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Sum-of-Squares (SOS) Representation

For a polynomial f over F, the SOS representation is: 
f = c

1
.f

1

2 +...+ c
t
.f

t

2 , where c
i
∈ F, f

i
∈ F[x

1
,...,x

n
] .

Size is number of monomials ∑
i 
|f

i
|
0
 .

Denote the minimal size by support-sum S(f).

It's a complete model, if char F≠2. 
Trivially, S(f) ≤ 2.|f|

0
 . 

For simplicity, consider univariate SOS representations (n=1).

Example: For degree-d univariate f(x), simply use monomials 
{ xi , xi√d | 0≤i≤√d } .

(Agrawal'20) t=2.√d many squares suffice for any f.
Overall, expect S(f)≥ √d.√d = d .
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SOS Representation
Does there exist degree-d f(x) with S(f)≥ Ω(d) ? 

By dimension-argument it exists!
Assume F=ℂ.

To be of any help in complexity theory, we have to study SOS 
for polynomials that are explicit.

We would work with several definitions.
Eg. (x+1)d is `explicit'.
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SOS Representation – History
(1770) Lagrange's 4-squares thm: Integer as SOS of 4 squares.

Several such examples in number theory.
Pythagorean triples, Fermat's 2-squares, Legendre's 3-squares 

(1900) Hilbert's 17th Problem: Real polynomials as SOS of rational 
functions? 

Note: c
i
=1.

(1990s) SOS constraints in convex optimization.
Lasserre hierarchy of relaxations in SDP (based on deg(f

i
)).
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SOS Conjecture
Defn: A degree-d f(x) is explicit if it's coefficient-function 
coef(xi)(f) is `easy':

Given (i,j) the j-th bit of coef(xi)(f) is polylog(d)-time.
Or, ...is in #P/poly.
Or, ...is in CH.

SOS-Conjecture: There's an explicit f and constant ε>1/2 
with S(f)> dε.

ε=1/2 trivial. Existentially, much stronger property holds.

There are numerous candidates for f(x):
(x+1)d 

∑
i 
2i^2 xi 

Π
i 
(x+i) 

extremely small 
circuit complexity! Yet useful?

∑
i 
2i xi   is not a candidate!

exp(x)
≤d

 := ∑d

i=0
xi/i! 
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SOS Conjecture – Comparisons
This conjecture is quite weak/ incomparable to earlier ones 
about uni/multi-variate polynomials. As they needed sum-of 
unbounded-powers (or powerful):

(AV'08)..(GKKS'13)..(AGS'18) Hardness for special depth-4/3.
(Koiran'10) Tau-conjecture about roots of depth-4 expressions.
(KPTT'15) Newton-polygon-Tau-conjecture for sum-of 
unbounded-powers.
(Raz'08) Super-poly-elusive functions eluding degree-2 maps.

(x+1)d  good candidate for SOS-Conjecture. Not so for the 
earlier conjectures.

SOS-Conjecture (n-variate): There's explicit f(x
1
,...,x

n
) and 

constant ε>1/2 with S(f)> {n+d choose n}ε .
Constant n.
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Algebraic Circuits
Circuit has addition/multiplication gates; connected by wires. 

Input variables at leaves are x
1
,...,x

n
 ; output f(x).

size(f) is minimum graph-size of such a circuit. 

(1979) Valiant's Conjecture: VP ≠ VNP .
VP – polynomial-families, poly(n)-degree, poly(n)-size.  
VNP – exp.sum of VP polynomial-families. 

Reduces to highly-specialized depth-4,3/width-2 questions.
...(VSBR'83)...(AV'08)(R'08)(R'10)...(SSS'09)...(K'11)...(GKKS'13)...(KPTT'15)
(KKPS'15)...(AGS'18)...

Qn: Does it reduce to a model as weak as SOS(1-var)?

Goal: Squash circuit to SOS(n-var) with nontrivial property.
Else, it won't lift to proving circuit lower bounds.
Hint: Few squares, Low-degrees.
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Algebraic Circuits – to SOS(n-var)
(VSBR'83) deg(f)≤d , size(f)≤s implies a normal-form:

f = ∑
i≤s'  

f
i,1

.f
i,2

.f
i,3

.f
i,4

.f
i,5

 , 

where s'≤ poly(sd) and deg(f
i,j
)≤ d/2.

Imp.: size(f
i,j
)≤ poly(sd) and homogeneous.

Recursive application (m=constant times) gives: 
f = ∑

i≤s'  
f

i,1 
... f

i,5^m
 , where s'≤ poly(sd) and deg(f

i,j
)≤ d/2m.

Theorem.1: δ>1/2, deg(f)≤d, size(f)≤s implies f = ∑
i≤s' 

f
i
2 : 

where s'≤ poly(sd) and deg(f
i
)≤ δ.d .

Pf idea: Fix 1/2m ≤ (δ-0.5). Cluster f
i,j
's s.t. d/2<deg≤ δ.d .

Remaining cluster has deg<d/2. Use 4ab=(a+b)2-(a-b)2.    ❏
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SOS Conjecture => Circuit hardness
Theorem.2: SOS-Conjecture implies VP ≠ VNP.

Pf idea: Let conjecture hold for degree-d f(x). Convert f to  
multilinear, O(n)-variate, degree-n polynomial F(y).

Monomial xi in f(x) maps to φ(xi) := 
                    Π{ y

j,l
 | l.(k+1)j-1 contributes in base

k+1
(i) } .

