# PRIMALITY TESTING & PRIME NUMBER GENERATION

Nitin Saxena

Department of CSE Indian Institute of Technology Kanpur

> NWCNS 2019 PSIT Kanpur

NITIN SAXENA (CSE@IITK)

PRIMALITY & PRIME GENERATION

NWCNS'19 1 / 37

- **1** The problem
  - 2 The high school method
- **3** Prime generation & testing
- STUDYING INTEGERS MODULO N
- 5 Studying quadratic extensions mod n
- 6 Studying elliptic curves mod n
- **7** Studying cyclotomic extensions mod n
- **8** QUESTIONS

4 E 🕨 4

## OUTLINE

## 1 The problem

- 2 The high school method
- 3 PRIME GENERATION & TESTING
- **4** Studying integers modulo n
- 5 Studying quadratic extensions mod n
- 6 Studying elliptic curves mod n
- 7 Studying cyclotomic extensions mod n

### 8 QUESTIONS

A (1) > A (2) > A

## THE PROBLEM

#### • Given an integer *n*, test whether it is prime.

- Easy Solution: Divide *n* by all numbers between 2 and (n-1).
- What is the deal about primality testing then ??

→ Ξ →

## THE PROBLEM

- Given an integer *n*, test whether it is prime.
- Easy Solution: Divide *n* by all numbers between 2 and (n-1).
- What is the deal about primality testing then ??

## THE PROBLEM

- Given an integer *n*, test whether it is prime.
- Easy Solution: Divide *n* by all numbers between 2 and (n-1).
- What is the deal about primality testing then ??

- Given *n* we want a polynomial time primality test, one that runs in atmost  $(\log n)^c$  steps.
- Note that practically  $(\log n)^{\log \log \log n}$  steps is efficient enough for the prime numbers we encounter in real life!
- Nevertheless, the notion of polynomial time elegantly captures the theoretical complexity of a problem.

- (log n) is logarithm base 2. Natural log is (ln n).
- $\tilde{O}(\log^c n)$  denotes  $\log^c n \cdot (\log \log n)^{O(1)}$ .

- Given n we want a polynomial time primality test, one that runs in atmost (log n)<sup>c</sup> steps.
- Note that practically  $(\log n)^{\log \log \log n}$  steps is efficient enough for the prime numbers we encounter in real life!
- Nevertheless, the notion of polynomial time elegantly captures the theoretical complexity of a problem.

- $(\log n)$  is logarithm base 2. Natural log is  $(\ln n)$ .
- $\tilde{O}(\log^c n)$  denotes  $\log^c n \cdot (\log \log n)^{O(1)}$ .

- Given n we want a polynomial time primality test, one that runs in atmost (log n)<sup>c</sup> steps.
- Note that practically  $(\log n)^{\log \log \log n}$  steps is efficient enough for the prime numbers we encounter in real life!
- Nevertheless, the notion of polynomial time elegantly captures the theoretical complexity of a problem.

- (log n) is logarithm base 2. Natural log is (ln n).
- $\tilde{O}(\log^c n)$  denotes  $\log^c n \cdot (\log \log n)^{O(1)}$ .

- Given n we want a polynomial time primality test, one that runs in atmost (log n)<sup>c</sup> steps.
- Note that practically  $(\log n)^{\log \log \log n}$  steps is efficient enough for the prime numbers we encounter in real life!
- Nevertheless, the notion of polynomial time elegantly captures the theoretical complexity of a problem.

- (log n) is logarithm base 2. Natural log is (ln n).
- $\tilde{O}(\log^c n)$  denotes  $\log^c n \cdot (\log \log n)^{O(1)}$ .

- Given n we want a polynomial time primality test, one that runs in atmost (log n)<sup>c</sup> steps.
- Note that practically  $(\log n)^{\log \log \log n}$  steps is efficient enough for the prime numbers we encounter in real life!
- Nevertheless, the notion of polynomial time elegantly captures the theoretical complexity of a problem.

- (log n) is logarithm base 2. Natural log is (ln n).
- $\tilde{O}(\log^c n)$  denotes  $\log^c n \cdot (\log \log n)^{O(1)}$ .

## OUTLINE

#### **1** The problem

- 2 The high school method
- 3 PRIME GENERATION & TESTING
- STUDYING INTEGERS MODULO N
- 5 Studying quadratic extensions mod n
- 6 Studying elliptic curves mod n
- 7 Studying cyclotomic extensions mod n

#### 8 QUESTIONS

- 4 周 ト - 4 国 ト - 4 国

- List all numbers from 2 to n in a sequence.
- Take the smallest uncrossed number and cross out all its multiples (except itself).
- At the end all the uncrossed numbers are primes.

- List all numbers from 2 to n in a sequence.
- Take the smallest uncrossed number and cross out all its multiples (except itself).
- At the end all the uncrossed numbers are primes.

- List all numbers from 2 to n in a sequence.
- Take the smallest uncrossed number and cross out all its multiples (except itself).
- At the end all the uncrossed numbers are primes.

- List all numbers from 2 to n in a sequence.
- Take the smallest uncrossed number and cross out all its multiples (except itself).
- At the end all the uncrossed numbers are primes.

- List all numbers from 2 to n in a sequence.
- Take the smallest uncrossed number and cross out all its multiples (except itself).
- At the end all the uncrossed numbers are primes.



## TIME COMPLEXITY

#### • To test primality $\sqrt{n}$ many steps would be enough.

• Not efficient by our standards! As input size is  $O(\log n)$ .

## TIME COMPLEXITY

- To test primality  $\sqrt{n}$  many steps would be enough.
- Not efficient by our standards! As input size is  $O(\log n)$ .

