A Largish Sum-of-Squares Implies Circuit Hardness and Derandomization

Pranjal Dutta (CMI & IIT Kanpur)

Nitin Saxena (IIT Kanpur)

Thomas Thierauf (Aalen University)

22nd September, 2020 tMeet @CSE, IIT Madras (Online)

- 1. Introduction: Sum-of-squares (SOS)
- 2. Basic Algebraic Complexity
- 3. SOS-hardness and VP vs. VNP
- 4. Sum-of-cubes (SOC) model and Blackbox-PIT
- 5. Conclusion

Introduction: Sum-of-squares (SOS)

Sum-of-squares (SOS) Representation

An *n*-variate polynomial $f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ over a field \mathbb{F} is computed as a *sum-of-squares* (SOS) if

$$f(\boldsymbol{x}) = \sum_{i=1}^{s} c_i \cdot f_i(\boldsymbol{x})^2 , \qquad (1)$$

for some *top-fanin* s, where $f_i(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ and $c_i \in \mathbb{F}$.

$$f(\mathbf{x}) = \sum_{i=1}^{s} c_i \cdot f_i(\mathbf{x})^2 , \qquad (1)$$

for some *top-fanin* s, where $f_i(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ and $c_i \in \mathbb{F}$.

□ Size of *f* in Eqn. (1) is no. of monomials $=\sum_{i \in [s]} |f_i|_0$. \blacksquare $|f_0|_0$ denotes sparsity of *f*.

$$f(\boldsymbol{x}) = \sum_{i=1}^{s} c_i \cdot f_i(\boldsymbol{x})^2 , \qquad (1)$$

for some *top-fanin* s, where $f_i(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ and $c_i \in \mathbb{F}$.

□ Size of *t* in Eqn. (1) is no. of monomials = $\sum_{i \in [s]} |f_i|_0$. $(f_0 \text{ denotes sparsity of } t$.

≻ Eg. $f(x) := 2x + 2 = (x + 3/2)^2 - (x + 1/2)^2$. Size of *f* in this SOS representation is 2 + 2 = 4.

$$f(\boldsymbol{x}) = \sum_{i=1}^{s} c_i \cdot f_i(\boldsymbol{x})^2 , \qquad (1)$$

for some *top-fanin* s, where $f_i(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ and $c_i \in \mathbb{F}$.

□ Size of *f* in Eqn. (1) is no. of monomials = $\sum_{i \in [s]} |f_i|_0$. (1) (*f*) denotes sparsity of *f*.

- ≻ Eg. $f(x) := 2x + 2 = (x + 3/2)^2 (x + 1/2)^2$. Size of *f* in this SOS representation is 2 + 2 = 4.
- \Box Denote the *minimal size* by support-sum $S_{\mathbb{F}}(f)$.

$$f(\boldsymbol{x}) = \sum_{i=1}^{s} c_i \cdot f_i(\boldsymbol{x})^2 , \qquad (1)$$

for some *top-fanin* s, where $f_i(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ and $c_i \in \mathbb{F}$.

□ Size of *f* in Eqn. (1) is no. of monomials = $\sum_{i \in [s]} |f_i|_0$. (1) denotes sparsity of *f*.

- ≻ Eg. $f(x) := 2x + 2 = (x + 3/2)^2 (x + 1/2)^2$. Size of *f* in this SOS representation is 2 + 2 = 4.
- \Box Denote the *minimal size* by support-sum $S_{\mathbb{F}}(f)$.

Note. SOS is a *complete* model if char(\mathbb{F}) $\neq 2$, as $f = \left(\frac{f+1}{2}\right)^2 - \left(\frac{f-1}{2}\right)^2$.

$$f(\boldsymbol{x}) = \sum_{i=1}^{s} c_i \cdot f_i(\boldsymbol{x})^2 , \qquad (1)$$

for some *top-fanin* s, where $f_i(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ and $c_i \in \mathbb{F}$.

□ Size of *f* in Eqn. (1) is no. of monomials $=\sum_{i \in [s]} |f_i|_0$. (1) denotes sparsity of *f*.

≻ Eg. $f(x) := 2x + 2 = (x + 3/2)^2 - (x + 1/2)^2$. Size of *f* in this SOS representation is 2 + 2 = 4.

 \Box Denote the *minimal size* by support-sum $S_{\mathbb{F}}(f)$.

Note. SOS is a *complete* model if char(\mathbb{F}) $\neq 2$, as $f = \left(\frac{f+1}{2}\right)^2 - \left(\frac{f-1}{2}\right)^2$.

Trivially, $S_{\mathbb{F}}(f) \leq 2 \cdot (|f|_0 + 1)$, for any $f \in \mathbb{F}[\mathbf{x}]$.

 \Box For simplicity, consider univariate SOS representations (n = 1).

 \Box For simplicity, consider univariate SOS representations (n = 1).

□ For any char(\mathbb{F}) ≠ 2 field \mathbb{F} :

$$|f|_0^{1/2} \leq S_{\mathbb{F}}(f) \leq 2|f|_0 + 2 \quad . \tag{2}$$

Lower bound by counting monomials:

 \Box For simplicity, consider univariate SOS representations (n = 1).

□ For any char(\mathbb{F}) ≠ 2 field \mathbb{F} :

$$|f|_{0}^{1/2} \leq S_{\mathbb{F}}(f) \leq 2|f|_{0} + 2 \qquad (2)$$

Lower bound by counting monomials:

> Suppose $f = \sum_{i=1}^{s} c_i \cdot f_i^2$. Assume, $|f_i|_0 = t_i$.

➤ Note,
$$|f_i^2|_0 \le t_i^2$$
, for each $i \in [s]$.

$$\succ \sum_{i=1}^{s} t_i^2 \ge |f|_0 \implies \sum_{i=1}^{s} t_i \ge |f|_0^{1/2}.$$

 \Box For simplicity, consider univariate SOS representations (n = 1).

□ For any char(\mathbb{F}) ≠ 2 field \mathbb{F} :

$$|f|_{0}^{1/2} \leq S_{\mathbb{F}}(f) \leq 2|f|_{0} + 2 \qquad (2)$$

Lower bound by counting monomials:

> Suppose
$$f = \sum_{i=1}^{s} c_i \cdot f_i^2$$
. Assume, $|f_i|_0 = t_i$.

➤ Note,
$$|f_i^2|_0 \le t_i^2$$
, for each $i \in [s]$.

$$\succ \sum_{i=1}^{s} t_i^2 \ge |f|_0 \implies \sum_{i=1}^{s} t_i \ge |f|_0^{1/2}.$$

 $\Box \text{ If } |f|_0 \approx d \text{, then } \Omega(d^{1/2}) \leq S_{\mathbb{F}}(f) \leq O(d).$

 \Box For simplicity, consider univariate SOS representations (*n* = 1).

□ For any char(\mathbb{F}) ≠ 2 field \mathbb{F} :

$$|f|_{0}^{1/2} \leq S_{\mathbb{F}}(f) \leq 2|f|_{0} + 2 \qquad (2)$$

Lower bound by counting monomials:

> Suppose
$$f = \sum_{i=1}^{s} c_i \cdot f_i^2$$
. Assume, $|f_i|_0 = t_i$.

➤ Note,
$$|f_i^2|_0 \le t_i^2$$
, for each $i \in [s]$.

$$\succ \sum_{i=1}^{s} t_i^2 \ge |f|_0 \implies \sum_{i=1}^{s} t_i \ge |f|_0^{1/2}.$$

 $\Box \text{ If } |f|_0 \approx d \text{, then } \Omega(d^{1/2}) \leq S_{\mathbb{F}}(f) \leq O(d).$

□ Does there exist *d*-degree polynomial f(x) such that $S_{\mathbb{F}}(f) \ge \Omega(d)$?

