Rank Bound for Depth-3 Identities

Nitin Saxena (Hausdorff Center for Mathematics, Bonn)

Joint work with

C. Seshadhri (IBM Almaden Research Center, San Jose)

The problem of PIT

- Polynomial identity testing: given a polynomial p(x₁,x₂,...,x_n) over F, is it identically zero?
 - All coefficients of $p(x_1,...,x_n)$ are zero.
 - (x+y)² x² y² 2xy is identically zero.
 So is: (a²+b²+c²+d²)(A²+B²+C²+D²)
 - (aA+bB+cC+dD)² (aB-bA+cD-dC)²
 - $(aC-bD-cA+dB)^2$ $(aD-dA+bC-cB)^2$
 - x(x-1) is NOT identically zero over F_2 .

Circuits: Blackbox or not

We want algorithm whose running time is polynomial in size of the circuit.

- Non blackbox: can analyze structure of C
- Blackbox: cannot look inside C
 - Feed values and see what you get

A simple, randomized test

- [Schwartz '80, Zippel '79] This is a randomized blackbox poly-time algorithm.
- (Big) open problem: Find a deterministic polynomial time algorithm.
 - We would really like a black box algorithm

- Come on, it's an interesting mathematical problem. Do you need a further reason?
- [Impagliazzo Kabanets '03] Derandomization implies circuit lower bounds for permanent
- [AKS '02] Primality Testing ; $(x + a)^n x^n a = 0 \pmod{n}$
- [L '79, MVV '87] Bipartite matching in NC?...
- Many more

What do we do?

George Pólya 1887-1985

If you can't solve a problem, then there is an easier problem you *can* solve. Find it.

Get shallow results

- Let's restrict the depth and see what we get
- Depth 2? Non-blackbox trivial!
 - GKS '90, BOT '88] Polytime & blackbox

Shallowness is not so bad!

M. Agrawal

V. Vinay

- They say...
- [AV '08] Chasm at Depth 4!
- If you can solve blackbox PIT for depth 4, then you've "solved" it for all depths.

Shallowness is not so bad!

The two main ideas involved are.....

- [AJMV '98] Any circuit C computing a polynomial p(x₁,...,x_n) of degree d can be converted into a depth O(log d) circuit C'.
- [AV '08] Few top layers of C' are collapsed to get a depth-2 circuit. The same is done to the remaining bottom layers of C'.
 - This yields a depth-4 circuit C" with only a subexponential blowup.

- [Dvir Shpilka '05] Non-blackbox poly(n)exp((log d)^k) time algorithm
- [Kayal Saxena '06] Non-blackbox poly(n,d^k) time algorithm

- [Karnin Shpilka '08] Blackbox poly(n)exp((log d)^k)
- [Us] Blackbox poly(n)exp(k³ log² d)

- Introduced by [DS '05]: fundamental property of depth 3 circuits
- [DS '05] Rank of simple minimal identity < (log d)^{k-2} (compare with kd)
- How many independent variables can an identity have?
 - An identity is very constrained, so few degrees of freedom

Exemplary Example

Here is *the highest rank* depth-3, fanin-3 example over Reals.

- $y(y+x_1+x_2)(y+x_2+x_3)(y+x_3+x_1) (y+x_1)(y+x_2)(y+x_3)(y+x_1+x_2+x_3)$ $+ x_1x_2x_3(2y+x_1+x_2+x_3) = 0$
 - It is of rank 4.
 - It is easy to see the geometry behind this identity:

What we did

- Rank of depth 3 simple, minimal identity < k³ log d
 - There is identity with rank (k log d), so this is almost optimal
 - Let P be a nonzero poly generated by depth 3 circuit. Then rank of linear factors of P is at most k³ log d
- So [KS '08] implies det. blackbox exp(k³ log² d) test
- We develop techniques to study depth 3 circuits over any field.
 - Probably more interesting/important than result
- [Kayal Saraf '09] If base field is reals, rank < k^k

Be simple and minimal

- Depth-3: $C = T_1 + T_2 + ... + T_k$
- Simplicity: no common (linear) factor for all T_r's

$$= x_1 x_2 \dots x_n - x_1 x_2 \dots x_n$$
 (Rank = n)

- Minimality: no subset of T_r's are identity
 - $x_1 x_2 \dots x_n z_1 x_1 x_2 \dots x_n z_1 + y_1 y_2 \dots y_n z_2 y_1 y_2 \dots y_n z_2$ (Rank = 2n+2)
- We give poly-time algo that returns small basis or gives obstruction

Top fanin k=3 • $C = T_1 + T_2 + T_3 = \Pi L_i + \Pi M_j + \Pi N_k = 0$ • [AB '99, AKS '02, KS '06] Go modulo! $\Pi L_i + \Pi M_j + \Pi N_k = 0$

$$\prod L_i + \prod M_j + \prod N_k = 0$$
Vanishes! $\longrightarrow \qquad \prod L_i + \prod M_j + \prod N_k = 0 \pmod{L_1}$

$$\prod M_j = -\prod N_k \pmod{L_1}$$

- By unique factorization, there is 1-1 mapping between M's and N's (they are same upto constants)
- This is the L₁ matching.