< 3 >

## TIME COMPLEXITY

- To test primality  $\sqrt{n}$  many steps would be enough.
- Not efficient by our standards! As input size is  $O(\log n)$ .

# OUTLINE

### 1 The problem

- 2 The high school method
- **3** PRIME GENERATION & TESTING
- STUDYING INTEGERS MODULO N
- 5 Studying quadratic extensions mod n
- 6 Studying elliptic curves mod n
- 7 Studying cyclotomic extensions mod n

### 8 QUESTIONS

- A 🗇 🕨 - A 🖻 🕨 - A 🖻

#### • Suppose we want a prime number *close* to *n*.

- Eratosthenes sieve is a way to generate it. But it's slow.
- Fortunately, the primes are abundant in nature. If π(x) is the number of primes below x then precise estimates on π(x)/x are known.

#### Rosser (1941)

showed that 
$$\frac{1}{\ln x+2} < \frac{\pi(x)}{x} < \frac{1}{\ln x-4}$$
, for  $x \ge 55$ .

• Thus, if we randomly pick a (log n)-bit number N, then with high probability it will be prime!

- Suppose we want a prime number *close* to *n*.
- Eratosthenes sieve is a way to generate it. But it's slow.
- Fortunately, the primes are abundant in nature. If π(x) is the number of primes below x then precise estimates on π(x)/x are known.

#### Rosser (1941)

showed that 
$$\frac{1}{\ln x+2} < \frac{\pi(x)}{x} < \frac{1}{\ln x-4}$$
, for  $x \ge 55$ .

• Thus, if we randomly pick a (log n)-bit number N, then with high probability it will be prime!

NWCNS'19 10 / 37

- Suppose we want a prime number *close* to *n*.
- Eratosthenes sieve is a way to generate it. But it's slow.
- Fortunately, the primes are abundant in nature. If π(x) is the number of primes below x then precise estimates on π(x)/x are known.

#### ROSSER (1941)

showed that 
$$\frac{1}{\ln x+2} < \frac{\pi(x)}{x} < \frac{1}{\ln x-4}$$
, for  $x \ge 55$ .

• Thus, if we randomly pick a (log *n*)-bit number *N*, then with high probability it will be prime!

- Suppose we want a prime number *close* to *n*.
- Eratosthenes sieve is a way to generate it. But it's slow.
- Fortunately, the primes are abundant in nature. If π(x) is the number of primes below x then precise estimates on π(x)/x are known.

#### ROSSER (1941)

showed that 
$$\frac{1}{\ln x+2} < \frac{\pi(x)}{x} < \frac{1}{\ln x-4}$$
, for  $x \ge 55$ .

 Thus, if we randomly pick a (log n)-bit number N, then with high probability it will be prime!

NWCNS'19 10 / 37

- All the advanced primality tests associate a ring *R* to *n* and study its properties.
- The favorite rings are:
  - $\square \mathbb{Z}_n$  Integers modulo *n*.
  - If  $\mathbb{Z}_n[\sqrt{3}]$  Quadratic extensions.
  - $\bigcirc \mathbb{Z}_n[x,y]/(y^2 x^3 ax b) \text{Elliptic curves.}$
  - $\mathbb{Z}_n[x]/(x^r-1)$  Cyclotomic rings.

• 3 • • 3

- All the advanced primality tests associate a ring *R* to *n* and study its properties.
- The favorite rings are:
  - Z<sub>n</sub> Integers modulo n.
    Z<sub>n</sub>[√3] Quadratic extensions.
    Z<sub>n</sub>[x, y]/(y<sup>2</sup> x<sup>3</sup> ax b) Elliptic curves.
    Z<sub>n</sub>[x]/(x<sup>r</sup> 1) Cyclotomic rings.

- All the advanced primality tests associate a ring *R* to *n* and study its properties.
- The favorite rings are:
  - - $\mathbb{Z}_n[\sqrt{3}] \mathbb{Q}_n[\sqrt{3}]$
  - 3  $\mathbb{Z}_n[x,y]/(y^2-x^3-ax-b)$  Elliptic curves.
  - $\mathbb{Z}_n[x]/(x^r-1)$  Cyclotomic rings.

- All the advanced primality tests associate a ring *R* to *n* and study its properties.
- The favorite rings are:

  - 2  $\mathbb{Z}_n[\sqrt{3}]$  Quadratic extensions.
  - 3)  $\mathbb{Z}_n[x,y]/(y^2-x^3-ax-b)$  Elliptic curves
  - $\mathbb{Z}_n[x]/(x^r-1)$  Cyclotomic rings.

- All the advanced primality tests associate a ring *R* to *n* and study its properties.
- The favorite rings are:

  - 2  $\mathbb{Z}_n[\sqrt{3}]$  Quadratic extensions.
  - $\mathbb{Z}_n[x,y]/(y^2 x^3 ax b) \text{Elliptic curves.}$
  - $\mathbb{Z}_n[x]/(x^r-1)$  Cyclotomic rings.

- All the advanced primality tests associate a ring *R* to *n* and study its properties.
- The favorite rings are:

  - 2  $\mathbb{Z}_n[\sqrt{3}]$  Quadratic extensions.
  - $\mathbb{Z}_n[x,y]/(y^2 x^3 ax b) \text{Elliptic curves.}$
  - $\mathbb{Z}_n[x]/(x^r-1)$  Cyclotomic rings.

## OUTLINE

### 1 The problem

- 2 The high school method
- 3 PRIME GENERATION & TESTING
- STUDYING INTEGERS MODULO N
- 5 Studying quadratic extensions mod n
- 6 Studying elliptic curves mod n
- 7 Studying cyclotomic extensions mod n

#### 8 QUESTIONS

#### THEOREM (FERMAT, 1660s)

If n is prime then for every a,  $a^n = a \pmod{n}$ .