 \Box For simplicity, consider univariate SOS representations (*n* = 1).

□ For any char(\mathbb{F}) ≠ 2 field \mathbb{F} :

$$|f|_{0}^{1/2} \leq S_{\mathbb{F}}(f) \leq 2|f|_{0} + 2 \qquad (2)$$

Lower bound by counting monomials:

> Suppose $f = \sum_{i=1}^{s} c_i \cdot f_i^2$. Assume, $|f_i|_0 = t_i$.

➤ Note,
$$|f_i^2|_0 \le t_i^2$$
, for each $i \in [s]$.

$$\succ \sum_{i=1}^{s} t_i^2 \ge |f|_0 \implies \sum_{i=1}^{s} t_i \ge |f|_0^{1/2}.$$

 $\Box \text{ If } |f|_0 \approx d \text{, then } \Omega(d^{1/2}) \leq S_{\mathbb{F}}(f) \leq O(d).$

□ Does there exist *d*-degree polynomial f(x) such that $S_{\mathbb{F}}(f) \ge \Omega(d)$?

➤ True for "most" polynomials *f*, by *dimension-argument*.

 \Box For simplicity, consider univariate SOS representations (*n* = 1).

□ For any char(\mathbb{F}) ≠ 2 field \mathbb{F} :

$$|f|_{0}^{1/2} \leq S_{\mathbb{F}}(f) \leq 2|f|_{0} + 2 \quad . \tag{2}$$

Lower bound by counting monomials:

> Suppose $f = \sum_{i=1}^{s} c_i \cdot f_i^2$. Assume, $|f_i|_0 = t_i$.

➤ Note,
$$|f_i^2|_0 \le t_i^2$$
, for each $i \in [s]$.

 $\succ \sum_{i=1}^{s} t_i^2 \ge |f|_0 \implies \sum_{i=1}^{s} t_i \ge |f|_0^{1/2}.$

 $\Box \text{ If } |f|_0 \approx d \text{, then } \Omega(d^{1/2}) \leq S_{\mathbb{F}}(f) \leq O(d).$

□ Does there exist *d*-degree polynomial f(x) such that $S_{\mathbb{F}}(f) \ge \Omega(d)$?

True for "most" polynomials f, by dimension-argument.

$$\succ$$
 Assume, $\mathbb{F} = \mathbb{C}$.

Think as quadratic-system solving.

Overall Goal

□ **Open Problem.** Find an *explicit* univariate polynomial $f(x) \in \mathbb{C}[x]$ of degree *d* such that $S(f) \ge \omega(d^{1/2})$.

□ **Open Problem.** Find an *explicit* univariate polynomial $f(x) \in \mathbb{C}[x]$ of degree *d* such that $S(f) \ge \omega(d^{1/2})$.

> $S(f) \ge \Omega(d/\log d)$, where $f(x) = \sum_{i=0}^{d} 2^{2^{i}} x^{i}$, using [Strassen'74].

- □ **Open Problem.** Find an *explicit* univariate polynomial $f(x) \in \mathbb{C}[x]$ of degree *d* such that $S(f) \ge \omega(d^{1/2})$.
 - ≻ $S(f) \ge \Omega(d/\log d)$, where $f(x) = \sum_{i=0}^{d} 2^{2^{i}} x^{i}$, using [Strassen'74]. But, it is *non-explicit*.

- □ **Open Problem.** Find an *explicit* univariate polynomial $f(x) \in \mathbb{C}[x]$ of degree *d* such that $S(f) \ge \omega(d^{1/2})$.
 - ≻ $S(f) \ge \Omega(d/\log d)$, where $f(x) = \sum_{i=0}^{d} 2^{2^{i}} x^{i}$, using [Strassen'74]. But, it is *non-explicit*.
 - To be of any help in complexity theory, polynomials *need* to be explicit. We would work with several definitions of explicitness.
 - > Eg. $(x + 1)^d$ is 'explicit'.

- □ **Open Problem.** Find an *explicit* univariate polynomial $f(x) \in \mathbb{C}[x]$ of degree *d* such that $S(f) \ge \omega(d^{1/2})$.
 - ≻ $S(t) \ge \Omega(d/\log d)$, where $f(x) = \sum_{i=0}^{d} 2^{2^{i}} x^{i}$, using [Strassen'74]. But, it is *non-explicit*.
 - To be of any help in complexity theory, polynomials *need* to be explicit. We would work with several definitions of explicitness.
 - > Eg. $(x + 1)^d$ is 'explicit'.
- □ Overall Goal (informally): Show that solving Open Problem implies $VP \neq VNP$ (and PIT \in SUBEXP).

SOS Representation – History

> Inspired generations of mathematicians [Ramanujan'17].

- > Inspired generations of mathematicians [Ramanujan'17].
- > Pythagorean triples, Fermat's 2-squares, Legendre's 3-squares.

- > Inspired generations of mathematicians [Ramanujan'17].
- > Pythagorean triples, Fermat's 2-squares, Legendre's 3-squares.
- □ (1900) Hilbert's *17th problem*: Asks whether a multivariate polynomial, that takes *only* non-negative values over the reals, can be represented as an SOS of rational functions?

- > Inspired generations of mathematicians [Ramanujan'17].
- > Pythagorean triples, Fermat's 2-squares, Legendre's 3-squares.
- □ (1900) Hilbert's *17th problem*: Asks whether a multivariate polynomial, that takes *only* non-negative values over the reals, can be represented as an SOS of rational functions?

$$\succ$$
 Note: $c_i = 1$.

- > Inspired generations of mathematicians [Ramanujan'17].
- > Pythagorean triples, Fermat's 2-squares, Legendre's 3-squares.
- □ (1900) Hilbert's *17th problem*: Asks whether a multivariate polynomial, that takes *only* non-negative values over the reals, can be represented as an SOS of rational functions?

$$\succ$$
 Note: $c_i = 1$.

□ (1990s) SOS constraints appear in convex optimization.

- > Inspired generations of mathematicians [Ramanujan'17].
- > Pythagorean triples, Fermat's 2-squares, Legendre's 3-squares.
- □ (1900) Hilbert's *17th problem*: Asks whether a multivariate polynomial, that takes *only* non-negative values over the reals, can be represented as an SOS of rational functions?

> Note:
$$c_i = 1$$
.

- □ (1990s) SOS constraints appear in convex optimization.
 - > Lasserre hierarchy of relaxations in SDP (based on deg).

- > Inspired generations of mathematicians [Ramanujan'17].
- > Pythagorean triples, Fermat's 2-squares, Legendre's 3-squares.
- □ (1900) Hilbert's *17th problem*: Asks whether a multivariate polynomial, that takes *only* non-negative values over the reals, can be represented as an SOS of rational functions?

 \succ Note: $c_i = 1$.

- □ (1990s) SOS constraints appear in convex optimization.
 - > Lasserre hierarchy of relaxations in SDP (based on deg).
 - Several applications in approximation, optimization and control theory [Reznick'78, Laurent'09, Barak-Moitra'16].

- > Inspired generations of mathematicians [Ramanujan'17].
- > Pythagorean triples, Fermat's 2-squares, Legendre's 3-squares.
- □ (1900) Hilbert's *17th problem*: Asks whether a multivariate polynomial, that takes *only* non-negative values over the reals, can be represented as an SOS of rational functions?

 \succ Note: $c_i = 1$.

