
A Largish Sum-of-Squares Implies Circuit Hardness and
Derandomization

Pranjal Dutta (CMI & IIT Kanpur) Nitin Saxena (IIT Kanpur)
Thomas Thierauf (Aalen University)

22nd September, 2020

tMeet @CSE, IIT Madras (Online)

Table of contents

1. Introduction: Sum-of-squares (SOS)

2. Basic Algebraic Complexity

3. SOS-hardness and VP vs. VNP

4. Sum-of-cubes (SOC) model and Blackbox-PIT

5. Conclusion

1

Introduction: Sum-of-squares (SOS)

Sum-of-squares (SOS) Representation

An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a sum-of-squares
(SOS) if

f (x) =
s∑

i=1
ci · fi (x)2 , (1)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

q Size of f in Eqn. (1) is no. of monomials =
∑

i∈[s] |fi |0. |f |0 denotes sparsity of f .

â Eg. f (x) := 2x + 2 = (x + 3/2)2 − (x + 1/2)2. Size of f in this SOS
representation is 2 + 2 = 4.

q Denote the minimal size by support-sum SF (f).

Note. SOS is a complete model if char(F) ≠ 2, as f =
(

f+1
2

)2
−

(
f−1
2

)2
.

Trivially, SF (f) ≤ 2 · (|f |0 + 1) , for any f ∈ F[x].

2

Sum-of-squares (SOS) Representation

An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a sum-of-squares
(SOS) if

f (x) =
s∑

i=1
ci · fi (x)2 , (1)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

q Size of f in Eqn. (1) is no. of monomials =
∑

i∈[s] |fi |0. |f |0 denotes sparsity of f .

â Eg. f (x) := 2x + 2 = (x + 3/2)2 − (x + 1/2)2. Size of f in this SOS
representation is 2 + 2 = 4.

q Denote the minimal size by support-sum SF (f).

Note. SOS is a complete model if char(F) ≠ 2, as f =
(

f+1
2

)2
−

(
f−1
2

)2
.

Trivially, SF (f) ≤ 2 · (|f |0 + 1) , for any f ∈ F[x].

2

Sum-of-squares (SOS) Representation

An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a sum-of-squares
(SOS) if

f (x) =
s∑

i=1
ci · fi (x)2 , (1)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

q Size of f in Eqn. (1) is no. of monomials =
∑

i∈[s] |fi |0. |f |0 denotes sparsity of f .

â Eg. f (x) := 2x + 2 = (x + 3/2)2 − (x + 1/2)2. Size of f in this SOS
representation is 2 + 2 = 4.

q Denote the minimal size by support-sum SF (f).

Note. SOS is a complete model if char(F) ≠ 2, as f =
(

f+1
2

)2
−

(
f−1
2

)2
.

Trivially, SF (f) ≤ 2 · (|f |0 + 1) , for any f ∈ F[x].

2

Sum-of-squares (SOS) Representation

An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a sum-of-squares
(SOS) if

f (x) =
s∑

i=1
ci · fi (x)2 , (1)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

q Size of f in Eqn. (1) is no. of monomials =
∑

i∈[s] |fi |0. |f |0 denotes sparsity of f .

â Eg. f (x) := 2x + 2 = (x + 3/2)2 − (x + 1/2)2. Size of f in this SOS
representation is 2 + 2 = 4.

q Denote the minimal size by support-sum SF (f).

Note. SOS is a complete model if char(F) ≠ 2, as f =
(

f+1
2

)2
−

(
f−1
2

)2
.

Trivially, SF (f) ≤ 2 · (|f |0 + 1) , for any f ∈ F[x].

2

Sum-of-squares (SOS) Representation

An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a sum-of-squares
(SOS) if

f (x) =
s∑

i=1
ci · fi (x)2 , (1)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

q Size of f in Eqn. (1) is no. of monomials =
∑

i∈[s] |fi |0. |f |0 denotes sparsity of f .

â Eg. f (x) := 2x + 2 = (x + 3/2)2 − (x + 1/2)2. Size of f in this SOS
representation is 2 + 2 = 4.

q Denote the minimal size by support-sum SF (f).

Note. SOS is a complete model if char(F) ≠ 2, as f =
(

f+1
2

)2
−

(
f−1
2

)2
.

Trivially, SF (f) ≤ 2 · (|f |0 + 1) , for any f ∈ F[x].

2

Sum-of-squares (SOS) Representation

An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a sum-of-squares
(SOS) if

f (x) =
s∑

i=1
ci · fi (x)2 , (1)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

q Size of f in Eqn. (1) is no. of monomials =
∑

i∈[s] |fi |0. |f |0 denotes sparsity of f .

â Eg. f (x) := 2x + 2 = (x + 3/2)2 − (x + 1/2)2. Size of f in this SOS
representation is 2 + 2 = 4.

q Denote the minimal size by support-sum SF (f).

Note. SOS is a complete model if char(F) ≠ 2, as f =
(

f+1
2

)2
−

(
f−1
2

)2
.

Trivially, SF (f) ≤ 2 · (|f |0 + 1) , for any f ∈ F[x].

2

Sum-of-squares (SOS) Representation

An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a sum-of-squares
(SOS) if

f (x) =
s∑

i=1
ci · fi (x)2 , (1)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

q Size of f in Eqn. (1) is no. of monomials =
∑

i∈[s] |fi |0. |f |0 denotes sparsity of f .

â Eg. f (x) := 2x + 2 = (x + 3/2)2 − (x + 1/2)2. Size of f in this SOS
representation is 2 + 2 = 4.

q Denote the minimal size by support-sum SF (f).

Note. SOS is a complete model if char(F) ≠ 2, as f =
(

f+1
2

)2
−

(
f−1
2

)2
.

Trivially, SF (f) ≤ 2 · (|f |0 + 1) , for any f ∈ F[x].

2

Upper bound and lower bound: What to expect

q For simplicity, consider univariate SOS representations (n = 1).

q For any char(F) ≠ 2 field F:

|f | 1/20 ≤ SF (f) ≤ 2 |f |0 + 2 . (2)

Lower bound by counting monomials:
â Suppose f =

∑s
i=1 ci · f2

i . Assume, |fi |0 = ti .

â Note, |f2
i |0 ≤ t2i , for each i ∈ [s].

â
∑s

i=1 t2i ≥ |f |0 =⇒ ∑s
i=1 ti ≥ |f |1/20 .

q If |f |0 ≈ d, then Ω(d1/2) ≤ SF (f) ≤ O(d).

q Does there exist d-degree polynomial f (x) such that SF (f) ≥ Ω(d)?
â True for “most" polynomials f , by dimension-argument.

Think as quadratic-system solving.

â Assume, F = C.

3

Upper bound and lower bound: What to expect

q For simplicity, consider univariate SOS representations (n = 1).

q For any char(F) ≠ 2 field F:

|f | 1/20 ≤ SF (f) ≤ 2 |f |0 + 2 . (2)

Lower bound by counting monomials:

â Suppose f =
∑s

i=1 ci · f2
i . Assume, |fi |0 = ti .

â Note, |f2
i |0 ≤ t2i , for each i ∈ [s].

â
∑s

i=1 t2i ≥ |f |0 =⇒ ∑s
i=1 ti ≥ |f |1/20 .

q If |f |0 ≈ d, then Ω(d1/2) ≤ SF (f) ≤ O(d).

q Does there exist d-degree polynomial f (x) such that SF (f) ≥ Ω(d)?
â True for “most" polynomials f , by dimension-argument.

Think as quadratic-system solving.

â Assume, F = C.

3

Upper bound and lower bound: What to expect

q For simplicity, consider univariate SOS representations (n = 1).

q For any char(F) ≠ 2 field F:

|f | 1/20 ≤ SF (f) ≤ 2 |f |0 + 2 . (2)

Lower bound by counting monomials:
â Suppose f =

∑s
i=1 ci · f2

i . Assume, |fi |0 = ti .

â Note, |f2
i |0 ≤ t2i , for each i ∈ [s].

â
∑s

i=1 t2i ≥ |f |0 =⇒ ∑s
i=1 ti ≥ |f |1/20 .

q If |f |0 ≈ d, then Ω(d1/2) ≤ SF (f) ≤ O(d).

q Does there exist d-degree polynomial f (x) such that SF (f) ≥ Ω(d)?
â True for “most" polynomials f , by dimension-argument.

Think as quadratic-system solving.

â Assume, F = C.

3

Upper bound and lower bound: What to expect

q For simplicity, consider univariate SOS representations (n = 1).

q For any char(F) ≠ 2 field F:

|f | 1/20 ≤ SF (f) ≤ 2 |f |0 + 2 . (2)

Lower bound by counting monomials:
â Suppose f =

∑s
i=1 ci · f2

i . Assume, |fi |0 = ti .

â Note, |f2
i |0 ≤ t2i , for each i ∈ [s].

â
∑s

i=1 t2i ≥ |f |0 =⇒ ∑s
i=1 ti ≥ |f |1/20 .

q If |f |0 ≈ d, then Ω(d1/2) ≤ SF (f) ≤ O(d).

q Does there exist d-degree polynomial f (x) such that SF (f) ≥ Ω(d)?
â True for “most" polynomials f , by dimension-argument.

Think as quadratic-system solving.

â Assume, F = C.

3

Upper bound and lower bound: What to expect

q For simplicity, consider univariate SOS representations (n = 1).

q For any char(F) ≠ 2 field F:

|f | 1/20 ≤ SF (f) ≤ 2 |f |0 + 2 . (2)

Lower bound by counting monomials:
â Suppose f =

∑s
i=1 ci · f2

i . Assume, |fi |0 = ti .

â Note, |f2
i |0 ≤ t2i , for each i ∈ [s].

â
∑s

i=1 t2i ≥ |f |0 =⇒ ∑s
i=1 ti ≥ |f |1/20 .

q If |f |0 ≈ d, then Ω(d1/2) ≤ SF (f) ≤ O(d).

q Does there exist d-degree polynomial f (x) such that SF (f) ≥ Ω(d)?

â True for “most" polynomials f , by dimension-argument.

Think as quadratic-system solving.

â Assume, F = C.

3

Upper bound and lower bound: What to expect

q For simplicity, consider univariate SOS representations (n = 1).

q For any char(F) ≠ 2 field F:

|f | 1/20 ≤ SF (f) ≤ 2 |f |0 + 2 . (2)

Lower bound by counting monomials:
â Suppose f =

∑s
i=1 ci · f2

i . Assume, |fi |0 = ti .

â Note, |f2
i |0 ≤ t2i , for each i ∈ [s].

â
∑s

i=1 t2i ≥ |f |0 =⇒ ∑s
i=1 ti ≥ |f |1/20 .

q If |f |0 ≈ d, then Ω(d1/2) ≤ SF (f) ≤ O(d).

q Does there exist d-degree polynomial f (x) such that SF (f) ≥ Ω(d)?
â True for “most" polynomials f , by dimension-argument.

Think as quadratic-system solving.

â Assume, F = C.

3

Upper bound and lower bound: What to expect

q For simplicity, consider univariate SOS representations (n = 1).

q For any char(F) ≠ 2 field F:

|f | 1/20 ≤ SF (f) ≤ 2 |f |0 + 2 . (2)

Lower bound by counting monomials:
â Suppose f =

∑s
i=1 ci · f2

i . Assume, |fi |0 = ti .

â Note, |f2
i |0 ≤ t2i , for each i ∈ [s].

â
∑s

i=1 t2i ≥ |f |0 =⇒ ∑s
i=1 ti ≥ |f |1/20 .

q If |f |0 ≈ d, then Ω(d1/2) ≤ SF (f) ≤ O(d).

q Does there exist d-degree polynomial f (x) such that SF (f) ≥ Ω(d)?
â True for “most" polynomials f , by dimension-argument.

Think as quadratic-system solving.

â Assume, F = C.

3

Overall Goal

q Open Problem. Find an explicit univariate polynomial f (x) ∈ C[x] of degree d
such that S(f) ≥ l(d1/2).

â S(f) ≥ Ω (d/log d), where f (x) = ∑d
i=0 22i

x i , using [Strassen’74]. But, it
is non-explicit.

â To be of any help in complexity theory, polynomials need to be explicit.
We would work with several definitions of explicitness.

â Eg. (x + 1)d is ‘explicit’.

q Overall Goal (informally): Show that solving Open Problem implies
VP ≠ VNP (and PIT ∈ SUBEXP).