- Basically, for all  $a \in \mathbb{Z}_n^*$ ,  $a^{n-1} = 1$ .
- This property is not sufficient for primality (Carmichael, 1910).
- But it is the starting point!
- Eg.  $561 = 3 \times 11 \times 17$ .

#### THEOREM (FERMAT, 1660s)

If n is prime then for every a,  $a^n = a \pmod{n}$ .

- Basically, for all  $a \in \mathbb{Z}_n^*$ ,  $a^{n-1} = 1$ .
- This property is not sufficient for primality (Carmichael, 1910).
- But it is the starting point!
- Eg.  $561 = 3 \times 11 \times 17$ .

#### THEOREM (FERMAT, 1660s)

If n is prime then for every a,  $a^n = a \pmod{n}$ .

- Basically, for all  $a \in \mathbb{Z}_n^*$ ,  $a^{n-1} = 1$ .
- This property is not sufficient for primality (Carmichael, 1910).
- But it is the starting point!

• Eg.  $561 = 3 \times 11 \times 17$ .

#### THEOREM (FERMAT, 1660s)

If n is prime then for every a,  $a^n = a \pmod{n}$ .

- Basically, for all  $a \in \mathbb{Z}_n^*$ ,  $a^{n-1} = 1$ .
- This property is not sufficient for primality (Carmichael, 1910).
- But it is the starting point!

• Eg.  $561 = 3 \times 11 \times 17$ .
# FERMAT'S LITTLE THEOREM (FLT)

#### THEOREM (FERMAT, 1660s)

If n is prime then for every a,  $a^n = a \pmod{n}$ .

- Basically, for all  $a \in \mathbb{Z}_n^*$ ,  $a^{n-1} = 1$ .
- This property is not sufficient for primality (Carmichael, 1910).
- But it is the starting point!
- Eg.  $561 = 3 \times 11 \times 17$ .

#### THEOREM (LUCAS, 1876)

- Suppose (n-1) is smooth and we know its prime factors.
- Do the above test for a random *a*.
- Algebraic fact: For prime *n*, the group  $\mathbb{Z}_n^*$  is cyclic and of size n-1.

#### THEOREM (LUCAS, 1876)

- Suppose (n-1) is smooth and we know its prime factors.
- Do the above test for a random *a*.
- Algebraic fact: For prime *n*, the group  $\mathbb{Z}_n^*$  is cyclic and of size n-1.

#### THEOREM (LUCAS, 1876)

- Suppose (n-1) is smooth and we know its prime factors.
- Do the above test for a random *a*.
- Algebraic fact: For prime *n*, the group  $\mathbb{Z}_n^*$  is cyclic and of size n-1.

#### THEOREM (LUCAS, 1876)

- Suppose (n-1) is smooth and we know its prime factors.
- Do the above test for a random *a*.
- Algebraic fact: For prime *n*, the group  $\mathbb{Z}_n^*$  is cyclic and of size n-1.

#### THEOREM (LUCAS, 1876)

- Suppose (n-1) is smooth and we know its prime factors.
- Do the above test for a random *a*.
- Algebraic fact: For prime *n*, the group  $\mathbb{Z}_n^*$  is cyclic and of size n-1.

#### THEOREM (LUCAS, 1876)

- Suppose (n-1) is smooth and we know its prime factors.
- Do the above test for a random *a*.
- Algebraic fact: For prime *n*, the group  $\mathbb{Z}_n^*$  is cyclic and of size n-1.

#### THEOREM (POCKLINGTON, 1914)

If  $\exists a \in \mathbb{Z}_n$  such that  $a^{n-1} = 1$  and  $gcd(a^{\frac{n-1}{p_i}} - 1, n) = 1$  for any distinct primes  $p_1, \ldots, p_t | (n-1)$ . Then any divisor of n is of the form  $1 + kp_1 \cdots p_t$ .

• Suppose  $\prod_{i=1}^{t} p_t \ge \sqrt{n}$  and we have them.

#### THEOREM (POCKLINGTON, 1914)

If  $\exists a \in \mathbb{Z}_n$  such that  $a^{n-1} = 1$  and  $gcd(a^{\frac{n-1}{p_i}} - 1, n) = 1$  for any distinct primes  $p_1, \ldots, p_t | (n-1)$ . Then any divisor of n is of the form  $1 + kp_1 \cdots p_t$ .

• Suppose  $\prod_{i=1}^{t} p_t \ge \sqrt{n}$  and we have them.

#### THEOREM (POCKLINGTON, 1914)

If  $\exists a \in \mathbb{Z}_n$  such that  $a^{n-1} = 1$  and  $gcd(a^{\frac{n-1}{p_i}} - 1, n) = 1$  for any distinct primes  $p_1, \ldots, p_t | (n-1)$ . Then any divisor of n is of the form  $1 + kp_1 \cdots p_t$ .

• Suppose  $\prod_{i=1}^{t} p_t \ge \sqrt{n}$  and we have them.

#### THEOREM (POCKLINGTON, 1914)

If  $\exists a \in \mathbb{Z}_n$  such that  $a^{n-1} = 1$  and  $gcd(a^{\frac{n-1}{p_i}} - 1, n) = 1$  for any distinct primes  $p_1, \ldots, p_t | (n-1)$ . Then any divisor of n is of the form  $1 + kp_1 \cdots p_t$ .

• Suppose  $\prod_{i=1}^{t} p_t \ge \sqrt{n}$  and we have them.

#### THEOREM (POCKLINGTON, 1914)

If  $\exists a \in \mathbb{Z}_n$  such that  $a^{n-1} = 1$  and  $gcd(a^{\frac{n-1}{p_i}} - 1, n) = 1$  for any distinct primes  $p_1, \ldots, p_t | (n-1)$ . Then any divisor of n is of the form  $1 + kp_1 \cdots p_t$ .