- □ (1990s) SOS constraints appear in convex optimization.
 - > Lasserre hierarchy of relaxations in SDP (based on deg).
 - Several applications in approximation, optimization and control theory [Reznick'78, Laurent'09, Barak-Moitra'16].

Basic Algebraic Complexity

Size = number of nodes + edges

□ Valiant's Hypothesis [Valiant'79]: Symbolic perm_n requires $n^{\omega(1)}$ -size circuit.

□ Valiant's Hypothesis [Valiant'79]: Symbolic perm_n requires $n^{\omega(1)}$ -size circuit. An *equivalent* statement: Prove $VP \neq VNP$.

- □ Valiant's Hypothesis [Valiant'79]: Symbolic perm_n requires $n^{\omega(1)}$ -size circuit. An *equivalent* statement: Prove $VP \neq VNP$.
- □ VP : A family $(f_n)_n \in VP$ (over \mathbb{F}) if f_n is a poly(*n*)-variate polynomial, of degree poly(*n*) over \mathbb{F} , computed by poly(*n*)-size circuit.

- □ Valiant's Hypothesis [Valiant'79]: Symbolic perm_n requires $n^{\omega(1)}$ -size circuit. An *equivalent* statement: Prove $VP \neq VNP$.
- □ VP : A family $(f_n)_n \in VP$ (over \mathbb{F}) if f_n is a poly(*n*)-variate polynomial, of degree poly(*n*) over \mathbb{F} , computed by poly(*n*)-size circuit.
- □ VNP : A family $(f_n)_n \in \text{VNP}$ (over \mathbb{F}) if $\exists (g_n)_n \in \text{VP} \& t(n) = \text{poly}(n)$:

- □ Valiant's Hypothesis [Valiant'79]: Symbolic perm_n requires $n^{\omega(1)}$ -size circuit. An *equivalent* statement: Prove $VP \neq VNP$.
- □ VP : A family $(f_n)_n \in VP$ (over \mathbb{F}) if f_n is a poly(*n*)-variate polynomial, of degree poly(*n*) over \mathbb{F} , computed by poly(*n*)-size circuit.
- □ VNP : A family $(f_n)_n \in \text{VNP}$ (over \mathbb{F}) if $\exists (g_n)_n \in \text{VP} \& t(n) = \text{poly}(n)$:

$$f_n(\boldsymbol{x}) = \sum_{\boldsymbol{w} \in \{0,1\}^{t(n)}} g_n(\boldsymbol{x}, \boldsymbol{w}) \; .$$

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel) If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ is finite, then

 $\operatorname{Prob}_{\boldsymbol{a}\in S^n} [P(\boldsymbol{a}) = 0] \leq d/|S|$.

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel) If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ is finite, then

 $\operatorname{Prob}_{\boldsymbol{a}\in S^n} [P(\boldsymbol{a}) = 0] \leq d/|S|$.

≻ The above lemma puts $PIT \in RP$.

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel) If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ is finite, then

 $\operatorname{Prob}_{\boldsymbol{a}\in S^n} [P(\boldsymbol{a}) = 0] \leq d/|S|.$

➤ The above lemma puts $PIT \in RP$.

Hardness-to-randomness (Kabanets-Impagliazzo'04) $VP \neq VNP \implies PIT \in SUBEXP.$

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel) If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ is finite, then

 $\operatorname{Prob}_{\boldsymbol{a}\in S^n} [P(\boldsymbol{a}) = 0] \leq d/|S|.$

➤ The above lemma puts $PIT \in RP$.

Hardness-to-randomness (Kabanets-Impagliazzo'04) $VP \neq VNP \implies PIT \in SUBEXP.$

> VNP is *exponentially* harder than VP \implies PIT \in QP.

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel) If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ is finite, then

 $\operatorname{Prob}_{\boldsymbol{a}\in S^n} [P(\boldsymbol{a}) = 0] \leq d/|S|.$

➤ The above lemma puts $PIT \in RP$.

Hardness-to-randomness (Kabanets-Impagliazzo'04) $VP \neq VNP \implies PIT \in SUBEXP.$

> VNP is *exponentially* harder than VP \implies PIT \in QP.

> Efficient PIT
$$\stackrel{?}{\Longrightarrow}$$
 VP \neq VNP.

Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel) If $P(\mathbf{x})$ is a nonzero polynomial of degree d, and $S \subseteq \mathbb{F}$ is finite, then

 $\operatorname{Prob}_{\boldsymbol{a}\in S^n} \left[P(\boldsymbol{a}) = 0\right] \leq d/|S|.$

➤ The above lemma puts $PIT \in RP$.

Hardness-to-randomness (Kabanets-Impagliazzo'04) VP \neq VNP \implies PIT \in SUBEXP.

- > VNP is *exponentially* harder than VP \implies PIT \in QP.
- > Efficient PIT $\stackrel{?}{\Longrightarrow}$ VP \neq VNP. $\underbrace{Explicitness is important.}$

 \Box Each coefficient can be at most poly(d)-bits long, and

□ the coefficient-function gets input (j, i, d) and outputs the *j*-th bit of the coefficient of x^i in f_d in

- □ the coefficient-function gets input (j, i, d) and outputs the *j*-th bit of the coefficient of x^i in f_d in
 - > poly(log d)-time.

- □ the coefficient-function gets input (j, i, d) and outputs the *j*-th bit of the coefficient of x^i in f_d in
 - > poly(log d)-time.
 - > Or, ... in #P/poly.

- □ the coefficient-function gets input (j, i, d) and outputs the *j*-th bit of the coefficient of x^i in f_d in
 - > poly(log d)-time.
 - > Or, . . . in #P/poly.
 - \succ Or, . . . in CH.

- □ the coefficient-function gets input (j, i, d) and outputs the *j*-th bit of the coefficient of x^i in f_d in
 - > poly(log d)-time.
 - > Or, . . . in #P/poly.

Remark. Hardness examples $-d^{1/2} \cdot (\log d)^{\sqrt{\log d}}, d^{1/2+.01}$.

Remark. Hardness examples $-d^{1/2} \cdot (\log d)^{\sqrt{\log d}}, d^{1/2+.01}$.

 \Box There are numerous candidates for $f_d(x)$:

Remark. Hardness examples $-d^{1/2} \cdot (\log d)^{\sqrt{\log d}}, d^{1/2+.01}$.

 \Box There are numerous candidates for $f_d(x)$:

Remark. Hardness examples $-d^{1/2} \cdot (\log d)^{\sqrt{\log d}}, d^{1/2+.01}$.

 \Box There are numerous candidates for $f_d(x)$:

>
$$f_d := \sum_{i=0}^d 2^{i^2} x^i$$
.

Remark. Hardness examples $-d^{1/2} \cdot (\log d)^{\sqrt{\log d}}, d^{1/2+.01}$.

 \Box There are numerous candidates for $f_d(x)$:

Remark. Hardness examples $-d^{1/2} \cdot (\log d)^{\sqrt{\log d}}, d^{1/2+.01}$.

 \Box There are numerous candidates for $f_d(x)$:

Remark. Hardness examples $-d^{1/2} \cdot (\log d)^{\sqrt{\log d}}, d^{1/2+.01}$.

 \Box There are numerous candidates for $f_d(x)$:

SOS-hardness is quite incomparable/weak to previous works:

□ [Agrawal-Vinay'08,...,Gupta-Kamath-Kayal-Saptharishi'13,...,Agrawal-Ghosh-Saxena'18] Hardness for special depth-4/3 – sum-of *unbounded-powers* of *multivariates* ∑ ∧^{ω(1)} ∑ ∏.

