Demystifying the border of depth-3 circuits Joint works with Pranjal Dutta & Prateek Dwivedi. [CCC'21, FOCS'21, FOCS'22] Nitin Saxena CSE, IIT Kanpur September the 13th, 2022 Schloss Dagstuhl, Leibniz-Zentrum #### **Table of Contents** - 1. Basic Definitions and Terminologies - 2. Border Complexity and GCT - 3. Border Depth-3 Circuits - 4. Proving Upper Bounds - 5. Proving Lower Bounds - 6. Conclusion Basic Definitions and Terminologies Size of the circuit = number of nodes + edges size(f) = min size of the circuit computing f □ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1,\ldots,n\} \longrightarrow \{1,\ldots,n\} \text{ such that } \pi \text{ is bijective } \}$. Define $$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)}.$$ - Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, \dots, n\} \longrightarrow \{1, \dots, n\} \text{ such that } \pi \text{ is bijective } \}$. Define $f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)}.$ - det is *universal*, i.e. any polynomial f(x) can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 . - Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, \dots, n\} \longrightarrow \{1, \dots, n\} \text{ such that } \pi \text{ is bijective } \}$. Define $f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)}.$ - □ det is *universal*, i.e. any polynomial f(x) can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 . - \square The minimum dimension of the matrix to compute f, is called the **determinantal complexity** dc(f). Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, \dots, n\} \longrightarrow \{1, \dots, n\} \text{ such that } \pi \text{ is bijective } \}$. Define $$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)}$$. - □ det is *universal*, i.e. any polynomial f(x) can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 . - \square The minimum dimension of the matrix to compute f, is called the **determinantal complexity** dc(f). - \square E.g. $dc(x_1 \cdots x_n) = n$, since $$x_1 \cdots x_n = \det \begin{pmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & x_n \end{pmatrix}$$ Let $X_n = [x_{i,j}]_{1 \le i,j \le n}$ be a $n \times n$ matrix of distinct variables $x_{i,j}$. Let $S_n := \{\pi \mid \pi : \{1, \dots, n\} \longrightarrow \{1, \dots, n\} \text{ such that } \pi \text{ is bijective } \}$. Define $$f_n := \det(X_n) = \sum_{\pi \in S_n} \operatorname{sgn}(\pi) \prod_{i=1}^n x_{i,\pi(i)}$$. - □ det is *universal*, i.e. any polynomial f(x) can be computed as a determinant of a square matrix whose entries are polynomials of degree ≤ 1 . - \square The minimum dimension of the matrix to compute f, is called the **determinantal complexity** dc(f). - \square E.g. $dc(x_1 \cdots x_n) = n$, since $$x_1 \cdots x_n = \det \begin{pmatrix} x_1 & 0 & \dots & 0 \\ 0 & x_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & x_n \end{pmatrix}$$ □ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded $dc(f_n)$. \square Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. $\operatorname{size}(f_n) = n^{\omega(1)}$? - □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. $\text{size}(f_n) = n^{\omega(1)}$? - □ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. - □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. $\text{size}(f_n) = n^{\omega(1)}$? - □ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an explicit one! - □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. $\text{size}(f_n) = n^{\omega(1)}$? - □ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one! - ☐ Candidate hard polynomial: $$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)}.$$ - □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. $\text{size}(f_n) = n^{\omega(1)}$? - □ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one! - ☐ Candidate hard polynomial: $$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)}.$$ \square perm is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1 . - □ Are there hard polynomial families $(f_n)_n$ such that it cannot be computed by an n^c -size circuit, for *every* constant c? i.e. $\text{size}(f_n) = n^{\omega(1)}$? - □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one! - ☐ Candidate hard polynomial: $$\operatorname{perm}(X_n) = \sum_{\pi \in S_n} \prod_{i=1}^n x_{i,\pi(i)}.$$ - \square perm is *universal*, i.e. any polynomial $f(\mathbf{x})$ can be computed as a permanent of a square matrix whose entries are polynomials of degree ≤ 1 . - \square The minimum dimension of the matrix to compute f, is called the **permanental** complexity pc(f). ### Valiant's Conjecture- VNP #### **VNP** = "hard to compute?" [Valiant 1979] The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1,...,x_n))_{n\geq 1}$ such that $pc(f_n)$ is bounded by n^c for some constant c. ### Valiant's Conjecture-VNP #### **VNP** = "hard to compute?" [Valiant 1979] The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1,...,x_n))_{n\geq 1}$ such that $pc(f_n)$ is bounded by n^c for some constant c. \square VBP \subseteq VP \subseteq VNP. #### Valiant's Conjecture-VNP #### **VNP** = "hard to compute?" [Valiant 1979] The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1,...,x_n))_{n\geq 1}$ such that $pc(f_n)$ is bounded by n^c for some constant c. \square VBP \subseteq VP \subseteq VNP. #### Valiant's Conjecture [Valiant 1979] VBP \neq VNP & VP \neq VNP. Equivalently, dc(perm_n) and size(perm_n) are both $n^{\omega(1)}$. ☐ Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]: - ☐ Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]: - $ightharpoonup P/poly \neq NP/poly \implies VBP \neq VNP and VP \neq VNP (over finite fields).$ - ☐ Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]: - $ightharpoonup P/poly \Rightarrow VBP \neq VNP$ and $VP \neq VNP$ (over finite fields). - ➤ Assumin GRH (Generalized Riemann hypothesis), the results hold over C as well. - ☐ Separating algebraic classes are "easier" than separating classes in Boolean complexity [Bürgisser 1998]: - $ightharpoonup P/poly \Rightarrow VBP \neq VNP$ and $VP \neq VNP$ (over finite fields). - ➤ Assumin GRH (Generalized Riemann hypothesis), the results hold over C as well. Border Complexity and GCT $\hfill \square$ Can 'approximations' also help in algebraic computational models? - ☐ Can 'approximations' also help in algebraic computational models? - $\hfill \square$ An important measure is Waring rank, denoted WR($\cdot).$ - ☐ Can 'approximations' also help in algebraic computational models? - \square An important measure is **Waring rank**, denoted **WR**(·). #### **Waring Rank** The smallest r such that a *homogeneous* degree d polynomial h can be written as a sum of d-th power of linear forms ℓ_i , i.e. $h = \sum_{i=1}^r \ell_i^d$. - ☐ Can 'approximations' also help in algebraic computational models? - \square An important measure is **Waring rank**, denoted **WR**(·). ### **Waring Rank** The smallest r such that a *homogeneous* degree d polynomial h can be written as a sum of d-th power of linear forms ℓ_i , i.e. $h = \sum_{i=1}^r \ell_i^d$. □ Recall: $h = \sum_{e_1,...,e_n} a_{e_1,...,e_n} x_1^{e_1} \cdots x_n^{e_n}$, is called **homogeneous** degree d polynomial if $\sum e_i = d$, for every tuple $(e_1,...,e_n)$ with $a_{e_1,...,e_n} \neq 0$. - ☐ Can 'approximations' also help in algebraic computational models? - \square An important measure is **Waring rank**, denoted **WR**(·). ### **Waring Rank** The smallest r such that a *homogeneous* degree d polynomial h can be written as a sum of d-th power of linear forms ℓ_i , i.e. $h = \sum_{j=1}^r \ell_j^d$. - □ Recall: $h = \sum_{e_1,...,e_n} a_{e_1,...,e_n} x_1^{e_1} \cdots x_n^{e_n}$, is called **homogeneous** degree d polynomial if $\sum e_i = d$, for every tuple $(e_1,...,e_n)$ with $a_{e_1,...,e_n} \neq 0$. - \square Recall: A linear form ℓ is of the form $a_1x_1 + \ldots + a_nx_n$. - ☐ Can 'approximations' also help in algebraic computational models? - \square An important measure is **Waring rank**, denoted **WR**(·). #### **Waring Rank** The smallest r such that a *homogeneous* degree d polynomial h can be written as a sum of d-th power of linear forms ℓ_i , i.e. $h = \sum_{j=1}^r \ell_j^d$. - □ Recall: $h =