• Suppose  $\prod_{i=1}^{t} p_t \ge \sqrt{n}$  and we have them.

#### THEOREM (POCKLINGTON, 1914)

If  $\exists a \in \mathbb{Z}_n$  such that  $a^{n-1} = 1$  and  $gcd(a^{\frac{n-1}{p_i}} - 1, n) = 1$  for any distinct primes  $p_1, \ldots, p_t | (n-1)$ . Then any divisor of n is of the form  $1 + kp_1 \cdots p_t$ .

- Suppose  $\prod_{i=1}^{t} p_t \ge \sqrt{n}$  and we have them.
- The above test is done for a random *a*.

#### THEOREM (STRENGTHENING FLT)

- Jacobi symbol  $\left(\frac{a}{n}\right)$  is computable in time  $\tilde{O}(\log^2 n)$ .
- Solovay-Strassen (1977) check the above equation for a random *a*.
- This gives a randomized test that takes time  $\tilde{O}(\log^2 n)$ .
- It errs with probability atmost  $\frac{1}{2}$ .
- Algebraic fact: Quadratic residuosity in finite fields.

#### THEOREM (STRENGTHENING FLT)

- Jacobi symbol  $\left(\frac{a}{n}\right)$  is computable in time  $\tilde{O}(\log^2 n)$ .
- Solovay-Strassen (1977) check the above equation for a random *a*.
- This gives a randomized test that takes time  $\tilde{O}(\log^2 n)$ .
- It errs with probability atmost  $\frac{1}{2}$ .
- Algebraic fact: Quadratic residuosity in finite fields.

#### THEOREM (STRENGTHENING FLT)

- Jacobi symbol  $\left(\frac{a}{n}\right)$  is computable in time  $\tilde{O}(\log^2 n)$ .
- Solovay-Strassen (1977) check the above equation for a random *a*.
- This gives a randomized test that takes time  $\tilde{O}(\log^2 n)$ .
- It errs with probability atmost  $\frac{1}{2}$ .
- Algebraic fact: Quadratic residuosity in finite fields.

#### THEOREM (STRENGTHENING FLT)

- Jacobi symbol  $\left(\frac{a}{n}\right)$  is computable in time  $\tilde{O}(\log^2 n)$ .
- Solovay-Strassen (1977) check the above equation for a random *a*.
- This gives a randomized test that takes time  $\tilde{O}(\log^2 n)$ .
- It errs with probability atmost  $\frac{1}{2}$ .
- Algebraic fact: Quadratic residuosity in finite fields.

#### THEOREM (STRENGTHENING FLT)

- Jacobi symbol  $\left(\frac{a}{n}\right)$  is computable in time  $\tilde{O}(\log^2 n)$ .
- Solovay-Strassen (1977) check the above equation for a random *a*.
- This gives a randomized test that takes time  $\tilde{O}(\log^2 n)$ .
- It errs with probability atmost  $\frac{1}{2}$ .
- Algebraic fact: Quadratic residuosity in finite fields.

#### THEOREM (STRENGTHENING FLT)

- Jacobi symbol  $\left(\frac{a}{n}\right)$  is computable in time  $\tilde{O}(\log^2 n)$ .
- Solovay-Strassen (1977) check the above equation for a random *a*.
- This gives a randomized test that takes time  $\tilde{O}(\log^2 n)$ .
- It errs with probability atmost  $\frac{1}{2}$ .
- Algebraic fact: Quadratic residuosity in finite fields.

# PÉPIN'S TEST

#### This is a test specialized for Fermat numbers $F_k = 2^{2^k} + 1$ .

#### THEOREM (PÉPIN, 1877)

 $F_k$  is prime iff  $3^{\frac{F_k-1}{2}} = -1$  (mod  $F_k$ ).

This yields a deterministic polynomial time primality test for Fermat numbers.

# Pépin's Test

This is a test specialized for Fermat numbers  $F_k = 2^{2^k} + 1$ .

THEOREM (PÉPIN, 1877)

 $F_k$  is prime iff  $3^{\frac{F_k-1}{2}} = -1 \pmod{F_k}$ .

This yields a deterministic polynomial time primality test for Fermat numbers.

# Pépin's Test

THEOREM (PÉPIN, 1877)

This is a test specialized for Fermat numbers  $F_k = 2^{2^k} + 1$ .

 $F_k$  is prime iff  $3^{\frac{F_k-1}{2}} = -1 \pmod{F_k}$ . This yields a deterministic polynomial time primality test for Fermat numbers.

# Pépin's Test

This is a test specialized for Fermat numbers  $F_k = 2^{2^k} + 1$ .

THEOREM (PÉPIN, 1877)  $F_k$  is prime iff  $3^{\frac{F_k-1}{2}} = -1 \pmod{F_k}$ .

This yields a deterministic polynomial time primality test for Fermat numbers.

#### STRENGTHENING FLT FURTHER [MILLER, 1975]

- We check the above equation for a random *a*.
- This gives a randomized test that takes time  $\tilde{O}(\log^2 n)$ .
- It errs with probability atmost  $\frac{1}{4}$ .
- The most popular primality test!
- Algebraic fact: Over a field there are at most *two* square-roots.

Strengthening FLT further [Miller, 1975]

- We check the above equation for a random a.
- This gives a randomized test that takes time  $\tilde{O}(\log^2 n)$ .
- It errs with probability atmost  $\frac{1}{4}$ .
- The most popular primality test!
- Algebraic fact: Over a field there are at most *two* square-roots.

