Efficiently computing Igusa's local-zeta function

Nitin Saxena (CSE@IIT Kanpur, India)

(ANTS-XIV'20; with Ashish Dwivedi)

Number Theory Seminar
Oct 2025, Texas A & M University

- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- Compute Poincaré Series
- Conclusion

Zeta functions

Eg. Ramanujan tau-function

- For function N_k there's generating-function $G(t) := \sum_{k \ge 0} N_k t^k$.
 - This carries comprehensive information about N_k.
 - Eg. the growth of N_k decides how the **power-series** converges.
- Riemann zeta-fn: $\zeta(s) = \sum_{k>1} 1/k^s$.
 - What's it encoding?

PRIMES

- Inspired many other zeta functions:
 - Selberg zeta fn of a manifold
 - Ruelle zeta fn of a dynamical system
 - Ihara zeta fn of a graph

Riemann 1826-66

- Local-zeta functions (based on a prime p):
 - Hasse-Weil zeta fn
 - Igusa local-zeta fn

To *count* points

Galois field vs ring Z/p^kZ

- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- Compute Poincaré Series
- Conclusion

Igusa's local-zeta function

- Let Z_p denote p-adic integers.
 Elements are ∑_{i≥0} a_i pⁱ (a_i ε [0,p-1]).
- Let $f = f(x_1,...,x_n)$ be n-variate integral polynomial.

Igusa 1924-2013

- Defn.1: Igusa's local-zeta fn $Z_{f,p}(s) = \int_{(Z_p)^n} |f(\mathbf{x})|_p^s \cdot |d\mathbf{x}|$.
 - Integrate using *p-adic metric* & Haar measure.
- This converges to a <u>rational</u> function in Q(p^s).
 - (Igusa'74) by resolving singularities.
 - (Denef'84) by p-adic cell decomposition.
- Counts roots f(x) mod p^k & `multiplies' by p^{-ks}.

For all k

So, we can give an easier definition:

Igusa's local-zeta function

Defns: Analytic vs Discrete

- Define N_k(f) := # roots of f(x) mod p^k.
- Defn.2: Poincaré Series $P_{f,p}(t) = \sum_{k \ge 0} N_k(f)/p^{nk} \cdot t^k$. Eg. $P_{0,p}(t) = \sum_{k \ge 0} t^k = 1/(1-t)$.

 - (Igusa'74) connected them at $t=p^{-s}$: $P(t)\cdot(1-t)=1-t\cdot Z(s)$.
- (Igusa'74) P_{f p}(t) converges to a <u>rational</u> function in Q(t).
- This means that N_k(f) is rather special!
 - Generally, power-series don't converge in Q(t).
 - Eg. $\sum_{k>0} (1/k!) \cdot t^k$ is irrational!
- Convergence proofs are quite non-explicit.
 - What do we learn about N_k(f), for small k?

- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- Compute Poincaré Series
- Conclusion

Algorithmic questions

- Qn: Could N_k(f) be computed efficiently?
- Trivially, in p^{kn} time.
 - Much faster unlikely.
 - It's NP-hard; even Permanent-hard!
- Could N_k(f) be computed efficiently, for univariate f(x)?
 - Qn: In poly(deg(f), log p, k) time?
- Or, try to compute the analytic-integral in Z_{f,p}(s).
- (Chistov'87) gave a randomized algorithm to factor f(x) over Z_p.
 - Using this one could factor f into roots,
 - and attempt the integration ...?

In p-adic extensions

Qn: But, a deterministic poly-time algorithm for N_k(f)?

- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- Compute Poincaré Series
- Conclusion

Root-finding mod p^k

- Instead of integration, we take the route of roots mod p^k.
- Let f mod p^k be degree d univariate polynomial.
- (Berthomieu, Lecerf, Quintin'13) Roots of f mod p^k arrange as representative-roots:
 - $\mathbf{a} =: \sum_{0 \le i < \ell} a_i p^i + p^\ell \quad (a_i \in [0, p-1], * \in Z)$.
 - a is minimal & f(a) = 0 mod p^k.
 - At most d rep.roots.
- Proof is inductive, based on the transformation:
 - $g(x) := f(\sum_{0 \le i \le m} a_i p^i + x \cdot p^m) / p^v \mod p^{k-v}$
 - Root of g(x) mod p gives a_m.
 - Continue with $\sum_{0 \le i \le m} a_i \cdot p^i$.

