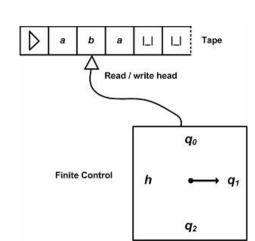
ALGEBRA POWERS COMPUTATION

Nitin Saxena CSE@IITK

IASc Meet @ IISc Bengaluru
July 2023

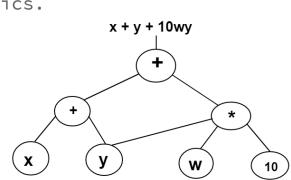


WHAT'S COMPUTING?

❖ Alan Turing (1936) postulated a simple, most general, mathematical model for computing — Turing machine (TM).

- ❖ Algorithm = TM is very much like a program.
 - ➤ TM is a real computer highly iterative & trivial steps.

- ♦ How about an electronic circuit?
 - ➤ Algebraically, it's a neater model to capture real computation.



Turing (1912-1954

VALIANT: ALGEBRAIC CIRCUITS

- Valiant (1977) formalized computation & resources using algebraic circuits.
 - ➤ Giving birth to his VP ≠ VNP question.
 - > Or, the algebraic hardness question!
- ❖ Algebraic circuit has constants/variables, size, depth.
- ❖ My work: Study circuit problems and their properties.
 - > Develop the relevant mathematics.

VNPC

VBP

Leslie Valiant (1949-)

ZERO OR NONZERO: PIT

- - Question: Test whether a given circuit is zero.
 - ➤ Polynomial identity testing (PIT).
 - ♦ OPEN On: Is PIT in deterministic polynomial time?
 - Motivates new tools to study algebraic computation.

- ➤ Tiny circuits Sum-of-squares.

 $\left(a_1^2 + a_2^2 + a_3^2 + a_4^2\right) \left(b_1^2 + b_2^2 + b_3^2 + b_4^2\right)$

➤ Lower bounds (for certain models). Incidence-geometry in identities,

Duality in circuits.

Blackbox algorithms/

Primality testing.

- over all fields.
 - ➤ Higher-dimension rank concepts.
 - ➤ Diagonal depth-3 or 4.
- Bootstrapping in circuits.

 $=\left(a_{1}b_{1}-a_{2}b_{2}-a_{3}b_{3}-a_{4}b_{4}\right)^{2}+\left(a_{1}b_{2}+a_{2}b_{1}+a_{3}b_{4}-a_{4}b_{3}\right)^{2}$

 $+(a_1b_3-a_2b_4+a_3b_1+a_4b_2)^2+(a_1b_4+a_2b_3-a_3b_2+a_4b_1)^2.$

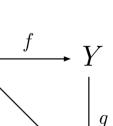
$(X+1)^n \equiv X^n + 1 \bmod n$

ALGEBRAIC ALGORITHMS

COMPUTATIONAL ALGEBRA

 $x = 0 = x \cdot y - 1 \text{ has } \underline{\text{root}} = (\epsilon \to 0, 1/\epsilon \to \infty)$

$$\sqrt{2} = 3 + 1 \times 7 + 2 \times 7^2 + 6 \times 7^3 + \cdots$$
graphs
$$\mathbb{O}\text{-dependence of e and }\pi?$$


$$\mathbb{Q}$$
-depe

$$\mathbb{Q}$$
-dependence of e and π ?

y = f(x)

Tangent at x_0

Tangent at x_1

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = 0$$

on earth since 1859.

Morphism problems in algebras, graphs Roots counting Compute Zeta function analogs
$$X \ -$$

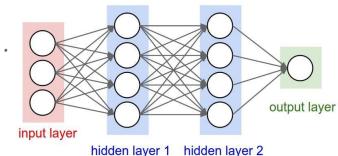
with $S \in \mathbb{C}$ Hardest question

ENGINEERING

CRYPTO & LEARNING


Elliptic Curve

Cryptography


A choice for public-key-cryptography, based on elliptic curves over finite fields $E: y^2 = x^3 + 13$

- Cryptography uses algebra extensively.
 - > Number theory, Curves, Multivariate systems
- AI/Machine Learning do decision-making using circuits.
 - ➤ Artificial Neural Networks (ANN).
- ANN is a specialized algebraic circuit.
- * ANN 13 a specialized algebraic circuit.

www.cse.iitk.ac.in/users/nitin/