- □ [Agrawal-Vinay'08,...,Gupta-Kamath-Kayal-Saptharishi'13,...,Agrawal-Ghosh-Saxena'18] Hardness for special depth-4/3 sum-of *unbounded-powers* of *multivariates* ∑ ∧^{ω(1)} ∑ ∏.
- □ [koiran'11] Used univariate depth-4 expression of *unbounded-powers*; also lower bound on the *top-fanin* (we require SOS-size).

- □ [Agrawal-Vinay'08,...,Gupta-Kamath-Kayal-Saptharishi'13,...,Agrawal-Ghosh-Saxena'18] Hardness for special depth-4/3 sum-of *unbounded-powers* of *multivariates* ∑ ∧^{ω(1)} ∑ ∏.
- □ [koiran'11] Used univariate depth-4 expression of *unbounded-powers*; also lower bound on the *top-fanin* (we require SOS-size).
 - SOS-size is *neither* top-fanin nor the "size" of the depth-4 circuits, rather it is # ∏-operations in ∑ ∧² ∑ ∏-formula.

- □ [Agrawal-Vinay'08,...,Gupta-Kamath-Kayal-Saptharishi'13,...,Agrawal-Ghosh-Saxena'18] Hardness for special depth-4/3 sum-of *unbounded-powers* of *multivariates* ∑ ∧^{ω(1)} ∑ ∏.
- □ [koiran'11] Used univariate depth-4 expression of *unbounded-powers*; also lower bound on the *top-fanin* (we require SOS-size).
 - SOS-size is *neither* top-fanin nor the "size" of the depth-4 circuits, rather it is # ∏-operations in ∑ ∧² ∑ ∏-formula.
 - > Circuit-hardness \implies SOS-hardness (*f* requires *s* size circuit implies $S(f) \ge s/\log d$); the **opposite** plausibly *doesn't* hold.

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

- □ [Agrawal-Vinay'08,...,Gupta-Kamath-Kayal-Saptharishi'13,...,Agrawal-Ghosh-Saxena'18] Hardness for special depth-4/3 sum-of *unbounded-powers* of *multivariates* ∑ ∧^{ω(1)} ∑ ∏.
- □ [koiran'11] Used univariate depth-4 expression of *unbounded-powers*; also lower bound on the *top-fanin* (we require SOS-size).
 - SOS-size is *neither* top-fanin nor the "size" of the depth-4 circuits, rather it is # ∏-operations in ∑ ∧² ∑ ∏-formula.
 - > Circuit-hardness \implies SOS-hardness (*f* requires *s* size circuit implies $S(f) \ge s/\log d$); the **opposite** plausibly *doesn't* hold.
- □ real- τ -conjecture [Koiran'10] and [Koiran-Portier-Tavenas-Thomassé'15] Newton-polygon- τ -conjecture about roots of similar depth-4 expressions (also here, $\omega(\sqrt{d})$ vs. d).

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

- □ [Agrawal-Vinay'08,...,Gupta-Kamath-Kayal-Saptharishi'13,...,Agrawal-Ghosh-Saxena'18] Hardness for special depth-4/3 sum-of *unbounded-powers* of *multivariates* ∑ ∧^{ω(1)} ∑ ∏.
- □ [koiran'11] Used univariate depth-4 expression of *unbounded-powers*; also lower bound on the *top-fanin* (we require SOS-size).
 - SOS-size is *neither* top-fanin nor the "size" of the depth-4 circuits, rather it is # ∏-operations in ∑ ∧² ∑ ∏-formula.
 - > Circuit-hardness \implies SOS-hardness (*f* requires *s* size circuit implies $S(f) \ge s/\log d$); the **opposite** plausibly *doesn't* hold.
- □ real- τ -conjecture [Koiran'10] and [Koiran-Portier-Tavenas-Thomassé'15] Newton-polygon- τ -conjecture about roots of similar depth-4 expressions (also here, $\omega(\sqrt{d})$ vs. d).
- □ [Raz'08] Super-poly-elusive functions eluding degree-2 maps (generic *multivariate*).

SOS-hardness to $VP \neq VNP$

If there exists an SOS-hard polynomial family, then $VP \neq VNP$.

If there exists an SOS-hard polynomial family, then $VP \neq VNP$.

Natural analogue of SOS lower bound to hardness of Permanent in the non-commutative settings, [Hrubeš-Wigderson-Yehudayoff'11].

If there exists an SOS-hard polynomial family, then $VP \neq VNP$.

- Natural analogue of SOS lower bound to hardness of Permanent in the non-commutative settings, [Hrubeš-Wigderson-Yehudayoff'11].
- > Restrict the degrees of f_i to be $d \cdot o(\log d)$ and the top-fanin $s = d^{o(1)}$.

If there exists an SOS-hard polynomial family, then $VP \neq VNP$.

- Natural analogue of SOS lower bound to hardness of Permanent in the non-commutative settings, [Hrubeš-Wigderson-Yehudayoff'11].
- > Restrict the degrees of f_i to be $d \cdot o(\log d)$ and the top-fanin $s = d^{o(1)}$.
- A stronger SOS-hardness notion with *constant* ε, gives an *exponential* separation between VP and VNP. This proof has many technical differences.

SOS-hardness and VP vs. VNP

Main Lemma (SOS Decomposition)

Main Lemma (SOS Decomposition)

Let \mathbb{F} be a field of characteristic $\neq 2$. Let $f(\mathbf{x})$ be an *n*-variate polynomial over \mathbb{F} of degree *d*, computed by a circuit of size *s*. Then there exist $f_i \in \mathbb{F}[\mathbf{x}]$ and $c_i \in \mathbb{F}$ such that

$$f(\boldsymbol{x}) = \sum_{i=1}^{s'} c_i f_i(\boldsymbol{x})^2 \, .$$

where $s' \leq (sd)^{O(\log d)}$, and $\deg(f_i) \leq \lceil d/2 \rceil$, for all $i \in [s']$.

Main Lemma (SOS Decomposition)

Let \mathbb{F} be a field of characteristic $\neq 2$. Let $f(\mathbf{x})$ be an *n*-variate polynomial over \mathbb{F} of degree d, computed by a circuit of size s. Then there exist $f_i \in \mathbb{F}[\mathbf{x}]$ and $c_i \in \mathbb{F}$ such that

$$f(\boldsymbol{x}) = \sum_{i=1}^{s'} c_i f_i(\boldsymbol{x})^2 \, ,$$

where $s' \leq (sd)^{O(\log d)}$, and $\deg(f_i) \leq \lceil d/2 \rceil$, for all $i \in [s']$.

Algebraic branching programs (ABP). An ABP is a directed acyclic graph with a *starting vertex s* with in-degree zero, an *end vertex t* with out-degree zero. The edge labels are $a_1x_1 + \ldots + a_nx_n + c \in \mathbb{F}[\mathbf{x}]$, where $a_i, c \in \mathbb{F}$.

Algebraic branching programs (ABP). An ABP is a directed acyclic graph with a *starting vertex s* with in-degree zero, an *end vertex t* with out-degree zero. The edge labels are $a_1x_1 + \ldots + a_nx_n + c \in \mathbb{F}[x]$, where $a_i, c \in \mathbb{F}$.

> The *weight of a path* is the product of labels of the edges in the path.

Algebraic branching programs (ABP). An ABP is a directed acyclic graph with a *starting vertex s* with in-degree zero, an *end vertex t* with out-degree zero. The edge labels are $a_1x_1 + \ldots + a_nx_n + c \in \mathbb{F}[\mathbf{x}]$, where $a_i, c \in \mathbb{F}$.