\sum_{e_1,...,e_n} a_{e_1,...,e_n} x_1^{e_1} \cdots x_n^{e_n}$, is called **homogeneous** degree d polynomial if $\sum e_i = d$, for every tuple $(e_1,...,e_n)$ with $a_{e_1,...,e_n} \neq 0$. - \square Recall: A linear form ℓ is of the form $a_1x_1 + \ldots + a_nx_n$. - \square For any homogeneous polynomial h, WR(h) is *finite*. # Waring rank— Depth-3 diagonal - ☐ Can 'approximations' also help in algebraic computational models? - \square An important measure is **Waring rank**, denoted **WR**(·). #### **Waring Rank** The smallest r such that a *homogeneous* degree d polynomial h can be written as a sum of d-th power of linear forms ℓ_i , i.e. $h = \sum_{i=1}^r \ell_i^d$. - □ Recall: $h = \sum_{e_1,...,e_n} a_{e_1,...,e_n} x_1^{e_1} \cdots x_n^{e_n}$, is called **homogeneous** degree d polynomial if $\sum e_i = d$, for every tuple $(e_1,...,e_n)$ with $a_{e_1,...,e_n} \neq 0$. - \square Recall: A linear form ℓ is of the form $a_1x_1 + \ldots + a_nx_n$. - \square For any homogeneous polynomial h, WR(h) is *finite*. - □ Often WR(h) ≤ r is denoted as $h \in \Sigma^{[r]} \wedge \Sigma$ (homogeneous *depth-3 diagonal* circuits). \square Example: $WR(x^2y) \le 3$, because \square Example: WR(x^2y) ≤ 3 , because $$x^2 y \ = \ \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \ .$$ 8 □ Example: $WR(x^2y) \le 3$, because $$x^2y \ = \ \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \ .$$ 8 □ Example: $WR(x^2y) \le 3$, because $$x^2y = \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3.$$ - \square Prove: WR(x^2y) = 3. - $\Box \text{ Let } h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 x^3 \right)$ □ Example: $WR(x^2y) \le 3$, because $$x^2y \ = \ \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \ .$$ - \square Prove: WR(x^2y) = 3. - Let $h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 x^3 \right)$ = $x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \stackrel{\epsilon \to 0}{\to} x^2 y =: h$ (coefficient-wise). 8 □ Example: $WR(x^2y) \le 3$, because $$x^2 y \ = \ \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \ .$$ - Let $h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 x^3 \right)$ = $x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \stackrel{\epsilon \to 0}{\to} x^2 y =: h$ (coefficient-wise). - □ Note: $WR(h_{\epsilon}) \le 2$, for any fixed non-zero ϵ . But WR(h) = 3! □ Example: $WR(x^2y) \le 3$, because $$x^2 y \ = \ \frac{1}{6} \cdot (x+y)^3 - \frac{1}{6} \cdot (x-y)^3 - \frac{1}{3} \cdot y^3 \ .$$ - \square Prove: WR(x^2y) = 3. - Let $h_{\epsilon} := \frac{1}{3\epsilon} \left((x + \epsilon y)^3 x^3 \right)$ = $x^2 y + \epsilon x y^2 + \frac{\epsilon^2}{3} y^3 \stackrel{\epsilon \to 0}{\to} x^2 y =: h$ (coefficient-wise). - □ Note: $WR(h_{\epsilon}) \le 2$, for any fixed non-zero ϵ . But WR(h) = 3! $$WR(h) \le 4 WR(h) \le 3 WR(h) \le 2WR(h) \le 1$$ 8 Border Waring Rank— Approximative depth-3 diagonal ## Border Waring Rank—Approximative depth-3 diagonal #### **Border Waring rank** The border Waring rank $\overline{\mathsf{WR}}(h)$, of a *d*-form *h* is defined as the smallest *s* such that $h = \lim_{\epsilon \to 0} \sum_{i \in [s]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[x]$, are homogeneous linear forms. ### Border Waring Rank— Approximative depth-3 diagonal #### **Border Waring rank** The border Waring rank $\overline{\mathsf{WR}}(h)$, of a *d*-form *h* is defined as the smallest *s* such that $h = \lim_{\epsilon \to 0} \sum_{i \in [s]} \ell_i^d$, where $\ell_i \in \mathbb{F}(\epsilon)[x]$, are homogeneous linear forms. $\hfill \square$ Let Γ be any sensible measure. It can be size, $\hfill dc$ and so on. - \square Let Γ be any sensible measure. It can be size, dc and so on. - $\ \square$ For any Γ , we can define the border complexity measure $\overline{\Gamma}$ via: - $\overline{\Gamma}(h)$ is the *smallest n* such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$. - \square Let Γ be any sensible measure. It can be size, dc and so on. - \square For any Γ , we can define the border complexity measure $\overline{\Gamma}$ via: - $\overline{\Gamma}(h)$ is the *smallest n* such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$. In other words, $$\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$$ - \square Let Γ be any sensible measure. It can be size, dc and so on. - $\hfill\Box$ For any $\Gamma,$ we can define the border complexity measure $\overline{\Gamma}$ via: - $\overline{\Gamma}(h)$ is the *smallest n* such that $h(\mathbf{x})$ can be approximated arbitrarily closely by polynomials $h_{\epsilon}(\mathbf{x})$ with $\Gamma(h_{\epsilon}) \leq n$. In other words, $$\lim_{\epsilon \to 0} h_{\epsilon} = h \text{ (coefficient-wise)}.$$ ☐ We will work with 'approximative circuits'. # **Approximative circuits** ☐ Suppose, we assume the following: $$ightharpoonup g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, \dots, x_n, \epsilon]$$, i.e. it is a polynomial of the form $$g(\mathbf{x},\epsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \epsilon^i,$$ - ☐ Suppose, we assume the following: - $ightharpoonup g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, \dots, x_n, \epsilon]$, i.e. it is a polynomial of the form $$g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i(x_1, \ldots, x_n) \cdot \epsilon^i$$ \triangleright Can we say anything about the complexity of g_0 ? - ☐ Suppose, we assume the following: - $ightharpoonup g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, \dots, x_n, \epsilon]$, i.e. it is a polynomial of the form $$g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i(x_1, \ldots, x_n) \cdot \epsilon^i$$ - \triangleright Can we say anything about the complexity of g_0 ? - ☐ Obvious attempt: - ightharpoonup Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?! - ☐ Suppose, we assume the following: - $ightharpoonup g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, \dots, x_n, \epsilon]$, i.e. it is a polynomial of the form $$g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i(x_1, \ldots, x_n) \cdot \epsilon^i,$$ - \triangleright Can we say anything about the complexity of g_0 ? - ☐ Obvious attempt: - ightharpoonup Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?! Setting $\epsilon = 0$ may not be 'valid' as it could be using $1/\epsilon$ in the wire. Though it is well-defined! - ☐ Suppose, we assume the following: - $ightharpoonup g(\mathbf{x}, \epsilon) \in \mathbb{F}[x_1, \dots, x_n, \epsilon]$, i.e. it is a polynomial of the form $$g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i(x_1, \ldots, x_n) \cdot \epsilon^i$$ - \triangleright Can we say anything about the complexity of g_0 ? - ☐ Obvious attempt: - > Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\epsilon = 0$?! Setting $\epsilon = 0$ may not be 'valid' as it could be using $1/\epsilon$ in the wire. Though it is well-defined! - □ Summary: g_0 is really something **non-trivial** and being 'approximated' by the circuit since $\lim_{\epsilon \to 0} g(\mathbf{x}, \epsilon) = g_0$. ### Algebraic Approximation [Bürgisser 2004] #### Algebraic Approximation [Bürgisser 2004] A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$. \square $\overline{\text{size}}(h) \leq \text{size}(h)$. #### Algebraic Approximation [Bürgisser 2004] A polynomial $h(x) \in \mathbb{F}[x]$ approximative complexity s, if there is a $g(x, \epsilon) \in \mathbb{F}(\epsilon)[x]$, of size s, over $\mathbb{F}(\epsilon)$, and a polynomial $S(x, \epsilon) \in \mathbb{F}[\epsilon][x]$ such that $g(x, \epsilon) = h(x) + \epsilon \cdot S(x, \epsilon)$. In other words, $\lim_{\epsilon \to 0} g = h$. \square $\overline{\text{size}}(h) \leq \text{size}(h)$. $[h = h + \epsilon \cdot 0.]$ #### Algebraic Approximation [Bürgisser 2004] - \square $\overline{\text{size}}(h) \leq \text{size}(h)$. $[h = h + \epsilon \cdot 0.]$ - ☐ If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020]. #### Algebraic Approximation [Bürgisser 2004] - \square $\overline{\text{size}}(h) \leq \text{size}(h)$. $[h = h + \epsilon \cdot 0.]$ - ☐ If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020]. [Bezout's degree theorem.] #### Algebraic Approximation [Bürgisser 2004] - \square $\overline{\text{size}}(h) \leq \text{size}(h)$. $[h = h + \epsilon \cdot 0.]$ - ☐ If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020]. [Bezout's degree theorem.] - \square Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$. #### Algebraic Approximation [Bürgisser 2004] - \square $\overline{\text{size}}(h) \leq \text{size}(h)$. $[h = h + \epsilon \cdot 0.]$ - ☐ If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020]. [Bezout's degree theorem.] - \square Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i
\epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$. - ightharpoonup Pick M+1 many distinct values from \mathbb{F} randomly and interpolate; #### **Algebraic Approximation [Bürgisser 2004]** - \square $\overline{\text{size}}(h) \leq \text{size}(h)$. $[h = h + \epsilon \cdot 0.]$ - ☐ If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020]. [Bezout's degree theorem.] - \square Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$. - ightharpoonup Pick M+1 many distinct values from \mathbb{F} randomly and interpolate; - $ightharpoonup \operatorname{size}(h) \le \exp(\overline{\operatorname{size}}(h)).$ #### Algebraic Approximation [Bürgisser 2004] - \square $\overline{\text{size}}(h) \leq \text{size}(h)$. $[h = h + \epsilon \cdot 0.]$ - ☐ If g has circuit of size s over $\mathbb{F}(\epsilon)$, then one can assume that the highest degree of ϵ in g can be *exponentially large* 2^{s^2} [Bürgisser 2004, 2020]. [Bezout's degree theorem.] - \square Let us assume that $g(\mathbf{x}, \epsilon) = \sum_{i=0}^{M} g_i \epsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$. - ightharpoonup Pick M+1 many distinct values from \mathbb{F} randomly and interpolate; - $ightharpoonup \operatorname{size}(h) \le \exp(\overline{\operatorname{size}}(h)).$ - \square $\overline{\text{size}}(h) \leq \text{size}(h) \leq \exp(\overline{\text{size}}(h)).$ ## Lower bounds for border depth-2 circuits $\hfill \square$ A few known upper bound/lower bound results on depth-2: ### Lower bounds for border depth-2 circuits - ☐ A few known upper bound/lower bound results on depth-2: - $ightharpoonup \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$ and $\overline{\Pi\Sigma} = \Pi\Sigma$. #### Lower bounds for border depth-2 circuits - ☐ A few known upper bound/lower bound results on depth-2: - $ightharpoonup \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$ and $\overline{\Pi\Sigma} = \Pi\Sigma$. - $ightharpoonup \det_n$ is irreducible and $\exp(n)$ -sparse. So, \det_n requires exponential-size border depth-2 circuits! ## Lower bounds for border depth-2 circuits - ☐ A few known upper bound/lower bound results on depth-2: - $ightharpoonup \overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$ and $\overline{\Pi\Sigma} = \Pi\Sigma$. - ightharpoonup det_n is irreducible and exp(n)-sparse. So, det_n requires exponential-size border depth-2 circuits! - ➤ What about border depth-3 circuits (both upper bound and lower bound)? **Border Depth-3 Circuits** \square Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]}\Pi\Sigma$. - \square Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]}\Pi\Sigma$. - □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$). - \square Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]}\Pi\Sigma$. - □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$). - \square Product fan-in = $\max d_i$. - \square Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]}\Pi\Sigma$. - □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$). - \square Product fan-in = $\max d_i$. - \square How powerful are $\Sigma^{[k]}\Pi\Sigma$ circuits, for constant k? Are they *universal*? - \square Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]}\Pi\Sigma$. - □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$). - \square Product fan-in = $\max d_i$. - \square How powerful are $\Sigma^{[k]}\Pi\Sigma$ circuits, for constant k? Are they *universal*? - □ Impossibility result: The *Inner Product* polynomial $\langle \boldsymbol{x}, \boldsymbol{y} \rangle = x_1 y_1 + \ldots + x_{k+1} y_{k+1}$ cannot be written as a $\Sigma^{[k]} \Pi \Sigma$ circuit, regardless of the product fan-in (even allowing $\exp(n)$ product fan-in!). - \square Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]}\Pi\Sigma$. - □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$). - \square Product fan-in = $\max d_i$. - \square How powerful are $\Sigma^{[k]}\Pi\Sigma$ circuits, for constant k? Are they *universal*? - Impossibility result: The *Inner Product* polynomial $\langle \mathbf{x}, \mathbf{y} \rangle = x_1 y_1 + \ldots + x_{k+1} y_{k+1}$ cannot be written as a $\Sigma^{[k]} \Pi \Sigma$ circuit, regardless of the product fan-in (even allowing $\exp(n)$ product fan-in!). - \Box The same holds if we replace by \det_n . \Box det_n cannot be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, regardless of the product fan-in. \Box det_n cannot be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, regardless of the product fan-in. Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi \Sigma$, product of linear polynomials. - \Box det_n cannot be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, regardless of the product fan-in. - Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi \Sigma$, product of linear polynomials. - ightharpoonup Pick ℓ_1 from T_1 and consider $I_1 := \langle \ell_1 \rangle$. - \Box det_n cannot be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, regardless of the product fan-in. - Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi \Sigma$, product of linear polynomials. - \triangleright Pick ℓ_1 from T_1 and consider $I_1 := \langle \ell_1 \rangle$. - ightharpoonup LHS mod I_1 , becomes $\sum_{i \in [k-1]} T'_i$ while $\det_n \mod I_1 \neq 0$. - \Box det_n cannot be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, regardless of the product fan-in. - Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi \Sigma$, product of linear polynomials. - \triangleright Pick ℓ_1 from T_1 and consider $I_1 := \langle \ell_1 \rangle$. - \triangleright LHS mod I_1 , becomes $\sum_{i \in [k-1]} T'_i$ while $\det_n \mod I_1 \neq 0$. - \succ Keep repeating and each time include an independent ℓ_i in the ideal I_i . - \Box det_n cannot be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, regardless of the product fan-in. - Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi \Sigma$, product of linear polynomials. - ightharpoonup Pick ℓ_1 from T_1 and consider $I_1 := \langle \ell_1 \rangle$. - \triangleright LHS mod I_1 , becomes $\sum_{i \in [k-1]} T'_i$ while $\det_n \mod I_1 \neq 0$. - \succ Keep repeating and each time include an independent ℓ_i in the ideal I_i . - ightharpoonup At the end, there is some I_k such that RHS has become 0 while LHS is non-zero (because k << n). - \Box det_n cannot be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, regardless of the product fan-in. - Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi \Sigma$, product of linear polynomials. - ightharpoonup Pick ℓ_1 from T_1 and consider $I_1 := \langle \ell_1 \rangle$. - ightharpoonup LHS mod I_1 , becomes $\sum_{i \in [k-1]} T_i'$ while $\det_n \mod I_1 \neq 0$. - \succ Keep repeating and each time include an independent ℓ_i in the ideal I_i . - ightharpoonup At the end, there is some I_k such that RHS has become 0 while LHS is non-zero (because k << n). - \square Therefore, $\Sigma^{[k]}\Pi\Sigma \subseteq \mathsf{VBP}!$ - \Box det_n cannot be computed by a $\Sigma^{[k]}\Pi\Sigma$ -circuit, regardless of the product fan-in. - Proof sketch: Let $\sum_{i \in [k]} T_i = \det_n$, where $T_i \in \Pi \Sigma$, product of linear polynomials. - ightharpoonup Pick ℓ_1 from T_1 and consider $I_1 := \langle \ell_1 \rangle$. - \triangleright LHS mod I_1 , becomes $\sum_{i \in [k-1]} T'_i$ while $\det_n \mod I_1 \neq 0$. - \succ Keep repeating and each time include an independent ℓ_i in the ideal I_i . - ightharpoonup At the end, there is some I_k such that RHS has become 0 while LHS is non-zero (because k << n). - □ Therefore, $\Sigma^{[k]}\Pi\Sigma \subseteq VBP!$ - \square How about $\overline{\Sigma^{[k]}\Pi\Sigma}$? \square Recall: $h \in \overline{\Sigma^{[k]}\Pi\Sigma}$ of size s if there exists a polynomial g such that \square Recall: $h \in \overline{\sum_{k} [k] \Pi \Sigma}$ of size s if there exists a polynomial g such that $$g(\boldsymbol{x},\epsilon) = h(\boldsymbol{x}) + \epsilon \cdot S(\boldsymbol{x},\epsilon) \; ,$$ \square Recall: $h \in \overline{\sum_{k} [k] \Pi \Sigma}$ of size s if there exists a polynomial g such that $$g(\mathbf{x}, \epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$$, where g can be computed by a $\Sigma^{[k]}\Pi\Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size s. \square Recall: $h \in \overline{\Sigma^{[k]}\Pi\Sigma}$ of size s if there exists a polynomial g such that $$g(\mathbf{x}, \epsilon) = h(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$$, where g can be computed by a $\Sigma^{[k]}\Pi\Sigma$ circuit, over $\mathbb{F}(\epsilon)$, of size s. ### Border depth-3 fan-in 2 circuits are 'universal' [Kumar 2020] Let *P* be *any
n*-variate degree *d* polynomial. Then, $P \in \overline{\Sigma^{[2]}\Pi\Sigma}$, where the multiplication gate is $\exp(n, d)$. #### Proof. 1. Let $\mathsf{WR}(P) =: m$. Then, there are linear forms ℓ_i such that #### Proof. 1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that $$P = \sum_{i=1}^{m} \ell_i^d$$ [m can be as large as $\exp(n, d)$]. #### Proof. 1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that $$P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)].$$ 2. Consider $$A(\boldsymbol{x}):=\prod_{i=1}^m(1+\ell_i^d)=\prod_{i=1}^m\prod_{j=1}^d(\alpha_j+\ell_i),$$ for $\alpha_j\in\mathbb{C}.$ #### Proof. 1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that $$P = \sum_{i=1}^{m} \ell_i^d$$ [m can be as large as $\exp(n, d)$]. 2. Consider $$A(\mathbf{x}) := \prod_{i=1}^m (1 + \ell_i^d) = \prod_{i=1}^m \prod_{j=1}^d (\alpha_j + \ell_i)$$, for $\alpha_j \in \mathbb{C}$. Note that $$A(\mathbf{x}) = 1 + P + B \text{ where } \deg(B) \ge 2d$$. #### Proof. 1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that $$P = \sum_{i=1}^{m} \ell_i^d$$ [m can be as large as $\exp(n, d)$]. 2. Consider $A(\mathbf{x}) := \prod_{i=1}^m (1 + \ell_i^d) = \prod_{i=1}^m \prod_{j=1}^d (\alpha_j + \ell_i)$, for $\alpha_j \in \mathbb{C}$. Note that $$A(\mathbf{x}) = 1 + P + B \text{ where } \deg(B) \ge 2d$$. 3. Replace x_i by $\epsilon \cdot x_i$ to get that #### Proof. 1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that $$P = \sum_{i=1}^{m} \ell_i^d$$ [m can be as large as $\exp(n, d)$]. 2. Consider $A(\mathbf{x}) := \prod_{i=1}^m (1 + \ell_i^d) = \prod_{i=1}^m \prod_{j=1}^d (\alpha_j + \ell_i)$, for $\alpha_j \in \mathbb{C}$. Note that $$A(\mathbf{x}) = 1 + P + B \text{ where } \deg(B) \ge 2d$$. 3. Replace x_i by $\epsilon \cdot x_i$ to get that $$\prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \epsilon \cdot \ell_i) = 1 + \epsilon^d \cdot P + \epsilon^{2d} \cdot R(\boldsymbol{x}, \epsilon) .$$ #### Proof. 1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that $$P = \sum_{i=1}^{m} \ell_i^d$$ [m can be as large as $\exp(n, d)$]. 2. Consider $A(\mathbf{x}) := \prod_{i=1}^m (1 + \ell_i^d) = \prod_{i=1}^m \prod_{j=1}^d (\alpha_j + \ell_i)$, for $\alpha_j \in \mathbb{C}$. Note that $$A(\mathbf{x}) = 1 + P + B \text{ where } \deg(B) \ge 2d$$. 3. Replace x_i by $\epsilon \cdot x_i$ to get that $$\prod_{i=1}^{m} \prod_{j=1}^{d} (\alpha_j + \epsilon \cdot \ell_j) = 1 + \epsilon^d \cdot P + \epsilon^{2d} \cdot R(\mathbf{x}, \epsilon) .$$ 4. Divide by ϵ^d and rearrange to get $$P + \epsilon^d \cdot R(\mathbf{x}, \epsilon) = -\epsilon^{-d} + \epsilon^{-d} \cdot \prod_{i=1}^m \prod_{j=1}^d (\alpha_j + \epsilon \cdot \ell_i) \in \Sigma^{[2]} \Pi^{[md]} \Sigma.$$ Proving Upper Bounds □ If h is approximated by a $\Sigma^{[2]}\Pi\Sigma$ circuit with product fanin, bounded by poly(n), what's the *exact* complexity of h? □ If h is approximated by a $\Sigma^{[2]}\Pi\Sigma$ circuit with product fanin, bounded by poly(n), what's the *exact* complexity of h? Border of polynomial-sized depth-3 top-fanin-2 circuits are 'easy' [Dutta-Dwivedi-Saxena FOCS'21]. $\overline{\Sigma^{[2]}\Pi\Sigma}\subseteq \mathsf{VBP},$ for polynomial-sized $\overline{\Sigma^{[2]}\Pi\Sigma}$ -circuits. □ If h is approximated by a $\Sigma^{[2]}\Pi\Sigma$ circuit with product fanin, bounded by poly(n), what's the *exact* complexity of h? Border of polynomial-sized depth-3 top-fanin-2 circuits are 'easy' [Dutta-Dwivedi-Saxena FOCS'21]. $\Sigma^{[2]}\Pi\Sigma\subseteq \mathsf{VBP},$ for polynomial-sized $\overline{\Sigma^{[2]}\Pi\Sigma}$ -circuits. **Remark.