The L_i matchings

- For every L_i, the M's and N's have a perfect matching
 - Always non-trivial linear combinations

- We iteratively build a basis B.
 - sp(B) is set of forms spanned by B
- Start with $B = \{L_1, M_1\}$

• Start with $B = \{L_1, M_1\}$

- Start with $B = \{L_1, M_1\}$
- Choose L₂ outside sp(B). Add it to B.

- Start with $B = \{L_1, M_1\}$
- Choose L₂ outside sp(B). Add it to B.
 - Update sp(B) and repeat until all forms are spanned
- Rank bound = #rounds + 1

Claim: After every round, # of green M's doubles $M_j = \alpha N_k + \beta L_i \longrightarrow L_i = \beta^{-1} M_j - \beta^{-1} \alpha N_k$

All L_i neighbors of green part are not green

The $\log_2 d$ bound

Claim: After every round, # of green M's doubles

The log₂d bound

Claim: After every round, # of green M's doubles

- Rank bound is (log₂ d + 1)
- Lower bound example has exactly same matching structure (exists for any finite char field)

- $C = T_1 + T_2 + T_3 + T_4 + T_5$
- L \in T₁. So how about C (mod L)? Top fanin is now 4.
- But C(mod L) may not be simple or minimal any more!
- $x_1x_2 + (x_3-x_1)x_2 + (x_4-x_2)x_3 x_3x_4$
- Going (mod x_1), we get $x_2x_3 + (x_4-x_2)x_3 x_3x_4$

The ideal way to Matchings

- We saw the power of matchings for k=3
- We extend matchings to ideal matchings for all k
 - Looking at C modulo an ideal, not just a linear form
- Use these to construct a spanning procedure as before
 - Find some small set of forms not in sp(B), add them to B, continue
 - The number of rounds of this procedure gives the bound

Ideal matchings

- C (mod L₁, L₂, L₃) or C (mod I)
 I is ideal <L₁, L₂, L₃>
- $T_4 + T_5 = 0 \pmod{I}$

By unique factorization, we get I-matching

C (mod L₁, L₂) has no terms

How can we get a matching?

- C (mod I) has gcd part and simple part
- $C = x_1 x_2 + (x_3 x_1) x_2 + (x_4 x_2) x_3 x_3 x_4$
- C (mod x_1) = $x_2 x_3 + (x_4 x_2) x_3 x_3 x_4$
 - So x_3 is gcd(C mod x_1)
 - □ $x_2 + (x_4 x_2) x_4$ is sim(C mod x_1)

- $C = x_1 x_2 + (x_3 x_1) x_2 + (x_4 x_2) x_3 x_3 x_4$
- C (mod x_1) = $x_2 x_3 + (x_4 x_2) x_3 x_3 x_4$
 - So x_3 is gcd(C mod x_1)
 - $x_2 + (x_4 x_2) x_4$ is sim(C mod x_1)

- Let $I = \langle L_1, L_2, L_3 \rangle$
- Piece together gcd portions
- Eventually, we can't even use this, but this gives the right idea

- We want to get ideal I for matching
- Add new form to I, remove gcd (mod I), update sp(B U I), repeat...
- In the end of round, add I to B

The spanning procedure

 $gcd(C \mod L_1)$

The spanning procedure

 $gcd(C \mod L_1)$

The spanning procedure

 $gcd(C \mod L_1)$

- Progress not possible!
- We only have partial matchings mod I

 $\Box \quad | = \langle \mathsf{L}_1, \, \mathsf{L}_2, \, \mathsf{L}_3 \rangle$

Partial matchings

- We only get partial matchings at end of round
 Carefully, we can deal with this
- Rank bound is: k x (# rounds)

- At beginning of round, we have B
- At end, between two terms we have I-matching
- Type 1: Blue parts have different forms
- Type 2: Blue parts have same forms

Counting Type 1 matchings

- In every round, at least two terms are matched
- If there are more than (k² log d) type-1 matchings
 - Pigeonhole argument says one pair (T_i, T_j) is matched more than (log d) times
 - Doubling argument (like k=3) implies that this cannot happen

Counting Type 2 matchings

- This deals with pathological case of same forms getting matched
 - Previous doubling-argument will not work
- That uses a different argument
 - There are at most k of these
- Minimality enters the picture.
 - Algorithmically, we can detect non-minimality

The rank bound

- Thus, #rounds < (k² log d) + k
- Rank bound of: k x (k² log d + k) = O(k³log d).

In conclusion...

- Interesting matching structures in depth 3 identities
 Combinatorial view of algebraic properties
- Can we get poly(k) rank when F = R?
 [Kayal Saraf 2009] get k^k
- What about identity testing for depth 3 circuits? Nothing is known when k is large
 - [DS 2005, KS 2006] use some recursive arguments that get k in exponent
 - Maybe our techniques can get around this...?

