Efficient Polynomial Factoring Modulo p⁴

Nitin Saxena (CSE@IIT Kanpur, India)

with Ashish Dwivedi & Rajat Mittal

2019, ISSAC, Beihang University, China

- The problem
- Importance
- Prior work
- Our work
- Proof ideas
- Conclusion

The problem

- Input: Integral polynomial f(x) and prime-power p^k (in bits).
- Output: Nontrivial factor g(x) of f(x) mod p^k (if one exists).
- We want a *practical* algorithm.
 With time-complexity poly(deg(f), k.log p).
 Brute-force: Search for all g(x).
 Takes time >> p^{k.deg(f)}.
 OPEN: Can something better be done?
 Obstacle: Number of factors g(x) could be really huge!
 Loss of unique factorization when k>1.

- The problem
- Importance
- Prior work
- Our work
- Proof ideas
- Conclusion

Importance

- Factoring is a <u>fundamental</u> problem in computation.
 - Special case of root finding is equally important.
- Factoring mod p : Is the most important case.
 - Case of rationals, number fields, finite fields rely on it.
- Factoring mod p^k : Is the natural next case to tackle.
 - Case of p-adic fields,
 - Galois rings, formal power series rely on it.
- Factoring mod n : Strongly related to the above & integer factoring!

- The problem
- Importance
- Prior work
- Our work
- Proof ideas
- Conclusion

Prior work

- For large k, (von zur Gathen, Hartlieb '96; Cheng,Labahn '01) gave a fast algorithm.
 - k > valuation of discriminant of f.
- Related case is that of p-adic factoring. It was solved by (Chistov '87; Cantor,Gordon '00).
- Small k case is notorious. Only k=2 solved by (Sălăgean '05).
 - k=3 studied by (Sircana '17), but algorithm question left open.
- Hard to connect factors with "roots" mod p^k, for small k>1.
- Foundational case k=1, has celebrated algorithms via roots;
 eg. (Berlekamp '67; Cantor,Zassenhaus '81).

Prior work

On the other hand, root finding has practical solutions known.

- (Berthomieu,Lecerf,Quintin '13) could find, and count, roots mod p^k.
- (Cheng,Gao,Rojas,Wan '18) count roots in deterministic poly(2^k, ...) time.
- (Dwivedi,Mittal,S. '19) count roots in deterministic poly-time.
- This allows computing Igusa's local zeta function of univariate polynomials.
- other applications in p-adic computation, coding theory, etc.

- The problem
- Importance
- Prior work
- Our work
- Proof ideas
- Conclusion

Our work

- We factor f(x) mod p⁴ in randomized poly(deg(f), log p) time.
 - Or, output that $f(x) \mod p^4$ is irreducible.
- Such methods were unknown before.
- Rough idea:

We connect factors of $f(X) \mod p^4$ to "roots" in the ring $\mathbb{Z}[x]/\langle p^4, x^l \rangle$.

- The problem
- Importance
- Prior work
- Our work
- Proof ideas
- Conclusion

Proof idea -- factoring to root-finding

- Hensel lifting reduces f(x) to $\varphi(x)^e \mod p^4$,
 - where φ is an *irreducible* mod p.
- So, find factors $h(x) =: \phi^a py$, for $a \le e/2$.
 - y is the unknown.
- Inspires the cofactor calculation :
 - $g(x) := f / (\phi^a py) = (f/\phi^a) \cdot (1 py/\phi^a)^{-1}$
 - $= [f/\phi^{4a}].[\phi^{3a} + (py).\phi^{2a} + (py)^2.\phi^a + (py)^3] \mod p^4$ =: [E(y) / ϕ^{4a}] mod p⁴.
- ⇒ Need roots of E(y) in the ring Z[x]/<p⁴, $φ^{4a}$ >.

Proof idea-- root-finding mod principal ideal

- $E(y) := f.[\phi^{3a} + (py).\phi^{2a} + (py)^2.\phi^a + (py)^3] \text{ over}$ $\mathbb{Z}[x]/\langle p^4, \phi^{4a} \rangle.$
- Idea: Work in characteristic p.
 - Write $y =: y_0 + py_1 + p^2y_2 + p^3y_3$.
 - y_i 's in $F_p[x]/\langle \phi^{4a} \rangle$.
 - + $y_{_2}$, $y_{_3}$ play no role mod $< p^4$, $\phi^{4a} >$.
- Also, $E(y) \in \langle p^2, \phi^{4a} \rangle$.
- First, solve $E(y_0 + py_1) / p^2 \in \langle p, \phi^{4a} \rangle$.
- Next, solve $E(y_0 + py_1) / p^3 \in \langle p, \phi^{4a} \rangle$.

Proof idea-- finding those roots

• $E(y_0 + py_1) / p^2 \mod \langle p, \phi^{4a} \rangle$ is free of y_1 .

- Solve y_0 using (Berthomieu, Lecerf, Quintin '13).

- $E' := E(y_0 + py_1) / p^3 \mod \langle p, \phi^{4a} \rangle$ is linear in y_1 . • Next, solve y_1 modifying (Berthomieu,Lecerf,Quintin '13).
- In the details, we use the fact that:
 coefficient of y₁ in E' is linear in y₀.

- The problem
- Importance
- Prior work
- Our work
- Proof ideas
- Conclusion

At the end ...

- Mod p³ & Mod p⁴, we give the first randomized poly-time algorithms for factoring.
- Open : For higher k, randomized subexp-time algorithm ?
- The new methods hold promise ...

