A largish sum-of-squares implies circuit hardness (& derandomization)

Nitin Saxena (CSE@IIT Kanpur, India)

(Ongoing work with Pranjal Dutta & Thomas Thierauf)

July 2020, TIFR Mumbai (virtually)

- Sum-of-Squares (SOS) Representation
- SOS Conjecture
- Algebraic Circuits
- SOS Conjecture => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) Conjecture
- SOC Conjecture => Blackbox PIT
- Conclusion

Sum-of-Squares (SOS) Representation

For a polynomial f over F, the SOS representation is:

- → $f = c_1 f_1^2 + ... + c_t f_t^2$, where $c_i \in F$, $f_i \in F[x_1,...,x_n]$.
- Size is number of monomials $\sum_{i} |\mathbf{f}_{i}|_{0}$.
- Denote the minimal size by support-sum S(f).
- It's a *complete* model, if char $F \neq 2$.
 - Trivially, $S(f) \le 2.|f|_0$.
- For simplicity, consider *univariate* SOS representations (n=1).
- Example: For degree-d univariate f(x), simply use monomials { x^i , $x^{i\sqrt{d}} | 0 \le i \le \sqrt{d}$ }.
 - → (Agrawal'20) $t=2.\sqrt{d}$ many squares suffice for any f.
 - → Overall, expect $S(f) \ge \sqrt{d} \cdot \sqrt{d} = d$.

SOS Representation

- Does there exist degree-d f(x) with $S(f) \ge \Omega(d)$?
 - By dimension-argument it exists!
 - → Assume F=C.
- To be of any help in complexity theory, we have to study SOS for polynomials that are explicit.
 - We would work with several definitions.
 - ➡ Eg. (x+1)^d is `explicit'.

SOS Representation – History

- (1770) Lagrange's 4-squares thm: Integer as SOS of 4 squares.
 - Several such examples in number theory.
 - Pythagorean triples, Fermat's 2-squares, Legendre's 3-squares
- (1900) Hilbert's 17th Problem: Real polynomials as SOS of rational functions?
 - Note: $c_i = 1$.
- (1990s) SOS constraints in convex optimization.
 - Lasserre hierarchy of relaxations in SDP (based on $deg(f_i)$).

- Sum-of-Squares (SOS) Representation
- SOS Conjecture
- Algebraic Circuits
- SOS Conjecture => Circuit hardness
- Blackbox Identity lesting (PIT)
- Sum-of-Cubes (SOC) Conjecture
- SOC Conjecture => Blackbox PIT
- Conclusion

SOS Conjecture

- Defn: A degree-d f(x) is explicit if it's coefficient-function coef(xⁱ)(f) is `easy':
 - Given (i,j) the j-th bit of $coef(x^i)(f)$ is polylog(d)-time.
 - Or, ...is in *#P/poly*.
 - Or, ...is in CH.
- **SOS-Conjecture:** There's an *explicit* f and constant $\varepsilon > 1/2$ with $S(f) > d^{\varepsilon}$.
 - $\epsilon = 1/2$ trivial. Existentially, much stronger property holds.
- There are numerous candidates for f(x):

SOS Conjecture – Comparisons

- This conjecture is quite weak/ incomparable to earlier ones about uni/multi-variate polynomials. As they needed sum-of unbounded-powers (or powerful):
 - (AV'08)..(GKKS'13)..(AGS'18) Hardness for special depth-4/3.
 - (Koiran'10) Tau-conjecture about roots of depth-4 expressions.
 - (KPTT'15) Newton-polygon-Tau-conjecture for sum-of unbounded-powers.
 - (Raz'08) <u>Super-poly</u>-elusive functions eluding degree-2 maps.
- (x+1)^d good candidate for SOS-Conjecture. Not so for the earlier conjectures.
- <u>SOS-Conjecture (n-variate)</u>: There's *explicit* $f(x_1,...,x_n)$ and constant $\epsilon > 1/2$ with $S(f) > \{n+d \text{ choose } n\}^{\epsilon}$.
 - Constant n.

- Sum-of-Squares (SOS) Representation
- SOS Conjecture
- Algebraic Circuits
- SOS Conjecture => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) Conjecture
- SOC Conjecture => Blackbox PIT
- Conclusion

Algebraic Circuits

- Circuit has addition/multiplication gates; connected by wires.
 - Input variables at *leaves* are x_1, \dots, x_n ; output $f(\overline{x})$.
 - size(f) is minimum graph-size of such a circuit.
- (1979) Valiant's Conjecture: $VP \neq VNP$.
 - → VP polynomial-families, poly(n)-degree, poly(n)-size.
 - ✓ VNP exp.sum of VP polynomial-families.
- Reduces to highly-specialized depth-4,3/width-2 questions.
 - ...(VSBR'83)...(AV'08)(R'08)(R'10)...(SSS'09)...(K'11)...(GKKS'13)...(KPTT'15) (KKPS'15)...(AGS'18)...
 - Qn: Does it reduce to a model as weak as SOS(1-var)?
- Goal: Squash circuit to SOS(n-var) with nontrivial property.
 - Else, it won't lift to proving circuit lower bounds.
 - Hint: Few squares, Low-degrees.