- > The *weight of a path* is the product of labels of the edges in the path.
- The polynomial computed by the ABP is the polynomial computed at the end vertex t.

Algebraic branching programs (ABP). An ABP is a directed acyclic graph with a *starting vertex s* with in-degree zero, an *end vertex t* with out-degree zero. The edge labels are $a_1x_1 + \ldots + a_nx_n + c \in \mathbb{F}[\mathbf{x}]$, where $a_i, c \in \mathbb{F}$.

- > The *weight of a path* is the product of labels of the edges in the path.
- The *polynomial computed by the ABP* is the polynomial computed at the end vertex t.

This ABP computes

 $x_1x_2x_3 + x_1x_2(1+x_3) + (1+x_1)x_2(1+x_3)$

> Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

- > Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.
- Apply result of [Valiant-Skyum-Berkowitz-Rackoff'83] to make it log-depth with poly(s)-size blowup.

- > Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.
- Apply result of [Valiant-Skyum-Berkowitz-Rackoff'83] to make it log-depth with poly(s)-size blowup.
- > Convert the circuit to a *homogeneous* ABP of size (width) $w := s^{\log d}$ such that *each* edge has *linear form* weight (without constants).

- > Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.
- Apply result of [Valiant-Skyum-Berkowitz-Rackoff'83] to make it log-depth with poly(s)-size blowup.
- ➤ Convert the circuit to a *homogeneous* ABP of size (width) $w := s^{\log d}$ such that *each* edge has *linear form* weight (without constants).
- > By construction, *i*-th layer nodes compute polynomials of degree *exactly i*.

- > Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.
- Apply result of [Valiant-Skyum-Berkowitz-Rackoff'83] to make it log-depth with poly(s)-size blowup.
- ➤ Convert the circuit to a *homogeneous* ABP of size (width) $w := s^{\log d}$ such that *each* edge has *linear form* weight (without constants).
- > By construction, *i*-th layer nodes compute polynomials of degree *exactly i*.
- > *Cut* the ABP, at the d/2-th layer, we get $f = (f_1, \ldots, f_w)^T \cdot (f'_1, \ldots, f'_w) = \sum_{i=1}^w f_i \cdot f'_i$, where f_i and f'_i have degree d/2.

- > Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.
- Apply result of [Valiant-Skyum-Berkowitz-Rackoff'83] to make it log-depth with poly(s)-size blowup.
- ➤ Convert the circuit to a *homogeneous* ABP of size (width) $w := s^{\log d}$ such that *each* edge has *linear form* weight (without constants).
- > By construction, *i*-th layer nodes compute polynomials of degree *exactly i*.
- > *Cut* the ABP, at the d/2-th layer, we get $f = (f_1, \ldots, f_W)^T \cdot (f'_1, \ldots, f'_W) = \sum_{i=1}^W f_i \cdot f'_i$, where f_i and f'_i have degree d/2.
- ➤ Write each product $f_i \cdot f'_i = 1/4 \cdot (f_i + f'_i)^2 1/4 \cdot (f_i f'_i)^2$, which finally gives the desired decomposition.

□ Wlog, f_d is SOS-hard with $\varepsilon = (\log \log d / \log d)^{1/3}$.

□ Wlog, f_d is SOS-hard with $\varepsilon = (\log \log d / \log d)^{1/3}$.

□ Convert this to a *kn*-variate *n*-degree multilinear polynomial $P_{n,k}$ where $k^n \ge d > (k-1)^n$, (*n* and *k* are both functions of *d* to be fixed later) and show that the family \in VNP, but \notin VP.

□ Wlog, f_d is SOS-hard with $\varepsilon = (\log \log d / \log d)^{1/3}$.

□ Convert this to a *kn*-variate *n*-degree multilinear polynomial $P_{n,k}$ where $k^n \ge d > (k-1)^n$, (*n* and *k* are both functions of *d* to be fixed later) and show that the family \in VNP, but \notin VP. The conversion is as follows:

□ Wlog, f_d is SOS-hard with $\varepsilon = (\log \log d / \log d)^{1/3}$.

□ Convert this to a *kn*-variate *n*-degree multilinear polynomial $P_{n,k}$ where $k^n \ge d > (k-1)^n$, (*n* and *k* are both functions of *d* to be fixed later) and show that the family \in VNP, but \notin VP. The conversion is as follows:

➤ Introduce new variables $y_{j,\ell}$ where $j \in [n]$ and $\ell \in [0, k - 1]$.

□ Wlog, f_d is SOS-hard with $\varepsilon = (\log \log d / \log d)^{1/3}$.

- □ Convert this to a *kn*-variate *n*-degree multilinear polynomial $P_{n,k}$ where $k^n \ge d > (k-1)^n$, (*n* and *k* are both functions of *d* to be fixed later) and show that the family \in VNP, but \notin VP. The conversion is as follows:
 - ➤ Introduce new variables $y_{j,\ell}$ where $j \in [n]$ and $\ell \in [0, k 1]$.
 - ➤ Monomial x^i in $f_d(x)$ maps to $\phi(x^i) := \prod_{j=1}^n y_{j,i_j}$, where $i := \sum_{j=1}^n i_j \cdot k^{j-1}$, $0 \le i_j \le k-1$.

□ Wlog, f_d is SOS-hard with $\varepsilon = (\log \log d / \log d)^{1/3}$.

- □ Convert this to a *kn*-variate *n*-degree multilinear polynomial $P_{n,k}$ where $k^n \ge d > (k-1)^n$, (*n* and *k* are both functions of *d* to be fixed later) and show that the family \in VNP, but \notin VP. The conversion is as follows:
 - ➤ Introduce new variables $y_{j,\ell}$ where $j \in [n]$ and $\ell \in [0, k 1]$.
 - ➤ Monomial x^i in $f_d(x)$ maps to $\phi(x^i) := \prod_{j=1}^n y_{j,i_j}$, where $i =: \sum_{j=1}^n i_j \cdot k^{j-1}$, $0 \le i_j \le k-1$.
 - > By definition $P_{n,k} = \phi(f_d)$ is *kn*-variate *n*-degree multilinear polynomial.

 \Box Wlog, f_d is SOS-hard with $\varepsilon = (\log \log d / \log d)^{1/3}$.

- □ Convert this to a *kn*-variate *n*-degree multilinear polynomial $P_{n,k}$ where $k^n \ge d > (k-1)^n$, (*n* and *k* are both functions of *d* to be fixed later) and show that the family \in VNP, but \notin VP. The conversion is as follows:
 - ➤ Introduce new variables $y_{j,\ell}$ where $j \in [n]$ and $\ell \in [0, k 1]$.
 - ➤ Monomial x^i in $f_d(x)$ maps to $\phi(x^i) := \prod_{j=1}^n y_{j,i_j}$, where $i := \sum_{j=1}^n i_j \cdot k^{j-1}$, $0 \le i_j \le k-1$.

> By definition $P_{n,k} = \phi(f_d)$ is *kn*-variate *n*-degree multilinear polynomial.

 \square $P_{n,k}$ is very explicit and thus the family \in VNP.

□ We show that circuit-size($P_{n,k}$) = $(kn)^{\omega(1)}$ (implying the family \notin VP).

□ We show that circuit-size($P_{n,k}$) = $(kn)^{\omega(1)}$ (implying the family \notin VP).

□ Proof by contradiction. Suppose $P_{n,k}$ has a small-size circuit.