(k+1)n ≥ d+1 > kn . So, n=O(log d). F is (k+1)n-variate.
Suppose size(F)≤ dμ . Thm.1 gives δ

1
 s.t.

S(F)≤ d^δ
1
.{(k+1)n + nδ choose nδ} 

      ≤ d^δ
1 
.(e+e(k+1)/δ)nδ 

      ≤ d^δ
1 
.k^(nδ

2
)   ≤ d^(δ

1
+δ

2
)     ≤ dε .

S(f)≤ S(φf)= S(F)≤ dε   contradicts SOS-Conjecture.
Thus, F∈ VNP &  2Ω(n)-hard. ❏

Dependency-chain on ε: 
δ

1
, δ

2
, μ, δ, k
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Blackbox poly.id.testing (PIT)
Given circuit C(x1 ,..., xn) of size s, whether it is zero?

In poly(s) many bit operations?
Only F = finite field, rationals. 
Brute-force expansion is as expensive as ss.

Randomization gives a practical, blackbox solution.
Evaluate C(x1 ,..., xn) at a random point in Fn. [P.I.Lemma]
(Ore 1922), (DeMillo & Lipton 1978), (Zippel 1979), (Schwartz 1980).

Blackbox PIT is equivalent to designing hitting-set H ⊂ Fn.
H contains non-root of each C(x1 ,..., xn) of size s. 

Appears in many CS contexts (both algos/lower bounds):
...(Lovász'79)(Heintz,Schnorr'79)(Blum,et.al'80)(Babai,et.al'90)(Clausen,et.al'91)(AKS'02)
(KI'04)(A'05,'06)(Klivans, Shpilka'06)(DSY'09)(SV'10)(Mulmuley'11,'12,'17)(Kopparty,Saraf, 
Shpilka'14)(Pandey,S,Sinhababu'16)(Guo,S, Sinhababu'18)....<many more><many more>
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Blackbox poly.id.testing (PIT)
Deterministic PIT algos known only for restricted models. 

Too diverse to list here...

PIT exhibits some amazing phenomena:
Specific hitting-sets => VP ≠ VNP. (A'11)(K'11,KP'11).
Hitting-sets strongly bootstrap. (AGS'18)(KST'19)(GKSS'19)

Exp.hardness => Hitting-sets in QuasiP (sO(log s)).  (KI'04)

Recall …reduces to highly-specialized depth-4,3/width-2.

Qn: Could SOS-hardness imply complete PIT?
Up to QuasiP implied by Thm.2. 
Issue with older conjectures that imply VP ≠ VNP.

We don't know.... [Thm.2/1 are `weak': #Vars? Deg in SOS?]
Modify Thm.2/1's proof to connect SOC (sum-of-cubes).

Give only log-var 
reduction, not O(1)-var
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Sum-of-Cubes (SOC) Conjecture
For a polynomial f over F, the SOC representation is: 

f = c
1
.f

1

3 +...+ c
t
.f

t

3 , where c
i
∈ F, f

i
∈ F[x

1
,...,x

n
] .

Support-union is distinct monomials ∪
i 
supp(f

i
) .

Denote the minimal size by support-union U(f,t).

SOC-Conjecture: There's poly(d)-time-explicit f and constant 
ε'<1/2 with U(f,dε')≥ Ω(d).

Seems false over F=ℂ, ℝ. [dim.argument]
Instead fix F=ℚ – natural choice for PIT. 
(Agrawal'20: False, if ε'≥1/2.)

Again, numerous candidates for f(x):
(x+1)d , ∑

i 
2i^2 xi  , Π

i 
(x+i) , ....

exp(x)
≤d

 := ∑d

i=0
xi/i! 

x2+y2=3: ℝ-roots; but no ℚ-root.
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SOC Conjecture => Blackbox PIT
Theorem.3: SOC-Conjecture implies blackbox-PIT in P. 

Pf idea: Let conjecture hold for degree-d f(x). Convert f to O(1)-
variate, ind-degree-n polynomial F(y).

Monomial xi in f(x) maps to φ(xi) := 
                    Π{ y

j
l | l.(n+1)j-1 contributes in base

n+1
(i) } .

(n+1)k ≥ d+1 > nk . So, n=O(d1/k). F is k-variate.
Suppose size(F)≤ dμ . Thm.1(SOC), 1/e>δ>1/3, gives δ

1
 s.t.

U(F,d^δ
1
)≤ {k + knδ choose k} 

      ≤ (e+enδ)k    ≤ nk.(2.8/3)k   ≤ d.δ
2
    < SOC-Conj.

Contradicts U(f,dε')≥ Ω(d).
=>   F is k=O(1)-variate, ideg-n, poly(nk)-time-explicit, and
hardness dμ ≥ nμk > deg(F)3 .
Apply (GKSS'19) for PIT.  ❏

Dependency-chain on ε', δ
2
: 

(δ
1
,μ), (δ,k)
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At the end …
Largish SOS strong enough for circuit lower bounds.

deg(f
i
)'s restricted below Ṍ(d).

SOS falls a bit short of derandomization. But, SOC suffices.
Could we improve this part?

Qn: Is SOC-conjecture heuristically true (over F=ℚ)? 
Hybrid-Qn for SOS: ε'<1/2<ε with U(f,dε') > dε ?
=> Thm.2 works as well!

Prove: there's constant ε>1/2 with S((x+1)d)> dε , over F=ℂ. 

Thank you!

 > √d.(log d) ?
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