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The determinant polynomial- VBP

O Let Xp = [X;,j]1<jj<n be an X n matrix of distinct variables x; ;. Let
Sn=A{n | n:{1,...,n} — {1,...,n} such that r is bijective }. Define

n
fy = det(Xp) = Z Sgn(ﬂ')l—[Xi,n(i)'

neS, i=1

Q det is universal, i.e. any polynomial f(x) can be computed as a determinant of a
square matrix whose entries are polynomials of degree < 1.

O The minimum dimension of the matrix to compute f, is called the
determinantal complexity dc(f).

Q E.g.dc(xq ---Xp) = n, since

X4 0 0

0 xo ... 0
Xq -+ Xp = det

0 0 ... xp

O VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded dc(f,).
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‘Hard’ polynomials?

QO Are there hard polynomial families (f;), such that it cannot be computed by an
n®-size circuit, for every constant ¢? i.e. size(fy) = n@Mq

Q A random polynomial with 0-1 coefficient is hard [Hrubes-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

U Candidate hard polynomial:

perm(Xp) = Z HX/ OK

eSS, i=
Q perm is universal, i.e. any polynomial f(x) can be computed as a permanent of a
square matrix whose entries are polynomials of degree < 1.

U The minimum dimension of the matrix to compute f, is called the permanental
complexity pc(f).
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Valiant’s Conjecture— VNP

VNP = “hard to compute?”’

The class VNP is defined as the set of all sequences of polynomials
(fa(X1, - - .. Xn))n>1 such that pc(fy)is bounded by n® for some constant c.

0 VBP C VP C VNP.

Valiant’s Conjecture

VBP # VNP & VP # VNP. Equivalently, dc(perm,,) and size(permj,) are both
ne()
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O Can ‘approximations’ also help in algebraic computational models?
O An important measure is Waring rank, denoted WR(-).

Waring Rank
The smallest r such that a homogeneous degree d polynomial h can be written as a
sum of d-th power of linear forms ¢;, i.e. h = 2;21 ff.

€1

U Recall: h =3¢, o, e
polynomial if }, e; = d, for every tuple (eq, ..., en) with ae,

--x2" s called homogeneous degree d

.....

U Recall: A linear form ¢ is of the form a{xq + ...+ anxn.
QO For any homogeneous polynomial h, WR(h) is finite.

0 Often WR(h) < ris denoted as h € =l'1 A 2 (homogeneous depth-3 diagonal
circuits).
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QO Example: WR(x2y) < 3, because

1 1 1
Ky = oy - o -y ooy

Q Prove: WR(x2y) = 3.
Q Lethe = 31_5 ((x+ey)3 —x3)

2 e—0 . .
=x%y +exy? + %ys S x%y = h (coeflicient-wise).

Q Note: WR(h¢) < 2, for any fixed non-zero €. But WR(h) = 3!

WR(h) < 4 (WR(h) <3 @WR(h) < 2

x2y
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Border Waring rank

The border Waring rank W(h), of a d-form h is defined as the smallest s such that
h=lim¢_0 Xic[s] [I.d, where ¢; € F(e)[x], are homogeneous linear forms.

0 WR(x%y) = 2 < WR(x%y) = 3.
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O Let I" be any sensible measure. It can be size, dc and so on.

Q For any I', we can define the border complexity measure I" via:
T'(h) is the smallest n such that h(x) can be approximated arbitrarily closely by
polynomials h¢ (x) with I'(h¢) < n. In other words,

lim he = h (coefficient-wise) .
e—0

Q We will work with ‘approximative circuits’.
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Algebraic approximation

O Suppose, we assume the following:

> g(x,€) € F[xq,...,Xn, €], i.e. it is a polynomial of the form

M
gx,€) = ) gi(x1,. .. xn) - €,
i=0

> Can we say anything about the complexity of gg?
O Obvious attempt:

> Since, g(x,0) = gg, why not just set € = 0?! Setting € = 0 may not be
‘valid’ as it could be using 1/€ in the wire. Though it is well-defined!

O Summary: gg is really something non-trivial and being ‘approximated’ by the
circuit since lim . _,g g(x, €) = gg-
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U Let us assume that g(x, €) = 2,7 gi€', where M = 25° Note: go=h.

> Pick M + 1 many distinct values from F randomly and interpolate;

> size(h) < exp(size(h)).
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Algebraic Approximation [Biirgisser 2004]

A polynomial h(x) € F[x] approximative complexity s, if there is a

g(x, €) € F(e)[x], of size s, over F(¢€), and a polynomial S(x, €) € F[e][x] such that
g(x,€) = h(x) + € - S(x,€). In other words, lim,_,gg = h.

Q size(h) < size(h). [h=h+e-0.]