- □ We show that circuit-size($P_{n,k}$) = $(kn)^{\omega(1)}$ (implying the family \notin VP).
- \Box Proof by contradiction. Suppose $P_{n,k}$ has a small-size circuit.
- □ SOS Decomposition shows that $P_{n,k}(\mathbf{y}) = \sum_{i=1}^{s'} c_i \cdot Q_i(\mathbf{y})^2$, where $\deg(Q_i) \leq \deg(P_{n,k})/2 \leq n/2$.

- □ We show that circuit-size($P_{n,k}$) = $(kn)^{\omega(1)}$ (implying the family \notin VP).
- \Box Proof by contradiction. Suppose $P_{n,k}$ has a small-size circuit.
- □ SOS Decomposition shows that $P_{n,k}(\mathbf{y}) = \sum_{i=1}^{s'} c_i \cdot Q_i(\mathbf{y})^2$, where $\deg(Q_i) \leq \deg(P_{n,k})/2 \leq n/2$.
- \Box Apply ϕ both side to get $f_d = \phi(P_{n,k}) = \sum_{i=1}^{s'} c_i \cdot \phi(Q_i)^2$.

- □ We show that circuit-size($P_{n,k}$) = $(kn)^{\omega(1)}$ (implying the family \notin VP).
- \Box Proof by contradiction. Suppose $P_{n,k}$ has a small-size circuit.
- □ SOS Decomposition shows that $P_{n,k}(\mathbf{y}) = \sum_{i=1}^{s'} c_i \cdot Q_i(\mathbf{y})^2$, where $\deg(Q_i) \leq \deg(P_{n,k})/2 \leq n/2$.
- \Box Apply ϕ both side to get $f_d = \phi(P_{n,k}) = \sum_{i=1}^{s'} c_i \cdot \phi(Q_i)^2$.
- $\Box \phi$ cannot increase the sparsity. Thus, $|\phi(Q_i)|_0 \leq |Q_i|_0 \leq {\binom{kn+n/2}{n/2}}$.

Proof of Theorem 1 (continued)

- □ We show that circuit-size($P_{n,k}$) = $(kn)^{\omega(1)}$ (implying the family \notin VP).
- \Box Proof by contradiction. Suppose $P_{n,k}$ has a small-size circuit.
- □ SOS Decomposition shows that $P_{n,k}(\mathbf{y}) = \sum_{i=1}^{s'} c_i \cdot Q_i(\mathbf{y})^2$, where $\deg(Q_i) \leq \deg(P_{n,k})/2 \leq n/2$.
- \Box Apply ϕ both side to get $f_d = \phi(P_{n,k}) = \sum_{i=1}^{s'} c_i \cdot \phi(Q_i)^2$.
- $\Box \phi$ cannot increase the sparsity. Thus, $|\phi(Q_i)|_0 \leq |Q_i|_0 \leq {\binom{n+n/2}{n/2}}$.
- $\Box \text{ Hence, } S_{\mathbb{F}}(f_d) \leq s' \cdot \binom{kn+n/2}{n/2}.$

Proof of Theorem 1 (continued)

- □ We show that circuit-size($P_{n,k}$) = $(kn)^{\omega(1)}$ (implying the family \notin VP).
- \Box Proof by contradiction. Suppose $P_{n,k}$ has a small-size circuit.
- □ SOS Decomposition shows that $P_{n,k}(\mathbf{y}) = \sum_{i=1}^{s'} c_i \cdot Q_i(\mathbf{y})^2$, where $\deg(Q_i) \leq \deg(P_{n,k})/2 \leq n/2$.
- \Box Apply ϕ both side to get $f_d = \phi(P_{n,k}) = \sum_{i=1}^{s'} c_i \cdot \phi(Q_i)^2$.
- $\Box \phi$ cannot increase the sparsity. Thus, $|\phi(Q_i)|_0 \leq |Q_i|_0 \leq {\binom{n+n/2}{n/2}}$.
- $\Box \text{ Hence, } S_{\mathbb{F}}(f_d) \leq s' \cdot \binom{kn+n/2}{n/2}.$
- \Box Fix *k*, *n* appropriately and show:

$$s' \leq d^{o(\varepsilon)}$$
, and $\binom{kn+n/2}{n/2} \leq d^{1/2+\varepsilon/2}$

Proof of Theorem 1 (continued)

- □ We show that circuit-size($P_{n,k}$) = $(kn)^{\omega(1)}$ (implying the family \notin VP).
- \Box Proof by contradiction. Suppose $P_{n,k}$ has a small-size circuit.
- □ SOS Decomposition shows that $P_{n,k}(\mathbf{y}) = \sum_{i=1}^{s'} c_i \cdot Q_i(\mathbf{y})^2$, where $\deg(Q_i) \leq \deg(P_{n,k})/2 \leq n/2$.
- \Box Apply ϕ both side to get $f_d = \phi(P_{n,k}) = \sum_{i=1}^{s'} c_i \cdot \phi(Q_i)^2$.
- $\Box \phi$ cannot increase the sparsity. Thus, $|\phi(Q_i)|_0 \leq |Q_i|_0 \leq {\binom{n+n/2}{n/2}}$.
- $\Box \text{ Hence, } S_{\mathbb{F}}(f_d) \leq s' \cdot \binom{kn+n/2}{n/2}.$
- \Box Fix *k*, *n* appropriately and show:

$$s' \leq d^{o(\varepsilon)}$$
, and $\binom{kn+n/2}{n/2} \leq d^{1/2+\varepsilon/2}$

 $\Box \text{ Thus, } S_{\mathbb{F}}(f_d) \leq d^{o(\varepsilon) + 1/2 + \varepsilon/2} = o(d^{1/2 + \varepsilon}), \text{ a contradiction!}$

17

Sum-of-cubes (SOC) model and Blackbox-PIT

□ Can SOS-hardness give $PIT \in P$?

□ Can SOS-hardness give PIT \in P? Ans: Don't know. Currently the best known is QP (when ε is constant), using result from [KI04].

- □ Can SOS-hardness give PIT \in P? Ans: Don't know. Currently the best known is QP (when ε is constant), using result from [KI04].
- □ Can we *strengthen* the condition/measure to put $PIT \in P$?

- □ Can SOS-hardness give PIT \in P? Ans: Don't know. Currently the best known is QP (when ε is constant), using result from [KI04].
- □ Can we *strengthen* the condition/measure to put PIT \in P? Ans: Yes!

- □ Can SOS-hardness give PIT \in P? Ans: Don't know. Currently the best known is QP (when ε is constant), using result from [KI04].
- □ Can we *strengthen* the condition/measure to put PIT \in P? Ans: Yes!
- □ An *n*-variate polynomial $f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ over a field \mathbb{F} is computed as a *sum-of-cubes* (SOC) if

$$f(\mathbf{x}) = \sum_{i=1}^{s} c_i \cdot f_i(\mathbf{x})^3 , \qquad (3)$$

for some *top-fanin* s, where $f_i(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ and $c_i \in \mathbb{F}$.

- □ Can SOS-hardness give PIT \in P? Ans: Don't know. Currently the best known is QP (when ε is constant), using result from [KI04].
- □ Can we *strengthen* the condition/measure to put PIT \in P? Ans: Yes!
- □ An *n*-variate polynomial $f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ over a field \mathbb{F} is computed as a *sum-of-cubes* (SOC) if

$$f(\boldsymbol{x}) = \sum_{i=1}^{s} c_i \cdot f_i(\boldsymbol{x})^3, \qquad (3)$$

for some *top-fanin* s, where $f_i(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ and $c_i \in \mathbb{F}$.

> Size of *t* in Eqn. (3) is no. of **distinct** monomials in f_i 's i.e. $\left|\bigcup_{i=1}^{s} \operatorname{supp}(f_i)\right|$.