Strengthening FLT further [Miller, 1975]

- We check the above equation for a random a.
- This gives a randomized test that takes time  $\tilde{O}(\log^2 n)$ .
- It errs with probability atmost  $\frac{1}{4}$ .
- The most popular primality test!
- Algebraic fact: Over a field there are at most *two* square-roots.

STRENGTHENING FLT FURTHER [MILLER, 1975]

- We check the above equation for a random a.
- This gives a randomized test that takes time  $\tilde{O}(\log^2 n)$ .
- It errs with probability atmost  $\frac{1}{4}$ .
- The most popular primality test!
- Algebraic fact: Over a field there are at most *two* square-roots.

STRENGTHENING FLT FURTHER [MILLER, 1975]

An odd number  $n = 1 + 2^s \cdot t \pmod{t}$  is prime iff for all  $a \in \mathbb{Z}_n$ , the sequence  $a^{2^{s-1} \cdot t}$ ,  $a^{2^{s-2} \cdot t}$ , ...,  $a^t$  has either a -1 or all 1's.

- We check the above equation for a random a.
- This gives a randomized test that takes time  $\tilde{O}(\log^2 n)$ .
- It errs with probability atmost  $\frac{1}{4}$ .
- The most popular primality test!

• Algebraic fact: Over a field there are at most *two* square-roots.

STRENGTHENING FLT FURTHER [MILLER, 1975]

- We check the above equation for a random a.
- This gives a randomized test that takes time  $\tilde{O}(\log^2 n)$ .
- It errs with probability atmost  $\frac{1}{4}$ .
- The most popular primality test!
- Algebraic fact: Over a field there are at most *two* square-roots.

#### GENERALIZED RIEMANN HYPOTHESIS [PILTZ, 1884]

Let Dirichlet *L*-function be the analytic continuation of  $L(\chi, s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$ . For every Dirichlet character  $\chi$  and every complex number *s* with  $L(\chi, s) = 0$ : if  $\operatorname{Re}(s) \in (0, 1]$  then  $\operatorname{Re}(s) = \frac{1}{2}$ .

- By taking  $\chi$  to be the character modulo n it can be shown: the GRH implies that there exists an  $a \leq 2 \log^2 n$  such that  $\left(\frac{a}{n}\right) \neq 1$  (Ankeny 1952; Miller 1975; Bach 1980s).
- This magical small *a* would be a witness of the compositeness of *n*.
- Thus, GRH derandomizes both Solovay-Strassen and Miller-Rabin primality tests.
- This *a* also factors Carmichael numbers!

#### GENERALIZED RIEMANN HYPOTHESIS [PILTZ, 1884]

Let Dirichlet *L*-function be the analytic continuation of  $L(\chi, s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$ . For every Dirichlet character  $\chi$  and every complex number *s* with  $L(\chi, s) = 0$ : if  $\text{Re}(s) \in (0, 1]$  then  $\text{Re}(s) = \frac{1}{2}$ .

- By taking  $\chi$  to be the character modulo n it can be shown: the GRH implies that there exists an  $a \leq 2 \log^2 n$  such that  $\left(\frac{a}{n}\right) \neq 1$  (Ankeny 1952; Miller 1975; Bach 1980s).
- This magical small *a* would be a witness of the compositeness of *n*.
- Thus, GRH derandomizes both Solovay-Strassen and Miller-Rabin primality tests.
- This *a* also factors Carmichael numbers!

・ 同 ト ・ ヨ ト ・ ヨ ト

#### GENERALIZED RIEMANN HYPOTHESIS [PILTZ, 1884]

Let Dirichlet *L*-function be the analytic continuation of  $L(\chi, s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$ . For every Dirichlet character  $\chi$  and every complex number *s* with  $L(\chi, s) = 0$ : if  $\text{Re}(s) \in (0, 1]$  then  $\text{Re}(s) = \frac{1}{2}$ .

- By taking χ to be the character modulo n it can be shown: the GRH implies that there exists an a ≤ 2 log<sup>2</sup> n such that (<sup>a</sup>/<sub>n</sub>) ≠ 1 (Ankeny 1952; Miller 1975; Bach 1980s).
- This magical small *a* would be a witness of the compositeness of *n*.
- Thus, GRH derandomizes both Solovay-Strassen and Miller-Rabin primality tests.
- This *a* also factors Carmichael numbers!

回 と く ヨ と く ヨ と

#### GENERALIZED RIEMANN HYPOTHESIS [PILTZ, 1884]

Let Dirichlet *L*-function be the analytic continuation of  $L(\chi, s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$ . For every Dirichlet character  $\chi$  and every complex number *s* with  $L(\chi, s) = 0$ : if  $\text{Re}(s) \in (0, 1]$  then  $\text{Re}(s) = \frac{1}{2}$ .

- By taking χ to be the character modulo n it can be shown: the GRH implies that there exists an a ≤ 2 log<sup>2</sup> n such that (<sup>a</sup>/<sub>n</sub>) ≠ 1 (Ankeny 1952; Miller 1975; Bach 1980s).
- This magical small *a* would be a witness of the compositeness of *n*.
- Thus, GRH derandomizes both Solovay-Strassen and Miller-Rabin primality tests.
- This *a* also factors Carmichael numbers!

通 と く ヨ と く ヨ と

#### GENERALIZED RIEMANN HYPOTHESIS [PILTZ, 1884]

Let Dirichlet *L*-function be the analytic continuation of  $L(\chi, s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$ . For every Dirichlet character  $\chi$  and every complex number *s* with  $L(\chi, s) = 0$ : if  $\text{Re}(s) \in (0, 1]$  then  $\text{Re}(s) = \frac{1}{2}$ .

- By taking χ to be the character modulo n it can be shown: the GRH implies that there exists an a ≤ 2 log<sup>2</sup> n such that (<sup>a</sup>/<sub>n</sub>) ≠ 1 (Ankeny 1952; Miller 1975; Bach 1980s).
- This magical small *a* would be a witness of the compositeness of *n*.
- Thus, GRH derandomizes both Solovay-Strassen and Miller-Rabin primality tests.