4

Overall Goal

q Open Problem. Find an explicit univariate polynomial f (x) ∈ C[x] of degree d
such that S(f) ≥ l(d1/2).

â S(f) ≥ Ω (d/log d), where f (x) = ∑d
i=0 22i

x i , using [Strassen’74]. But, it
is non-explicit.

â To be of any help in complexity theory, polynomials need to be explicit.
We would work with several definitions of explicitness.

â Eg. (x + 1)d is ‘explicit’.

q Overall Goal (informally): Show that solving Open Problem implies
VP ≠ VNP (and PIT ∈ SUBEXP).

4

Overall Goal

q Open Problem. Find an explicit univariate polynomial f (x) ∈ C[x] of degree d
such that S(f) ≥ l(d1/2).

â S(f) ≥ Ω (d/log d), where f (x) = ∑d
i=0 22i

x i , using [Strassen’74].

But, it
is non-explicit.

â To be of any help in complexity theory, polynomials need to be explicit.
We would work with several definitions of explicitness.

â Eg. (x + 1)d is ‘explicit’.

q Overall Goal (informally): Show that solving Open Problem implies
VP ≠ VNP (and PIT ∈ SUBEXP).

4

Overall Goal

q Open Problem. Find an explicit univariate polynomial f (x) ∈ C[x] of degree d
such that S(f) ≥ l(d1/2).

â S(f) ≥ Ω (d/log d), where f (x) = ∑d
i=0 22i

x i , using [Strassen’74]. But, it
is non-explicit.

â To be of any help in complexity theory, polynomials need to be explicit.
We would work with several definitions of explicitness.

â Eg. (x + 1)d is ‘explicit’.

q Overall Goal (informally): Show that solving Open Problem implies
VP ≠ VNP (and PIT ∈ SUBEXP).

4

Overall Goal

q Open Problem. Find an explicit univariate polynomial f (x) ∈ C[x] of degree d
such that S(f) ≥ l(d1/2).

â S(f) ≥ Ω (d/log d), where f (x) = ∑d
i=0 22i

x i , using [Strassen’74]. But, it
is non-explicit.

â To be of any help in complexity theory, polynomials need to be explicit.
We would work with several definitions of explicitness.

â Eg. (x + 1)d is ‘explicit’.

q Overall Goal (informally): Show that solving Open Problem implies
VP ≠ VNP (and PIT ∈ SUBEXP).

4

Overall Goal

q Open Problem. Find an explicit univariate polynomial f (x) ∈ C[x] of degree d
such that S(f) ≥ l(d1/2).

â S(f) ≥ Ω (d/log d), where f (x) = ∑d
i=0 22i

x i , using [Strassen’74]. But, it
is non-explicit.

â To be of any help in complexity theory, polynomials need to be explicit.
We would work with several definitions of explicitness.

â Eg. (x + 1)d is ‘explicit’.

q Overall Goal (informally): Show that solving Open Problem implies
VP ≠ VNP (and PIT ∈ SUBEXP).

4

SOS Representation – History

q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.

â Inspired generations of mathematicians [Ramanujan’17].

â Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.

q (1900) Hilbert’s 17th problem: Asks whether a multivariate polynomial, that
takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

â Note: ci = 1.

q (1990s) SOS constraints appear in convex optimization.

â Lasserre hierarchy of relaxations in SDP (based on deg).

â Several applications in approximation, optimization and control theory
[Reznick’78, Laurent’09, Barak-Moitra’16].

5

SOS Representation – History

q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.

â Inspired generations of mathematicians [Ramanujan’17].

â Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.

q (1900) Hilbert’s 17th problem: Asks whether a multivariate polynomial, that
takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

â Note: ci = 1.

q (1990s) SOS constraints appear in convex optimization.

â Lasserre hierarchy of relaxations in SDP (based on deg).

â Several applications in approximation, optimization and control theory
[Reznick’78, Laurent’09, Barak-Moitra’16].

5

SOS Representation – History

q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.

â Inspired generations of mathematicians [Ramanujan’17].

â Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.

q (1900) Hilbert’s 17th problem: Asks whether a multivariate polynomial, that
takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

â Note: ci = 1.

q (1990s) SOS constraints appear in convex optimization.

â Lasserre hierarchy of relaxations in SDP (based on deg).

â Several applications in approximation, optimization and control theory
[Reznick’78, Laurent’09, Barak-Moitra’16].

5

SOS Representation – History

q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.

â Inspired generations of mathematicians [Ramanujan’17].

â Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.

q (1900) Hilbert’s 17th problem: Asks whether a multivariate polynomial, that
takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

â Note: ci = 1.

q (1990s) SOS constraints appear in convex optimization.

â Lasserre hierarchy of relaxations in SDP (based on deg).

â Several applications in approximation, optimization and control theory
[Reznick’78, Laurent’09, Barak-Moitra’16].

5

SOS Representation – History

q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.

â Inspired generations of mathematicians [Ramanujan’17].

â Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.

q (1900) Hilbert’s 17th problem: Asks whether a multivariate polynomial, that
takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

â Note: ci = 1.

q (1990s) SOS constraints appear in convex optimization.

â Lasserre hierarchy of relaxations in SDP (based on deg).

â Several applications in approximation, optimization and control theory
[Reznick’78, Laurent’09, Barak-Moitra’16].

5

SOS Representation – History

q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.

â Inspired generations of mathematicians [Ramanujan’17].

â Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.

q (1900) Hilbert’s 17th problem: Asks whether a multivariate polynomial, that
takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

â Note: ci = 1.

q (1990s) SOS constraints appear in convex optimization.

â Lasserre hierarchy of relaxations in SDP (based on deg).

â Several applications in approximation, optimization and control theory
[Reznick’78, Laurent’09, Barak-Moitra’16].

5

SOS Representation – History

q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.

â Inspired generations of mathematicians [Ramanujan’17].

â Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.

q (1900) Hilbert’s 17th problem: Asks whether a multivariate polynomial, that
takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

â Note: ci = 1.

q (1990s) SOS constraints appear in convex optimization.

â Lasserre hierarchy of relaxations in SDP (based on deg).

â Several applications in approximation, optimization and control theory
[Reznick’78, Laurent’09, Barak-Moitra’16].

5

SOS Representation – History

q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.

â Inspired generations of mathematicians [Ramanujan’17].

â Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.

q (1900) Hilbert’s 17th problem: Asks whether a multivariate polynomial, that
takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

â Note: ci = 1.

q (1990s) SOS constraints appear in convex optimization.

â Lasserre hierarchy of relaxations in SDP (based on deg).

â Several applications in approximation, optimization and control theory
[Reznick’78, Laurent’09, Barak-Moitra’16].

5

SOS Representation – History

q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.

â Inspired generations of mathematicians [Ramanujan’17].

â Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.

q (1900) Hilbert’s 17th problem: Asks whether a multivariate polynomial, that
takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

â Note: ci = 1.

q (1990s) SOS constraints appear in convex optimization.

â Lasserre hierarchy of relaxations in SDP (based on deg).

â Several applications in approximation, optimization and control theory
[Reznick’78, Laurent’09, Barak-Moitra’16].

5

SOS Representation – History

q (1770) Lagrange’s 4-squares Theorem: Integer as sum of 4-squares.

â Inspired generations of mathematicians [Ramanujan’17].

â Pythagorean triples, Fermat’s 2-squares, Legendre’s 3-squares.

q (1900) Hilbert’s 17th problem: Asks whether a multivariate polynomial, that
takes only non-negative values over the reals, can be represented as an SOS of
rational functions?

â Note: ci = 1.

q (1990s) SOS constraints appear in convex optimization.

â Lasserre hierarchy of relaxations in SDP (based on deg).

â Several applications in approximation, optimization and control theory
[Reznick’78, Laurent’09, Barak-Moitra’16].

5

Basic Algebraic Complexity

Algebraic Circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

f (x)

6

Algebraic Circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

f (x)

6

Algebraic Circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

f (x)

Size = number of nodes + edges

6

Algebraic Circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

f (x)

Depth

6

VP vs. VNP

q Valiant’s Hypothesis [Valiant’79]: Symbolic permn requires nl (1) -size circuit.

An equivalent statement: Prove VP ≠ VNP .

q VP : A family (fn)n ∈ VP (over F) if fn is a poly(n)-variate polynomial, of degree
poly(n) over F, computed by poly(n)-size circuit.

q VNP : A family (fn)n ∈ VNP (over F) if ∃(gn)n ∈ VP & t (n) = poly(n):

fn (x) =
∑

w∈{0,1}t (n)
gn (x,w) .

7

VP vs. VNP

q Valiant’s Hypothesis [Valiant’79]: Symbolic permn requires nl (1) -size circuit.
An equivalent statement: Prove VP ≠ VNP .

q VP : A family (fn)n ∈ VP (over F) if fn is a poly(n)-variate polynomial, of degree
poly(n) over F, computed by poly(n)-size circuit.

q VNP : A family (fn)n ∈ VNP (over F) if ∃(gn)n ∈ VP & t (n) = poly(n):

fn (x) =
∑

w∈{0,1}t (n)
gn (x,w) .

7

VP vs. VNP

q Valiant’s Hypothesis [Valiant’79]: Symbolic permn requires nl (1) -size circuit.
An equivalent statement: Prove VP ≠ VNP .

q VP : A family (fn)n ∈ VP (over F) if fn is a poly(n)-variate polynomial, of degree
poly(n) over F, computed by poly(n)-size circuit.

q VNP : A family (fn)n ∈ VNP (over F) if ∃(gn)n ∈ VP & t (n) = poly(n):

fn (x) =
∑

w∈{0,1}t (n)
gn (x,w) .

7

VP vs. VNP

q Valiant’s Hypothesis [Valiant’79]: Symbolic permn requires nl (1) -size circuit.
An equivalent statement: Prove VP ≠ VNP .

q VP : A family (fn)n ∈ VP (over F) if fn is a poly(n)-variate polynomial, of degree
poly(n) over F, computed by poly(n)-size circuit.

q VNP : A family (fn)n ∈ VNP (over F) if ∃(gn)n ∈ VP & t (n) = poly(n):

fn (x) =
∑

w∈{0,1}t (n)
gn (x,w) .

7

VP vs. VNP

q Valiant’s Hypothesis [Valiant’79]: Symbolic permn requires nl (1) -size circuit.
An equivalent statement: Prove VP ≠ VNP .

q VP : A family (fn)n ∈ VP (over F) if fn is a poly(n)-variate polynomial, of degree
poly(n) over F, computed by poly(n)-size circuit.

q VNP : A family (fn)n ∈ VNP (over F) if ∃(gn)n ∈ VP & t (n) = poly(n):

fn (x) =
∑

w∈{0,1}t (n)
gn (x,w) .

7

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C ≡ 0
(deterministically).

â Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F is finite, then

Proba∈Sn [P(a) = 0] ≤ d/|S | .

â The above lemma puts PIT ∈ RP.

Hardness-to-randomness (Kabanets-Impagliazzo’04)
VP ≠ VNP =⇒ PIT ∈ SUBEXP.

â VNP is exponentially harder than VP =⇒ PIT ∈ QP.

â Efficient PIT
?
=⇒ VP ≠ VNP. Explicitness is important.

8

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C ≡ 0
(deterministically).

â Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F is finite, then

Proba∈Sn [P(a) = 0] ≤ d/|S | .

â The above lemma puts PIT ∈ RP.

Hardness-to-randomness (Kabanets-Impagliazzo’04)
VP ≠ VNP =⇒ PIT ∈ SUBEXP.

â VNP is exponentially harder than VP =⇒ PIT ∈ QP.

â Efficient PIT
?
=⇒ VP ≠ VNP. Explicitness is important.

8

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C ≡ 0
(deterministically).

â Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F is finite, then

Proba∈Sn [P(a) = 0] ≤ d/|S | .

â The above lemma puts PIT ∈ RP.

Hardness-to-randomness (Kabanets-Impagliazzo’04)
VP ≠ VNP =⇒ PIT ∈ SUBEXP.

â VNP is exponentially harder than VP =⇒ PIT ∈ QP.

â Efficient PIT
?
=⇒ VP ≠ VNP. Explicitness is important.

8

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C ≡ 0
(deterministically).

â Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F is finite, then

Proba∈Sn [P(a) = 0] ≤ d/|S | .

â The above lemma puts PIT ∈ RP.

Hardness-to-randomness (Kabanets-Impagliazzo’04)
VP ≠ VNP =⇒ PIT ∈ SUBEXP.