Q If g has circuit of size s over F(€), then one can assume that the highest degree
of € in g can be exponentially large 25 [Biirgisser 2004, 2020]. [Bezout’s
degree theorem. ]

Q Let us assume that g(x, €) = Z?ﬁo gi€', where M = 25° Note: go=h.
> Pick M + 1 many distinct values from F randomly and interpolate;
> size(h) < exp(size(h)).

Q size(h) < size(h) < exp(size(h)).



Lower bounds for border depth-2 circuits



Lower bounds for border depth-2 circuits

U A few known upper bound/lower bound results on depth-2:



Lower bounds for border depth-2 circuits

U A few known upper bound/lower bound results on depth-2:

> sl = 28117 and TIT = 12



Lower bounds for border depth-2 circuits

U A few known upper bound/lower bound results on depth-2:

> sl = 28117 and TIT = 12

> dety, is irreducible and exp(n)-sparse. So, dety requires exponential-size
border depth-2 circuits!



Lower bounds for border depth-2 circuits

U A few known upper bound/lower bound results on depth-2:

> sl = 28117 and TIT = 12

> dety, is irreducible and exp(n)-sparse. So, dety requires exponential-size
border depth-2 circuits!

> What about border depth-3 circuits (both upper bound and lower bound)?
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Depth-3 circuits

O Depth-3 circuits with top fan-in k, are denoted as slkls.

U They compute polynomials (not necessarily homogeneous) of the form
Zf.; H/‘; Cjj, where {j are linear polynomials (i.e. 89 +a1Xq + ... +anXp, for
aj € F).

A Product fan-in = maxdj.
O How powerful are KIS circuits, for constant k? Are they universal?

Q Impossibility result: The Inner Product polynomial
(X,¥) = X1¥1 + ...+ Xy11Yk+1 cannot be written as a KIS circuit,
regardless of the product fan-in (even allowing exp(n) product fan-in!).

O The same holds if we replace by detp,.
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Lower bound for Constant fanin depth-3 circuits

Q detp cannot be computed by a KIS -circuit, regardiess of the product fan-in.

Proof sketch: Let Yjc (4] Tj = detp, where T; € IIZ, product of linear
polynomials.

> Pick ¢4 from Ty and consider 7y := ({1).
> LHS mod I3, becomes Xc[x—1] T/ While det, mod I3 # O.
> Keep repeating and each time include an independent ¢; in the ideal ;.

> At the end, there is some J, such that RHS has become 0 while LHS is
non-zero (because k << n).

Q Therefore, KITIT ¢ VBP!

Q How about XIKITT2?
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Power of border depth-3 circuits

Q Recall: h € ZIKITIX of size s if there exists a polynomial g such that
g(x,€) =h(x) +e-S(x,e),
where g can be computed by a 2IKITIE circuit, over F(e), of size s.

Border depth-3 fan-in 2 circuits are ‘universal’ [Kumar 2020]

Let P be any n-variate degree d polynomial. Then, P € Z[2ITIX, where the
multiplication gate is exp(n, d).
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Proof.

1. Let WR(P) =: m. Then, there are linear forms ¢; such that

m
[P = Z t’,-d [m can be as large as exp(n,d)] .
i=1
2. Consider A(x) := Hm1 @ +£’d) = H] 1(aj +¢), for a; € C. Note that

A(X) = 1+ P +B where deg(B) > 2d .
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Proof.
1. Let WR(P) =: m. Then, there are linear forms ¢; such that

m
[P = Z t’,-d [m can be as large as exp(n,d)] .
i=1
2. Consider A(x) := Hm1 @ +£’d) = H] 1(aj +¢), for a; € C. Note that

A(X) = 1+ P +B where deg(B) > 2d .

3. Replace x; by € - x; to get that

d
[Jj+e-t) = 1+€ P+ Rix,e) .
1 j=1

:|3

i

4. Divide by €9 and rearrange to get

m d
P+ed~F?(X,e):—e_d+e_d'l—”_|(ctj+e-€,-) e slelplmaly
i=1 j=1
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De-bordering S[2IITY circuits

Q If h is approximated by a *2IIE circuit with product fanin, bounded
by poly(n), what’s the exact complexity of h?

Border of polynomial-sized depth-3 top-fanin-2 circuits are ’easy’
[Dutta-Dwivedi-Saxena FOCS’21].

>[2IT1Z ¢ VBP, for polynomial-sized =[21TTZ-circuits.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.
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Grand Idea: Reducetok = 1!
Q Ty +To=f(x)+e€-S(x,€), where T; € IIX € F(e)[x]. Assume deg(f) =d.
U Apply a map ®, defined by ® : x; — z - xj + @;, where a; € F are random.
> The variable z is the “degree counter”,
> @; to make sure: If € | T;, then ®(£)|,—9 = {(a1,...,an) € F(e)*.
Q It suffices to find ®(f) mod z9*! = &(f). [Truncation by degree.]