This *a* also factors Carmichael numbers!

向下 イヨト イヨト

#### GENERALIZED RIEMANN HYPOTHESIS [PILTZ, 1884]

Let Dirichlet *L*-function be the analytic continuation of  $L(\chi, s) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$ . For every Dirichlet character  $\chi$  and every complex number *s* with  $L(\chi, s) = 0$ : if  $\text{Re}(s) \in (0, 1]$  then  $\text{Re}(s) = \frac{1}{2}$ .

- By taking χ to be the character modulo n it can be shown: the GRH implies that there exists an a ≤ 2 log<sup>2</sup> n such that (<sup>a</sup>/<sub>n</sub>) ≠ 1 (Ankeny 1952; Miller 1975; Bach 1980s).
- This magical small *a* would be a witness of the compositeness of *n*.
- Thus, GRH derandomizes both Solovay-Strassen and Miller-Rabin primality tests.
- This *a* also factors Carmichael numbers!

伺い イヨト イヨト

# OUTLINE

#### 1 The problem

- 2 The high school method
- 3 PRIME GENERATION & TESTING
- STUDYING INTEGERS MODULO N
- 5 Studying quadratic extensions mod n
- 6 Studying elliptic curves mod n
- 7 Studying cyclotomic extensions mod n

#### 8 QUESTIONS
This is a test specialized for Mersenne primes  $M_k = 2^k - 1$ .

THEOREM (LUCAS-LEHMER, 1930)  $M_k$  is prime iff  $(2 + \sqrt{3})^{\frac{M_k+1}{2}} = -1$  in  $(\mathbb{Z}/M_k)[\sqrt{3}]$ .

- This yields a deterministic polynomial time primality test for Mersenne primes. On 21-Dec-2018 GIMPS found largest known prime 2<sup>82,589,933</sup> - 1.
- Generalization: Whenever (n + 1) has small prime factors one can test *n* for primality by working in  $\mathbb{Z}_n[\sqrt{D}]$  where  $\left(\frac{D}{n}\right) = -1$ .
- More generalization: Whenever  $(n^2 \pm n + 1)$  has small prime factors one can test *n* for primality. But then we have to go to cubic extensions (Williams 1978).

This is a test specialized for Mersenne primes  $M_k = 2^k - 1$ .

THEOREM (LUCAS-LEHMER, 1930)

 $M_k$  is prime iff  $(2 + \sqrt{3})^{\frac{M_k+1}{2}} = -1$  in  $(\mathbb{Z}/M_k)[\sqrt{3}]$ .

- This yields a deterministic polynomial time primality test for Mersenne primes. On 21-Dec-2018 GIMPS found largest known prime 2<sup>82,589,933</sup> - 1.
- Generalization: Whenever (n + 1) has small prime factors one can test *n* for primality by working in  $\mathbb{Z}_n[\sqrt{D}]$  where  $\left(\frac{D}{n}\right) = -1$ .
- More generalization: Whenever  $(n^2 \pm n + 1)$  has small prime factors one can test *n* for primality. But then we have to go to cubic extensions (Williams 1978).

イロト イヨト イヨト イヨ

This is a test specialized for Mersenne primes  $M_k = 2^k - 1$ .

THEOREM (LUCAS-LEHMER, 1930)

 $M_k$  is prime iff  $(2 + \sqrt{3})^{\frac{M_k+1}{2}} = -1$  in  $(\mathbb{Z}/M_k)[\sqrt{3}]$ .

- This yields a deterministic polynomial time primality test for Mersenne primes. On 21-Dec-2018 GIMPS found largest known prime 2<sup>82,589,933</sup> - 1.
- Generalization: Whenever (n + 1) has small prime factors one can test *n* for primality by working in  $\mathbb{Z}_n[\sqrt{D}]$  where  $\left(\frac{D}{n}\right) = -1$ .
- More generalization: Whenever  $(n^2 \pm n + 1)$  has small prime factors one can test *n* for primality. But then we have to go to cubic extensions (Williams 1978).

イロト イポト イヨト イヨト

This is a test specialized for Mersenne primes  $M_k = 2^k - 1$ .

THEOREM (LUCAS-LEHMER, 1930)

 $M_k$  is prime iff  $(2 + \sqrt{3})^{\frac{M_k+1}{2}} = -1$  in  $(\mathbb{Z}/M_k)[\sqrt{3}]$ .

- This yields a deterministic polynomial time primality test for Mersenne primes. On 21-Dec-2018 GIMPS found largest known prime  $2^{82,589,933} - 1$ .
- Generalization: Whenever (n + 1) has small prime factors one can test *n* for primality by working in  $\mathbb{Z}_n[\sqrt{D}]$  where  $\left(\frac{D}{n}\right) = -1$ .
- More generalization: Whenever  $(n^2 \pm n + 1)$  has small prime factors one can test *n* for primality. But then we have to go to cubic extensions (Williams 1978).

ヘロト 人間ト 人間ト 人間ト

This is a test specialized for Mersenne primes  $M_k = 2^k - 1$ .

THEOREM (LUCAS-LEHMER, 1930)

 $M_k$  is prime iff  $(2 + \sqrt{3})^{\frac{M_k+1}{2}} = -1$  in  $(\mathbb{Z}/M_k)[\sqrt{3}]$ .

