Algebraic Independence and Applications

Nitin Saxena (Hausdorff Center for Mathematics, Bonn)

Joint work with Malte Beecken & Johannes Mittmann (HCM, Bonn)

Contents

- What is algebraic independence?
- The computational problem
- I: A formula lower bound
- II: A notion of entropy
- III: Polynomial identity testing (PIT)
 - Depth-4 PIT
- At the end …

What is algebraic independence?

- Let f_1, \dots, f_m be polynomials in $F[x_1, \dots, x_n]$.
- Definition: $\{f_1, ..., f_m\}$ are called algebraically independent if there is no non-zero polynomial $A \in F[y_1, ..., y_m]$ such that $A(f_1, ..., f_m)=0$.
- Definition: Otherwise the polynomials are algebraically dependent and A is their annihilating polynomial.
- This generalizes the notion of linear independence to higher degree.
- For example, {x₁, x₂} are algebraically independent. While {x₁, x₂, x₁³+x₂²} are not.

The annihilating polynomial here is $(y_1^3+y_2^2-y_3)$.

Transcendence degree

- We can now define a notion of rank.
- Definition: The transcendence degree trdeg{f₁,...,f_m} is the the maximum number of algebraically independent polynomials.
- This word comes from field theory.
 - The field F(f₁,...,f_m) is transcendental over F with degree trdeg{f₁,...,f_m}.
 - Also, trdeg is well defined.

Examples

- As we noticed before $trdeg\{x_1, x_2, x_1^3 + x_2^2\} = 2$.
- trdeg{ x_1 , x_2 - x_1^d , x_2^d } = ?2.
 - The annihilating polynomial is $(y_1^d+y_2)^d-y_3$.
- trdeg{ x_1 , x_2 - x_1^d , x_3 - x_2^d ,..., x_n - x_{n-1}^d , x_n^d } = n.
 - The annihilating polynomial has degree dⁿ.
- Annihilating polynomial can be exponentially large!

Contents

- What is algebraic independence?
- The computational problem
- I: A formula lower bound
- II: A notion of entropy
- III: Polynomial identity testing (PIT)
 - Depth-4 PIT
- At the end …

The computational problem

- Problem 1: Given *explicit* polynomials f₁,...,f_m over a field F.
 Compute their trdeg.
- Problem 2: Same as above but with *circuits* as inputs.
- We would want an *efficient* algorithm in terms of the input size:
 - In Problem 1 it is mainly the sparsity of the f 's.
 - In Problem 2 it is the size of the circuits defining f 's.

Solving by first principles ?

- Given *explicit* polynomials f₁,...,f_m ∈ F[x₁,...,x_n] of degrees at most d.
- An annihilating polynomial could have degree dⁿ, so a direct approach requires exponential time.
- [Perron 1927] The degree is at most dⁿ.
- Thus, using linear-algebra we can produce the annihilating polynomial in PSPACE !

Oskar Perron

- [Kayal '09] showed that computing the annihilating polynomial is #P hard.
- The problem of computing trdeg looks hopeless

Enter geometry – the differentials

Consider the action of *function* f_i on the *tangent space* of F^n . 2

→ i.e., the differential df_i . Eg, $d(x_1^3+x_1x_2)=3x_1^2dx_1+x_1dx_2+x_2dx_1$

→ Fact: $df = (\partial_1 f) dx_1 + ... + (\partial_n f) dx_n$. _____ $\partial_1 (x_1^3 + x_1 x_2) = 3x_1^2 + x_2$

- Do df₁,...,df_m carry enough *information* to determine $trdeg{f_1,...,f_m}$?
- YES!
- (Almost-)Theorem: df₁,...,df_m are linearly independent over $F(x_1,...,x_n)$ iff $\{f_1,...,f_m\}$ are algebraically independent.