Algebraic Circuits – to SOS(n-var)

- (VSBR'83) $\deg(f) \le d$, size(f) \le implies a normal-form:
 - $f = \sum_{i \le s'} f_{i,1} \cdot f_{i,2} \cdot f_{i,3} \cdot f_{i,4} \cdot f_{i,5}$,
 - → where s' ≤ poly(sd) and deg($f_{i,i}$) ≤ d/2.
 - → Imp.: size($f_{i,i}$) ≤ poly(sd) and homogeneous.
- Recursive application (m=constant times) gives: • $f = \sum_{i \le s'} f_{i,1} \dots f_{i,5^m}$, where $s' \le poly(sd)$ and $deg(f_{i,j}) \le d/2^m$.
- Theorem.1: $\delta > 1/2$, deg(f)≤d, size(f)≤s implies f = $\sum_{i \le s'} f_i^2$: → where s'≤ poly(sd) and deg(f_i)≤ δ.d.
- *Pf idea:* Fix $1/2^m \le (\delta 0.5)$. Cluster f_{ij} 's s.t. $d/2 \le \delta \cdot d$.
 - Remaining cluster has deg<d/2. Use 4ab=(a+b)²-(a-b)².

- Sum-of-Squares (SOS) Representation
- SOS Conjecture
- Algebraic Circuits
- SOS Conjecture => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) Conjecture
- SOC Conjecture => Blackbox PIT
- Conclusion

SOS Conjecture => Circuit hardness

- **Theorem.2**: SOS-Conjecture implies $VP \neq VNP$.
- Pf idea: Let conjecture hold for degree-d f(x). Convert f to multilinear, O(n)-variate, degree-n polynomial $F(\overline{y})$.

→ Monomial x^i in f(x) maps to $\phi(x^i) :=$

- $\Pi \{ y_{i,l} \mid l.(k+1)^{j\cdot 1} \text{ contributes in } base_{k+1}(i) \}$.
- $(k+1)^n \ge d+1 > k^n$. So, $n=O(\log d)$. *F* is (k+1)n-variate.
- → Suppose size(F) ≤ d^µ. Thm.1 gives δ_1 s.t.
- $S(F) \le d^{\delta_1} \cdot \{(k+1)n + n\delta \text{ choose } n\delta\}$
- $\leq d^{\delta_1} . (e + e(k+1)/\delta)^{n\delta}$
- $\leq d^{\delta_1} \cdot k^{(n\delta_2)} \leq d^{(\delta_1 + \delta_2)} \leq d^{\varepsilon}$.
- → $S(f) \le S(\phi f) = S(F) \le d^{ε}$ contradicts SOS-Conjecture.
- → Thus, $F \in VNP \& 2^{\Omega(n)}$ -hard.

Dependency-chain on ϵ : $\delta_1, \delta_2, \mu, \delta, k$

- Sum-of-Squares (SOS) Representation
- SOS Conjecture
- Algebraic Circuits
- SOS Conjecture => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) Conjecture
- SOC Conjecture => Blackbox PIT
- Conclusion

Blackbox poly.id.testing (PIT)

- Given circuit $C(x_1, ..., x_n)$ of size s, whether it is zero?
 - In poly(s) many bit operations?
 - Only F = finite field, rationals.
 - Brute-force expansion is as expensive as s^s.
- Randomization gives a practical, *blackbox* solution.
 - Evaluate C(x₁,..., x_n) at a random point in Fⁿ. [P.I.Lemma]
 - Ore 1922), (DeMillo & Lipton 1978), (Zippel 1979), (Schwartz 1980).
- Blackbox PIT is equivalent to designing hitting-set $H \subset F^n$.
 - H contains non-root of each $C(x_1, ..., x_n)$ of size s.
- Appears in many CS contexts (both algos/lower bounds):
 - ...(Lovász'79)(Heintz,Schnorr'79)(Blum,et.al'80)(Babai,et.al'90)(Clausen,et.al'91)(AKS'02) (KI'04)(A'05,'06)(Klivans, Shpilka'06)(DSY'09)(SV'10)(Mulmuley'11,'12,'17)(Kopparty,Saraf, Shpilka'14)(Pandey,S,Sinhababu'16)(Guo,S, Sinhababu'18)....<many more>

Blackbox poly.id.testing (PIT)