- This yields a deterministic polynomial time primality test for Mersenne primes. On 21-Dec-2018 GIMPS found largest known prime 2<sup>82,589,933</sup> - 1.
- Generalization: Whenever (n + 1) has small prime factors one can test *n* for primality by working in  $\mathbb{Z}_n[\sqrt{D}]$  where  $\left(\frac{D}{n}\right) = -1$ .
- More generalization: Whenever  $(n^2 \pm n + 1)$  has small prime factors one can test *n* for primality. But then we have to go to cubic extensions (Williams 1978).

(日) (同) (E) (E) (E)

This is a test specialized for Mersenne primes  $M_k = 2^k - 1$ .

THEOREM (LUCAS-LEHMER, 1930)

 $M_k$  is prime iff  $(2 + \sqrt{3})^{\frac{M_k+1}{2}} = -1$  in  $(\mathbb{Z}/M_k)[\sqrt{3}]$ .

- This yields a deterministic polynomial time primality test for Mersenne primes. On 21-Dec-2018 GIMPS found largest known prime 2<sup>82,589,933</sup> - 1.
- Generalization: Whenever (n + 1) has small prime factors one can test *n* for primality by working in  $\mathbb{Z}_n[\sqrt{D}]$  where  $(\frac{D}{n}) = -1$ .
- More generalization: Whenever  $(n^2 \pm n + 1)$  has small prime factors one can test *n* for primality. But then we have to go to cubic extensions (Williams 1978).

(日本)(周本)(日本)(日本)(日本)

## OUTLINE

#### 1 The problem

- 2 The high school method
- 3 PRIME GENERATION & TESTING
- STUDYING INTEGERS MODULO N
- 5 Studying quadratic extensions mod n
- 6 Studying elliptic curves mod n
- 7 Studying cyclotomic extensions mod n

#### 8 QUESTIONS

$$E_{a,b}(\mathbb{Z}_n) = \left\{ (x,y) \in \mathbb{Z}_n^2 \mid y^2 = x^3 + ax + b \right\}$$

- When *n* is prime:  $E_{a,b}(\mathbb{Z}_n)$  is an abelian group.
- #E<sub>a,b</sub>(ℤ<sub>n</sub>) can be computed in deterministic polynomial time (Schoof 1985).
- When *n* is prime: number of points on a random elliptic curve is uniformly distributed in the interval  $[(\sqrt{n}-1)^2, (\sqrt{n}+1)^2 5]$  (Lenstra 1987).

$$E_{a,b}(\mathbb{Z}_n) = \left\{ (x,y) \in \mathbb{Z}_n^2 \mid y^2 = x^3 + ax + b \right\}$$

- When *n* is prime:  $E_{a,b}(\mathbb{Z}_n)$  is an abelian group.
- #E<sub>a,b</sub>(ℤ<sub>n</sub>) can be computed in deterministic polynomial time (Schoof 1985).
- When *n* is prime: number of points on a random elliptic curve is uniformly distributed in the interval  $[(\sqrt{n}-1)^2, (\sqrt{n}+1)^2 5]$  (Lenstra 1987).

$$E_{a,b}(\mathbb{Z}_n) = \left\{ (x,y) \in \mathbb{Z}_n^2 \mid y^2 = x^3 + ax + b \right\}$$

- When *n* is prime:  $E_{a,b}(\mathbb{Z}_n)$  is an abelian group.
- #E<sub>a,b</sub>(ℤ<sub>n</sub>) can be computed in deterministic polynomial time (Schoof 1985).
- When *n* is prime: number of points on a random elliptic curve is uniformly distributed in the interval  $[(\sqrt{n}-1)^2, (\sqrt{n}+1)^2 5]$  (Lenstra 1987).

$$E_{a,b}(\mathbb{Z}_n) = \left\{ (x,y) \in \mathbb{Z}_n^2 \mid y^2 = x^3 + ax + b \right\}$$

- When *n* is prime:  $E_{a,b}(\mathbb{Z}_n)$  is an abelian group.
- #E<sub>a,b</sub>(ℤ<sub>n</sub>) can be computed in deterministic polynomial time (Schoof 1985).
- When *n* is prime: number of points on a random elliptic curve is uniformly distributed in the interval  $[(\sqrt{n}-1)^2, (\sqrt{n}+1)^2 5]$  (Lenstra 1987).

- **(**) Pick a random elliptic curve E over  $\mathbb{Z}_n$  and a random point  $A \in E$ .
- Compute  $\#E(\mathbb{Z}_n)$ . If  $\#E(\mathbb{Z}_n)$  is odd then output COMPOSITE.
- (a) Let  $\#E(\mathbb{Z}_n) =: 2q$ . Prove the primality of q recursively.
- If q is prime and  $q \cdot A = O$  then output PRIME else output COMPOSITE.

- Firstly, note that conjecturally there are "many" numbers between  $[(\sqrt{n}-1)^2, (\sqrt{n}+1)^2]$  that are twice a prime and for a random E,  $\#E(\mathbb{Z}_n)$  will hit such numbers whp when n is prime.
- Suppose n is composite with a prime factor p ≤ √n but the Step 4 condition holds.
- Since  $\#E(\mathbb{Z}_p) \le (p+1+2\sqrt{p}) < \frac{n+1-2\sqrt{p}}{2} \le q$  we get that: q is prime and  $q \cdot A = O \Rightarrow A = O$  in  $E(\mathbb{Z}_p)$
- Thus, A will factor n.

- **9** Pick a random elliptic curve E over  $\mathbb{Z}_n$  and a random point  $A \in E$ .
- <sup>(2)</sup> Compute  $\#E(\mathbb{Z}_n)$ . If  $\#E(\mathbb{Z}_n)$  is odd then output COMPOSITE.
- Itet  $\#E(\mathbb{Z}_n) =: 2q$ . Prove the primality of q recursively.
- If q is prime and  $q \cdot A = O$  then output PRIME else output COMPOSITE.

