
1

Rank Bound for Depth-3
Identities

Nitin Saxena (Hausdorff Center for Mathematics, Bonn)

Joint work with
C. Seshadhri (IBM Almaden Research Center, San Jose)

The problem of PIT
 Polynomial identity testing: given a polynomial

p(x1,x2,…,xn) over F, is it identically zero?
 All coefficients of p(x1,…,xn) are zero.

 (x+y)2 - x2 - y2 - 2xy is identically zero.
 So is: (a2+b2+c2+d2)(A2+B2+C2+D2)

 - (aA+bB+cC+dD)2 - (aB-bA+cD-dC)2

 - (aC-bD-cA+dB)2 - (aD-dA+bC-cB)2

 x(x-1) is NOT identically zero over F2.

Circuits: Blackbox or not

 Non blackbox: can analyze structure of C
 Blackbox: cannot look inside C

 Feed values and see what you get

+

x x x

p(x1,…,xn)

+ +

x1 x2 x3 xn

+

α β γ

p1 p2 p3

α p1 + β p2 + γ p3

We want algorithm whose running
time is polynomial in size of the
circuit.

C

A simple, randomized test

 [Schwartz '80, Zippel '79] This is a randomized
blackbox poly-time algorithm.

 (Big) open problem: Find a deterministic polynomial
time algorithm.
 We would really like a black box algorithm

v1

v2

vn

p(v1,v2,…,vn)

If output is 0, we
guess it is identity.

Otherwise, we
know it isn’t.

x1

x2

xn

Why?

 Come on, it’s an interesting mathematical problem.
Do you need a further reason?

 [Impagliazzo Kabanets '03] Derandomization implies
circuit lower bounds for permanent

 [AKS '02] Primality Testing ; (x + a)n–xn-a=0 (mod n)
 [L '79, MVV '87] Bipartite matching in NC?...
 Many more

What do we do?

If you can't solve a problem, then there is an
easier problem you can solve. Find it.

George Pólya 1887-1985

Get shallow results
 Let’s restrict the depth and see what we get
 Depth 2? Non-blackbox trivial!

 [GKS '90, BOT '88] Polytime & blackbox
 Depth 3?

xn

+

x x x x

+ + +

x1 x2

k

d

n
Sum of products of kd linear
forms in n variables

Shallowness is not so bad!

 They say…
 [AV '08] Chasm at Depth 4!
 If you can solve blackbox PIT for depth 4, then

you’ve “solved” it for all depths.

M. Agrawal V. Vinay

Shallowness is not so bad!
The two main ideas involved are......

[AJMV '98] Any circuit C computing a polynomial p(x1,...,xn)
of degree d can be converted into a depth O(log d) circuit
C'.

[AV '08] Few top layers of C' are collapsed to get a depth-2
 circuit. The same is done to the remaining bottom layers of

C'.

This yields a depth-4 circuit C'' with only a
subexponential blowup.

The past… … of Depth-3

 [Dvir Shpilka '05] Non-blackbox poly(n)exp((log d)k)
time algorithm

 [Kayal Saxena '06] Non-blackbox poly(n,dk) time
algorithm

 [Karnin Shpilka '08] Blackbox poly(n)exp((log d)k)
 [Us] Blackbox poly(n)exp(k3 log2 d)

The rank

 Introduced by [DS '05]: fundamental property of depth 3
circuits

 [DS '05] Rank of simple minimal identity < (log d)k-2
(compare with kd)

 How many independent variables can an identity have?
 An identity is very constrained, so few degrees of freedom

M =
α1 α2 αn

n

kd

Rank(C) = Rank (M)
n-dim vector over F

Exemplary Example

Here is the highest rank depth-3, fanin-3 example over Reals.
y(y+x1+x2)(y+x2+x3)(y+x3+x1) – (y+x1)(y+x2)(y+x3)(y+x1+x2+x3)

 + x1x2x3(2y+x1+x2+x3) = 0

It is of rank 4.
It is easy to see the geometry behind this identity:

x1

x2

x3

y+x1

y+x1+x2

y

y+x1+x3

y+x2

y+x1+x2+x3

y+x3

y+x2+x3

What we did

 Rank of depth 3 simple, minimal identity < k3 log d
 There is identity with rank (k log d), so this is almost optimal
 Let P be a nonzero poly generated by depth 3 circuit. Then

rank of linear factors of P is at most k3 log d
 So [KS '08] implies det. blackbox exp(k3 log2 d) test
 We develop techniques to study depth 3 circuits

over any field.
 Probably more interesting/important than result

 [Kayal Saraf '09] If base field is reals, rank < kk

Be simple and minimal

 Depth-3: C = T1 + T2 + … + Tk

 Simplicity: no common (linear) factor for all Tr’s
 x1x2…xn - x1x2…xn (Rank = n)

 Minimality: no subset of Tr’s are identity
 x1x2…xnz1 - x1x2…xnz1 + y1y2…ynz2 - y1y2…ynz2

(Rank = 2n+2)

 We give poly-time algo that returns small basis or
gives obstruction

Top fanin k=3
 C = T1 + T2 + T3 = Π Li + Π Mj + Π Nk = 0
 [AB '99, AKS '02, KS '06] Go modulo!

Vanishes!

 By unique factorization, there is 1-1 mapping between
M’s and N’s (they are same upto constants)

 This is the L1 matching.