** The result holds if one replaces the top-fanin-2 by arbitrary constant *k*. #### **Proof sketch for** k = 2 $$\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$. Assume $\deg(f) = d$. - $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$. Assume $\deg(f) = d$. - \square Apply a map Φ , defined by $\Phi: x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*. - $T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$. Assume $\deg(f) = d$. - \square Apply a map Φ , defined by $\Phi: x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*. - \succ The variable z is the "degree counter", - $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$. Assume $\deg(f) = d$. - \square Apply a map Φ , defined by $\Phi: x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*. - \triangleright The variable **z** is the "degree counter", - $\succ \alpha_i$ to make sure: If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\epsilon)^*$. - $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$. Assume $\deg(f) = d$. - \square Apply a map Φ , defined by $\Phi: x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*. - ➤ The variable **z** is the "degree counter", - $\succ \alpha_i$ to make sure: If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\epsilon)^*$. - \Box It suffices to find $\Phi(f) \mod z^{d+1} = \Phi(f)$. - $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$. Assume $\deg(f) = d$. - \square Apply a map Φ , defined by $\Phi: x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*. - ➤ The variable **z** is the "degree counter", - $\succ \alpha_i$ to make sure: If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\epsilon)^*$. - \Box It suffices to find $\Phi(f) \mod z^{d+1} = \Phi(f)$. [Truncation by degree.] - $\Box T_1 + T_2 = f(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon)$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$. Assume $\deg(f) = d$. - \square Apply a map Φ , defined by $\Phi: x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*. - ➤ The variable **z** is the "degree counter", - $> \alpha_i$ to make sure: If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\epsilon)^*$. - \square It suffices to find $\Phi(f) \mod z^{d+1} = \Phi(f)$. [Truncation by degree.] - ☐ We devise a technique called DiDIL Divide, Derive, Interpolate with Limit. \square val $_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it. E.g., $$h = \epsilon^{-2}x_1 + \epsilon^{-1}x_2 + \epsilon x_3$$. Then, $\operatorname{val}_{\epsilon}(h) = -2$. \square val $_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it. E.g., $$h = \epsilon^{-2}x_1 + \epsilon^{-1}x_2 + \epsilon x_3$$. Then, $\operatorname{val}_{\epsilon}(h) = -2$. $$\square$$ Let $\Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i$, for $i \in [2]$, where $a_i := \operatorname{val}_{\epsilon} (\Phi(T_i))$. \square $\operatorname{val}_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it. E.g., $$h = \epsilon^{-2}x_1 + \epsilon^{-1}x_2 + \epsilon x_3$$. Then, $\operatorname{val}_{\epsilon}(h) = -2$. □ Let $$\Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i$$, for $i \in [2]$, where $a_i := \text{val}_{\epsilon} (\Phi(T_i))$. Then, (i) $\tilde{T}_i \in \mathbb{F}[\epsilon, \mathbf{x}, \mathbf{z}]$, and (ii) $\lim_{\epsilon \to 0} \tilde{T}_2 = t_2 \in \mathbb{F}[\mathbf{x}, \mathbf{z}] \setminus \{0\}$, exists. - \square val $_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it. - E.g., $h = \epsilon^{-2}x_1 + \epsilon^{-1}x_2 + \epsilon x_3$. Then, $\operatorname{val}_{\epsilon}(h) = -2$. - Let Φ(T_i) =: $\epsilon^{a_i} \cdot \tilde{T}_i$, for $i \in [2]$, where a_i := val_{ϵ} (Φ(T_i)). Then, (i) $\tilde{T}_i \in \mathbb{F}[\epsilon, \mathbf{x}, \mathbf{z}]$, and (ii) $\lim_{\epsilon \to 0} \tilde{T}_2 = t_2 \in \mathbb{F}[\mathbf{x}, \mathbf{z}] \setminus \{0\}$, exists. - \square Divide both side by \tilde{T}_2 and take partial derivative with respect to z, to get: - □ $\operatorname{val}_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it. E.g., $h = \epsilon^{-2}x_1 + \epsilon^{-1}x_2 + \epsilon x_3$. Then, $\operatorname{val}_{\epsilon}(h) = -2$. - Let $\Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i$, for $i \in [2]$, where $a_i := \mathsf{val}_{\epsilon} (\Phi(T_i))$. Then, (i) $\tilde{T}_i \in \mathbb{F}[\epsilon, \mathbf{x}, \mathbf{z}]$, and (ii) $\lim_{\epsilon \to 0} \tilde{T}_2 = t_2 \in \mathbb{F}[\mathbf{x}, \mathbf{z}] \setminus \{0\}$, exists. - \square Divide both side by \tilde{T}_2 and take partial derivative with respect to z, to get: $$\begin{split} \Phi(f) + \epsilon \cdot \Phi(S) &= \Phi(T_1) + \Phi(T_2) \\ \Longrightarrow \Phi(f) / \tilde{T}_2 + \epsilon \cdot \Phi(S) / \tilde{T}_2 &= \Phi(T_1) / \tilde{T}_2 + \epsilon^{a_2} \\ \Longrightarrow \partial_Z \left(\Phi(f) / \tilde{T}_2 \right) + \epsilon \cdot \partial_Z \left(\Phi(S) / \tilde{T}_2 \right) &= \partial_Z \left(\Phi(T_1) / \tilde{T}_2 \right) =: g_1 \; . \end{split} \tag{1}$$ - □ $\operatorname{val}_{\epsilon}(\cdot)$ denotes the highest power of ϵ dividing it. E.g., $h = \epsilon^{-2}x_1 + \epsilon^{-1}x_2 + \epsilon x_3$. Then, $\operatorname{val}_{\epsilon}(h) = -2$. - Let $\Phi(T_i) =: \epsilon^{a_i} \cdot \tilde{T}_i$, for $i \in [2]$, where $a_i := \mathsf{val}_{\epsilon} (\Phi(T_i))$
. Then, (i) $\tilde{T}_i \in \mathbb{F}[\epsilon, \mathbf{x}, \mathbf{z}]$, and (ii) $\lim_{\epsilon \to 0} \tilde{T}_2 = t_2 \in \mathbb{F}[\mathbf{x}, \mathbf{z}] \setminus \{0\}$, exists. - \square Divide both side by \tilde{T}_2 and take partial derivative with respect to z, to get: $$\begin{split} \Phi(f) + \epsilon \cdot \Phi(S) &= \Phi(T_1) + \Phi(T_2) \\ \Longrightarrow \Phi(f) / \tilde{T}_2 + \epsilon \cdot \Phi(S) / \tilde{T}_2 &= \Phi(T_1) / \tilde{T}_2 + \epsilon^{a_2} \\ \Longrightarrow \partial_Z \left(\Phi(f) / \tilde{T}_2 \right) + \epsilon \cdot \partial_Z \left(\Phi(S) / \tilde{T}_2 \right) &= \partial_Z \left(\Phi(T_1) / \tilde{T}_2 \right) =: g_1 \; . \end{split} \tag{1}$$ $$\square \lim_{\epsilon \to 0} g_1 = \lim_{\epsilon \to 0} \partial_z \left(\Phi(T_1) / \tilde{T}_2 \right) = \partial_z (\Phi(f) / t_2).$$ \Box First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_Z(\Phi(f)/t_2).