
Efficient Polynomial Factoring Modulo p4

Nitin Saxena (CSE@IIT Kanpur, India)

with Ashish Dwivedi & Rajat Mittal

2019, ISSAC, Beihang University, China

2

Contents

The problem

Importance

Prior work

Our work

Proof ideas

Conclusion

3

The problem
Input: Integral polynomial f(x) and prime-power pk (in bits).

Output: Nontrivial factor g(x) of f(x) mod pk (if one exists).

We want a practical algorithm.
With time-complexity poly(deg(f), k.log p) .

Brute-force: Search for all g(x).
Takes time >> pk.deg(f) .

OPEN: Can something better be done?

Obstacle: Number of factors g(x) could be really huge!
Loss of unique factorization when k>1.

Mod p2

Eg 1. x2 + px

Eg 2. x2 + p

4

Contents

The problem

Importance

Prior work

Our work

Proof ideas

Conclusion

5

Importance
Factoring is a fundamental problem in computation.

Special case of root finding is equally important.

Factoring mod p : Is the most important case.
Case of rationals, number fields, finite fields rely on it.

Factoring mod pk : Is the natural next case to tackle.
Case of p-adic fields,
Galois rings, formal power series rely on it.

Factoring mod n : Strongly related to the above & integer
factoring!

6

Contents

The problem

Importance

Prior work

Our work

Proof ideas

Conclusion

7

Prior work
For large k, (von zur Gathen, Hartlieb '96; Cheng,Labahn '01) gave a
fast algorithm.

k > valuation of discriminant of f.

Related case is that of p-adic factoring. It was solved by
(Chistov '87; Cantor,Gordon '00).

Small k case is notorious. Only k=2 solved by (Sӑlӑgean '05).
k=3 studied by (Sircana '17), but algorithm question left open.

Hard to connect factors with “roots” mod pk, for small k>1.

Foundational case k=1, has celebrated algorithms via roots;
eg. (Berlekamp '67; Cantor,Zassenhaus '81) .

8

Prior work
On the other hand, root finding has practical solutions known.

(Berthomieu,Lecerf,Quintin '13) could find, and count, roots mod pk.
(Cheng,Gao,Rojas,Wan '18) count roots in deterministic
poly(2k , ...) time.
(Dwivedi,Mittal,S. '19) count roots in deterministic poly-time.

This allows computing Igusa's local zeta function of univariate
polynomials.

other applications in p-adic computation, coding theory, etc.

9

Contents

The problem

Importance

Prior work

Our work

Proof ideas

Conclusion

10

Our work
We factor f(x) mod p4 in randomized poly(deg(f), log p)
time.

Or, output that f(x) mod p4 is irreducible.

Such methods were unknown before.

Rough idea:
We connect factors of f(X) mod p4 to “roots” in the ring
ℤ[x]/≺p4,xƖ≻ .

11

Contents

The problem

Importance

Prior work

Our work

Proof ideas

Conclusion

12

Proof idea-- factoring to root-finding
Hensel lifting reduces f(x) to φ(x)e mod p4,

where φ is an irreducible mod p.

So, find factors h(x) =: φa – py , for a ≤ e/2 .
y is the unknown.

Inspires the cofactor calculation :
g(x) := f / (φa – py) = (f/φa).(1 – py/φa)-1
 = [f/φ4a].[φ3a + (py).φ2a + (py)2.φa + (py)3] mod p4

 =: [E(y) / φ4a] mod p4 .

⇒ Need roots of E(y) in the ring ℤ[x]/≺p4, φ4a≻ .

13

Proof idea-- root-finding mod principal ideal

E(y) := f.[φ3a + (py).φ2a + (py)2.φa + (py)3] over
 ℤ[x]/≺p4, φ4a≻.

Idea: Work in characteristic p.
Write y =: y

0
 + py

1
 + p2y

2
 + p3y

3
 .

y
i
's in F

p
[x]/≺φ4a≻ .

y
2
 , y

3
 play no role mod ≺p4, φ4a≻ .

Also, E(y) ∈ ≺p2, φ4a≻ .

First, solve E(y
0
 + py

1
) / p2 ∈ ≺p, φ4a≻ .

Next, solve E(y
0
 + py

1
) / p3 ∈ ≺p, φ4a≻ .

14

Proof idea-- finding those roots
E(y

0
 + py

1
) / p2 mod ≺p, φ4a≻ is free of y

1
 .

Solve y
0
 using (Berthomieu,Lecerf,Quintin '13).

E' := E(y
0
 + py

1
) / p3 mod ≺p, φ4a≻ is linear in y

1
 .

Next, solve y
1
 modifying (Berthomieu,Lecerf,Quintin '13).

In the details, we use the fact that:
coefficient of y

1
 in E' is linear in y

0
.

15

Contents

The problem

Importance

Prior work

Our work

Proof ideas

Conclusion

16

At the end …
Mod p3 & Mod p4, we give the first randomized poly-time
algorithms for factoring.

Open : For higher k, randomized subexp-time algorithm ?

The new methods hold promise ...

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