- □ Can SOS-hardness give PIT \in P? Ans: Don't know. Currently the best known is QP (when ε is constant), using result from [KI04].
- □ Can we *strengthen* the condition/measure to put PIT \in P? Ans: Yes!
- □ An *n*-variate polynomial $f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ over a field \mathbb{F} is computed as a *sum-of-cubes* (SOC) if

$$f(\boldsymbol{x}) = \sum_{i=1}^{s} c_i \cdot f_i(\boldsymbol{x})^3, \qquad (3)$$

for some *top-fanin* s, where $f_i(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ and $c_i \in \mathbb{F}$.

Size of *t* in Eqn. (3) is no. of **distinct** monomials in t_i 's i.e. $\left|\bigcup_{i=1}^{s} \operatorname{supp}(t_i)\right|$. Eg. $f(x) := x^3 + 6x^2 = (x+1)^3 - (x-1)^3 + x^3$. Size of *t* in this SOC representation is 2.

- □ Can SOS-hardness give PIT \in P? Ans: Don't know. Currently the best known is QP (when ε is constant), using result from [KI04].
- □ Can we *strengthen* the condition/measure to put PIT \in P? Ans: Yes!
- □ An *n*-variate polynomial $f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ over a field \mathbb{F} is computed as a *sum-of-cubes* (SOC) if

$$f(\boldsymbol{x}) = \sum_{i=1}^{s} c_i \cdot f_i(\boldsymbol{x})^3, \qquad (3)$$

for some *top-fanin* s, where $f_i(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ and $c_i \in \mathbb{F}$.

- Size of *t* in Eqn. (3) is no. of **distinct** monomials in t_i 's i.e. $\left|\bigcup_{i=1}^{s} \operatorname{supp}(t_i)\right|$. Eg. $f(x) := x^3 + 6x^2 = (x+1)^3 - (x-1)^3 + x^3$. Size of *t* in this SOC representation is 2.
- > Denote the *minimal size* by support-union $U_{\mathbb{F}}(f, s)$.

□ SOC is a *complete* model for char(\mathbb{F}) ≠ 2, 3 because for any *f*(**x**):

$$f = (f+2)^3/24 + (f-2)^3/24 - f^3/12 \,.$$

□ SOC is a *complete* model for char(\mathbb{F}) ≠ 2, 3 because for any *f*(**x**):

$$f = (f+2)^3/24 + (f-2)^3/24 - f^3/12 \; .$$

□ Trivially $U_{\mathbb{F}}(f, s) \le |f|_0 + 1$, for any $s \ge 3$. By counting argument, $U_{\mathbb{F}}(f, s) \ge |f|_0^{1/3}$.

□ SOC is a *complete* model for char(\mathbb{F}) ≠ 2, 3 because for any *f*(**x**):

$$f = (f+2)^3/24 + (f-2)^3/24 - f^3/12 .$$

□ Trivially $U_{\mathbb{F}}(f, s) \le |f|_0 + 1$, for any $s \ge 3$. By counting argument, $U_{\mathbb{F}}(f, s) \ge |f|_0^{1/3}$.

 $\Box \text{ If } |f|_0 \approx d \text{, then } \Omega(d^{1/3}) \leq U_{\mathbb{F}}(f,s) \leq O(d).$

□ SOC is a *complete* model for char(\mathbb{F}) ≠ 2, 3 because for any *f*(**x**):

$$f = (f+2)^3/24 + (f-2)^3/24 - f^3/12 \; .$$

□ Trivially $U_{\mathbb{F}}(f, s) \le |f|_0 + 1$, for any $s \ge 3$. By counting argument, $U_{\mathbb{F}}(f, s) \ge |f|_0^{1/3}$.

 $\label{eq:eq:started_linear} \Box \ \mbox{If } |f|_0 \approx d, \, \mbox{then } \Omega(d^{1/3}) \leq U_{\mathbb{F}}(f,s) \leq O(d).$

Definition (SOC-hardness). A poly(*d*)-time explicit univariate polynomial family $(f_d)_d$, where f_d is of degree–*d*, is *SOC-hard*, if there exists a positive constant $\varepsilon' < 1/2$ such that $U_{\mathbb{F}}(f_d, d^{\varepsilon'}) = \Omega(d)$.

□ SOC is a *complete* model for char(\mathbb{F}) ≠ 2, 3 because for any *f*(**x**):

$$f = (f+2)^3/24 + (f-2)^3/24 - f^3/12 \; .$$

□ Trivially $U_{\mathbb{F}}(f, s) \le |f|_0 + 1$, for any $s \ge 3$. By counting argument, $U_{\mathbb{F}}(f, s) \ge |f|_0^{1/3}$.

 $\Box \text{ If } |f|_0 \approx d \text{, then } \Omega(d^{1/3}) \leq U_{\mathbb{F}}(f,s) \leq O(d).$

Definition (SOC-hardness). A poly(*d*)-time explicit univariate polynomial family $(f_d)_d$, where f_d is of degree–*d*, is *SOC-hard*, if there exists a positive constant $\varepsilon' < 1/2$ such that $U_{\mathbb{F}}(f_d, d^{\varepsilon'}) = \Omega(d)$.

> Seems false over $\mathbb{F} = \mathbb{C}$, \mathbb{R} [dimension argument].

□ SOC is a *complete* model for char(\mathbb{F}) ≠ 2, 3 because for any *f*(**x**):

$$f = (f+2)^3/24 + (f-2)^3/24 - f^3/12.$$

□ Trivially $U_{\mathbb{F}}(f, s) \le |f|_0 + 1$, for any $s \ge 3$. By counting argument, $U_{\mathbb{F}}(f, s) \ge |f|_0^{1/3}$.

 $\Box \text{ If } |f|_0 \approx d \text{, then } \Omega(d^{1/3}) \leq U_{\mathbb{F}}(f,s) \leq O(d).$

Definition (SOC-hardness). A poly(*d*)-time explicit univariate polynomial family $(f_d)_d$, where f_d is of degree–*d*, is *SOC-hard*, if there exists a positive constant $\varepsilon' < 1/2$ such that $U_{\mathbb{F}}(f_d, d^{\varepsilon'}) = \Omega(d)$.

> Seems false over $\mathbb{F} = \mathbb{C}, \mathbb{R}$ [dimension argument]. $x^3 + y^3 = 1$ has no Q solution

> Instead fix $\mathbb{F} = \mathbb{Q}$, [*Natural* choice for PIT].

□ SOC is a *complete* model for char(\mathbb{F}) ≠ 2, 3 because for any *f*(**x**):

$$f = (f+2)^3/24 + (f-2)^3/24 - f^3/12 \; .$$

□ Trivially $U_{\mathbb{F}}(f, s) \le |f|_0 + 1$, for any $s \ge 3$. By counting argument, $U_{\mathbb{F}}(f, s) \ge |f|_0^{1/3}$.

 $\square \text{ If } |f|_0 \approx d \text{, then } \Omega(d^{1/3}) \leq U_{\mathbb{F}}(f,s) \leq O(d).$

Definition (SOC-hardness). A poly(*d*)-time explicit univariate polynomial family $(f_d)_d$, where f_d is of degree–*d*, is *SOC-hard*, if there exists a positive constant $\varepsilon' < 1/2$ such that $U_{\mathbb{F}}(f_d, d^{\varepsilon'}) = \Omega(d)$.