Enter geometry – the Jacobian

- Definition: The $m \ x \ n$ matrix $(\partial_j f_i)_{i,j}$ is called the Jacobian $J_x(f_1,...,f_m).$
- Theorem [Jacobi 1841, Us]: If char(F)=0 or $>d^r$ then $rk J_x(f_1,...,f_m) = trdeg\{f_1,...,f_m\}$.
- Proof sketch: Suppose $f_1, ..., f_i$ are algebraically dependent and $A(y_1, ..., y_i)$ annihilates them.
- Expanding the differential d(A(f₁,...,f_i))=0 shows that df₁,...,df_i are linearly dependent.
- Thus, those rows of the Jacobian are dependent.
- Suppose f_1, \dots, f_i are algebraically independent.
- A similar argument shows those rows of the Jacobian independent.

This is trickier & needs char(F) 0 or large.

Carl Gustav Jacob Jacobi

Jacobian saves the day!

- The Jacobian $J_x(f_1,...,f_m):=(\partial_j f_i)_{i,j}$ has as entries n-variate polynomials.
- Why not evaluate these at a random point $\alpha \in F^n$?
- Fact [Schwartz'80, Zippel'79, DeMillo Lipton'78]: With high probability $rk (J_x(f_1,...,f_m)|_{x=\alpha}) = rk J_x(f_1,...,f_m)$.
- Thus, we have a randomized poly-time algorithm for trdeg:
 1 Pick a random point α ∈ Fⁿ.
 - 2 Compute $rk J_x(f_1,...,f_m)|_{x=\alpha}$ by usual linear-algebra.
- This even works when f_1, \dots, f_m are given as circuits, using [Baur Strassen'83, Morgenstern'85].

MORAL: Jacobian linearizes our non-linear problem

Better algorithm ?

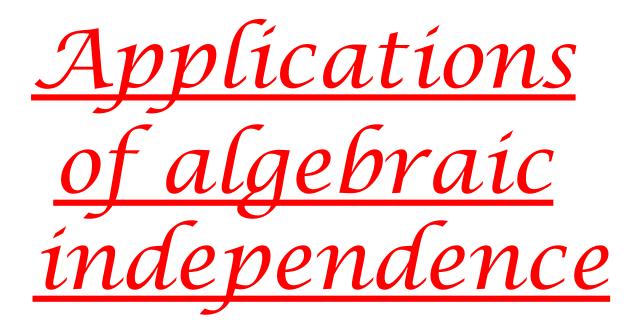
- Could we derandomize the algorithm based on the Jacobian?
- We don't know. But we will now relate it to another derandomization question Graph-matching ∈? NC.
- Lemma 1: A bipartite graph $G = ([n] \cup [n], E)$ has a perfect matching iff $|(E_{ij}x_j^i)_{i,j}| \neq 0$. The monomials are $x_{\Pi(1)}^1 \dots x_{\Pi(n)}^n$ for some matching Π .

■ Lemma(2) $(E_{ij}x_j^i)_{i,j} \neq 0$ iff $\{f_i := E_{i1}x_1^{i+1} + ... + E_{in}x_n^{i+1}\}_i$ are algebraically independent.

The i-th row of $J_x(f_1,...,f_n)$ is a multiple of our row!

Thus, if we could find a hitting-set for the Jacobian then the same hitting-set would put graph-matching in NC!

 α 's such that $rk J_x(f_1,...,f_m)|_{x=\alpha}$ is correct.



