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The problem
Input: Integral polynomial f(x) and  prime-power pk (in bits). 

Output: Nontrivial factor g(x) of f(x) mod pk (if one exists).

We want a practical algorithm.
With time-complexity poly(deg(f), k.log p) .

Brute-force: Search for all g(x).
Takes time >> pk.deg(f) .

OPEN: Can something better be done?

Obstacle: Number of factors g(x) could be really huge!
Loss of unique factorization when k>1. 

Mod p2

 
Eg 1. x2 + px

Eg 2. x2 + p
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Importance
Factoring is a fundamental problem in computation.

Special case of root finding is equally important.

Factoring mod p : Is the most important case.
Case of rationals, number fields, finite fields rely on it.

Factoring mod pk : Is the natural next case to tackle.
Case of p-adic fields, 
Galois rings, formal power series rely on it.

Factoring mod n : Strongly related to the above & integer 
factoring! 
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Prior work
For large k, (von zur Gathen, Hartlieb '96; Cheng,Labahn '01) gave a 
fast algorithm.

k > valuation of discriminant of f.

Related case is that of p-adic factoring. It was solved by 
(Chistov '87; Cantor,Gordon '00).  

Small k case is notorious. Only k=2 solved by (Sӑlӑgean '05).
k=3 studied by (Sircana '17), but algorithm question left open.

Hard to connect factors with “roots” mod pk, for small k>1.

Foundational case k=1, has celebrated algorithms via roots; 
eg. (Berlekamp '67; Cantor,Zassenhaus '81) .
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Prior work
On the other hand, root finding has practical solutions known.

(Berthomieu,Lecerf,Quintin '13) could find, and count, roots mod pk.
(Cheng,Gao,Rojas,Wan '18) count roots in deterministic 
poly(2k , ...) time.
(Dwivedi,Mittal,S. '19) count roots in deterministic poly-time.

This allows computing Igusa's local zeta function of univariate 
polynomials.

other applications in p-adic computation, coding theory, etc.
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Our work
We factor f(x) mod p4 in randomized poly(deg(f), log p) 
time.

Or, output that f(x) mod p4 is irreducible.

Such methods were unknown before.

Rough idea: 
We connect factors of f(X) mod p4 to “roots” in the ring 
ℤ[x]/≺p4,xƖ≻ .
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Proof idea-- factoring to root-finding
Hensel lifting reduces f(x) to  φ(x)e  mod p4, 

where φ is an irreducible mod p.

So, find factors h(x) =: φa – py , for a ≤ e/2 .
y is the unknown.

Inspires the cofactor calculation :
g(x) := f / (φa – py) = (f/φa).(1 – py/φa)-1 
     = [f/φ4a].[φ3a + (py).φ2a + (py)2.φa + (py)3 ] mod p4

     =: [ E(y) / φ4a ] mod p4 .

⇒ Need roots of E(y) in the ring ℤ[x]/≺p4, φ4a≻ .
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Proof idea-- root-finding mod principal ideal

E(y) := f.[φ3a + (py).φ2a + (py)2.φa + (py)3 ] over 
                                                        ℤ[x]/≺p4, φ4a≻.

Idea: Work in characteristic p. 
Write y =: y

0
 + py

1
 + p2y

2
 + p3y

3
 .

y
i
's in F

p
[x]/≺φ4a≻ .

y
2
 , y

3
 play no role mod ≺p4, φ4a≻ .

Also,  E(y) ∈ ≺p2, φ4a≻ .

First, solve E(y
0
 + py

1
) / p2 ∈ ≺p, φ4a≻ .

Next, solve E(y
0
 + py

1
) / p3 ∈ ≺p, φ4a≻ .
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Proof idea--  finding those roots
E(y

0
 + py

1
) / p2  mod ≺p, φ4a≻ is free of y

1
 .

Solve y
0
 using (Berthomieu,Lecerf,Quintin '13).

E' := E(y
0
 + py

1
) / p3  mod ≺p, φ4a≻ is linear in y

1
 .

Next, solve y
1
 modifying (Berthomieu,Lecerf,Quintin '13).

In the details, we use the fact that: 
coefficient of y

1
 in E' is linear in y

0 
.
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At the end …
Mod p3 & Mod p4, we give the first randomized poly-time 
algorithms for factoring.

Open : For higher k, randomized subexp-time algorithm ?

The new methods hold promise ...

Thank you!
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