$ - \Box First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z(\Phi(f)/t_2)$. - \square Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$. - \Box First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z(\Phi(f)/t_2)$. - \square Logarithmic derivative: $dlog_Z(h) := \partial_Z(h)/h$. - \square dlog *linearizes* product: dlog(h_1h_2) = dlog(h_1) + dlog(h_2). - \Box First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z(\Phi(f)/t_2)$. - \square Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$. - \square dlog *linearizes* product: dlog(h_1h_2) = dlog(h_1) + dlog(h_2). Note: $$\begin{split} \partial_{\mathcal{Z}} \left(\Phi(T_1)/\tilde{T}_2 \right) &= \ \Phi(T_1)/\tilde{T}_2 \cdot \operatorname{dlog} \left(\Phi(T_1)/\tilde{T}_2 \right) \\ &= \ \Phi(T_1)/\tilde{T}_2 \cdot \left(\operatorname{dlog}(\Phi(T_1)) - \operatorname{dlog}(\tilde{T}_2) \right) \ . \end{split}$$ - \square First target: compute $\lim_{\epsilon \to 0} g_1 = \partial_z(\Phi(t)/t_2)$. - \square Logarithmic derivative: $dlog_Z(h) := \partial_Z(h)/h$. - \square dlog *linearizes* product: dlog(h_1h_2) = dlog(h_1) + dlog(h_2). Note: $$\begin{split} \partial_Z \left(\Phi(T_1)/\tilde{T}_2 \right) &= \ \Phi(T_1)/\tilde{T}_2 \cdot \mathsf{dlog} \left(\Phi(T_1)/\tilde{T}_2 \right) \\ &= \ \Phi(T_1)/\tilde{T}_2 \cdot \left(\mathsf{dlog}(\Phi(T_1)) - \mathsf{dlog}(\tilde{T}_2) \right) \ . \end{split}$$ \square Both $\Phi(T_1)$ and \tilde{T}_2 have $\Pi\Sigma$ circuits (they have z and ϵ). $$\begin{split} g_1 \; &= \; \partial_Z \left(\Phi(T_1)/\tilde{T}_2 \right) = \; \Phi(T_1)/\tilde{T}_2 \cdot \left(\mathrm{dlog}(\Phi(T_1)) - \mathrm{dlog}(\tilde{T}_2) \right) \\ &= \; \Pi\Sigma/\Pi\Sigma \cdot \left(\mathrm{dlog}(\Pi\Sigma) - \mathrm{dlog}(\Pi\Sigma) \right) \\ &= \; \Pi\Sigma/\Pi\Sigma \cdot \left(\sum \mathrm{dlog}(\Sigma) \right). \end{split}$$ $$\begin{split} g_1 \; &= \; \partial_Z \left(\Phi(T_1)/\tilde{T}_2 \right) = \; \Phi(T_1)/\tilde{T}_2 \cdot \left(\mathrm{dlog}(\Phi(T_1)) - \mathrm{dlog}(\tilde{T}_2) \right) \\ &= \; \Pi \Sigma / \Pi \Sigma \cdot \left(\mathrm{dlog}(\Pi \Sigma) - \mathrm{dlog}(\Pi \Sigma) \right) \\ &= \; \Pi \Sigma / \Pi \Sigma \cdot \left(\sum \mathrm{dlog}(\Sigma) \right). \end{split}$$ \square Here Σ means just a linear polynomial ℓ (in z, x and *unit* wrt the former). $$\begin{split} g_1 \; &= \; \partial_z \left(\Phi(T_1)/\tilde{T}_2 \right) = \; \Phi(T_1)/\tilde{T}_2 \cdot \left(\mathrm{dlog}(\Phi(T_1)) - \mathrm{dlog}(\tilde{T}_2) \right) \\ &= \; \Pi \Sigma/\Pi \Sigma \cdot \left(\mathrm{dlog}(\Pi \Sigma) - \mathrm{dlog}(\Pi \Sigma) \right) \\ &= \; \Pi \Sigma/\Pi \Sigma \cdot \left(\sum \mathrm{dlog}(\Sigma) \right). \end{split}$$ - \square Here Σ means just a linear polynomial ℓ (in z, \mathbf{x} and *unit* wrt the former). - \square Recall: $\lim_{\epsilon \to 0} g_1 = \partial_z(\Phi(f)/t_2)$. $$\begin{split} g_1 \; &= \; \partial_Z \left(\Phi(T_1)/\tilde{T}_2 \right) = \; \Phi(T_1)/\tilde{T}_2 \cdot \left(\mathrm{dlog}(\Phi(T_1)) - \mathrm{dlog}(\tilde{T}_2) \right) \\ &= \; \Pi\Sigma/\Pi\Sigma \cdot \left(\mathrm{dlog}(\Pi\Sigma) - \mathrm{dlog}(\Pi\Sigma) \right) \\ &= \; \Pi\Sigma/\Pi\Sigma \cdot \left(\sum \mathrm{dlog}(\Sigma) \right). \end{split}$$ - \square Here Σ means just a linear polynomial ℓ (in z, x and *unit* wrt the former). - \square Recall: $\lim_{\epsilon \to 0} g_1 = \partial_z(\Phi(f)/t_2)$. $$\begin{split} g_1 \; &= \; \partial_Z \left(\Phi(T_1)/\tilde{T}_2 \right) = \; \Phi(T_1)/\tilde{T}_2 \cdot \left(\mathrm{dlog}(\Phi(T_1)) - \mathrm{dlog}(\tilde{T}_2) \right) \\ &= \; \Pi\Sigma/\Pi\Sigma \cdot \left(\mathrm{dlog}(\Pi\Sigma) - \mathrm{dlog}(\Pi\Sigma) \right) \\ &= \; \Pi\Sigma/\Pi\Sigma \cdot \left(\sum \mathrm{dlog}(\Sigma) \right). \end{split}$$ - \square Here Σ means just a linear polynomial ℓ (in z, \mathbf{x} and *unit* wrt the former). - \square Recall: $\lim_{\epsilon \to 0} g_1 = \partial_z(\Phi(t)/t_2)$. - \square Suffices to compute $g_1 \mod z^d$ and take the limit! \square What is $dlog(\ell)$? \square What is $dlog(\ell)$? Note, $\ell = A - z \cdot B$, where $A \in \mathbb{F}(\epsilon)$, $B \in \mathbb{F}(\epsilon)[x]$. □ What is $dlog(\ell)$? Note, $\ell = A - z \cdot B$, where $A \in \mathbb{F}(\epsilon)$, $B \in \mathbb{F}(\epsilon)$ [\mathbf{x}]. $$dlog(A - zB) = -\frac{B}{A (1 - z \cdot B/A)}$$ $$= -\frac{B}{A} \cdot \sum_{j=0}^{d-1} \left(\frac{z \cdot B}{A}\right)^{j}$$ $$\in \Sigma \wedge \Sigma \cdot [Magic trick]$$ □ What is $dlog(\ell)$? Note, $\ell = A - z \cdot B$, where $A \in \mathbb{F}(\epsilon)$, $B \in \mathbb{F}(\epsilon)[x]$. $$dlog(A - zB) = -\frac{B}{A(1 - z \cdot B/A)}$$ $$= -\frac{B}{A} \cdot \sum_{j=0}^{d-1} \left(\frac{z \cdot B}{A}\right)^{j}$$ $$\in \Sigma \wedge \Sigma \cdot [Magic trick]$$ ☐ Thus, □ What is $dlog(\ell)$? Note, $\ell = A - z \cdot B$, where $A \in \mathbb{F}(\epsilon)$, $B \in \mathbb{F}(\epsilon)[x]$. $$dlog(A - zB) = -\frac{B}{A (1 - z \cdot B/A)}$$ $$= -\frac{B}{A} \cdot \sum_{j=0}^{d-1} \left(\frac{z \cdot B}{A}\right)^{j}$$ $$\in \Sigma \wedge \Sigma \cdot [Magic trick]$$ ☐ Thus, $$\begin{split} \lim_{\epsilon \to 0} g_1 \mod z^d &\equiv \lim_{\epsilon \to 0} \Pi\Sigma/\Pi\Sigma \cdot \left(\sum \mathsf{dlog}(\Sigma)\right) \mod z^d \\ &\equiv \lim_{\epsilon \to 0} \left(\Pi\Sigma/\Pi\Sigma\right) \cdot \left(\Sigma \wedge \Sigma\right) \mod z^d \\ &\in \overline{\left(\Pi\Sigma/\Pi\Sigma\right) \cdot \left(\Sigma \wedge \Sigma\right)} \mod z^d \;. \end{split}$$ $$\ \ \, \square \ \, \overline{C\cdot \mathcal{D}}\subseteq \overline{C}\cdot \overline{\mathcal{D}}. \ \, \text{Therefore,}$$ $$\overline{C \cdot \mathcal{D}} \subseteq \overline{C} \cdot \overline{\mathcal{D}}. \text{ Therefore,}$$ $$\overline{(\Pi \Sigma / \Pi \Sigma) \cdot (\Sigma \wedge \Sigma)} \subseteq \overline{(\Pi \Sigma / \Pi \Sigma)} \cdot \overline{\Sigma} \wedge \overline{\Sigma}$$ $$\subseteq (\mathsf{ABP} / \mathsf{ABP}) \cdot \mathsf{ABP}$$ $$= \mathsf{ABP} / \mathsf{ABP} \ .$$ $$\square$$ $\overline{C} \cdot \mathcal{D} \subseteq \overline{C} \cdot \overline{\mathcal{D}}$. Therefore, $$\begin{array}{l} \overline{(\Pi\Sigma/\Pi\Sigma)\cdot(\Sigma\wedge\Sigma)}\subseteq \ \overline{(\Pi\Sigma/\Pi\Sigma)}\cdot\overline{\Sigma\wedge\Sigma} \\ \\ \subseteq \ (\mathsf{ABP}/\mathsf{ABP})\cdot\mathsf{ABP} \\ \\ = \ \mathsf{ABP}/\mathsf{ABP} \ . \end{array}$$ ☐ Eliminate division and integrate (interpolate) to get $$\Phi(f)/t_2 = \mathsf{ABP} \implies \Phi(f) = \mathsf{ABP} \implies f = \mathsf{ABP}.$$ Proving Lower Bounds \square Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP? - \square Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP? - ightharpoonup [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that IMM_{n,d} with $d = o(\log n)$ requires $n^{\omega(1)}$ -size depth-3 circuits. - \square Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP? - ightharpoonup [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that IMM_{n,d} with $d = o(\log n)$ requires $n^{\omega(1)}$ -size depth-3 circuits. - > Rank-based lower bounds can be lifted in the border! - \square Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP? - ightharpoonup [Limaye-Srinivasan-Tavenas, FOCS 2021] showed that IMM_{n,d} with $d = o(\log n)$ requires $n^{\omega(1)}$ -size depth-3 circuits. - > Rank-based lower bounds can be lifted in the border! - ightharpoonupSince, $\mathsf{IMM}_{n,d} \in \mathsf{VBP}, \, \overline{\Sigma^{[k]}\Pi\Sigma} \neq \mathsf{VBP}.$ \square Can we show an *exponential* gap between $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP? - \square Can we show an *exponential* gap between $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP? - \square Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$? - \square Can we show an *exponential* gap between $\overline{\Sigma^{[k]}\Pi\Sigma}$ and VBP? - \square Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$? - ☐ Note: This is already known (impossibility) in the classical setting! - \square Can we show an *exponential* gap between $\Sigma^{[k]}\Pi\Sigma$ and VBP? - \square Ambitious goal: Can we separate $\Sigma^{[k]}\Pi\Sigma$ and $\Sigma^{[k+1]}\Pi\Sigma$? - ☐ Note: This is already known (impossibility) in the classical setting! - $\square x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits! - \square Can we show an *exponential* gap between $\Sigma^{[k]}\Pi\Sigma$ and VBP? - \square Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$? - ☐ Note: This is already known (impossibility) in the classical setting! - $\square x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$