Contents

- What is algebraic independence?
- The computational problem
- I: A formula lower bound
- II: A notion of entropy
- III: Polynomial identity testing (PIT)
 Dopth 4 PIT
 - Depth-4 PIT
- At the end …

I: A formula lower bound

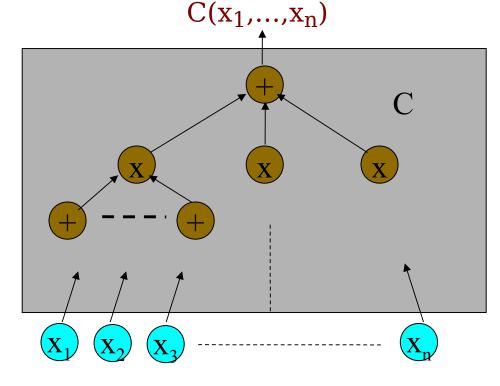
- How small a formula can compute the n x n determinant?
- By computing matrix-powers up to n we can manage in size n^{log n}.
 However, a poly(n) sized circuit suffices!
- Conjecture: Determinant requires a super-polynomial sized formula.
- Theorem [Kalorkoti '85]: $n \ge n$ determinant requires $\Omega(n^3)$ sized formula.
- Proof idea: For a subset X of the variables define trdeg_X(det_n) to be trdeg of the minors wrt variables in X.
- Show that any formula computing det_n has size at least trdeg_X(det_n).

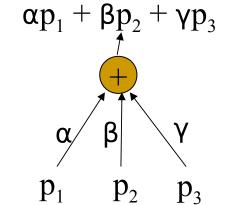
II: A notion of entropy

- Let $f_1,...,f_n \in F_p[x_1,...,x_n]$ be polynomials of degrees $\leq d$.
- Consider the map $G \colon F_p^{\ n} \to F_p^{\ n}$ that maps $x {=} (x_1, ..., x_n) \mapsto (f_1(x), ..., f_n(x)).$
- What is the image of G on the uniform distribution U?
- Theorem [Wooley '96]: If $f_1, ..., f_n$ are algebraically independent and p>2dn, then G(U) is close to a uniform distribution.
- [Dvir Gabizon Wigderson^f ¹07]² ¹0² ¹0²

II: Polynomial identity testing (PIT)

PIT is the problem of testing whether a given arithmetic circuit $C(x_1,...,x_n)$ is identically zero or not.





We want algorithm whose running time is polynomial in size of the circuit.

Randomized poly-time algo exists!

- Blackbox: Cannot look inside C.
- Could only feed values. Hitting-set?

Contents

- What is algebraic independence?
- The computational problem
- I: A formula lower bound
- II: A notion of entropy
- III: Polynomial identity testing (PIT)
 <u>Depth-4 PIT</u>
- At the end …

Depth-4 PIT

- The special case where $C(x_1,...,x_n)$ has at most 4 levels.
- Essentially $C(x_1,...,x_n) = \sum_i \prod_j f_{ij}$, where f_{ij} are explicitly given polynomials in variables $x_1,...,x_n$.
- How easy is PIT for such circuits?
- OPEN, but many partial results are there.
 - [S '08] [Shpilka Volkovich '09] [Karnin Mukhopadhyay Shpilka Volkovich '10] [Arvind Mukhopadhyay '10] [Anderson vanMelkebeek Volkovich '10] [Saraf Volkovich '11] [Saha Saptharishi S '11] [Us '11]....

Sparse polynomials.

Depth-4 PIT : Why care?

- It's a natural algebraic problem!
- [Kabanets Impagliazzo '03] Derandomizing PIT implies circuit lower bounds for permanent.
- Iteintz Schnorr '80, Agrawal '05 '06] Hitting-set implies VP ≠ VNP.
- PIT appears in many algorithms: primality, matching,....
- [Agrawal Vinay '08] Blackbox PIT for depth-4 is almost the general case.
- In particular, it being in P implies VP ≠ VNP

Notion of rank for depth-4 - via trdeg

- Let $C(x_1,...,x_n) = \sum_i \prod_j f_{ij}$, where $f_{ij} \in F[x_1,...,x_n]$.
- **Definition:** Rank $rk(C):=trdeg\{f_{ij}\}_{i,j}$.
- Could we do PIT when rk(C) is small?
- rk(C) is like the minimum number of variables needed to describe the 'essence' of C.
- Intuitively, when rk(C) is constant, blackbox PIT should be doable.