â VNP is exponentially harder than VP =⇒ PIT ∈ QP.

â Efficient PIT
?
=⇒ VP ≠ VNP. Explicitness is important.

8

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C ≡ 0
(deterministically).

â Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F is finite, then

Proba∈Sn [P(a) = 0] ≤ d/|S | .

â The above lemma puts PIT ∈ RP.

Hardness-to-randomness (Kabanets-Impagliazzo’04)
VP ≠ VNP =⇒ PIT ∈ SUBEXP.

â VNP is exponentially harder than VP =⇒ PIT ∈ QP.

â Efficient PIT
?
=⇒ VP ≠ VNP. Explicitness is important.

8

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C ≡ 0
(deterministically).

â Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F is finite, then

Proba∈Sn [P(a) = 0] ≤ d/|S | .

â The above lemma puts PIT ∈ RP.

Hardness-to-randomness (Kabanets-Impagliazzo’04)
VP ≠ VNP =⇒ PIT ∈ SUBEXP.

â VNP is exponentially harder than VP =⇒ PIT ∈ QP.

â Efficient PIT
?
=⇒ VP ≠ VNP. Explicitness is important.

8

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C ≡ 0
(deterministically).

â Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F is finite, then

Proba∈Sn [P(a) = 0] ≤ d/|S | .

â The above lemma puts PIT ∈ RP.

Hardness-to-randomness (Kabanets-Impagliazzo’04)
VP ≠ VNP =⇒ PIT ∈ SUBEXP.

â VNP is exponentially harder than VP =⇒ PIT ∈ QP.

â Efficient PIT
?
=⇒ VP ≠ VNP.

Explicitness is important.

8

Polynomial Identity Testing

Polynomial Identity Testing (PIT): Given a circuit C, test whether C ≡ 0
(deterministically).

â Blackbox-PIT asks for an algorithm to test the zeroness of a given algebraic
circuit via mere query access.

Polynomial Identity Lemma (Ore, Demillo-Lipton, Schwartz, Zippel)
If P(x) is a nonzero polynomial of degree d, and S ⊆ F is finite, then

Proba∈Sn [P(a) = 0] ≤ d/|S | .

â The above lemma puts PIT ∈ RP.

Hardness-to-randomness (Kabanets-Impagliazzo’04)
VP ≠ VNP =⇒ PIT ∈ SUBEXP.

â VNP is exponentially harder than VP =⇒ PIT ∈ QP.

â Efficient PIT
?
=⇒ VP ≠ VNP. Explicitness is important.

8

Explicitness

Definition (Explicit Functions). The family (fd (x))d , where fd is univariate
degree-d polynomial, is explicit, if its coefficient-function coefxi (fd) is easy:

q Each coefficient can be at most poly(d)-bits long, and

q the coefficient-function gets input (j, i, d) and outputs the j-th bit of the
coefficient of x i in fd in

â poly(log d)-time.

â Or, . . . in#P/poly.

â Or, . . . in CH.

Requires GRH to separate VP and VNP.

9

Explicitness

Definition (Explicit Functions). The family (fd (x))d , where fd is univariate
degree-d polynomial, is explicit, if its coefficient-function coefxi (fd) is easy:

q Each coefficient can be at most poly(d)-bits long, and

q the coefficient-function gets input (j, i, d) and outputs the j-th bit of the
coefficient of x i in fd in

â poly(log d)-time.

â Or, . . . in#P/poly.

â Or, . . . in CH.

Requires GRH to separate VP and VNP.

9

Explicitness

Definition (Explicit Functions). The family (fd (x))d , where fd is univariate
degree-d polynomial, is explicit, if its coefficient-function coefxi (fd) is easy:

q Each coefficient can be at most poly(d)-bits long, and

q the coefficient-function gets input (j, i, d) and outputs the j-th bit of the
coefficient of x i in fd in

â poly(log d)-time.

â Or, . . . in#P/poly.

â Or, . . . in CH.

Requires GRH to separate VP and VNP.

9

Explicitness

Definition (Explicit Functions). The family (fd (x))d , where fd is univariate
degree-d polynomial, is explicit, if its coefficient-function coefxi (fd) is easy:

q Each coefficient can be at most poly(d)-bits long, and

q the coefficient-function gets input (j, i, d) and outputs the j-th bit of the
coefficient of x i in fd in

â poly(log d)-time.

â Or, . . . in#P/poly.

â Or, . . . in CH.

Requires GRH to separate VP and VNP.

9

Explicitness

Definition (Explicit Functions). The family (fd (x))d , where fd is univariate
degree-d polynomial, is explicit, if its coefficient-function coefxi (fd) is easy:

q Each coefficient can be at most poly(d)-bits long, and

q the coefficient-function gets input (j, i, d) and outputs the j-th bit of the
coefficient of x i in fd in

â poly(log d)-time.

â Or, . . . in#P/poly.

â Or, . . . in CH.

Requires GRH to separate VP and VNP.

9

Explicitness

Definition (Explicit Functions). The family (fd (x))d , where fd is univariate
degree-d polynomial, is explicit, if its coefficient-function coefxi (fd) is easy:

q Each coefficient can be at most poly(d)-bits long, and

q the coefficient-function gets input (j, i, d) and outputs the j-th bit of the
coefficient of x i in fd in

â poly(log d)-time.

â Or, . . . in#P/poly.

â Or, . . . in CH.

Requires GRH to separate VP and VNP.

9

Explicitness

Definition (Explicit Functions). The family (fd (x))d , where fd is univariate
degree-d polynomial, is explicit, if its coefficient-function coefxi (fd) is easy:

q Each coefficient can be at most poly(d)-bits long, and

q the coefficient-function gets input (j, i, d) and outputs the j-th bit of the
coefficient of x i in fd in

â poly(log d)-time.

â Or, . . . in#P/poly.

â Or, . . . in CH.

Requires GRH to separate VP and VNP.

9

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fd)d is

SOS-hard, if SF (fd) = Ω(d0.5+Y), where Y := Y(d) = l
(√

log log d
log d

)
is a sub-constant

function.

Remark. Hardness examples– d1/2 · (log d)
√
log d , d 1/2+.01 .

q There are numerous candidates for fd (x):

â The famous Pochhammer-Wilkinson polynomial fd :=
∏d

i=1 (x − i).

â fd :=
∑d

i=0 2i2 x i . ∑d
i=0 2i x i is not a candidate

â fd := (x + 1)d .

(x + 1)d has poly(log d)-size circuit.

10

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fd)d is

SOS-hard, if SF (fd) = Ω(d0.5+Y), where Y := Y(d) = l
(√

log log d
log d

)
is a sub-constant

function.

Remark. Hardness examples– d1/2 · (log d)
√
log d , d 1/2+.01 .

q There are numerous candidates for fd (x):

â The famous Pochhammer-Wilkinson polynomial fd :=
∏d

i=1 (x − i).

â fd :=
∑d

i=0 2i2 x i . ∑d
i=0 2i x i is not a candidate

â fd := (x + 1)d .

(x + 1)d has poly(log d)-size circuit.

10

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fd)d is

SOS-hard, if SF (fd) = Ω(d0.5+Y), where Y := Y(d) = l
(√

log log d
log d

)
is a sub-constant

function.

Remark. Hardness examples– d1/2 · (log d)
√
log d , d 1/2+.01 .

q There are numerous candidates for fd (x):

â The famous Pochhammer-Wilkinson polynomial fd :=
∏d

i=1 (x − i).

â fd :=
∑d

i=0 2i2 x i . ∑d
i=0 2i x i is not a candidate

â fd := (x + 1)d .

(x + 1)d has poly(log d)-size circuit.

10

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fd)d is

SOS-hard, if SF (fd) = Ω(d0.5+Y), where Y := Y(d) = l
(√

log log d
log d

)
is a sub-constant

function.

Remark. Hardness examples– d1/2 · (log d)
√
log d , d 1/2+.01 .

q There are numerous candidates for fd (x):

â The famous Pochhammer-Wilkinson polynomial fd :=
∏d

i=1 (x − i).

â fd :=
∑d

i=0 2i2 x i . ∑d
i=0 2i x i is not a candidate

â fd := (x + 1)d .

(x + 1)d has poly(log d)-size circuit.

10

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fd)d is

SOS-hard, if SF (fd) = Ω(d0.5+Y), where Y := Y(d) = l
(√

log log d
log d

)
is a sub-constant

function.

Remark. Hardness examples– d1/2 · (log d)
√
log d , d 1/2+.01 .

q There are numerous candidates for fd (x):

â The famous Pochhammer-Wilkinson polynomial fd :=
∏d

i=1 (x − i).

â fd :=
∑d

i=0 2i2 x i . ∑d
i=0 2i x i is not a candidate

â fd := (x + 1)d .

(x + 1)d has poly(log d)-size circuit.

10

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fd)d is

SOS-hard, if SF (fd) = Ω(d0.5+Y), where Y := Y(d) = l
(√

log log d
log d

)
is a sub-constant

function.

Remark. Hardness examples– d1/2 · (log d)
√
log d , d 1/2+.01 .

q There are numerous candidates for fd (x):

â The famous Pochhammer-Wilkinson polynomial fd :=
∏d

i=1 (x − i).

â fd :=
∑d

i=0 2i2 x i .

∑d
i=0 2i x i is not a candidate

â fd := (x + 1)d .

(x + 1)d has poly(log d)-size circuit.

10

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fd)d is

SOS-hard, if SF (fd) = Ω(d0.5+Y), where Y := Y(d) = l
(√

log log d
log d

)
is a sub-constant

function.

Remark. Hardness examples– d1/2 · (log d)
√
log d , d 1/2+.01 .

q There are numerous candidates for fd (x):

â The famous Pochhammer-Wilkinson polynomial fd :=
∏d

i=1 (x − i).

â fd :=
∑d

i=0 2i2 x i . ∑d
i=0 2i x i is not a candidate

â fd := (x + 1)d .

(x + 1)d has poly(log d)-size circuit.

10

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fd)d is

SOS-hard, if SF (fd) = Ω(d0.5+Y), where Y := Y(d) = l
(√

log log d
log d

)
is a sub-constant

function.

Remark. Hardness examples– d1/2 · (log d)
√
log d , d 1/2+.01 .

q There are numerous candidates for fd (x):

â The famous Pochhammer-Wilkinson polynomial fd :=
∏d

i=1 (x − i).

â fd :=
∑d

i=0 2i2 x i . ∑d
i=0 2i x i is not a candidate

â fd := (x + 1)d .

(x + 1)d has poly(log d)-size circuit.

10

SOS-hardness

Definition (SOS-hardness). An explicit univariate polynomial family (fd)d is

SOS-hard, if SF (fd) = Ω(d0.5+Y), where Y := Y(d) = l
(√

log log d
log d

)
is a sub-constant

function.

Remark. Hardness examples– d1/2 · (log d)
√
log d , d 1/2+.01 .

q There are numerous candidates for fd (x):

â The famous Pochhammer-Wilkinson polynomial fd :=
∏d

i=1 (x − i).

â fd :=
∑d

i=0 2i2 x i . ∑d
i=0 2i x i is not a candidate

â fd := (x + 1)d .

(x + 1)d has poly(log d)-size circuit.

10

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

q [Agrawal-Vinay’08,..,Gupta-Kamath-Kayal-Saptharishi’13,..,Agrawal-Ghosh-
Saxena’18] Hardness for special depth-4/3 – sum-of unbounded-powers of
multivariates

∑∧l (1) ∑∏
.

q [koiran’11] Used univariate depth-4 expression of unbounded-powers; also
lower bound on the top-fanin (we require SOS-size).

â SOS-size is neither top-fanin nor the “size" of the depth-4 circuits, rather it
is #

∏
-operations in

∑∧2 ∑∏
-formula.

â Circuit-hardness =⇒ SOS-hardness (f requires s size circuit implies
S(f) ≥ s/log d); the opposite plausibly doesn’t hold.

q real-g-conjecture [Koiran’10] and [Koiran-Portier-Tavenas-Thomassé’15]
Newton-polygon-g-conjecture about roots of similar depth-4 expressions (also
here, l(

√
d) vs. d).

q [Raz’08] Super-poly-elusive functions eluding degree-2 maps (generic
multivariate).

