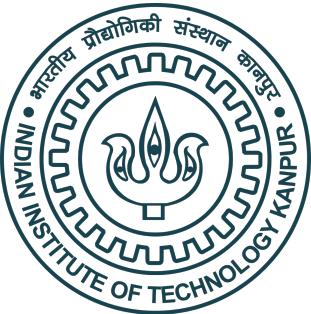


Efficiently computing Igusa's local-zeta function

Nitin Saxena (CSE@IIT Kanpur, India)

(ANTS-XIV'20 ; with Ashish Dwivedi)

Indo-European Maths Conference
Jan 2026, SPPU & IISER Pune



Contents

- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- Compute Poincaré Series
- Conclusion

Zeta functions

E.g. Ramanujan *tau-function*
 $t \cdot \prod_{m \geq 1} (1-t^m)^{24}$

- For function N_k there's **generating-function** $G(t) := \sum_{k \geq 0} N_k t^k$.
 - This carries comprehensive information about N_k .
 - Eg. the **growth** of N_k decides how the **power-series** converges.
- **Riemann zeta-fn**: $\zeta(s) = \sum_{k \geq 1} 1/k^s$.
 - What's it encoding?
- Inspired many other *zeta functions*:
 - **Selberg** zeta fn of a manifold
 - **Ruelle** zeta fn of a dynamical system
 - **Ihara** zeta fn of a graph
- **Local-zeta** functions (based on a prime p):
 - **Hasse-Weil** zeta fn
 - **Igusa** local-zeta fn

PRIMES

Riemann 1826-66

Cycles
Geodesics, Orbits,

◦ ◦ ◦

To count points

Galois field vs ring
 Z/p^kZ

Contents

- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- Compute Poincaré Series
- Conclusion

Igusa's local-zeta function

- Let \mathbb{Z}_p denote p -adic integers.
 - Elements are $\sum_{i \geq 0} a_i p^i$ ($a_i \in [0, p-1]$) .
- Let $f = f(x_1, \dots, x_n)$ be n -variate integral polynomial.

infinite sum

- Defn. 1: Igusa's local-zeta fn $Z_{f,p}(s) = \int_{(\mathbb{Z}_p)^n} |f(\mathbf{x})|_p^s \cdot |\mathbf{d}\mathbf{x}|$.
 - Integrate using p -adic metric and Haar measure.
- This converges to a rational function in $\mathbb{Q}(p^s)$.
 - (Igusa'74) by resolving singularities.
 - (Denef'84) by p -adic cell decomposition.
- Counts roots $f(\mathbf{x}) \bmod p^k$ & 'multiplies' by p^{-ks} .
- So, we can give an easier definition:

For all k

Igusa's local-zeta function

Two Defns: Analytic
vs Discrete

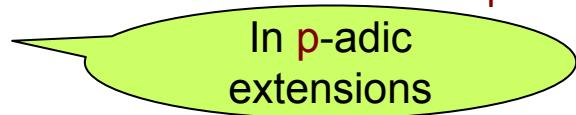
- Define $N_k(f) := \# \text{ roots of } f(x) \bmod p^k$.
- Defn.2: Poincaré Series $P_{f,p}(t) = \sum_{k \geq 0} N_k(f)/p^{nk} \cdot t^k$.
 - Eg. $P_{0,p}(t) = \sum_{k \geq 0} t^k = 1/(1-t)$.
 - (Igusa'74) connected them at $t=p^{-s}$: $P(t) \cdot (1-t) = 1 - t \cdot Z(s)$.
- (Igusa'74) $P_{f,p}(t)$ converges to a rational function in $Q(t)$.
- This means that $N_k(f)$ is rather *special* !
 - Generally, power-series don't converge in $Q(t)$.
 - Eg. $\sum_{k \geq 0} (1/k!) \cdot t^k$ is *irrational* !
- Convergence proofs are quite *non-explicit*.
 - What do we learn about $N_k(f)$, for small k ?

Contents

- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- Compute Poincaré Series
- Conclusion

Algorithmic questions

- **Qn:** Could $N_k(f)$ be computed efficiently?
- Trivially, in p^{kn} time.
 - Much faster *unlikely*.
 - It's *NP-hard*; even Permanent-hard !
- Could $N_k(f)$ be computed efficiently, for **univariate** $f(x)$?
 - **Qn:** In $\text{poly}(\deg(f), \log p^k)$ time?
- Or, try to compute the analytic-integral defining $Z_{f,p}(s)$.
- (Chistov'87) gave a *randomized* algorithm to factor $f(x)$ over Z_p .
 - Using this one could factor f into roots,
 - and attempt the integration ...?
- **Qn:** But, a *deterministic poly*-time algorithm for $N_k(f)$?