Reduces char pk to p

Why are rep.roots few?

Root-finding mod p^k

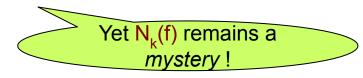
- Rep.roots are few, but roots may be exponentially many!
 - Eg. $f := px \mod p^2$ has p roots,
 - but just one rep.root a =: 0 + *p!
- (BLQ'13) yields fast randomized algorithm to find roots mod p^k.
 - Counting is easy, as rep.root a means p^{k-l} roots.
 - $\mathbf{a} = \sum_{0 \le i < \ell} a_i \cdot p^i + *p^{\ell}$
 - Summing up over rep.roots, gives all roots.
- How to make it deterministic poly-time?
- Rep.roots yield $N_k(f) = \sum_i p^{k-\ell_i}$.
 - What does it say about *Poincaré series* P_{f,p}(t) ?

l_i depends on i, k

Root-finding mod p^k

- (Dwivedi, Mittal, S'19) gave fast deterministic algorithm to implicitly find roots mod pk.
- Idea: Store rep.roots $\mathbf{a} = \sum_{0 \le i \le \ell} a_i \cdot p^i + p^\ell$ in maximal split ideals.
 - I = <h₀(x₀), h₁(x₀,x₁),..., h_{ℓ-1}(x₀,...,x_{ℓ-1})>.
 Each zero of I in F_p defines a rep.root.

 - Essentially, run (BLQ'13) mod I (without randomization!).
 - Keep `growing' I.
- (DMS'19) yields fast deterministic algorithm to count roots f mod



- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- Compute Poincaré Series
- Conclusion

Root-counting mod p^k

- Intuitively, $N_k(f) = \sum_i p^{k-\ell_i}$ should behave better for large k.
 - Since, large k is like studying roots in Z_D.
- We show, for large k : ℓ_i is *linear* in k.
- **Details**:
- k > k₀ := deg(f) · val_p(disc(rad(f)))
- ℓ_i = Γ (k val_p(f_i(α_i))) / mult(α_i)]
 Where, α_i are all p-adic integer roots of f(x).

Curiously, squarefree f & large $k \Rightarrow N_{\nu}(f)$ independent of k.

Constant (k-l_i)/k

Roots uniquely lift as k grows.

- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- Compute Poincaré Series
- Conclusion

Compute Poincaré Series

- Got: $N_k(f) = \sum_i p^{k.u_i} \text{ for } k > k_0$.
- So, $P(t) = \sum_{k \ge 0} N_k(f)/p^k \cdot t^k$, • $= P_0(t) + \sum_{k \ge k \ge 0} N_k(f)/p^k \cdot t^k$, • $= P_0(t) + \sum_{k \ge k \ge 0} \sum_i p^{k \cdot (u_i - 1)} \cdot t^k$.
- The infinite sum converges to a rational, in Q(t).
- Thus, P(t) is a rational function.
- Our algorithm computes $N_k(f)$; hence, both $P_0(t)$ and the infinite sum are *known*.
 - In poly(|f|, log p) time.

- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- Compute Poincaré Series
- Conclusion

At the end ...

- Det.poly-time algorithm for Igusa's local-zeta function.
 - For *univariate* polynomial f.
- Could we do this for bivariate polynomial f(x₁, x₂)?
- Relevant Questions:
- 1. Estimating the count $N_k(f(x_1, x_2)) = ?$ (Chakrabarti, S., ISSAC'23)
- 2. Counting factors of $f(x) \mod p^k$?
 - Irreducibility-testing of f(x) mod p⁵ ? (Mahapatra, S., WIP)
 - GCD of f(x), g(x) mod p^5 ?

Thank you!