11

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

q [Agrawal-Vinay’08,..,Gupta-Kamath-Kayal-Saptharishi’13,..,Agrawal-Ghosh-
Saxena’18] Hardness for special depth-4/3 – sum-of unbounded-powers of
multivariates

∑∧l (1) ∑∏
.

q [koiran’11] Used univariate depth-4 expression of unbounded-powers; also
lower bound on the top-fanin (we require SOS-size).

â SOS-size is neither top-fanin nor the “size" of the depth-4 circuits, rather it
is #

∏
-operations in

∑∧2 ∑∏
-formula.

â Circuit-hardness =⇒ SOS-hardness (f requires s size circuit implies
S(f) ≥ s/log d); the opposite plausibly doesn’t hold.

q real-g-conjecture [Koiran’10] and [Koiran-Portier-Tavenas-Thomassé’15]
Newton-polygon-g-conjecture about roots of similar depth-4 expressions (also
here, l(

√
d) vs. d).

q [Raz’08] Super-poly-elusive functions eluding degree-2 maps (generic
multivariate).

11

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

q [Agrawal-Vinay’08,..,Gupta-Kamath-Kayal-Saptharishi’13,..,Agrawal-Ghosh-
Saxena’18] Hardness for special depth-4/3 – sum-of unbounded-powers of
multivariates

∑∧l (1) ∑∏
.

q [koiran’11] Used univariate depth-4 expression of unbounded-powers; also
lower bound on the top-fanin (we require SOS-size).

â SOS-size is neither top-fanin nor the “size" of the depth-4 circuits, rather it
is #

∏
-operations in

∑∧2 ∑∏
-formula.

â Circuit-hardness =⇒ SOS-hardness (f requires s size circuit implies
S(f) ≥ s/log d); the opposite plausibly doesn’t hold.

q real-g-conjecture [Koiran’10] and [Koiran-Portier-Tavenas-Thomassé’15]
Newton-polygon-g-conjecture about roots of similar depth-4 expressions (also
here, l(

√
d) vs. d).

q [Raz’08] Super-poly-elusive functions eluding degree-2 maps (generic
multivariate).

11

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

q [Agrawal-Vinay’08,..,Gupta-Kamath-Kayal-Saptharishi’13,..,Agrawal-Ghosh-
Saxena’18] Hardness for special depth-4/3 – sum-of unbounded-powers of
multivariates

∑∧l (1) ∑∏
.

q [koiran’11] Used univariate depth-4 expression of unbounded-powers; also
lower bound on the top-fanin (we require SOS-size).

â SOS-size is neither top-fanin nor the “size" of the depth-4 circuits, rather it
is #

∏
-operations in

∑∧2 ∑∏
-formula.

â Circuit-hardness =⇒ SOS-hardness (f requires s size circuit implies
S(f) ≥ s/log d); the opposite plausibly doesn’t hold.

q real-g-conjecture [Koiran’10] and [Koiran-Portier-Tavenas-Thomassé’15]
Newton-polygon-g-conjecture about roots of similar depth-4 expressions (also
here, l(

√
d) vs. d).

q [Raz’08] Super-poly-elusive functions eluding degree-2 maps (generic
multivariate).

11

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

q [Agrawal-Vinay’08,..,Gupta-Kamath-Kayal-Saptharishi’13,..,Agrawal-Ghosh-
Saxena’18] Hardness for special depth-4/3 – sum-of unbounded-powers of
multivariates

∑∧l (1) ∑∏
.

q [koiran’11] Used univariate depth-4 expression of unbounded-powers; also
lower bound on the top-fanin (we require SOS-size).

â SOS-size is neither top-fanin nor the “size" of the depth-4 circuits, rather it
is #

∏
-operations in

∑∧2 ∑∏
-formula.

â Circuit-hardness =⇒ SOS-hardness (f requires s size circuit implies
S(f) ≥ s/log d); the opposite plausibly doesn’t hold.

q real-g-conjecture [Koiran’10] and [Koiran-Portier-Tavenas-Thomassé’15]
Newton-polygon-g-conjecture about roots of similar depth-4 expressions (also
here, l(

√
d) vs. d).

q [Raz’08] Super-poly-elusive functions eluding degree-2 maps (generic
multivariate).

11

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

q [Agrawal-Vinay’08,..,Gupta-Kamath-Kayal-Saptharishi’13,..,Agrawal-Ghosh-
Saxena’18] Hardness for special depth-4/3 – sum-of unbounded-powers of
multivariates

∑∧l (1) ∑∏
.

q [koiran’11] Used univariate depth-4 expression of unbounded-powers; also
lower bound on the top-fanin (we require SOS-size).

â SOS-size is neither top-fanin nor the “size" of the depth-4 circuits, rather it
is #

∏
-operations in

∑∧2 ∑∏
-formula.

â Circuit-hardness =⇒ SOS-hardness (f requires s size circuit implies
S(f) ≥ s/log d); the opposite plausibly doesn’t hold.

q real-g-conjecture [Koiran’10] and [Koiran-Portier-Tavenas-Thomassé’15]
Newton-polygon-g-conjecture about roots of similar depth-4 expressions (also
here, l(

√
d) vs. d).

q [Raz’08] Super-poly-elusive functions eluding degree-2 maps (generic
multivariate).

11

SOS-hardness and comparison with prior works

SOS-hardness is quite incomparable/weak to previous works:

q [Agrawal-Vinay’08,..,Gupta-Kamath-Kayal-Saptharishi’13,..,Agrawal-Ghosh-
Saxena’18] Hardness for special depth-4/3 – sum-of unbounded-powers of
multivariates

∑∧l (1) ∑∏
.

q [koiran’11] Used univariate depth-4 expression of unbounded-powers; also
lower bound on the top-fanin (we require SOS-size).

â SOS-size is neither top-fanin nor the “size" of the depth-4 circuits, rather it
is #

∏
-operations in

∑∧2 ∑∏
-formula.

â Circuit-hardness =⇒ SOS-hardness (f requires s size circuit implies
S(f) ≥ s/log d); the opposite plausibly doesn’t hold.

q real-g-conjecture [Koiran’10] and [Koiran-Portier-Tavenas-Thomassé’15]
Newton-polygon-g-conjecture about roots of similar depth-4 expressions (also
here, l(

√
d) vs. d).

q [Raz’08] Super-poly-elusive functions eluding degree-2 maps (generic
multivariate).

11

SOS-hardness to VP ≠ VNP

Theorem 1 (Dutta-Saxena-Thierauf’20)
If there exists an SOS-hard polynomial family, then VP ≠ VNP.

â Natural analogue of SOS lower bound to hardness of Permanent in the
non-commutative settings, [Hrubeš-Wigderson-Yehudayoff’11].

â Restrict the degrees of fi to be d · o(log d) and the top-fanin s = do(1) .

â A stronger SOS-hardness notion with constant Y, gives an exponential
separation between VP and VNP. This proof has many technical differences.

12

SOS-hardness to VP ≠ VNP

Theorem 1 (Dutta-Saxena-Thierauf’20)
If there exists an SOS-hard polynomial family, then VP ≠ VNP.

â Natural analogue of SOS lower bound to hardness of Permanent in the
non-commutative settings, [Hrubeš-Wigderson-Yehudayoff’11].

â Restrict the degrees of fi to be d · o(log d) and the top-fanin s = do(1) .

â A stronger SOS-hardness notion with constant Y, gives an exponential
separation between VP and VNP. This proof has many technical differences.

12

SOS-hardness to VP ≠ VNP

Theorem 1 (Dutta-Saxena-Thierauf’20)
If there exists an SOS-hard polynomial family, then VP ≠ VNP.

â Natural analogue of SOS lower bound to hardness of Permanent in the
non-commutative settings, [Hrubeš-Wigderson-Yehudayoff’11].

â Restrict the degrees of fi to be d · o(log d) and the top-fanin s = do(1) .

â A stronger SOS-hardness notion with constant Y, gives an exponential
separation between VP and VNP. This proof has many technical differences.

12

SOS-hardness to VP ≠ VNP

Theorem 1 (Dutta-Saxena-Thierauf’20)
If there exists an SOS-hard polynomial family, then VP ≠ VNP.

â Natural analogue of SOS lower bound to hardness of Permanent in the
non-commutative settings, [Hrubeš-Wigderson-Yehudayoff’11].

â Restrict the degrees of fi to be d · o(log d) and the top-fanin s = do(1) .

â A stronger SOS-hardness notion with constant Y, gives an exponential
separation between VP and VNP. This proof has many technical differences.

12

SOS-hardness to VP ≠ VNP

Theorem 1 (Dutta-Saxena-Thierauf’20)
If there exists an SOS-hard polynomial family, then VP ≠ VNP.

â Natural analogue of SOS lower bound to hardness of Permanent in the
non-commutative settings, [Hrubeš-Wigderson-Yehudayoff’11].

â Restrict the degrees of fi to be d · o(log d) and the top-fanin s = do(1) .

â A stronger SOS-hardness notion with constant Y, gives an exponential
separation between VP and VNP. This proof has many technical differences.

12

SOS-hardness and VP vs. VNP

SOS Decomposition

Main Lemma (SOS Decomposition)

Let F be a field of characteristic ≠ 2. Let f (x) be an n-variate polynomial over F of
degree d, computed by a circuit of size s. Then there exist fi ∈ F[x] and ci ∈ F such
that

f (x) =
s′∑

i=1
ci fi (x)2 ,

where s′ ≤ (sd)O (log d) , and deg(fi) ≤ dd/2e, for all i ∈ [s′].

Can we improve s′ to poly(sd)?

13

SOS Decomposition

Main Lemma (SOS Decomposition)
Let F be a field of characteristic ≠ 2. Let f (x) be an n-variate polynomial over F of
degree d, computed by a circuit of size s. Then there exist fi ∈ F[x] and ci ∈ F such
that

f (x) =
s′∑

i=1
ci fi (x)2 ,

where s′ ≤ (sd)O (log d) , and deg(fi) ≤ dd/2e, for all i ∈ [s′].

Can we improve s′ to poly(sd)?

13

SOS Decomposition

Main Lemma (SOS Decomposition)
Let F be a field of characteristic ≠ 2. Let f (x) be an n-variate polynomial over F of
degree d, computed by a circuit of size s. Then there exist fi ∈ F[x] and ci ∈ F such
that

f (x) =
s′∑

i=1
ci fi (x)2 ,

where s′ ≤ (sd)O (log d) , and deg(fi) ≤ dd/2e, for all i ∈ [s′].

Can we improve s′ to poly(sd)?

13

ABP (Algebraic Branching Programs)

Algebraic branching programs (ABP). An ABP is a directed acyclic graph with a
starting vertex s with in-degree zero, an end vertex t with out-degree zero. The edge
labels are a1x1 + . . . + anxn + c ∈ F[x], where ai , c ∈ F.

â The weight of a path is the product of labels of the edges in the path.

â The polynomial computed by the ABP is the polynomial computed at the end
vertex t.

s

•

•

•

•

This ABP computes

x1x2x3 + x1x2 (1 + x3) + (1 + x1)x2 (1 + x3)
t

x1

1 + x1

x2

x2

x2

x3

1 + x3

14

ABP (Algebraic Branching Programs)

Algebraic branching programs (ABP). An ABP is a directed acyclic graph with a
starting vertex s with in-degree zero, an end vertex t with out-degree zero. The edge
labels are a1x1 + . . . + anxn + c ∈ F[x], where ai , c ∈ F.

â The weight of a path is the product of labels of the edges in the path.

â The polynomial computed by the ABP is the polynomial computed at the end
vertex t.

s

•

•

•

•

This ABP computes

x1x2x3 + x1x2 (1 + x3) + (1 + x1)x2 (1 + x3)
t

x1

1 + x1

x2

x2

x2

x3

1 + x3

14

ABP (Algebraic Branching Programs)

Algebraic branching programs (ABP). An ABP is a directed acyclic graph with a
starting vertex s with in-degree zero, an end vertex t with out-degree zero. The edge
labels are a1x1 + . . . + anxn + c ∈ F[x], where ai , c ∈ F.

â The weight of a path is the product of labels of the edges in the path.

â The polynomial computed by the ABP is the polynomial computed at the end
vertex t.

s

•

•

•

•

This ABP computes

x1x2x3 + x1x2 (1 + x3) + (1 + x1)x2 (1 + x3)
t

x1

1 + x1

x2

x2

x2

x3

1 + x3

14

ABP (Algebraic Branching Programs)

Algebraic branching programs (ABP). An ABP is a directed acyclic graph with a
starting vertex s with in-degree zero, an end vertex t with out-degree zero. The edge
labels are a1x1 + . . . + anxn + c ∈ F[x], where ai , c ∈ F.

