Efficient Polynomial Factoring Modulo p*

Nitin Saxena (CSE@IIT Kanpur, India)

with Ashish Dwivedi & Rajat Mittal

2019, I1SSAC, Beihang University, China

Contents

*» The problem
s |mportance
s Prior work

s Qur work

s Proof ideas

s Conclusion

The problem

s |nput: Integral polynomial f(x) and prime-power p* (in bits).
s Qutput: Nontrivial factor g(x) of f(x) mod p* (if one exists).

s« We want a practical algorithm.
+~ With time-complexity poly(deqg(f), k.log p) .

s Brute-force: Search for all g(x).
~ Takes time >> p*de9l

s OPEN: Can something better be done?

s QObstacle: Number of factors g(x) could be really huge!
+ | oss of unique factorization when k>1.

Contents

s The problem
s |mportance
s Prior work

s Qur work

s Proof ideas

s Conclusion

Importance

4

Factoring is a fundamental problem in computation.
= Special case of root finding is equally important.

Factoring mod p : Is the most important case.
= Case of rationals, number fields, finite fields rely on it.

Factoring mod p“: Is the natural next case to tackle.
- Case of p-adic fields,
= (Galois rings, formal power series rely on it.

Factoring mod n : Strongly related to the above & integer
factoring!

Contents

s The problem
s |mportance
* [Prior work
s Qur work

s Proof ideas

s Conclusion

Prior work

s For large Kk, (von zur Gathen, Hartlieb '96; Cheng,Labahn '01) gave a
fast algorithm.
-~ Kk > valuation of discriminant of f.

s Related case is that of p-adic factoring. It was solved by
(Chistov '87; Cantor,Gordon '00).

s Small k case is notorious. Only k=2 solved by (Salagean '05).
+ k=3 studied by (Sircana '17), but algorithm question left open.

s Hard to connect factors with “roots” mod p*, for small k>1.

s Foundational case k=1, has celebrated algorithms via roots;
€(d. (Berlekamp '67; Cantor,Zassenhaus '81) .

Prior work

s On the other hand, root finding has practical solutions known.
= (Berthomieu,Lecerf,Quintin '13) could find, and count, roots mod p*.
+ (Cheng,Gao,Rojas,Wan '18) count roots in deterministic
poly(2“, ...) time.

+ (Dwivedi,Mittal,S. '19) count roots in deterministic poly-time.

+ This allows computing Igusa's local zeta function of univariate
polynomials.

~ other applications in p-adic computation, coding theory, etc.

Contents

s The problem
s |mportance
s Prior work

s Our work

s Proof ideas

s Conclusion

Our work

s We factor f(x) mod p* in randomized poly(deg(f), log p)
time.
=~ Or, output that f(x) mod p* is irreducible.

s Such methods were unknown before.
s Rough idea:

We connect factors of f(X) mod p* to “roots” in the ring
Z[x]/<p*, x> .

10

Contents

s The problem
s |mportance
s Prior work
s Qur work

* Proof ideas

s Conclusion

11

Prooft idea-- factoring to rvor-tinding

s Hensel lifting reduces f(x) to @(x)¢ mod p*,
= where @ is an irreducible mod p.

s 8o, find factors h(x) =: ¢° - py ,fora = e/2 .
+~ Y is the unknown.

s |nspires the cofactor calculation :

= g(x) := /(97 - py) = (f/¢°).(1 - py/e?)*

= =[fle*LIe* + (py).0** + (py)~.9" + (py)’] mod p*
: [E(y) / @*] mod p*.

=

s = Need roots of E(y) in the ring Z[x]/<p*, ¢**> .

12

Proof idea-- root-finding mod principal 1deal

s E(y) :=f[9*® + (py).0?® + (py)°.0% + (py)’] over
Z[x]/<p?, ¢**>.

= ldea: Work in characteristic p.
- Write y =:y_+ py, + p’y, + p’y, .
= y'sinF [x]/<¢@*>.
= Y, , Y, play no role mod <p*, ¢**> .

E

Also, E(y) € <p?, ¢**> .

E

First, solve E(y, + py,) / p° € <p, ¢**> .

E

Next, solve E(y, + py.) / p’ € <p, ¢**> .

13

Proof idea-- finding those roots

s E(y, + py,) /p® mod <p, ¢*> is free of y_ .
- Solve y using (Berthomieu,Lecerf,Quintin "13).

s E':=E(y, + py,) / p® mod <p, ¢*>islineariny. .
- Next, solve y. modifying (Berthomieu,Lecerf,Quintin "13).

s |n the details, we use the fact that:
- coefficientof y_in E'islineariny .

14

Contents

s The problem
s |mportance
s Prior work

s Qur work

s Proof ideas

s GConclusion

15

At the end .

Mod p’® & Mod p*, we give the first randomized poly-time
algorithms for factorlng

s QOpen : For higher k, randomized subexp-time algorithm ?

s The new methods hold promise ...

16

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