In p -adic extensions

Contents

- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- Compute Poincaré Series
- Conclusion

Root-finding mod p^k

- Instead of integration, we take the route of roots mod p^k .
- Let $f \bmod p^k$ be degree d univariate polynomial.
- (Berthomieu,Lecerf,Quintin'13) Roots of $f \bmod p^k$ arrange as **representative-roots**:
 - $a =: \sum_{0 \leq i < \ell} a_i p^i + *p^\ell$ ($a_i \in [0, p-1]$, $* \in \mathbb{Z}$) .
 - a is *minimal* & $f(a) = 0 \bmod p^k$.
 - At most d rep.roots.
- Proof is *inductive*, based on the **transformation**:
 - $g(x) := f(\sum_{0 \leq i < m} a_i p^i + x \cdot p^m) / p^v \bmod p^{k-v}$.
 - Root of $g(x) \bmod p$ gives a_m .
 - Continue with $\sum_{0 \leq i \leq m} a_i \cdot p^i$.

Reduces char
 p^k to p

Many a_m 's \Rightarrow
slower
growth of m .

Why are rep.roots
a few?

Root-finding mod p^k

- Rep.roots are few, but roots may be *exponentially* many!
 - Eg. $f := px \bmod p^2$ has p roots,
 - but just one rep.root $a =: 0 + *p$!
- (BLQ'13) yields *fast randomized* algorithm to find roots $\bmod p^k$.
 - Counting is easy, as rep.root a means $p^{k-\ell}$ roots.
 - $a = \sum_{0 \leq i < \ell} a_i \cdot p^i + *p^\ell$.
 - Summing up over rep.roots, gives **all roots**.
- How to make it *deterministic* poly-time?
- Rep.roots yield $N_k(f) = \sum_i p^{k-\ell_i}$.
 - What does it say about *Poincaré* series $P_{f,p}(t)$?

ℓ_i depends on
 i, k

Root-finding mod p^k

- (Dwivedi,Mittal,S '19) gave fast **deterministic** algorithm to **implicitly** find roots mod p^k .
- Idea: Store rep.roots $\mathbf{a} = \sum_{0 \leq i < \ell} a_i \cdot p^i + *p^\ell$ in **maximal split ideals**.
 - $\mathbf{I} = \langle h_0(x_0), h_1(x_0, x_1), \dots, h_{\ell-1}(x_0, \dots, x_{\ell-1}) \rangle$.
 - Each zero of \mathbf{I} in \mathbb{F}_p^ℓ defines a rep.root.
 - Essentially, run (BLQ'13) mod \mathbf{I} (*without* randomization!).
 - Keep 'growing' \mathbf{I} .
- (DMS'19) yields *fast deterministic* algorithm to **count** roots f mod p^k .

Yet $N_k(f)$ remains a *mystery* !

Contents

- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- Compute Poincaré Series
- Conclusion

Root-counting mod p^k

- Intuitively, $N_k(f) = \sum_i p^{k - \ell_i}$ should behave better for **large k** .
 - Since, large k is like **studying roots in Z_p** .
- We show, for large k : ℓ_i is *linear* in k .

Details:

- $k > k_0 := \deg(f) \cdot \text{val}_p(\text{disc}(\text{rad}(f)))$.
- $\ell_i = \lceil (k - \text{val}_p(f_i(\alpha_i))) / \text{mult}(\alpha_i) \rceil$.
 - Where, α_i are all **p -adic integer roots** of $f(x)$.

Constant $(k - \ell_i)/k$
=: u_i

Roots
uniquely
lift as
 k grows.

Curiously, **squarefree f & large k** $\Rightarrow N_k(f)$ *independent* of k .

Contents

- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- **Compute Poincaré Series**
- Conclusion

Compute Poincaré Series

- Got : $N_k(f) = \sum_i p^{k \cdot u_i}$ for $k > k_0$.
- So, $P(t) = \sum_{k \geq 0} N_k(f) / p^k \cdot t^k$,
 $=: P_0(t) + \sum_{k \geq k_0} N_k(f) / p^k \cdot t^k$,
 $= P_0(t) + \sum_{k \geq k_0} \sum_i p^{k \cdot (u_i - 1)} \cdot t^k$.
- The infinite sum converges to a *rational*, in $Q(t)$.
- Thus, $P(t)$ is a *rational function*.
- Our algorithm computes $N_k(f)$ function;
hence, both $P_0(t)$ and the infinite sum are *known*.
 - In $\text{poly}(|f|, \log p)$ time.

Contents

- Zeta functions
- Igusa's local-zeta fn
- Algorithmic questions
- Root finding mod p^k
- Root counting mod p^k
- Compute Poincaré Series
- Conclusion

At the end ...

- *Det.poly-time* algorithm for Igusa's local-zeta function.
 - For *univariate* polynomial f .
- Could we do this for **bivariate** polynomial $f(x_1, x_2)$?
- Relevant Questions:
 1. Estimating the count $N_k(f(x_1, x_2)) = ?$ (Chakrabarti, S., ISSAC'23)
 2. Counting **factors** of $f(x) \bmod p^k$?
 - Irreducibility-testing of $f(x) \bmod p^5$? (Mahapatra, S., WIP)
 - GCD of $f(x), g(x) \bmod p^5$?
 3. Hasse-Weil Zeta fn of a *variety* $\bmod p$? (S., Madhavan V., WIP)



Thank you!