â The weight of a path is the product of labels of the edges in the path.

â The polynomial computed by the ABP is the polynomial computed at the end
vertex t.

s

•

•

•

•

This ABP computes

x1x2x3 + x1x2 (1 + x3) + (1 + x1)x2 (1 + x3)
t

x1

1 + x1

x2

x2

x2

x3

1 + x3

14

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

â Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

â Apply result of [Valiant-Skyum-Berkowitz-Rackoff’83] to make it log-depth
with poly(s)-size blowup.

â Convert the circuit to a homogeneous ABP of size (width) w := slog d such that
each edge has linear form weight (without constants).

â By construction, i-th layer nodes compute polynomials of degree exactly i.

â Cut the ABP, at the d/2-th layer, we get
f = (f1, . . . , fw)T ·

(
f ′1, . . . , f

′
w

)
=

∑w
i=1 fi · f ′i , where fi and f ′i have degree d/2.

â Write each product fi · f ′i = 1/4 · (fi + f ′i)
2 − 1/4 · (fi − f ′i)

2, which finally gives
the desired decomposition.

15

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

â Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

â Apply result of [Valiant-Skyum-Berkowitz-Rackoff’83] to make it log-depth
with poly(s)-size blowup.

â Convert the circuit to a homogeneous ABP of size (width) w := slog d such that
each edge has linear form weight (without constants).

â By construction, i-th layer nodes compute polynomials of degree exactly i.

â Cut the ABP, at the d/2-th layer, we get
f = (f1, . . . , fw)T ·

(
f ′1, . . . , f

′
w

)
=

∑w
i=1 fi · f ′i , where fi and f ′i have degree d/2.

â Write each product fi · f ′i = 1/4 · (fi + f ′i)
2 − 1/4 · (fi − f ′i)

2, which finally gives
the desired decomposition.

15

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

â Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

â Apply result of [Valiant-Skyum-Berkowitz-Rackoff’83] to make it log-depth
with poly(s)-size blowup.

â Convert the circuit to a homogeneous ABP of size (width) w := slog d such that
each edge has linear form weight (without constants).

â By construction, i-th layer nodes compute polynomials of degree exactly i.

â Cut the ABP, at the d/2-th layer, we get
f = (f1, . . . , fw)T ·

(
f ′1, . . . , f

′
w

)
=

∑w
i=1 fi · f ′i , where fi and f ′i have degree d/2.

â Write each product fi · f ′i = 1/4 · (fi + f ′i)
2 − 1/4 · (fi − f ′i)

2, which finally gives
the desired decomposition.

15

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

â Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

â Apply result of [Valiant-Skyum-Berkowitz-Rackoff’83] to make it log-depth
with poly(s)-size blowup.

â Convert the circuit to a homogeneous ABP of size (width) w := slog d such that
each edge has linear form weight (without constants).

â By construction, i-th layer nodes compute polynomials of degree exactly i.

â Cut the ABP, at the d/2-th layer, we get
f = (f1, . . . , fw)T ·

(
f ′1, . . . , f

′
w

)
=

∑w
i=1 fi · f ′i , where fi and f ′i have degree d/2.

â Write each product fi · f ′i = 1/4 · (fi + f ′i)
2 − 1/4 · (fi − f ′i)

2, which finally gives
the desired decomposition.

15

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

â Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

â Apply result of [Valiant-Skyum-Berkowitz-Rackoff’83] to make it log-depth
with poly(s)-size blowup.

â Convert the circuit to a homogeneous ABP of size (width) w := slog d such that
each edge has linear form weight (without constants).

â By construction, i-th layer nodes compute polynomials of degree exactly i.

â Cut the ABP, at the d/2-th layer, we get
f = (f1, . . . , fw)T ·

(
f ′1, . . . , f

′
w

)
=

∑w
i=1 fi · f ′i , where fi and f ′i have degree d/2.

â Write each product fi · f ′i = 1/4 · (fi + f ′i)
2 − 1/4 · (fi − f ′i)

2, which finally gives
the desired decomposition.

15

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

â Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

â Apply result of [Valiant-Skyum-Berkowitz-Rackoff’83] to make it log-depth
with poly(s)-size blowup.

â Convert the circuit to a homogeneous ABP of size (width) w := slog d such that
each edge has linear form weight (without constants).

â By construction, i-th layer nodes compute polynomials of degree exactly i.

â Cut the ABP, at the d/2-th layer, we get
f = (f1, . . . , fw)T ·

(
f ′1, . . . , f

′
w

)
=

∑w
i=1 fi · f ′i , where fi and f ′i have degree d/2.

â Write each product fi · f ′i = 1/4 · (fi + f ′i)
2 − 1/4 · (fi − f ′i)

2, which finally gives
the desired decomposition.

15

Proof idea of Main Lemma

Proof Sketch. Here is the basic outline:

â Wlog, assume it to be a homogeneous f of degree d computed by size s circuit.

â Apply result of [Valiant-Skyum-Berkowitz-Rackoff’83] to make it log-depth
with poly(s)-size blowup.

â Convert the circuit to a homogeneous ABP of size (width) w := slog d such that
each edge has linear form weight (without constants).

â By construction, i-th layer nodes compute polynomials of degree exactly i.

â Cut the ABP, at the d/2-th layer, we get
f = (f1, . . . , fw)T ·

(
f ′1, . . . , f

′
w

)
=

∑w
i=1 fi · f ′i , where fi and f ′i have degree d/2.

â Write each product fi · f ′i = 1/4 · (fi + f ′i)
2 − 1/4 · (fi − f ′i)

2, which finally gives
the desired decomposition.

15

Proof of Theorem 1: SOS-hardness to VP ≠ VNP

Recall Theorem 1: If an explicit fd (x) is SOS-hard i.e. SF (fd) ≥ d1/2+Y for
Y = l(

√
log log d/log d), then VP ≠ VNP.

q Wlog, fd is SOS-hard with Y = (log log d/log d)1/3.

q Convert this to a kn-variate n-degree multilinear polynomial Pn,k where
kn ≥ d > (k − 1)n, (n and k are both functions of d to be fixed later) and show
that the family ∈ VNP, but ∉ VP. The conversion is as follows:

â Introduce new variables yj,ℓ where j ∈ [n] and ℓ ∈ [0, k − 1].

â Monomial x i in fd (x) maps to q(x i) := ∏n
j=1 yj,ij , where

i =:
∑n

j=1 ij · k j−1, 0 ≤ ij ≤ k − 1.

â By definition Pn,k = q(fd) is kn-variate n-degree multilinear polynomial.

q Pn,k is very explicit and thus the family ∈ VNP.

16

Proof of Theorem 1: SOS-hardness to VP ≠ VNP

Recall Theorem 1: If an explicit fd (x) is SOS-hard i.e. SF (fd) ≥ d1/2+Y for
Y = l(

√
log log d/log d), then VP ≠ VNP.

q Wlog, fd is SOS-hard with Y = (log log d/log d)1/3.

q Convert this to a kn-variate n-degree multilinear polynomial Pn,k where
kn ≥ d > (k − 1)n, (n and k are both functions of d to be fixed later) and show
that the family ∈ VNP, but ∉ VP. The conversion is as follows:

â Introduce new variables yj,ℓ where j ∈ [n] and ℓ ∈ [0, k − 1].

â Monomial x i in fd (x) maps to q(x i) := ∏n
j=1 yj,ij , where

i =:
∑n

j=1 ij · k j−1, 0 ≤ ij ≤ k − 1.

â By definition Pn,k = q(fd) is kn-variate n-degree multilinear polynomial.

q Pn,k is very explicit and thus the family ∈ VNP.

16

Proof of Theorem 1: SOS-hardness to VP ≠ VNP

Recall Theorem 1: If an explicit fd (x) is SOS-hard i.e. SF (fd) ≥ d1/2+Y for
Y = l(

√
log log d/log d), then VP ≠ VNP.

q Wlog, fd is SOS-hard with Y = (log log d/log d)1/3.

q Convert this to a kn-variate n-degree multilinear polynomial Pn,k where
kn ≥ d > (k − 1)n, (n and k are both functions of d to be fixed later) and show
that the family ∈ VNP, but ∉ VP.

The conversion is as follows:

â Introduce new variables yj,ℓ where j ∈ [n] and ℓ ∈ [0, k − 1].

â Monomial x i in fd (x) maps to q(x i) := ∏n
j=1 yj,ij , where

i =:
∑n

j=1 ij · k j−1, 0 ≤ ij ≤ k − 1.

â By definition Pn,k = q(fd) is kn-variate n-degree multilinear polynomial.

q Pn,k is very explicit and thus the family ∈ VNP.

16

Proof of Theorem 1: SOS-hardness to VP ≠ VNP

Recall Theorem 1: If an explicit fd (x) is SOS-hard i.e. SF (fd) ≥ d1/2+Y for
Y = l(

√
log log d/log d), then VP ≠ VNP.

q Wlog, fd is SOS-hard with Y = (log log d/log d)1/3.

q Convert this to a kn-variate n-degree multilinear polynomial Pn,k where
kn ≥ d > (k − 1)n, (n and k are both functions of d to be fixed later) and show
that the family ∈ VNP, but ∉ VP. The conversion is as follows:

â Introduce new variables yj,ℓ where j ∈ [n] and ℓ ∈ [0, k − 1].

â Monomial x i in fd (x) maps to q(x i) := ∏n
j=1 yj,ij , where

i =:
∑n

j=1 ij · k j−1, 0 ≤ ij ≤ k − 1.

â By definition Pn,k = q(fd) is kn-variate n-degree multilinear polynomial.

q Pn,k is very explicit and thus the family ∈ VNP.

16

Proof of Theorem 1: SOS-hardness to VP ≠ VNP

Recall Theorem 1: If an explicit fd (x) is SOS-hard i.e. SF (fd) ≥ d1/2+Y for
Y = l(

√
log log d/log d), then VP ≠ VNP.

q Wlog, fd is SOS-hard with Y = (log log d/log d)1/3.

q Convert this to a kn-variate n-degree multilinear polynomial Pn,k where
kn ≥ d > (k − 1)n, (n and k are both functions of d to be fixed later) and show
that the family ∈ VNP, but ∉ VP. The conversion is as follows:

â Introduce new variables yj,ℓ where j ∈ [n] and ℓ ∈ [0, k − 1].

â Monomial x i in fd (x) maps to q(x i) := ∏n
j=1 yj,ij , where

i =:
∑n

j=1 ij · k j−1, 0 ≤ ij ≤ k − 1.

â By definition Pn,k = q(fd) is kn-variate n-degree multilinear polynomial.

q Pn,k is very explicit and thus the family ∈ VNP.

16

Proof of Theorem 1: SOS-hardness to VP ≠ VNP

Recall Theorem 1: If an explicit fd (x) is SOS-hard i.e. SF (fd) ≥ d1/2+Y for
Y = l(

√
log log d/log d), then VP ≠ VNP.

q Wlog, fd is SOS-hard with Y = (log log d/log d)1/3.

q Convert this to a kn-variate n-degree multilinear polynomial Pn,k where
kn ≥ d > (k − 1)n, (n and k are both functions of d to be fixed later) and show
that the family ∈ VNP, but ∉ VP. The conversion is as follows:

â Introduce new variables yj,ℓ where j ∈ [n] and ℓ ∈ [0, k − 1].

â Monomial x i in fd (x) maps to q(x i) := ∏n
j=1 yj,ij , where

i =:
∑n

j=1 ij · k j−1, 0 ≤ ij ≤ k − 1.

â By definition Pn,k = q(fd) is kn-variate n-degree multilinear polynomial.

q Pn,k is very explicit and thus the family ∈ VNP.

16

Proof of Theorem 1: SOS-hardness to VP ≠ VNP

Recall Theorem 1: If an explicit fd (x) is SOS-hard i.e. SF (fd) ≥ d1/2+Y for
Y = l(

√
log log d/log d), then VP ≠ VNP.

q Wlog, fd is SOS-hard with Y = (log log d/log d)1/3.

q Convert this to a kn-variate n-degree multilinear polynomial Pn,k where
kn ≥ d > (k − 1)n, (n and k are both functions of d to be fixed later) and show
that the family ∈ VNP, but ∉ VP. The conversion is as follows:

â Introduce new variables yj,ℓ where j ∈ [n] and ℓ ∈ [0, k − 1].