U We devise a technique called DiDIL - Divide, Derive, Interpolate with Limit.
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O Divide both side by T, and take partial derivative with respect to z, to get:
D(f) +e-D(S) = O(Ty) +D(To)
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Q vale (-) denotes the highest power of € dividing it.
E.g.,h =€ 2x{ + € 'xo + €x3. Then, val (h) = —2.

Q Let ®(T;) = €% - T;, for i € [2], where a; := val¢ (®(T))).
Then, (i) 7; € F[e, X, z], and (ii) lime_so 7:2 =t, € F[x, z]\{0}, exists.

O Divide both side by T, and take partial derivative with respect to z, to get:

O(f) +e-D(S) = O(Ty) + D(T»)
= O(f)/To + €-D(S)/To= ©(T1)/To + €%

— 0 (@(0/T2) + € 0: (2(9)/T2) = 0z (@(T)/Te) =01 . (1

Q lime 091 = lime 0 3z (O(T1)/T2) = G:(@(N/ta).
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Q Logarithmic derivative: dlog,(h) := dz(h)/h.

Q dlog linearizes product: dlog(hyho) = dlog(hq) +dlog(hs). Note:
0z (©(T1)/Ta) = @(T1)/T5 - diog (0(T1)/T2)

= O(T1)/T, - (dlog(®(Ty)) - dlog(T)) .
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U First target: compute lim_,g g1 = 92(®(f)/t2).
Q Logarithmic derivative: dlog,(h) := dz(h)/h.

Q dlog linearizes product: dlog(hyho) = dlog(hq) +dlog(hs). Note:

0z (@(T1)/T2) = ©(T1)/T, - diog ((T1)/T)

O(T1)/ T, - (dog(@(Ty)) - dlog(T)) .

Q Both ®(Ty) and T» have I1Z circuits (they have z and ¢).
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g1 = 0 (®(T1)/T2) = ®(T1)/To - (dlog(@(T1)) - dlog(T))
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/IS - (Z dIog(Z)) .
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g1 = 0 (®(T1)/T2) = ®(T1)/To - (dlog(@(T1)) - dlog(T))
ITX/I1% - (dlog(I1X) — dlog(I1X))
/IS - (Z dIog(Z)) .

O Here X means just a linear polynomial ¢ (in z, X and unit wrt the former).

Q Recall: limg_,0gq = 0-(D(f)/to).

23



k = 2 proof continued

g1 = 0 (®(T1)/T2) = ®(T1)/To - (dlog(@(T1)) - dlog(T))
ITX/I1% - (dlog(I1X) — dlog(I1X))
/IS - (Z dIog(Z)) .

O Here X means just a linear polynomial ¢ (in z, X and unit wrt the former).
U Recall: lime_,0g1 = 0z (D(f)/t2).

0 deg(f) =d => deg,(®(f)) =d => deg,(3:(®(f))) =d - 1.
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g1 = 0 (®(T1)/T2) = ®(T1)/To - (dlog(@(T1)) - dlog(T))
ITX/I1% - (dlog(I1X) — dlog(I1X))
/IS - (Z dIog(Z)) .

O Here X means just a linear polynomial ¢ (in z, X and unit wrt the former).
U Recall: lime_,0g1 = 0z (D(f)/t2).
Q deg(f) =d = deg,(®(f)) =d = deg, (0, (P(f))) =d —1.

QO Suffices to compute g4 mod z9 and take the limit!
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O What is dlog(¢)? Note, { = A —z - B, where A € F(e), B € F(e)[x].

I
A(1-z-B/A)
B < (z-BY
%)
€ XAX. [Magic trick]

dlog(A - zB) =

U Thus,

. d . ) d
lim gy mod 27 = lim 11%/I1x (Zdlog(z)) mod z

|im0 (MZ/MIL) - (EAE) mod 29
€—>

(IZ/TIZ) - (ZA ) mod 29 .

m
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Finishing the proof

Q C-D cC-D. Therefore,

(MZ/IE)-(EA%) ¢ (MZ/OZ)-ZAS
(ABP/ABP) - ABP
ABP/ABP .

N

Q Eliminate division and integrate (interpolate) to get
O(f)/to = ABP — O(f) = ABP — f = ABP.
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Lifting classical lower bound in the border

Q Can we separate X[KITIZ and VBP?
> [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that IMM,, 4 with
d = o(log n) requires NV -size depth-3 circuits.

> Rank-based lower bounds can be lifted in the border!

