HOW TO FACTOR OBJECTS?

Nitin Saxena CSE@IITK

IMSc@60, Chennai January 2023

BASE CASES

INTEGERS

- Integer n factors uniquely into prime numbers.
 - \triangleright Eg. 1092 = $2^2*3*7*13$

- ❖ Given n, can you factor it?
 - ➤ Input n in binary

. . .

- ➤ 2^{(log n)^{0.3}} time not good enough
- Number Field Sieve (1990s) factors via x² = y² mod n
- Hardness used in cryptosystems.
 - ➤ RSA, HTTPS, SSh, SFTP, Diffie-Hellman,

- •Eratosthenes was a Greek mathematician, astronomer, geographer, and librarian at Alexandria, Egypt in 200 B.C.
 •He invented a method for finding prime numbers that is still used today.
- This method is called Eratosthenes' Sieve.

276 BC - 194 BC

3

UNIVARIATE OVER INTEGERS

- \diamond Given polynomial $f(x) \in \mathbb{Z}[x]$, factor it.
 - \rightarrow f = $x^5-x^4-4x^2+x-2$ factors
 - > Roots have no formula
 - ➤ Irreducibility testing?

- [Lenstra, Lenstra, Lovász'82] solved this completely.
 - ightharpoonup Factor mod 2, 2², 2⁴, 2⁸,...
 - ➤ Lift to integral factor using lattice theory
 - ➤ Useful in many post-quantum cryptosystems

UNIVARIATE OVER FINITE FIELDS

- ❖ Galois field GF(pe) of size pe and char =
 prime p.
- \diamond Given polynomial $f(x) \in GF(p)[x]$, factor it.
 - \rightarrow f = x^2-2 factors mod 7
 - \gg $\sqrt{2}$ = 3 mod 7 !
 - ➤ Irreducibility testing?
- [Berlekamp'67; Cantor-Zassenhaus'81] solved this practically.
 - ➤ Use Galois automorphism
 - ightharpoonup Compute gcd of f(x) with $x^{p}-x$, $x^{p^{2}}-x$, $x^{p^{3}}-x$,...
 - Useful in crypto, coding theory, and computational algebra

UNIVARIATE OVER GALOIS RINGS

- ❖ Galois ring GR(p^{ke}) of size p^{ke} and characteristic = prime-power p^k.
- \diamond Given polynomial $f(x) \in GR(p^{ke})[x]$, factor it.
 - \rightarrow f = x^2-2 factors mod 7^2
 - $> \sqrt{2} = 10 \mod 7^2$!
 - ➤ Irreducibility testing?
- This problem is OPEN.
- ❖ [Dwivedi,Mittal,S.'19] solved for k=4.
 - \triangleright Factor $f(x) \mod p$, p^2 , p^3 , p^4 .
 - ➤ Lifting from one to the next precision is nontrivial.
 - \triangleright Eg. f = x^2 -p mod p² vs f = x^2 -px mod p²

UNIVARIATE OVER P-ADIC NUMBERS

- \Leftrightarrow Hensel (1897) defined p-adic numbers Z_p .
 - > 1+2p+3p²+4p³+5p⁴+... converges to a number!
- \diamond Given polynomial $f(x) \in Z_p[x]$, factor it.
 - \rightarrow f = x^2 -2 factors in 7-adic
 - \rightarrow $\sqrt{2}$ = 3 + 1*7 + 2*7² + 6*7³ +... in infinite digits!
 - ➤ Irreducibility testing?

- \triangleright Newton polytope of f(x),
- coupled with p-adic metric,
- ➤ reduces to mod p factoring.
- Useful in computational number theory.

MULTIVARIATES

MULTIVARIATE SPARSE POLYNOMIALS

- ❖ Given polynomial $f(x_1, x_2, ..., x_n) \in F[x]$, factor it.
 - \rightarrow f = $(x_1^d-1)...(x_n^d-1)$ factors into
 - \triangleright g = $(x_1^{d-1}+...+x_1+1)...(x_n^{d-1}+...+x_n+1)$.
 - \triangleright Sparsity s:=2ⁿ blows-up to dⁿ.
 - > => Factors can be very large!
- ❖ What if individual-degree d is constant?
- [Bhargava, Saraf, Volkovich' 18] showed a
 quasipoly bound.
- - \triangleright Newton polytope of f(x)
 - ➤ Relation between #vertices & #internal points.
 - > Fast algorithm, by reducing to the base cases

Multivariate

Univariate

IN FORMULA MODEL

- ♦ Given polynomial $f(x_1, x_2, ..., x_n) \in F[x]$, factor it.
 - ➤ Input: is a formula of size s.
 - ➤ Output: is a formula of size =?

- Only quasipoly bound known.
- ❖ Poly bound is OPEN.
- Open: Could Newton iteration be done
 inside the model?

IN CIRCUIT MODEL

- ❖ Given polynomial $f(x_1, x_2, ..., x_n) \in F[x]$, factor it.
 - ➤ Input: is a circuit of size s.
 - ➤ Output: is a circuit of size =?

- ❖ [Kaltofen'87] showed a poly bound.
 - ➤ degree not too `high'
- ❖ Corollary: Newton iteration is doable inside circuits.

IN A 'TOUGHER' CIRCUIT MODEL

- ♦ Given polynomial $f(x_1, x_2, ..., x_n) \in F[\mathbf{x}]$, factor it.
 - ➤ Input: is a circuit of size s and degree 2^s.
 - ➤ Output: a factor of degree poly(s) of size =?

- ❖ It's an **open** question.
- ❖ [Dutta,S.,Sinhababu'18] showed a poly bound, when

 ➤ degree of the radical of f is not too `high'.
- Corollary: all-roots-Newton-iteration is doable inside circuits.

CONCLUDE WITH OPEN PROBLEMS

Question 1: Fast integer factoring?

❖ Question 2: Fast polynomial factoring mod p^k?

Question 3: General formula & circuit factoring?

Question 4: Derandomization?

More details at:

THANKS!

cse.iitk.ac.in/users/nitin/