â Monomial x i in fd (x) maps to q(x i) := ∏n
j=1 yj,ij , where

i =:
∑n

j=1 ij · k j−1, 0 ≤ ij ≤ k − 1.

â By definition Pn,k = q(fd) is kn-variate n-degree multilinear polynomial.

q Pn,k is very explicit and thus the family ∈ VNP.

16

Proof of Theorem 1: SOS-hardness to VP ≠ VNP

Recall Theorem 1: If an explicit fd (x) is SOS-hard i.e. SF (fd) ≥ d1/2+Y for
Y = l(

√
log log d/log d), then VP ≠ VNP.

q Wlog, fd is SOS-hard with Y = (log log d/log d)1/3.

q Convert this to a kn-variate n-degree multilinear polynomial Pn,k where
kn ≥ d > (k − 1)n, (n and k are both functions of d to be fixed later) and show
that the family ∈ VNP, but ∉ VP. The conversion is as follows:

â Introduce new variables yj,ℓ where j ∈ [n] and ℓ ∈ [0, k − 1].

â Monomial x i in fd (x) maps to q(x i) := ∏n
j=1 yj,ij , where

i =:
∑n

j=1 ij · k j−1, 0 ≤ ij ≤ k − 1.

â By definition Pn,k = q(fd) is kn-variate n-degree multilinear polynomial.

q Pn,k is very explicit and thus the family ∈ VNP.

16

Proof of Theorem 1 (continued)

q We show that circuit-size(Pn,k) = (kn)l (1) (implying the family ∉ VP).

q Proof by contradiction. Suppose Pn,k has a small-size circuit.

q SOS Decomposition shows that Pn,k (y) =
∑s′

i=1 ci · Qi (y)2, where
deg(Qi) ≤ deg(Pn,k)/2 ≤ n/2 .

q Apply q both side to get fd = q(Pn,k) =
∑s′

i=1 ci · q(Qi)2 .

q q cannot increase the sparsity. Thus, |q(Qi) |0 ≤ |Qi |0 ≤
(kn+n/2

n/2
)
.

q Hence, SF (fd) ≤ s′ ·
(kn+n/2

n/2
)
.

q Fix k, n appropriately and show:

s′ ≤ do(Y) , and
(
kn + n/2

n/2

)
≤ d1/2+Y/2 .

q Thus, SF (fd) ≤ do(Y) + 1/2+ Y/2 = o(d 1/2+ Y), a contradiction!
�

17

Proof of Theorem 1 (continued)

q We show that circuit-size(Pn,k) = (kn)l (1) (implying the family ∉ VP).

q Proof by contradiction. Suppose Pn,k has a small-size circuit.

q SOS Decomposition shows that Pn,k (y) =
∑s′

i=1 ci · Qi (y)2, where
deg(Qi) ≤ deg(Pn,k)/2 ≤ n/2 .

q Apply q both side to get fd = q(Pn,k) =
∑s′

i=1 ci · q(Qi)2 .

q q cannot increase the sparsity. Thus, |q(Qi) |0 ≤ |Qi |0 ≤
(kn+n/2

n/2
)
.

q Hence, SF (fd) ≤ s′ ·
(kn+n/2

n/2
)
.

q Fix k, n appropriately and show:

s′ ≤ do(Y) , and
(
kn + n/2

n/2

)
≤ d1/2+Y/2 .

q Thus, SF (fd) ≤ do(Y) + 1/2+ Y/2 = o(d 1/2+ Y), a contradiction!
�

17

Proof of Theorem 1 (continued)

q We show that circuit-size(Pn,k) = (kn)l (1) (implying the family ∉ VP).

q Proof by contradiction. Suppose Pn,k has a small-size circuit.

q SOS Decomposition shows that Pn,k (y) =
∑s′

i=1 ci · Qi (y)2, where
deg(Qi) ≤ deg(Pn,k)/2 ≤ n/2 .

q Apply q both side to get fd = q(Pn,k) =
∑s′

i=1 ci · q(Qi)2 .

q q cannot increase the sparsity. Thus, |q(Qi) |0 ≤ |Qi |0 ≤
(kn+n/2

n/2
)
.

q Hence, SF (fd) ≤ s′ ·
(kn+n/2

n/2
)
.

q Fix k, n appropriately and show:

s′ ≤ do(Y) , and
(
kn + n/2

n/2

)
≤ d1/2+Y/2 .

q Thus, SF (fd) ≤ do(Y) + 1/2+ Y/2 = o(d 1/2+ Y), a contradiction!
�

17

Proof of Theorem 1 (continued)

q We show that circuit-size(Pn,k) = (kn)l (1) (implying the family ∉ VP).

q Proof by contradiction. Suppose Pn,k has a small-size circuit.

q SOS Decomposition shows that Pn,k (y) =
∑s′

i=1 ci · Qi (y)2, where
deg(Qi) ≤ deg(Pn,k)/2 ≤ n/2 .

q Apply q both side to get fd = q(Pn,k) =
∑s′

i=1 ci · q(Qi)2 .

q q cannot increase the sparsity. Thus, |q(Qi) |0 ≤ |Qi |0 ≤
(kn+n/2

n/2
)
.

q Hence, SF (fd) ≤ s′ ·
(kn+n/2

n/2
)
.

q Fix k, n appropriately and show:

s′ ≤ do(Y) , and
(
kn + n/2

n/2

)
≤ d1/2+Y/2 .

q Thus, SF (fd) ≤ do(Y) + 1/2+ Y/2 = o(d 1/2+ Y), a contradiction!
�

17

Proof of Theorem 1 (continued)

q We show that circuit-size(Pn,k) = (kn)l (1) (implying the family ∉ VP).

q Proof by contradiction. Suppose Pn,k has a small-size circuit.

q SOS Decomposition shows that Pn,k (y) =
∑s′

i=1 ci · Qi (y)2, where
deg(Qi) ≤ deg(Pn,k)/2 ≤ n/2 .

q Apply q both side to get fd = q(Pn,k) =
∑s′

i=1 ci · q(Qi)2 .

q q cannot increase the sparsity. Thus, |q(Qi) |0 ≤ |Qi |0 ≤
(kn+n/2

n/2
)
.

q Hence, SF (fd) ≤ s′ ·
(kn+n/2

n/2
)
.

q Fix k, n appropriately and show:

s′ ≤ do(Y) , and
(
kn + n/2

n/2

)
≤ d1/2+Y/2 .

q Thus, SF (fd) ≤ do(Y) + 1/2+ Y/2 = o(d 1/2+ Y), a contradiction!
�

17

Proof of Theorem 1 (continued)

q We show that circuit-size(Pn,k) = (kn)l (1) (implying the family ∉ VP).

q Proof by contradiction. Suppose Pn,k has a small-size circuit.

q SOS Decomposition shows that Pn,k (y) =
∑s′

i=1 ci · Qi (y)2, where
deg(Qi) ≤ deg(Pn,k)/2 ≤ n/2 .

q Apply q both side to get fd = q(Pn,k) =
∑s′

i=1 ci · q(Qi)2 .

q q cannot increase the sparsity. Thus, |q(Qi) |0 ≤ |Qi |0 ≤
(kn+n/2

n/2
)
.

q Hence, SF (fd) ≤ s′ ·
(kn+n/2

n/2
)
.

q Fix k, n appropriately and show:

s′ ≤ do(Y) , and
(
kn + n/2

n/2

)
≤ d1/2+Y/2 .

q Thus, SF (fd) ≤ do(Y) + 1/2+ Y/2 = o(d 1/2+ Y), a contradiction!
�

17

Proof of Theorem 1 (continued)

q We show that circuit-size(Pn,k) = (kn)l (1) (implying the family ∉ VP).

q Proof by contradiction. Suppose Pn,k has a small-size circuit.

q SOS Decomposition shows that Pn,k (y) =
∑s′

i=1 ci · Qi (y)2, where
deg(Qi) ≤ deg(Pn,k)/2 ≤ n/2 .

q Apply q both side to get fd = q(Pn,k) =
∑s′

i=1 ci · q(Qi)2 .

q q cannot increase the sparsity. Thus, |q(Qi) |0 ≤ |Qi |0 ≤
(kn+n/2

n/2
)
.

q Hence, SF (fd) ≤ s′ ·
(kn+n/2

n/2
)
.

q Fix k, n appropriately and show:

s′ ≤ do(Y) , and
(
kn + n/2

n/2

)
≤ d1/2+Y/2 .

q Thus, SF (fd) ≤ do(Y) + 1/2+ Y/2 = o(d 1/2+ Y), a contradiction!
�

17

Proof of Theorem 1 (continued)

q We show that circuit-size(Pn,k) = (kn)l (1) (implying the family ∉ VP).

q Proof by contradiction. Suppose Pn,k has a small-size circuit.

q SOS Decomposition shows that Pn,k (y) =
∑s′

i=1 ci · Qi (y)2, where
deg(Qi) ≤ deg(Pn,k)/2 ≤ n/2 .

q Apply q both side to get fd = q(Pn,k) =
∑s′

i=1 ci · q(Qi)2 .

q q cannot increase the sparsity. Thus, |q(Qi) |0 ≤ |Qi |0 ≤
(kn+n/2

n/2
)
.

q Hence, SF (fd) ≤ s′ ·
(kn+n/2

n/2
)
.

q Fix k, n appropriately and show:

s′ ≤ do(Y) , and
(
kn + n/2

n/2

)
≤ d1/2+Y/2 .

q Thus, SF (fd) ≤ do(Y) + 1/2+ Y/2 = o(d 1/2+ Y), a contradiction!
�

17

Proof of Theorem 1 (continued)

q We show that circuit-size(Pn,k) = (kn)l (1) (implying the family ∉ VP).

q Proof by contradiction. Suppose Pn,k has a small-size circuit.

q SOS Decomposition shows that Pn,k (y) =
∑s′

i=1 ci · Qi (y)2, where
deg(Qi) ≤ deg(Pn,k)/2 ≤ n/2 .

q Apply q both side to get fd = q(Pn,k) =
∑s′

i=1 ci · q(Qi)2 .

q q cannot increase the sparsity. Thus, |q(Qi) |0 ≤ |Qi |0 ≤
(kn+n/2

n/2
)
.

q Hence, SF (fd) ≤ s′ ·
(kn+n/2

n/2
)
.

q Fix k, n appropriately and show:

s′ ≤ do(Y) , and
(
kn + n/2

n/2

)
≤ d1/2+Y/2 .

q Thus, SF (fd) ≤ do(Y) + 1/2+ Y/2 = o(d 1/2+ Y), a contradiction!
�

17

Sum-of-cubes (SOC) model and
Blackbox-PIT

Blackbox-PIT and Sum-of-cubes (SOC)

q Can SOS-hardness give PIT ∈ P? Ans: Don’t know. Currently the best known is
QP (when Y is constant), using result from [KI04].

q Can we strengthen the condition/measure to put PIT ∈ P? Ans: Yes!

q An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a
sum-of-cubes (SOC) if

f (x) =
s∑

i=1
ci · fi (x)3 , (3)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

â Size of f in Eqn. (3) is no. of distinct monomials in fi ’s i.e.
�� ⋃s

i=1 supp(fi)
��.

Eg. f (x) := x3 + 6x2 = (x + 1)3 − (x − 1)3 + x3. Size of f in this SOC
representation is 2.

â Denote the minimal size by support-union UF (f , s).

18

Blackbox-PIT and Sum-of-cubes (SOC)

q Can SOS-hardness give PIT ∈ P?

Ans: Don’t know. Currently the best known is
QP (when Y is constant), using result from [KI04].

q Can we strengthen the condition/measure to put PIT ∈ P? Ans: Yes!

q An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a
sum-of-cubes (SOC) if

f (x) =
s∑

i=1
ci · fi (x)3 , (3)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

â Size of f in Eqn. (3) is no. of distinct monomials in fi ’s i.e.
�� ⋃s

i=1 supp(fi)
��.

Eg. f (x) := x3 + 6x2 = (x + 1)3 − (x − 1)3 + x3. Size of f in this SOC
representation is 2.

â Denote the minimal size by support-union UF (f , s).