circuits! - □ Catch: $x_1 \cdot y_1 + \dots + x_{k+1} \cdot \underline{y_{k+1}}$ does not work anymore in *border*, since, $x_1 \cdot y_1 + \dots + x_{k+1} \cdot y_{k+1} \in \overline{\Sigma^{[2]} \Pi^{O(k)} \Sigma}$! - \square Can we show an *exponential* gap between $\Sigma^{[k]}\Pi\Sigma$ and VBP? - \square Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$? - ☐ Note: This is already known (impossibility) in the classical setting! - $\square x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits! - □ Catch: $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot \underline{y_{k+1}}$ does not work anymore in *border*, since, $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1} \in \overline{\Sigma^{[2]}} \Pi^{O(k)} \Sigma$! - ☐ What does work (if at all!)? #### [Dutta-Saxena FOCS'22] #### [Dutta-Saxena FOCS'22] Fix any constant $k \ge 1$. There is an explicit n-variate and n degree polynomial n such that n can be computed by a $\overline{\Sigma^{[k+1]}\Pi\Sigma}$ circuit of size O(n); but, n requires $2^{\Omega(n)}$ -size $\overline{\Sigma^{[k]}\Pi\Sigma}$ circuits. □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-d polynomial on n = 3d-variables. #### [Dutta-Saxena FOCS'22] - □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-d polynomial on n = 3d-variables. - \square P_d has trivial fanin-3 depth-3 circuit (and hence in border too!). #### [Dutta-Saxena FOCS'22] - □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-d polynomial on n = 3d-variables. - \square P_d has trivial fanin-3 depth-3 circuit (and hence in border too!). - \square We will show that P_d requires $2^{\Omega(d)}$ -size $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits. #### [Dutta-Saxena FOCS'22] - □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-d polynomial on n = 3d-variables. - \square P_d has trivial fanin-3 depth-3 circuit (and hence in border too!). - \square We will show that P_d requires $2^{\Omega(d)}$ -size $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits. - □ Kumar's proof establishes that P_d has a $2^{O(d)}$ -size $\Sigma^{[2]}\Pi\Sigma$ circuits, showing *optimality*! #### [Dutta-Saxena FOCS'22] - □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-d polynomial on n = 3d-variables. - \square P_d has trivial fanin-3 depth-3 circuit (and hence in border too!). - \square We will show that P_d requires $2^{\Omega(d)}$ -size $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits. - □ Kumar's proof establishes that P_d has a $2^{O(d)}$ -size $\Sigma^{[2]}\Pi\Sigma$ circuits, showing *optimality*! - ☐ Classical is about *impossibility* while in border, it is about *optimality*. □ Recall the non-border lower bound proof, of making an ideal $I_k = \langle \ell_1, \dots, \ell_k \rangle$, such that $\det_n \neq 0 \mod I_k$, but $\Sigma^{[k]} \Pi \Sigma = 0 \mod I_k$. - □ Recall the non-border lower bound proof, of making an ideal $I_k = \langle \ell_1, \dots, \ell_k \rangle$, such that $\det_n \neq 0 \mod I_k$, but $\Sigma^{[k]} \Pi \Sigma = 0 \mod I_k$. - □ Let $\ell_1 := 1 + \epsilon x_1$. What does taking mod ℓ_1 in the 'border' $(\epsilon \to 0)$ mean? Essentially we are eventually setting $x_1 = -1/\epsilon$ (and then $\epsilon \to 0$)! - □ Recall the non-border lower bound proof, of making an ideal $I_k = \langle \ell_1, \dots, \ell_k \rangle$, such that $\det_n \neq 0 \mod I_k$, but $\Sigma^{[k]} \Pi \Sigma = 0 \mod I_k$. - □ Let $\ell_1 := 1 + \epsilon x_1$. What does taking mod ℓ_1 in the 'border' $(\epsilon \to 0)$ mean? Essentially we are eventually setting $x_1 = -1/\epsilon$ (and then $\epsilon \to 0$)! - \square In other words, work with $I := \langle \ell_1, \epsilon \rangle = \langle 1 \rangle!$ - □ Recall the non-border lower bound proof, of making an ideal $I_k = \langle \ell_1, \dots, \ell_k \rangle$, such that $\det_n \neq 0 \mod I_k$, but $\Sigma^{[k]} \Pi \Sigma = 0 \mod I_k$. - □ Let $\ell_1 := 1 + \epsilon x_1$. What does taking mod ℓ_1 in the 'border' $(\epsilon \to 0)$ mean? Essentially we are eventually setting $x_1 = -1/\epsilon$ (and then $\epsilon \to 0$)! - \square In other words, work with $I := \langle \ell_1, \epsilon \rangle = \langle 1 \rangle!$ - ☐ Lesson: Taking mod blindly fails *miserably*! - □ Recall the non-border lower bound proof, of making an ideal $I_k = \langle \ell_1, \dots, \ell_k \rangle$, such that $\det_{I_k} \neq 0 \mod I_k$, but $\Sigma^{[k]} \Pi \Sigma = 0 \mod I_k$. - □ Let $\ell_1 := 1 + \epsilon x_1$. What does taking mod ℓ_1 in the 'border' $(\epsilon \to 0)$ mean? Essentially we are eventually setting $x_1 = -1/\epsilon$ (and then $\epsilon \to 0$)! - \square In other words, work with $I := \langle \ell_1, \epsilon \rangle = \langle 1 \rangle!$ - ☐ Lesson: Taking mod blindly fails *miserably*! - ☐ The worst case: $$f + \epsilon S = T_1 + T_2,$$ where T_i has each linear factor of the form $1 + \epsilon \ell$! - ☐ Three cases to consider: - \succ Case I: Each T_1 and T_2 has one linear polynomial $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor, whose ϵ -free term is a linear form. Example: $\ell = (1 + \epsilon)x_1 + \epsilon x_2$, - ☐ Three cases to consider: - $ightharpoonup \underline{Case\ I}$: Each T_1 and T_2 has one linear polynomial $\ell_i \in \mathbb{F}(\epsilon)[x]$ as a factor, whose ϵ -free term is a linear form. Example: $\ell = (1 + \epsilon)x_1 + \epsilon x_2$, - $ightharpoonup \underline{Case II}$ (intermediate): T_1 has one homogeneous factor (say ℓ_1) and ϵ -free part of all factors in T_2 are non-homogeneous (in \mathbf{x}). Non-homogeneous example: $(1 + \epsilon) + \epsilon x_1$. - ☐ Three cases to consider: - $ightharpoonup \underline{Case\ I}$: Each T_1 and T_2 has one linear polynomial $\ell_i \in \mathbb{F}(\epsilon)[x]$ as a factor, whose ϵ -free term is a linear form. Example: $\ell = (1 + \epsilon)x_1 + \epsilon x_2$, - $ightharpoonup Case II (intermediate): <math>T_1$ has one homogeneous factor (say ℓ_1) and ϵ -free part of all factors in T_2 are non-homogeneous (in \mathbf{x}). Non-homogeneous example: $(1 + \epsilon) + \epsilon x_1$. - ightharpoonup Case III (all-non-homogeneous): Each T_i has all the linear polynomial factors whose ϵ -free is non-homogeneous. - ☐ Three cases to consider: - $ightharpoonup \underline{\text{Case I}}$: Each T_1 and T_2 has one linear polynomial $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor, whose ϵ -free term is a linear form. Example: $\ell = (1 + \epsilon)x_1 + \epsilon x_2$, - $ightharpoonup Case II (intermediate): <math>T_1$ has one homogeneous factor (say ℓ_1) and ϵ -free part of all factors in T_2 are non-homogeneous (in \mathbf{x}). Non-homogeneous example: $(1 + \epsilon) + \epsilon x_1$. - ightharpoonup Case III (all-non-homogeneous): Each T_i has all the linear polynomial factors whose ϵ -free is non-homogeneous. - □ For the first case, take $I := \langle \ell_1, \ell_2, \epsilon \rangle \ (\Rightarrow 1 \notin I)$ and show that $x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d = P_d \mod I \neq 0$, while RHS circuit $\equiv 0 \mod I$. - ☐ Three cases to consider: - $ightharpoonup \underline{\text{Case I}}$: Each T_1 and T_2 has one linear polynomial $\ell_i \in \mathbb{F}(\epsilon)[\mathbf{x}]$ as a factor, whose ϵ -free term is a linear form. Example: $\ell = (1 + \epsilon)x_1 + \epsilon x_2$, - $ightharpoonup Case II (intermediate): <math>T_1$ has one homogeneous factor (say ℓ_1) and ϵ -free part of all factors in T_2 are non-homogeneous (in \mathbf{x}). Non-homogeneous example: $(1 + \epsilon) + \epsilon x_1$. - ightharpoonup Case III (all-non-homogeneous): Each T_i has all the linear polynomial factors whose ϵ -free is non-homogeneous. - □ For the first case, take $I := \langle \ell_1, \ell_2, \epsilon \rangle \ (\Rightarrow 1 \notin I)$ and show that $x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d = P_d \mod I \neq 0$, while RHS circuit $\equiv 0 \mod I$. - □ For the second case, take $I := \langle \ell_1, \epsilon \rangle$. Then, RHS mod $I \in \overline{\Pi\Sigma} = \Pi\Sigma$, while $P_d \mod I \notin \Pi\Sigma$. - ☐ Three cases to consider: - $ightharpoonup \underline{Case\ I}$: Each T_1 and T_2 has one linear polynomial $\ell_i \in \mathbb{F}(\epsilon)[x]$ as a factor, whose ϵ -free term is a linear form. Example: $\ell = (1 + \epsilon)x_1 + \epsilon x_2$, - $ightharpoonup \underline{\text{Case II}}$ (intermediate): T_1 has one homogeneous factor (say ℓ_1) and ϵ -free part of all factors in T_2 are non-homogeneous (in \boldsymbol{x}). Non-homogeneous example: $(1 + \epsilon) + \epsilon x_1$. - ightharpoonup Case III (all-non-homogeneous): Each T_i has all the linear polynomial factors whose ϵ -free is non-homogeneous. - □ For the first case, take $I := \langle \ell_1, \ell_2, \epsilon \rangle \ (\Rightarrow 1 \notin I)$ and show that $x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d = P_d \mod I \neq 0$, while RHS circuit $\equiv 0 \mod I$. - □ For the second case, take $I := \langle \ell_1, \epsilon \rangle$. Then, RHS mod $I \in \overline{\Pi\Sigma} = \Pi\Sigma$, while $P_d \mod I \notin \Pi\Sigma$. - ☐ So, all-non-homogeneous is all we have to care! - ☐ Three cases to consider: - $ightharpoonup \underline{Case\ I}$: Each T_1 and T_2 has one linear polynomial $\ell_i \in \mathbb{F}(\epsilon)[x]$ as a factor, whose ϵ -free term is a linear form. Example: $\ell = (1 + \epsilon)x_1 +
\epsilon x_2$, - $ightharpoonup \underline{\text{Case II}}$ (intermediate): T_1 has one homogeneous factor (say ℓ_1) and ϵ -free part of all factors in T_2 are non-homogeneous (in \boldsymbol{x}). Non-homogeneous example: $(1 + \epsilon) + \epsilon x_1$. - ightharpoonup Case III (all-non-homogeneous): Each T_i has all the linear polynomial factors whose ϵ -free is non-homogeneous. - □ For the first case, take $I := \langle \ell_1, \ell_2, \epsilon \rangle \ (\Rightarrow 1 \notin I)$ and show that $x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d = P_d \mod I \neq 0$, while RHS circuit $\equiv 0 \mod I$. - □ For the second case, take $I := \langle \ell_1, \epsilon \rangle$. Then, RHS mod $I \in \overline{\Pi\Sigma} = \Pi\Sigma$, while $P_d \mod I \notin \Pi\Sigma$. - ☐ So, all-non-homogeneous is all we have to care! $$\square$$ $P_d(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon) = T_1 + T_2$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$ have all-non-homogeneous factors. - \square $P_d(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon) = T_1 + T_2$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$ have all-non-homogeneous factors. - \square Use DiDIL with the (different) map $\Phi : \mathbf{x} \mapsto z\mathbf{x}$. - \square $P_d(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon) = T_1 + T_2$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$ have all-non-homogeneous factors. - \square Use DiDIL with the (different) map $\Phi : \mathbf{X} \mapsto \mathbf{ZX}$. - ☐ DiDIL shows: $$\partial_z(z^d P_d/t_2) = \lim_{\epsilon \to 0} g_1 \in \overline{(\Pi \Sigma/\Pi \Sigma)} \cdot \overline{(\Sigma \wedge \Sigma)} \ .$$ - \square $P_d(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon) = T_1 + T_2$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$ have all-non-homogeneous factors. - \square Use DiDIL with the (different) map $\Phi : \mathbf{x} \mapsto z\mathbf{x}$. - □ DiDIL shows: $$\partial_Z(z^dP_d/t_2) = \lim_{\epsilon \to 0} g_1 \in \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{(\Sigma \wedge \Sigma)} \ .$$ □ Use the minimum power of z to show that $P_d \in \overline{\Sigma \wedge \Sigma}$. - \square $P_d(\mathbf{x}) + \epsilon \cdot S(\mathbf{x}, \epsilon) = T_1 + T_2$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\epsilon)[\mathbf{x}]$ have all-non-homogeneous factors. - \square Use DiDIL with the (different) map $\Phi: \mathbf{X} \mapsto \mathbf{Z}\mathbf{X}$. - ☐ DiDIL shows: $$\partial_Z(z^dP_d/t_2) = \lim_{\epsilon \to 0} g_1 \in \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{(\Sigma \wedge \Sigma)} \ .$$ - \square Use the minimum power of z to show that $P_d \in \overline{\Sigma \wedge \Sigma}$. - \square Partial-derivative measure shows that the above implies $s \ge 2^{\Omega(d)}$! Conclusion $\hfill \square$ ROABP presence helps us give many PIT results (see the papers). - □ ROABP presence helps us give many PIT results (see the papers). - \square Can we show $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma}\subseteq\Sigma\Pi\Sigma$, for $d=\mathsf{poly}(n)$? - □ ROABP presence helps us give many PIT results (see the papers). - \square Can we show $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma}\subseteq\Sigma\Pi\Sigma$, for $d=\mathsf{poly}(n)$? - \square Can we extend the hierarchy theorem to bounded (top & bottom fanin) depth-4 circuits? i.e., for a *fixed* constant δ , is $$\overline{\Sigma^{[1]}\Pi\Sigma\Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[2]}\Pi\Sigma\Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[3]}\Pi\Sigma\Pi^{[\delta]}} \dots,$$ where the respective gaps are exponential? Clearly, $\delta = 1$ holds, from this work. - □ ROABP presence helps us give many PIT results (see the papers). - \square Can we show $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma}\subseteq\Sigma\Pi\Sigma$, for $d=\mathsf{poly}(n)$? - \square Can we extend the hierarchy theorem to bounded (top & bottom fanin) depth-4 circuits? i.e., for a *fixed* constant δ , is $$\overline{\Sigma^{[1]}\Pi\Sigma\Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[2]}\Pi\Sigma\Pi^{[\delta]}} \subsetneq \overline{\Sigma^{[3]}\Pi\Sigma\Pi^{[\delta]}} \dots,$$ where the respective gaps are exponential? Clearly, $\delta = 1$ holds, from this work. Thank you! Questions?