> Since, IMM,, 4 € VBP, ZIKITIX # VBP.
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Looking for finer lower bounds

O Can we show an exponential gap between ZIKITIZ and VBP?

O Ambitious goal: Can we separate Z[KITIE and Z[k+11T1X ?
O Note: This is already known (impossibility) in the classical setting!
O Xq - Y1 +...+ Xkq1 - Yke1 cannot be computed by *KIIE circuits!

Q Catch: X1 - Y1 + ...+ Xk1 - Yk+1 does not work anymore in border, since,
X1 Y1+ .+ Xp1 - Yia € 22O 3

O What does work (if at all!)?

27



28



[Dutta-Saxena FOCS’22]

Fix any constant k > 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a ZIKH1ITTE circuit of size O(n); but, f requires
22 gjze SIKITTS circuits.

28



[Dutta-Saxena FOCS’22]

Fix any constant k > 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a ZIKH1ITTE circuit of size O(n); but, f requires
22 gjze SIKITTS circuits.

Q Fix k = 2. Define the polynomial Py :=Xq - Xg+ Y1 - Yg+21 - 29,
degree-d polynomial on n = 3d-variables.

28



[Dutta-Saxena FOCS’22]

Fix any constant k > 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a ZIKH1ITTE circuit of size O(n); but, f requires
22 gjze SIKITTS circuits.

Q Fix k = 2. Define the polynomial Py :=Xq - Xg+ Y1 - Yg+21 - 29,
degree-d polynomial on n = 3d-variables.

O Py has trivial fanin-3 depth-3 circuit (and hence in border too!).

28



[Dutta-Saxena FOCS’22]

Fix any constant k > 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a ZIKH1ITTE circuit of size O(n); but, f requires
22 gjze SIKITTS circuits.

Q Fix k = 2. Define the polynomial Py :=Xq - Xg+ Y1 - Yg+21 - 29,
degree-d polynomial on n = 3d-variables.

O Py has trivial fanin-3 depth-3 circuit (and hence in border too!).

O We will show that Py requires 22(9) jze SI2IIY circuits.

28



[Dutta-Saxena FOCS’22]

Fix any constant k > 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a ZIKH1ITTE circuit of size O(n); but, f requires
22 gjze SIKITTS circuits.

Q Fix k = 2. Define the polynomial Py :=Xq - Xg+ Y1 - Yg+21 - 29,
degree-d polynomial on n = 3d-variables.

O Py has trivial fanin-3 depth-3 circuit (and hence in border too!).
O We will show that Py requires 22(9) jze SI2IIY circuits.

O Kumar’s proof establishes that Py has a 20() jze SI2ITIX circuits, showing
optimality!

28



[Dutta-Saxena FOCS’22]

Fix any constant k > 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a ZIKH1ITTE circuit of size O(n); but, f requires
22 gjze SIKITTS circuits.

Q Fix k = 2. Define the polynomial Py :=Xq - Xg+ Y1 - Yg+21 - 29,
degree-d polynomial on n = 3d-variables.

O Py has trivial fanin-3 depth-3 circuit (and hence in border too!).
O We will show that Py requires 22(9) jze SI2IIY circuits.

O Kumar’s proof establishes that Py has a 20() jze SI2ITIX circuits, showing
optimality!

U Classical is about impossibility while in border, it is about optimality.
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Non-homogeneity is ‘bad’

O Recall the non-border lower bound proof, of making an ideal 7 = ({1, ..., {k),
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QO Let {1 := 1+ exq. What does taking mod ¢4 in the ‘border’ (¢ — 0) mean?
Essentially we are eventually setting x; = —1/¢€ (and then € — 0)!

U In other words, work with 7 := ({1, €) = (1)!
O Lesson: Taking mod blindly fails miserably!

O The worst case:
f+eS = T1 + T2 5

where T; has each linear factor of the form 1 + ¢!
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Q Py(x)+e-S(x,€) =Ty + To, where T; € TIZ € F(e)[x] have
all-non-homogeneous factors.

O Use DiDIL with the (different) map @ : x +— zx.

U DiDIL shows:

8,(29Py /to) = |im0 g1 € (IT/IIZ) - (ZAZ) .

O Use the minimum power of z to show that Py € X A X.

QO Partial-derivative measure shows that the above implies s > 20(d))
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O ROABP presence helps us give many PIT results (see the papers).
Q Can we show ZIKITI[9]E ¢ =MIE, for d = poly(n)?

U Can we extend the hierarchy theorem to bounded (top & bottom fanin) depth-4
circuits? i.e., for a fixed constant ¢, is

sinznltel ¢ zi2imznlél ¢ zBlmzmlel. ..,

where the respective gaps are exponential? Clearly, § = 1 holds, from this work.

Thank you! Questions?
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