18

Blackbox-PIT and Sum-of-cubes (SOC)

q Can SOS-hardness give PIT ∈ P? Ans: Don’t know. Currently the best known is
QP (when Y is constant), using result from [KI04].

q Can we strengthen the condition/measure to put PIT ∈ P? Ans: Yes!

q An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a
sum-of-cubes (SOC) if

f (x) =
s∑

i=1
ci · fi (x)3 , (3)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

â Size of f in Eqn. (3) is no. of distinct monomials in fi ’s i.e.
�� ⋃s

i=1 supp(fi)
��.

Eg. f (x) := x3 + 6x2 = (x + 1)3 − (x − 1)3 + x3. Size of f in this SOC
representation is 2.

â Denote the minimal size by support-union UF (f , s).

18

Blackbox-PIT and Sum-of-cubes (SOC)

q Can SOS-hardness give PIT ∈ P? Ans: Don’t know. Currently the best known is
QP (when Y is constant), using result from [KI04].

q Can we strengthen the condition/measure to put PIT ∈ P?

Ans: Yes!

q An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a
sum-of-cubes (SOC) if

f (x) =
s∑

i=1
ci · fi (x)3 , (3)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

â Size of f in Eqn. (3) is no. of distinct monomials in fi ’s i.e.
�� ⋃s

i=1 supp(fi)
��.

Eg. f (x) := x3 + 6x2 = (x + 1)3 − (x − 1)3 + x3. Size of f in this SOC
representation is 2.

â Denote the minimal size by support-union UF (f , s).

18

Blackbox-PIT and Sum-of-cubes (SOC)

q Can SOS-hardness give PIT ∈ P? Ans: Don’t know. Currently the best known is
QP (when Y is constant), using result from [KI04].

q Can we strengthen the condition/measure to put PIT ∈ P? Ans: Yes!

q An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a
sum-of-cubes (SOC) if

f (x) =
s∑

i=1
ci · fi (x)3 , (3)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

â Size of f in Eqn. (3) is no. of distinct monomials in fi ’s i.e.
�� ⋃s

i=1 supp(fi)
��.

Eg. f (x) := x3 + 6x2 = (x + 1)3 − (x − 1)3 + x3. Size of f in this SOC
representation is 2.

â Denote the minimal size by support-union UF (f , s).

18

Blackbox-PIT and Sum-of-cubes (SOC)

q Can SOS-hardness give PIT ∈ P? Ans: Don’t know. Currently the best known is
QP (when Y is constant), using result from [KI04].

q Can we strengthen the condition/measure to put PIT ∈ P? Ans: Yes!

q An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a
sum-of-cubes (SOC) if

f (x) =
s∑

i=1
ci · fi (x)3 , (3)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

â Size of f in Eqn. (3) is no. of distinct monomials in fi ’s i.e.
�� ⋃s

i=1 supp(fi)
��.

Eg. f (x) := x3 + 6x2 = (x + 1)3 − (x − 1)3 + x3. Size of f in this SOC
representation is 2.

â Denote the minimal size by support-union UF (f , s).

18

Blackbox-PIT and Sum-of-cubes (SOC)

q Can SOS-hardness give PIT ∈ P? Ans: Don’t know. Currently the best known is
QP (when Y is constant), using result from [KI04].

q Can we strengthen the condition/measure to put PIT ∈ P? Ans: Yes!

q An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a
sum-of-cubes (SOC) if

f (x) =
s∑

i=1
ci · fi (x)3 , (3)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

â Size of f in Eqn. (3) is no. of distinct monomials in fi ’s i.e.
�� ⋃s

i=1 supp(fi)
��.

Eg. f (x) := x3 + 6x2 = (x + 1)3 − (x − 1)3 + x3. Size of f in this SOC
representation is 2.

â Denote the minimal size by support-union UF (f , s).

18

Blackbox-PIT and Sum-of-cubes (SOC)

q Can SOS-hardness give PIT ∈ P? Ans: Don’t know. Currently the best known is
QP (when Y is constant), using result from [KI04].

q Can we strengthen the condition/measure to put PIT ∈ P? Ans: Yes!

q An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a
sum-of-cubes (SOC) if

f (x) =
s∑

i=1
ci · fi (x)3 , (3)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

â Size of f in Eqn. (3) is no. of distinct monomials in fi ’s i.e.
�� ⋃s

i=1 supp(fi)
��.

Eg. f (x) := x3 + 6x2 = (x + 1)3 − (x − 1)3 + x3. Size of f in this SOC
representation is 2.

â Denote the minimal size by support-union UF (f , s).

18

Blackbox-PIT and Sum-of-cubes (SOC)

q Can SOS-hardness give PIT ∈ P? Ans: Don’t know. Currently the best known is
QP (when Y is constant), using result from [KI04].

q Can we strengthen the condition/measure to put PIT ∈ P? Ans: Yes!

q An n-variate polynomial f (x) ∈ F[x] over a field F is computed as a
sum-of-cubes (SOC) if

f (x) =
s∑

i=1
ci · fi (x)3 , (3)

for some top-fanin s, where fi (x) ∈ F[x] and ci ∈ F.

â Size of f in Eqn. (3) is no. of distinct monomials in fi ’s i.e.
�� ⋃s

i=1 supp(fi)
��.

Eg. f (x) := x3 + 6x2 = (x + 1)3 − (x − 1)3 + x3. Size of f in this SOC
representation is 2.

â Denote the minimal size by support-union UF (f , s).

18

SOC-hardness : What to expect

q SOC is a complete model for char(F) ≠ 2, 3 because for any f (x):

f = (f + 2)3/24 + (f − 2)3/24 − f3/12 .

q Trivially UF (f , s) ≤ |f |0 + 1, for any s ≥ 3. By counting argument,
UF (f , s) ≥ |f |1/30 .

q If |f |0 ≈ d, then Ω(d1/3) ≤ UF (f , s) ≤ O(d).

Definition (SOC-hardness). A poly(d)-time explicit univariate polynomial family
(fd)d , where fd is of degree−d, is SOC-hard, if there exists a positive constant
Y′ < 1/2 such that UF

(
fd , d Y

′
)
= Ω(d).

â Seems false over F = C,R [dimension argument]. x3 + y3 = 1 has no Q solution

â Instead fix F = Q, [Natural choice for PIT].

â [Agrawal’20]: For s = Ω(d1/2), UQ (fd , s) = O(d1/2); for s = Ω(d2/3),
UQ (fd , s) = Θ(d1/3).

â For s < o(d1/2), we conjecture that most polynomials fd are SOC-hard.

19

SOC-hardness : What to expect

q SOC is a complete model for char(F) ≠ 2, 3 because for any f (x):

f = (f + 2)3/24 + (f − 2)3/24 − f3/12 .

q Trivially UF (f , s) ≤ |f |0 + 1, for any s ≥ 3. By counting argument,
UF (f , s) ≥ |f |1/30 .

q If |f |0 ≈ d, then Ω(d1/3) ≤ UF (f , s) ≤ O(d).

Definition (SOC-hardness). A poly(d)-time explicit univariate polynomial family
(fd)d , where fd is of degree−d, is SOC-hard, if there exists a positive constant
Y′ < 1/2 such that UF

(
fd , d Y

′
)
= Ω(d).

â Seems false over F = C,R [dimension argument]. x3 + y3 = 1 has no Q solution

â Instead fix F = Q, [Natural choice for PIT].

â [Agrawal’20]: For s = Ω(d1/2), UQ (fd , s) = O(d1/2); for s = Ω(d2/3),
UQ (fd , s) = Θ(d1/3).

â For s < o(d1/2), we conjecture that most polynomials fd are SOC-hard.

19

SOC-hardness : What to expect

q SOC is a complete model for char(F) ≠ 2, 3 because for any f (x):

f = (f + 2)3/24 + (f − 2)3/24 − f3/12 .

q Trivially UF (f , s) ≤ |f |0 + 1, for any s ≥ 3. By counting argument,
UF (f , s) ≥ |f |1/30 .

q If |f |0 ≈ d, then Ω(d1/3) ≤ UF (f , s) ≤ O(d).

Definition (SOC-hardness). A poly(d)-time explicit univariate polynomial family
(fd)d , where fd is of degree−d, is SOC-hard, if there exists a positive constant
Y′ < 1/2 such that UF

(
fd , d Y

′
)
= Ω(d).

â Seems false over F = C,R [dimension argument]. x3 + y3 = 1 has no Q solution

â Instead fix F = Q, [Natural choice for PIT].

â [Agrawal’20]: For s = Ω(d1/2), UQ (fd , s) = O(d1/2); for s = Ω(d2/3),
UQ (fd , s) = Θ(d1/3).

â For s < o(d1/2), we conjecture that most polynomials fd are SOC-hard.

19

SOC-hardness : What to expect

q SOC is a complete model for char(F) ≠ 2, 3 because for any f (x):

f = (f + 2)3/24 + (f − 2)3/24 − f3/12 .

q Trivially UF (f , s) ≤ |f |0 + 1, for any s ≥ 3. By counting argument,
UF (f , s) ≥ |f |1/30 .

q If |f |0 ≈ d, then Ω(d1/3) ≤ UF (f , s) ≤ O(d).

Definition (SOC-hardness). A poly(d)-time explicit univariate polynomial family
(fd)d , where fd is of degree−d, is SOC-hard, if there exists a positive constant
Y′ < 1/2 such that UF

(
fd , d Y

′
)
= Ω(d).

â Seems false over F = C,R [dimension argument]. x3 + y3 = 1 has no Q solution

â Instead fix F = Q, [Natural choice for PIT].

â [Agrawal’20]: For s = Ω(d1/2), UQ (fd , s) = O(d1/2); for s = Ω(d2/3),
UQ (fd , s) = Θ(d1/3).

â For s < o(d1/2), we conjecture that most polynomials fd are SOC-hard.

19

SOC-hardness : What to expect

q SOC is a complete model for char(F) ≠ 2, 3 because for any f (x):

f = (f + 2)3/24 + (f − 2)3/24 − f3/12 .

q Trivially UF (f , s) ≤ |f |0 + 1, for any s ≥ 3. By counting argument,
UF (f , s) ≥ |f |1/30 .

q If |f |0 ≈ d, then Ω(d1/3) ≤ UF (f , s) ≤ O(d).

Definition (SOC-hardness). A poly(d)-time explicit univariate polynomial family
(fd)d , where fd is of degree−d, is SOC-hard, if there exists a positive constant
Y′ < 1/2 such that UF

(
fd , d Y

′
)
= Ω(d).

â Seems false over F = C,R [dimension argument].

x3 + y3 = 1 has no Q solution

â Instead fix F = Q, [Natural choice for PIT].

â [Agrawal’20]: For s = Ω(d1/2), UQ (fd , s) = O(d1/2); for s = Ω(d2/3),
UQ (fd , s) = Θ(d1/3).

â For s < o(d1/2), we conjecture that most polynomials fd are SOC-hard.

19

SOC-hardness : What to expect

q SOC is a complete model for char(F) ≠ 2, 3 because for any f (x):

f = (f + 2)3/24 + (f − 2)3/24 − f3/12 .

q Trivially UF (f , s) ≤ |f |0 + 1, for any s ≥ 3. By counting argument,
UF (f , s) ≥ |f |1/30 .

q If |f |0 ≈ d, then Ω(d1/3) ≤ UF (f , s) ≤ O(d).

Definition (SOC-hardness). A poly(d)-time explicit univariate polynomial family
(fd)d , where fd is of degree−d, is SOC-hard, if there exists a positive constant
Y′ < 1/2 such that UF

(
fd , d Y

′
)
= Ω(d).

â Seems false over F = C,R [dimension argument]. x3 + y3 = 1 has no Q solution

â Instead fix F = Q, [Natural choice for PIT].

â [Agrawal’20]: For s = Ω(d1/2), UQ (fd , s) = O(d1/2); for s = Ω(d2/3),
UQ (fd , s) = Θ(d1/3).

â For s < o(d1/2), we conjecture that most polynomials fd are SOC-hard.

19

SOC-hardness : What to expect

q SOC is a complete model for char(F) ≠ 2, 3 because for any f (x):

f = (f + 2)3/24 + (f − 2)3/24 − f3/12 .

q Trivially UF (f , s) ≤ |f |0 + 1, for any s ≥ 3. By counting argument,
UF (f , s) ≥ |f |1/30 .

q If |f |0 ≈ d, then Ω(d1/3) ≤ UF (f , s) ≤ O(d).

Definition (SOC-hardness). A poly(d)-time explicit univariate polynomial family
(fd)d , where fd is of degree−d, is SOC-hard, if there exists a positive constant
Y′ < 1/2 such that UF

(
fd , d Y

′
)
= Ω(d).