The Li matchings

 For every Li, the M’s and N’s have a perfect
matching
 Always non-trivial linear combinations

M’s N’s

Li

Li

Li

Li

Mj Nk Suppose α = 0

So Li is common factor.
Circuit is not simple!
So α,β ≠ 0

The spanning procedure

 We iteratively build a basis B.
 sp(B) is set of forms spanned by B

 Start with B = {L1,M1}

L’s M’s N’s

The spanning procedure

sp(B) marked
in green

L’s M’s N’s

L1 M1

linear comb.
of L1 and M1

 Start with B = {L1,M1}

The spanning procedure

L’s M’s N’s

 Start with B = {L1,M1}
 Choose L2 outside sp(B). Add it to B.

The spanning procedure

 Start with B = {L1,M1}
 Choose L2 outside sp(B). Add it to B.

 Update sp(B) and repeat until all forms are spanned
 Rank bound = #rounds + 1

L’s M’s N’s

The log2d bound

 Claim: After every round, # of green M’s doubles

 All Li neighbors of green part are not green

L’s M’s N’s

Li

Li should be
green.
Contradiction!

Li

Nk

Mj

The log2d bound

 Claim: After every round, # of green M’s doubles

L’s M’s N’s

Li

Li

The log2d bound

 Claim: After every round, # of green M’s doubles

 Rank bound is (log2 d + 1)
 Lower bound example has exactly same matching

structure (exists for any finite char field)

L’s M’s N’s

Li

Total green
doubled

Li

Larger k: can’t induct easily

 C = T1 + T2 + T3 + T4 + T5

 L ϵ T1. So how about C (mod L)? Top fanin is now 4.
 But C(mod L) may not be simple or minimal any more!

x1x2 + (x3-x1)x2 + (x4-x2)x3 – x3x4

Going (mod x1), we get x2x3 + (x4-x2)x3 – x3x4

T1
T2 T3 T4 T5

L

The ideal way to Matchings

 We saw the power of matchings for k=3
 We extend matchings to ideal matchings for all k

 Looking at C modulo an ideal, not just a linear form

 Use these to construct a spanning procedure as
before
 Find some small set of forms not in sp(B), add them to B,

continue
 The number of rounds of this procedure gives the bound

Ideal matchings

 C (mod L1, L2, L3) or C (mod I)
 I is ideal <L1, L2, L3>

 T4 + T5 = 0 (mod I)
 By unique factorization, we get I-matching

T1
T2 T3 T4 T5

L1

L2

L3

Life isn’t ideal

 C (mod L1, L2) has no terms

 How can we get a matching?

L1

L2

Lin. comb. of L1 and L2

Simple and gcd parts

 C (mod I) has gcd part and simple part
 C = x1x2 + (x3-x1)x2 + (x4-x2)x3 - x3x4
 C (mod x1) = x2x3 + (x4-x2)x3 - x3x4

 So x3 is gcd(C mod x1)
 x2 + (x4-x2) - x4 is sim(C mod x1)

L1

gcd(C(mod L1))

sim(C(mod L1))

Simple and gcd parts

L1

gcd(C mod L1)

L2

gcd(C mod (L1, L2))

L3

gcd(C mod (L1, L2,L3))

I matching

 C (mod I) has gcd part and simple part
 C = x1x2 + (x3-x1)x2 + (x4-x2)x3 - x3x4
 C (mod x1) = x2x3 + (x4-x2)x3 - x3x4

 So x3 is gcd(C mod x1)
 x2 + (x4-x2) - x4 is sim(C mod x1)

Simple and gcd parts

 Let I = <L1, L2, L3>
 Piece together gcd portions

 Eventually, we can’t even use this, but this gives the
right idea

L1

L2

L3

I matching

The spanning procedure sp(B)

L1

The spanning procedure

 We want to get ideal I for matching
 Add new form to I, remove gcd (mod I), update sp(B U I),

repeat…
 In the end of round, add I to B

gcd(C mod L1)

L2
L1

sp(B U {L1})

The spanning procedure

gcd(C mod L1)

L1

L2

gcd(C mod (L1, L2))

The spanning procedure

L3

L2

gcd(C mod (L1, L2))

gcd(C mod L1)

L1

35

The spanning procedure

 Progress not possible!
 We only have partial matchings mod I

 I = <L1, L2, L3>

L3

L2

gcd(C mod (L1, L2))

gcd(C mod L1)

L1

Partial matchings

 We only get partial matchings at end of round
 Carefully, we can deal with this

 Rank bound is: k x (# rounds)

Matched (mod I)

In sp(B U I)

#rounds: Types of matchings

 At beginning of round, we have B
 At end, between two terms we have I-matching

 Type 1: Blue parts have different forms
 Type 2: Blue parts have same forms

I

Ti Tj

Counting Type 1 matchings

 In every round, at least two terms are matched
 If there are more than (k2 log d) type-1 matchings

 Pigeonhole argument says one pair (Ti, Tj) is matched more than
(log d) times

 Doubling argument (like k=3) implies that this cannot happen

I1

I2

I3

I4

Counting Type 2 matchings

 This deals with pathological case of same forms
getting matched
 Previous doubling-argument will not work

 That uses a different argument
 There are at most k of these

 Minimality enters the picture.
 Algorithmically, we can detect non-minimality

The rank bound

 Thus, #rounds < (k2 log d) + k
 Rank bound of: k x (k2 log d + k) = O(k3log d).

In conclusion…

 Interesting matching structures in depth 3 identities
 Combinatorial view of algebraic properties

 Can we get poly(k) rank when F = R?
 [Kayal Saraf 2009] get kk

 What about identity testing for depth 3 circuits?
Nothing is known when k is large
 [DS 2005, KS 2006] use some recursive arguments that get

k in exponent
 Maybe our techniques can get around this…?

A Saxena-Seshadhri paper

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

