up to degree m of ϕ is $\phi_{m+1} := \phi_m - f(\phi_m)/\partial_{x_1} f(\phi_m(0))$.
Big ideas
(Exp-degree)
Factoring exponential degree circuits? — More Newton

[Dutta, S., Sinhababu’18] Any factor g of size-s circuit f satisfies:

$$\text{size}_{\text{ckt}}(g) \leq \text{poly}(s, \deg(\text{rad}(f)))$$

- Radical $\text{rad}(f)$ is the squarefree part. May have $\deg > 2^s$!

Tools: Modified Newton-iteration.

Preprocessing (monic in x_1): Write $f(y, x_1, x_2, ..., x_n) = \prod_{i \in [k]} (x_1 - \phi_i(yx_2, ..., yx_n))^{e_i}$, where

- ϕ_i is power-series in $\mathbb{F}[[yx_2, ..., yx_n]]$ and $\phi_i(y=0)$ are distinct [coprime].
- Eg. map x_1 to $(b_1x_1 + a_1)$; x_2 to $yx_2 + (b_2x_1 + a_2)$; … ; x_n to $yx_n + (b_nx_1 + a_n)$.

- Roots are very far from simple.
 - Can’t run Newton iteration. [Division by 0!]

Newton-iteration: Approximant up to degree m of φ_i is $\varphi_{i,m+1} := \varphi_{i,m} - f(\varphi_{i,m})/\partial_{x_1}f(\varphi_{i,m}(0))$.

}\square

\square
Factoring exponential degree circuits? — More Newton

❖ Consider $F := f + yz \cdot \partial_{x_1} f$, where z is new. Then,

❖ $F =: \prod_{i \in [k]} (x_1 - \psi_i(yx_2, ..., yx_n))^{e_i^{-1}} \cdot (\text{rad}(f) + yz \cdot Q) =: u \cdot v$, where
 ➢ u, v are coprime, monic and $k = \deg_{x_1}(v) = \deg_{x_1}(\text{rad}(f)) > \deg_{x_1}(Q)$.

❖ Newton-iteration finds (distinct) simple root ψ_i of v in $\mathbb{F}[[yz, yx_2, ..., yx_n]]$.

❖ Setting $z=0$, we get circuit for rad(f).
 ➢ of size $\text{poly}(s, k)$.
 ➢ Though F is very-high deg, we only use its $\deg(\text{rad}(f))$ part.
 \[\text{QED} \]

Newton-iteration: Approximant up to degree m of ψ_i is $\psi_{i,m+1} := \psi_{i,m} - F(\psi_{i,m})/\partial_{x_1} F(\psi_{i,m}(0))$.
Factoring approximatively — introducing ε

- [Bürgisser’01] Any factor g of size-\textit{s} circuit f satisfies:
 \[
 \text{size}_{\text{approx}}(g) \leq \text{poly}(s, \deg(g)).
 \]
 - Works over $\mathbb{F}(\varepsilon)$, with $\varepsilon \to 0$, where \textit{precision is exponential}!

- **Tools:** Perturb by ε, and Newton-iteration over $\mathbb{F}(\varepsilon)$.

- **Preprocessing (monic in x_1):** Write $f(y, x_1, x_2, \ldots, x_n) = (x_1 - \varphi(yx_2, \ldots, yx_n))^{\varepsilon} \cdot h$, where
 - φ is power-series in $\mathbb{F}[[yx_2, \ldots, yx_n]]$ and $h(y=0, x_1=\varphi) \neq 0$ [coprime].
 - Eg. map x_1 to $(b_1x_1+a_1)$; x_2 to $yx_2+(b_2x_1+a_2)$; \ldots; x_n to $yx_n+(b_nx_1+a_n)$.

- Root φ is very far from simple, as ε is exponential.
 - Can’t run Newton iteration. [Division by 0 !]

Newton-iteration: Approximant up to degree m of φ is $\varphi_{m+1} := \varphi_m - f(\varphi_m)/\partial_{x_1} f(\varphi_m(0))$.

Factoring approximatively — Introducing \(\varepsilon \)

- Consider \(F(y, x_1, x_2, \ldots, x_n) := f(y, x_1 + \varepsilon, x_2, \ldots, x_n) - f(0, \varphi(y=0) + \varepsilon, x_2, \ldots, x_n) \). Then,
 - \(F(y=0, x_1=\varphi) = 0 \), \(F_{\varepsilon=0} = f \),
 - \(\partial_{x_1} F(y=0, x_1=\varphi) = \varepsilon^{-1} \cdot (e \cdot h(y=0, x_1=\varphi) + \varepsilon \cdot \partial_{x_1} h(y=0, x_1=\varphi)) \neq 0 \).

- **Fact 8**: \(\varphi \) is simple root of \(F(y=0) \).

- **Initializing**: \(x_1 \leftarrow \varphi(y=0) \), Newton-iteration finds simple root \(\psi \) of \(F \), in \(\mathbb{F}(\varepsilon)[[y x_2, \ldots, y x_n]] \).

- **Fact 9**: \(\psi_{\varepsilon=0} \rightarrow \varphi \) is required root of \(f \).
 - No way known to find \(\varphi \) exactly.

QED

Newton-iteration: Approximant up to degree \(m \) of \(\psi \) is \(\psi_{m+1} := \psi_m - F(\psi_m)/\partial_{x_1} F(\psi_m(0)) \).
Open questions (tricky models)
Factoring ‘weak’ models?

- **Question (formula):** Factor formulas?
 - Is VF closed under factoring?
 - Only known for constant-individual-degree. [Oliveira’15]

- Could sparse-polynomials be factored? **No.**
 - Depth-2 not closed under factoring.

- **Question (depth-2):** Factor constant-individual-degree depth-2?
 - Partial results known. [Bhargava,Saraf,Volkovich’18] [Bisht,S.’22]
Roots in general?

- Given size-\(s \) circuit \(f \), apply the random map to see roots:
 - Write \(f(y, x_1, x_2, \ldots, x_n) = (x_1 - \varphi(x_2, \ldots, x_n))^e \cdot h \), where
 - \(\varphi \) is power-series in \(\mathbb{F}[[x_2, \ldots, x_n]] \).

- Question (any-root): size(\(\varphi_m \)) \(\leq \) poly(\(s, m \))?
 - Implies [Bürgisser’01]’s factor conjecture.
 - Is \(\varphi_m \) in VNP?

- Characteristic issues: Say, char(\(\mathbb{F} \)) = \(p \) and \(p \mid e \).
- VP/VBP/VNP/approximative results for bad multiplicity?
- Question (inverse-Frobenius): Given \(g^p \), find \(g \)?
- Question (Galois-ring): Factor mod \(p^2, p^3, \ldots, p^k, \ldots, p^\infty \)?

www.cse.iitk.ac.in/users/nitin/