â Seems false over F = C,R [dimension argument]. x3 + y3 = 1 has no Q solution

â Instead fix F = Q, [Natural choice for PIT].

â [Agrawal’20]: For s = Ω(d1/2), UQ (fd , s) = O(d1/2); for s = Ω(d2/3),
UQ (fd , s) = Θ(d1/3).

â For s < o(d1/2), we conjecture that most polynomials fd are SOC-hard.

19

SOC-hardness : What to expect

q SOC is a complete model for char(F) ≠ 2, 3 because for any f (x):

f = (f + 2)3/24 + (f − 2)3/24 − f3/12 .

q Trivially UF (f , s) ≤ |f |0 + 1, for any s ≥ 3. By counting argument,
UF (f , s) ≥ |f |1/30 .

q If |f |0 ≈ d, then Ω(d1/3) ≤ UF (f , s) ≤ O(d).

Definition (SOC-hardness). A poly(d)-time explicit univariate polynomial family
(fd)d , where fd is of degree−d, is SOC-hard, if there exists a positive constant
Y′ < 1/2 such that UF

(
fd , d Y

′
)
= Ω(d).

â Seems false over F = C,R [dimension argument]. x3 + y3 = 1 has no Q solution

â Instead fix F = Q, [Natural choice for PIT].

â [Agrawal’20]: For s = Ω(d1/2), UQ (fd , s) = O(d1/2); for s = Ω(d2/3),
UQ (fd , s) = Θ(d1/3).

â For s < o(d1/2), we conjecture that most polynomials fd are SOC-hard.

19

Theorem 2: SOC-hardness to PIT

Theorem 2 (Efficient derandomization)
If there is an SOC-hard polynomial family, then blackbox-PIT ∈ P.

Proof Idea. Assume fd is SOC-hard for some Y′.

q Convert it to k = O(1)-variate, ideg-n, poly(nk)-time-explicit polynomial Pn,k ,
using inverse-Kronecker map on fd i.e. Pn,k (x, xn+1, . . . , x (n+1)

k−1) = fd .

q Prove that (Pn,k)n is a constant-variate circuit-hard family i.e.
size(Pn,k) = nΩ(1) . Then, use [Guo-Kumar-Saptharishi-Solomon’19] directly to
conclude that PIT ∈ P.

q Proof by contradiction and use useful SOC Decomposition: Any polynomial f
of degree d of circuit-size s can be written as f =

∑poly(s,d)
i=1 ciQ3

i , where
deg(Qi) ≤ 4d/11. [1/3 < 4/11 < 1/e]

q A binomial counting argument shows that small size of Pn,k implies
UF (fd , d Y

′) = o(d), a contradiction!

20

Theorem 2: SOC-hardness to PIT

Theorem 2 (Efficient derandomization)
If there is an SOC-hard polynomial family, then blackbox-PIT ∈ P.

Proof Idea. Assume fd is SOC-hard for some Y′.

q Convert it to k = O(1)-variate, ideg-n, poly(nk)-time-explicit polynomial Pn,k ,
using inverse-Kronecker map on fd i.e. Pn,k (x, xn+1, . . . , x (n+1)

k−1) = fd .

q Prove that (Pn,k)n is a constant-variate circuit-hard family i.e.
size(Pn,k) = nΩ(1) . Then, use [Guo-Kumar-Saptharishi-Solomon’19] directly to
conclude that PIT ∈ P.

q Proof by contradiction and use useful SOC Decomposition: Any polynomial f
of degree d of circuit-size s can be written as f =

∑poly(s,d)
i=1 ciQ3

i , where
deg(Qi) ≤ 4d/11. [1/3 < 4/11 < 1/e]

q A binomial counting argument shows that small size of Pn,k implies
UF (fd , d Y

′) = o(d), a contradiction!

20

Theorem 2: SOC-hardness to PIT

Theorem 2 (Efficient derandomization)
If there is an SOC-hard polynomial family, then blackbox-PIT ∈ P.

Proof Idea. Assume fd is SOC-hard for some Y′.

q Convert it to k = O(1)-variate, ideg-n, poly(nk)-time-explicit polynomial Pn,k ,
using inverse-Kronecker map on fd i.e. Pn,k (x, xn+1, . . . , x (n+1)

k−1) = fd .

q Prove that (Pn,k)n is a constant-variate circuit-hard family i.e.
size(Pn,k) = nΩ(1) . Then, use [Guo-Kumar-Saptharishi-Solomon’19] directly to
conclude that PIT ∈ P.

q Proof by contradiction and use useful SOC Decomposition: Any polynomial f
of degree d of circuit-size s can be written as f =

∑poly(s,d)
i=1 ciQ3

i , where
deg(Qi) ≤ 4d/11. [1/3 < 4/11 < 1/e]

q A binomial counting argument shows that small size of Pn,k implies
UF (fd , d Y

′) = o(d), a contradiction!

20

Theorem 2: SOC-hardness to PIT

Theorem 2 (Efficient derandomization)
If there is an SOC-hard polynomial family, then blackbox-PIT ∈ P.

Proof Idea. Assume fd is SOC-hard for some Y′.

q Convert it to k = O(1)-variate, ideg-n, poly(nk)-time-explicit polynomial Pn,k ,
using inverse-Kronecker map on fd i.e. Pn,k (x, xn+1, . . . , x (n+1)

k−1) = fd .

q Prove that (Pn,k)n is a constant-variate circuit-hard family i.e.
size(Pn,k) = nΩ(1) . Then, use [Guo-Kumar-Saptharishi-Solomon’19] directly to
conclude that PIT ∈ P.

q Proof by contradiction and use useful SOC Decomposition: Any polynomial f
of degree d of circuit-size s can be written as f =

∑poly(s,d)
i=1 ciQ3

i , where
deg(Qi) ≤ 4d/11. [1/3 < 4/11 < 1/e]

q A binomial counting argument shows that small size of Pn,k implies
UF (fd , d Y

′) = o(d), a contradiction!

20

Theorem 2: SOC-hardness to PIT

Theorem 2 (Efficient derandomization)
If there is an SOC-hard polynomial family, then blackbox-PIT ∈ P.

Proof Idea. Assume fd is SOC-hard for some Y′.

q Convert it to k = O(1)-variate, ideg-n, poly(nk)-time-explicit polynomial Pn,k ,
using inverse-Kronecker map on fd i.e. Pn,k (x, xn+1, . . . , x (n+1)

k−1) = fd .

q Prove that (Pn,k)n is a constant-variate circuit-hard family i.e.
size(Pn,k) = nΩ(1) . Then, use [Guo-Kumar-Saptharishi-Solomon’19] directly to
conclude that PIT ∈ P.

q Proof by contradiction and use useful SOC Decomposition: Any polynomial f
of degree d of circuit-size s can be written as f =

∑poly(s,d)
i=1 ciQ3

i , where
deg(Qi) ≤ 4d/11. [1/3 < 4/11 < 1/e]

q A binomial counting argument shows that small size of Pn,k implies
UF (fd , d Y

′) = o(d), a contradiction!

20

Theorem 2: SOC-hardness to PIT

Theorem 2 (Efficient derandomization)
If there is an SOC-hard polynomial family, then blackbox-PIT ∈ P.

Proof Idea. Assume fd is SOC-hard for some Y′.

q Convert it to k = O(1)-variate, ideg-n, poly(nk)-time-explicit polynomial Pn,k ,
using inverse-Kronecker map on fd i.e. Pn,k (x, xn+1, . . . , x (n+1)

k−1) = fd .

q Prove that (Pn,k)n is a constant-variate circuit-hard family i.e.
size(Pn,k) = nΩ(1) . Then, use [Guo-Kumar-Saptharishi-Solomon’19] directly to
conclude that PIT ∈ P.

q Proof by contradiction and use useful SOC Decomposition: Any polynomial f
of degree d of circuit-size s can be written as f =

∑poly(s,d)
i=1 ciQ3

i , where
deg(Qi) ≤ 4d/11. [1/3 < 4/11 < 1/e]

q A binomial counting argument shows that small size of Pn,k implies
UF (fd , d Y

′) = o(d), a contradiction!

20

Theorem 2: SOC-hardness to PIT

Theorem 2 (Efficient derandomization)
If there is an SOC-hard polynomial family, then blackbox-PIT ∈ P.

Proof Idea. Assume fd is SOC-hard for some Y′.

q Convert it to k = O(1)-variate, ideg-n, poly(nk)-time-explicit polynomial Pn,k ,
using inverse-Kronecker map on fd i.e. Pn,k (x, xn+1, . . . , x (n+1)

k−1) = fd .

q Prove that (Pn,k)n is a constant-variate circuit-hard family i.e.
size(Pn,k) = nΩ(1) . Then, use [Guo-Kumar-Saptharishi-Solomon’19] directly to
conclude that PIT ∈ P.

q Proof by contradiction and use useful SOC Decomposition: Any polynomial f
of degree d of circuit-size s can be written as f =

∑poly(s,d)
i=1 ciQ3

i , where
deg(Qi) ≤ 4d/11. [1/3 < 4/11 < 1/e]

q A binomial counting argument shows that small size of Pn,k implies
UF (fd , d Y

′) = o(d), a contradiction!

20

Conclusion

Conclusion

q Does the existence of a SOS-hard family solve PIT completely? The current
proof technique fails to reduce from cubes to squares.

q Prove the existence of a SOS-hard family for the sum of constantly many squares.

q Prove the existence of a SOC-hard family for a ‘generic’ polynomial f with
rational coefficients (Q).

q Can we optimize Y in the SOS-hardness condition and prove it for any l(
√

d)?
For eg: does proving an SOS lower-bound of

√
d · poly(log d), suffice to show

VP ≠ VNP?

21

Conclusion

q Does the existence of a SOS-hard family solve PIT completely? The current
proof technique fails to reduce from cubes to squares.

q Prove the existence of a SOS-hard family for the sum of constantly many squares.

q Prove the existence of a SOC-hard family for a ‘generic’ polynomial f with
rational coefficients (Q).

q Can we optimize Y in the SOS-hardness condition and prove it for any l(
√

d)?
For eg: does proving an SOS lower-bound of

√
d · poly(log d), suffice to show

VP ≠ VNP?

21

Conclusion

q Does the existence of a SOS-hard family solve PIT completely? The current
proof technique fails to reduce from cubes to squares.

q Prove the existence of a SOS-hard family for the sum of constantly many squares.

q Prove the existence of a SOC-hard family for a ‘generic’ polynomial f with
rational coefficients (Q).

q Can we optimize Y in the SOS-hardness condition and prove it for any l(
√

d)?
For eg: does proving an SOS lower-bound of

√
d · poly(log d), suffice to show

VP ≠ VNP?

21

Conclusion

q Does the existence of a SOS-hard family solve PIT completely? The current
proof technique fails to reduce from cubes to squares.

q Prove the existence of a SOS-hard family for the sum of constantly many squares.

q Prove the existence of a SOC-hard family for a ‘generic’ polynomial f with
rational coefficients (Q).

q Can we optimize Y in the SOS-hardness condition and prove it for any l(
√

d)?

For eg: does proving an SOS lower-bound of
√

d · poly(log d), suffice to show
VP ≠ VNP?

21

Conclusion

q Does the existence of a SOS-hard family solve PIT completely? The current
proof technique fails to reduce from cubes to squares.

q Prove the existence of a SOS-hard family for the sum of constantly many squares.

q Prove the existence of a SOC-hard family for a ‘generic’ polynomial f with
rational coefficients (Q).

q Can we optimize Y in the SOS-hardness condition and prove it for any l(
√

d)?
For eg: does proving an SOS lower-bound of

√
d · poly(log d), suffice to show

VP ≠ VNP?

21

Conclusion

q Does the existence of a SOS-hard family solve PIT completely? The current
proof technique fails to reduce from cubes to squares.

q Prove the existence of a SOS-hard family for the sum of constantly many squares.

q Prove the existence of a SOC-hard family for a ‘generic’ polynomial f with
rational coefficients (Q).

q Can we optimize Y in the SOS-hardness condition and prove it for any l(
√

d)?
For eg: does proving an SOS lower-bound of

√
d · poly(log d), suffice to show

VP ≠ VNP?

21

	Introduction: Sum-of-squares (SOS)
	Basic Algebraic Complexity
	SOS-hardness and VP vs. VNP
	Sum-of-cubes (SOC) model and Blackbox-PIT
	Conclusion