- > Seems false over $\mathbb{F} = \mathbb{C}, \mathbb{R}$ [dimension argument]. $x^3 + y^3 = 1$ has no Q solution
- > Instead fix $\mathbb{F} = \mathbb{Q}$, [*Natural* choice for PIT].
- > [Agrawal'20]: For $s = \Omega(d^{1/2})$, $U_{\mathbb{Q}}(f_d, s) = O(d^{1/2})$; for $s = \Omega(d^{2/3})$, $U_{\mathbb{Q}}(f_d, s) = \Theta(d^{1/3})$.

□ SOC is a *complete* model for char(\mathbb{F}) ≠ 2, 3 because for any *f*(**x**):

$$f = (f+2)^3/24 + (f-2)^3/24 - f^3/12 \; .$$

□ Trivially $U_{\mathbb{F}}(f, s) \le |f|_0 + 1$, for any $s \ge 3$. By counting argument, $U_{\mathbb{F}}(f, s) \ge |f|_0^{1/3}$.

 $\square \text{ If } |f|_0 \approx d \text{, then } \Omega(d^{1/3}) \leq U_{\mathbb{F}}(f,s) \leq O(d).$

Definition (SOC-hardness). A poly(*d*)-time explicit univariate polynomial family $(f_d)_d$, where f_d is of degree–*d*, is *SOC-hard*, if there exists a positive constant $\varepsilon' < 1/2$ such that $U_{\mathbb{F}}(f_d, d^{\varepsilon'}) = \Omega(d)$.

- > Seems false over $\mathbb{F} = \mathbb{C}, \mathbb{R}$ [dimension argument]. $x^3 + y^3 = 1$ has no Q solution
- > Instead fix $\mathbb{F} = \mathbb{Q}$, [*Natural* choice for PIT].
- ≻ [Agrawal'20]: For $s = \Omega(d^{1/2})$, $U_{\mathbb{Q}}(f_d, s) = O(d^{1/2})$; for $s = \Omega(d^{2/3})$, $U_{\mathbb{Q}}(f_d, s) = \Theta(d^{1/3})$.

> For $s < o(d^{1/2})$, we *conjecture* that *most* polynomials f_d are SOC-hard.

Theorem 2: SOC-hardness to PIT

If there is an SOC-hard polynomial family, then blackbox-PIT $\in P$.

If there is an SOC-hard polynomial family, then blackbox-PIT $\in P$.

If there is an SOC-hard polynomial family, then blackbox-PIT $\in P$.

Proof Idea. Assume f_d is SOC-hard for some ε' .

□ Convert it to k = O(1)-variate, ideg-n, poly (n^k) -time-explicit polynomial $P_{n,k}$, using inverse-Kronecker map on f_d i.e. $P_{n,k}(x, x^{n+1}, \dots, x^{(n+1)^{k-1}}) = f_d$.

If there is an SOC-hard polynomial family, then blackbox-PIT $\in P$.

- □ Convert it to k = O(1)-variate, ideg-n, poly (n^k) -time-explicit polynomial $P_{n,k}$, using inverse-Kronecker map on f_d i.e. $P_{n,k}(x, x^{n+1}, \dots, x^{(n+1)^{k-1}}) = f_d$.
- □ Prove that $(P_{n,k})_n$ is a constant-variate circuit-*hard* family i.e. size $(P_{n,k}) = n^{\Omega(1)}$. Then, use [Guo-Kumar-Saptharishi-Solomon'19] directly to conclude that PIT $\in \mathbb{P}$.

If there is an SOC-hard polynomial family, then blackbox-PIT $\in P$.

- □ Convert it to k = O(1)-variate, ideg-n, poly (n^k) -time-explicit polynomial $P_{n,k}$, using inverse-Kronecker map on f_d i.e. $P_{n,k}(x, x^{n+1}, \dots, x^{(n+1)^{k-1}}) = f_d$.
- □ Prove that $(P_{n,k})_n$ is a constant-variate circuit-*hard* family i.e. size $(P_{n,k}) = n^{\Omega(1)}$. Then, use [Guo-Kumar-Saptharishi-Solomon'19] directly to conclude that PIT $\in \mathbb{P}$.
- □ Proof by contradiction and use *useful* **SOC Decomposition**: Any polynomial *f* of degree *d* of circuit-size *s* can be written as $f = \sum_{i=1}^{\text{poly}(s,d)} c_i Q_i^3$, where $\deg(Q_i) \le 4d/11$. [1/3 < 4/11 < 1/e]

If there is an SOC-hard polynomial family, then blackbox-PIT $\in P$.

- □ Convert it to k = O(1)-variate, ideg-n, poly (n^k) -time-explicit polynomial $P_{n,k}$, using inverse-Kronecker map on f_d i.e. $P_{n,k}(x, x^{n+1}, \dots, x^{(n+1)^{k-1}}) = f_d$.
- □ Prove that $(P_{n,k})_n$ is a constant-variate circuit-*hard* family i.e. size $(P_{n,k}) = n^{\Omega(1)}$. Then, use [Guo-Kumar-Saptharishi-Solomon'19] directly to conclude that PIT $\in \mathbb{P}$.
- □ Proof by contradiction and use *useful* **SOC Decomposition**: Any polynomial *f* of degree *d* of circuit-size *s* can be written as $f = \sum_{i=1}^{\text{poly}(s,d)} c_i Q_i^3$, where $\deg(Q_i) \le 4d/11$. [1/3 < 4/11 < 1/e]
- □ A binomial counting argument shows that small size of $P_{n,k}$ implies $U_{\mathbb{F}}(f_d, d^{\varepsilon'}) = o(d)$, a contradiction!

□ Does the existence of a SOS-hard family solve PIT completely? The current proof technique *fails* to reduce from cubes to squares.

- □ Does the existence of a SOS-hard family solve PIT completely? The current proof technique *fails* to reduce from cubes to squares.
- □ Prove the existence of a SOS-hard family for the *sum of constantly* many squares.

- □ Does the existence of a SOS-hard family solve PIT completely? The current proof technique *fails* to reduce from cubes to squares.
- □ Prove the existence of a SOS-hard family for the *sum of constantly* many squares.
- □ Prove the existence of a SOC-hard family for a 'generic' polynomial f with rational coefficients (\mathbb{Q}).

- □ Does the existence of a SOS-hard family solve PIT completely? The current proof technique *fails* to reduce from cubes to squares.
- □ Prove the existence of a SOS-hard family for the *sum of constantly* many squares.
- □ Prove the existence of a SOC-hard family for a 'generic' polynomial f with rational coefficients (\mathbb{Q}).
- \Box Can we optimize ε in the SOS-hardness condition and prove it for any $\omega(\sqrt{d})$?

- □ Does the existence of a SOS-hard family solve PIT completely? The current proof technique *fails* to reduce from cubes to squares.
- □ Prove the existence of a SOS-hard family for the *sum of constantly* many squares.
- □ Prove the existence of a SOC-hard family for a 'generic' polynomial *f* with rational coefficients (\mathbb{Q}).
- □ Can we optimize ε in the SOS-hardness condition and prove it for *any* $\omega(\sqrt{d})$? For eg: does proving an SOS lower-bound of $\sqrt{d} \cdot \text{poly}(\log d)$, suffice to show VP \neq VNP?

- □ Does the existence of a SOS-hard family solve PIT completely? The current proof technique *fails* to reduce from cubes to squares.
- □ Prove the existence of a SOS-hard family for the *sum of constantly* many squares.
- \Box Prove the existence of a SOC-hard family for a 'generic' polynomial *t* with rational coefficients (\mathbb{Q}).
- □ Can we optimize ε in the SOS-hardness condition and prove it for any $\omega(\sqrt{d})$? For eg: does proving an SOS lower-bound of $\sqrt{d} \cdot \text{poly}(\log d)$, suffice to show VP \neq VNP?