Blackbox PIT for low trdeg

- Idea1: Suppose we can construct a linear homomorphism $\psi: F[x_1,...,x_n] \rightarrow F[y_1,...,y_r]$ such that:
 - Transcendence degrees up to r are preserved.
 - Definition: Call ψ faithful.
- Ψ will map $C(x_1,...,x_n)$ to $C'(y_1,...,y_r):=C(\psi(x_1),...,\psi(x_n)).$
 - Assume r=rk(C).
- Could a non-identity go to an identity ?
- Theorem [Us]: $C(x_1,...,x_n)=0$ iff $C'(y_1,...,y_r)=0$.
 - An application of Krull's Hauptidealsatz.
- Using the faithful map & Schwartz-Zippel we will get a hittingset for any depth-4 C in time poly(size(C)^{trdeg(C)}).

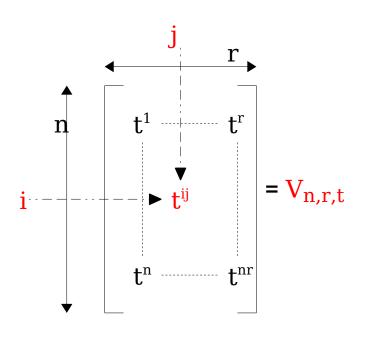
Wolfgang Krull

A faithful map

- We construct several faithful maps....
 - Details too scary to present !
- The key property of Jacobian that helps us:
- $\begin{array}{ll} \bullet & \mbox{Fact: For any homomorphism } \phi \colon F[x_1,...,x_n] \to F[y_1,...,y_r], \\ & J_y(\phi(f_1),...,\phi(f_m)) = \phi(J_x(f_1,...,f_m)) \ . \ J_y(\phi(x_1),...,\phi(x_n)). \end{array}$
 - Easy to prove using the chain-rule of derivatives.
- Design φ such that $J_y(\varphi(x_1),...,\varphi(x_n))$ is *Vandermonde*!
 - And, $\varphi(J_x(f_1,...,f_m))$ is of rank r.

Designing a faithful map

- Vandermonde matrix $V_{n,r,t}$ is in $F(t)^{n \times r}$.
- Think of r≤n.
- Classical fact: V_{n,r,t} has rank r.
- [Gabizon Raz'05] showed a stronger property:



- Theorem [GR'05]: If a matrix A in F^{r x n} has full rank, then A.V_{n,r,t} is an invertible matrix over F(t).
- Thus, $det(A.V_{n,r,t})$ is a *nonzero* polynomial of *degree* at most nk^2 .
- Proof: Do row operations on A and consider the leading term in t.
- We define $\varphi : x_i \mapsto t^{i,1}y_1 + \ldots + t^{i,r}y_r$, for all $i=1,\ldots,n$.

PIT for low trdeg done!

- Recall $J_y(\phi(f_1),...,\phi(f_m)) = \phi(J_x(f_1,...,f_m)) \cdot J_y(\phi(x_1),...,\phi(x_n)).$
- Thus, ϕ is a faithful map.
- I.e. given circuit C with rk(C)=r:
 - $C(x_1,...,x_n)=0 \text{ iff } \phi \circ C(x_1,...,x_n)=0,$
 - And, $\phi \circ C(x_1,...,x_n)$ is r-variate,
- So blackbox PIT can be done in poly(size(C)^r) time.

At the end ...

- Algebraic independence is a fundamental concept.
 - An elegant randomized test works for most fields.
- For small characteristic (like p=2)?
 - A gaping hole in the theory...
 - No better test known than PSPACE.
 - OPEN: Find a randomized poly-time test.
- OPEN: A deterministic poly-time test.
- Do all depth-4 identities arise from low trdeg identities?
 - For real depth-3 identities there are such results.

Thank you!