- Deterministic PIT algos known only for restricted models.
 - Too diverse to list here...
- PIT exhibits some *amazing* phenomena:
 - → Specific hitting-sets => $VP \neq VNP$. (A'11)(K'11,KP'11).
 - Hitting-sets strongly bootstrap. (AGS'18)(KST'19)(GKSS'19)
 - Exp.hardness => Hitting-sets in QuasiP ($s^{O(\log s)}$). (KI'04)
 - Recall ...reduces to *highly-specialized* depth-4,3/width-2.
- Qn: Could SOS-hardness imply complete PIT?
 - Up to QuasiP implied by Thm.2.
 - Issue with older conjectures that imply VP ≠ VNP.
- We don't know.... [Thm.2/1 are `weak': #Vars? Deg in SOS?]
 - Modify Thm.2/1's proof to connect SOC (sum-of-cubes).

Give only log-var reduction, not O(1)-var

- Sum-of-Squares (SOS) Representation
- SOS Conjecture
- Algebraic Circuits
- SOS Conjecture => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) Conjecture
- SOC Conjecture => Blackbox PIT
- Conclusion

Sum-of-Cubes (SOC) Conjecture

- For a polynomial f over F, the SOC representation is:
 - → $f = c_1 f_1^3 + ... + c_t f_t^3$, where $c_i \in F$, $f_i \in F[x_1, ..., x_n]$.
 - Support-union is distinct monomials $\cup_{i} supp(f_{i})$.
 - Denote the minimal size by support-union U(f,t).
- **SOC-Conjecture:** There's poly(d)-time-*explicit* f and constant $\epsilon' < 1/2$ with U(f,d^{ε'}) ≥ Ω(d).
 - Seems false over $F = \mathbb{C}$, \mathbb{R} . [dim.argument]
 - Instead fix F=Q natural choice for PIT.
 - + (Agrawal'20: False, if $\varepsilon' \ge 1/2$.)

 $x^2+y^2=3$: \mathbb{R} -roots; but no \mathbb{Q} -root.

 $exp(x) = \sum_{i=0}^{d} x^{i}/i!$

- Again, numerous candidates for f(x):
 - → $(x+1)^d$, $\sum_i 2^{i^2} x^i$, $\Pi_i (x+i)$,

- Sum-of-Squares (SOS) Representation
- SOS Conjecture
- Algebraic Circuits
- SOS Conjecture => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) Conjecture
- SOC Conjecture => Blackbox PIT
- Conclusion

SOC Conjecture => Blackbox PIT

- Theorem.3: SOC-Conjecture implies blackbox-PIT in P.
- Pf idea: Let conjecture hold for degree-d f(x). Convert f to O(1)variate, ind-degree-n polynomial $F(\overline{y})$.
 - Monomial x^i in f(x) maps to $\varphi(x^i) :=$
 - $\Pi \{ y_{i}^{1} \mid l.(n+1)^{j-1} \text{ contributes in } base_{n+1}(i) \}$.
 - → $(n+1)^{k} \ge d+1 > n^{k}$. So, $n=O(d^{1/k})$. *F* is k-variate.
 - → Suppose size(*F*) ≤ d^{μ} . Thm.1(SOC), 1/e>δ>1/3, gives δ_1 s.t.
 - $U(F,d^{\delta_1}) \leq \{k + kn\delta \text{ choose } k\}$
 - → $\leq (e+en\delta)^k \leq n^k (2.8/3)^k \leq d.\delta_2 <$ SOC-Conj.
 - Contradicts U(f,d^{ε'})≥ Ω(d).
 - \Rightarrow => F is k=O(1)-variate, ideg-n, poly(n^k)-time-explicit, and
 - → hardness $d^{\mu} \ge n^{\mu k} > \deg(F)^3$.
 - Apply (GKSS'19) for PIT.

Dependency-chain on ε' , δ_{2} :

 $(\delta_1, \mu), (\delta, k)$

- Sum-of-Squares (SOS) Representation
- SOS Conjecture
- Algebraic Circuits
- SOS Conjecture => Circuit hardness
- Blackbox Identity Testing (PIT)
- Sum-of-Cubes (SOC) Conjecture
- SOC Conjecture => Blackbox PIT
- Conclusion

At the end ...

- Largish SOS strong enough for circuit lower bounds.
 - $deg(f_i)$'s restricted below $\hat{O}(d)$.
- SOS falls a *bit short* of derandomization. But, SOC suffices.
 Could we <u>improve</u> this part?
- <u>Qn</u>: Is SOC-conjecture *heuristically* true (over F=Q)?
 Hybrid-Qn for <u>SOS</u>: ε'<1/2<ε with U(f,d^{ε'}) > d^ε ?
 - => Thm.2 works as well!
- <u>Prove</u>: there's constant $\varepsilon > 1/2$ with $S((x+1)^d) > d^{\varepsilon}$, over $F = \mathbb{C}$.

> √d.(log d) ?