- Firstly, note that conjecturally there are "many" numbers between
  [(√n − 1)<sup>2</sup>, (√n + 1)<sup>2</sup>] that are twice a prime and for a random E,
  #E(Z<sub>n</sub>) will hit such numbers whp when n is prime.
- Suppose n is composite with a prime factor p ≤ √n but the Step 4 condition holds.
- Since  $\#E(\mathbb{Z}_p) \le (p+1+2\sqrt{p}) < \frac{n+1-2\sqrt{p}}{2} \le q$  we get that: q is prime and  $q \cdot A = O \Rightarrow A = O$  in  $E(\mathbb{Z}_p)$
- Thus, A will factor n.

- Pick a random elliptic curve E over  $\mathbb{Z}_n$  and a random point  $A \in E$ .
- **2** Compute  $\#E(\mathbb{Z}_n)$ . If  $\#E(\mathbb{Z}_n)$  is odd then output COMPOSITE.
- It  $\#E(\mathbb{Z}_n) =: 2q$ . Prove the primality of q recursively.
- If q is prime and  $q \cdot A = O$  then output PRIME else output COMPOSITE.

- Firstly, note that conjecturally there are "many" numbers between
  [(√n − 1)<sup>2</sup>, (√n + 1)<sup>2</sup>] that are twice a prime and for a random E,
  #E(Z<sub>n</sub>) will hit such numbers whp when n is prime.
- Suppose n is composite with a prime factor p ≤ √n but the Step 4 condition holds.
- Since  $\#E(\mathbb{Z}_p) \le (p+1+2\sqrt{p}) < \frac{n+1-2\sqrt{p}}{2} \le q$  we get that: q is prime and  $q \cdot A = O \Rightarrow A = O$  in  $E(\mathbb{Z}_p)$
- Thus, A will factor n.

- Pick a random elliptic curve E over  $\mathbb{Z}_n$  and a random point  $A \in E$ .
- Sompute  $\#E(\mathbb{Z}_n)$ . If  $\#E(\mathbb{Z}_n)$  is odd then output COMPOSITE.
- So Let  $\#E(\mathbb{Z}_n) =: 2q$ . Prove the primality of q recursively.
- If q is prime and  $q \cdot A = O$  then output PRIME else output COMPOSITE.

- Firstly, note that conjecturally there are "many" numbers between
  [(√n − 1)<sup>2</sup>, (√n + 1)<sup>2</sup>] that are twice a prime and for a random E,
  #E(Z<sub>n</sub>) will hit such numbers whp when n is prime.
- Suppose n is composite with a prime factor p ≤ √n but the Step 4 condition holds.
- Since  $\#E(\mathbb{Z}_p) \le (p+1+2\sqrt{p}) < \frac{n+1-2\sqrt{p}}{2} \le q$  we get that: q is prime and  $q \cdot A = O \Rightarrow A = O$  in  $E(\mathbb{Z}_p)$
- Thus, A will factor n.

- Pick a random elliptic curve E over  $\mathbb{Z}_n$  and a random point  $A \in E$ .
- Sompute  $\#E(\mathbb{Z}_n)$ . If  $\#E(\mathbb{Z}_n)$  is odd then output COMPOSITE.
- So Let  $\#E(\mathbb{Z}_n) =: 2q$ . Prove the primality of q recursively.
- If q is prime and  $q \cdot A = O$  then output PRIME else output COMPOSITE.

- Firstly, note that conjecturally there are "many" numbers between
  [(√n − 1)<sup>2</sup>, (√n + 1)<sup>2</sup>] that are twice a prime and for a random E,
  #E(Z<sub>n</sub>) will hit such numbers whp when n is prime.
- Suppose n is composite with a prime factor p ≤ √n but the Step 4 condition holds.
- Since  $\#E(\mathbb{Z}_p) \le (p+1+2\sqrt{p}) < \frac{n+1-2\sqrt{p}}{2} \le q$  we get that: q is prime and  $q \cdot A = O \Rightarrow A = O$  in  $E(\mathbb{Z}_p)$
- Thus, A will factor n.

- Pick a random elliptic curve E over  $\mathbb{Z}_n$  and a random point  $A \in E$ .
- **2** Compute  $\#E(\mathbb{Z}_n)$ . If  $\#E(\mathbb{Z}_n)$  is odd then output COMPOSITE.
- So Let  $\#E(\mathbb{Z}_n) =: 2q$ . Prove the primality of q recursively.
- If q is prime and  $q \cdot A = O$  then output PRIME else output COMPOSITE.

#### PROOF OF CORRECTNESS:

- Firstly, note that conjecturally there are "many" numbers between  $[(\sqrt{n}-1)^2, (\sqrt{n}+1)^2]$  that are twice a prime and for a random E,  $\#E(\mathbb{Z}_n)$  will hit such numbers whp when n is prime.
- Suppose *n* is composite with a prime factor  $p \le \sqrt{n}$  but the Step 4 condition holds.
- Since  $\#E(\mathbb{Z}_p) \leq (p+1+2\sqrt{p}) < \frac{n+1-2\sqrt{n}}{2} \leq q$  we get that:

q is prime and  $q \cdot A = O \Rightarrow A = O$  in  $E(\mathbb{Z}_p)$ 

• Thus, A will factor n.

- Pick a random elliptic curve E over  $\mathbb{Z}_n$  and a random point  $A \in E$ .
- Sompute  $\#E(\mathbb{Z}_n)$ . If  $\#E(\mathbb{Z}_n)$  is odd then output COMPOSITE.
- So Let  $\#E(\mathbb{Z}_n) =: 2q$ . Prove the primality of q recursively.
- If q is prime and  $q \cdot A = O$  then output PRIME else output COMPOSITE.

#### PROOF OF CORRECTNESS:

- Firstly, note that conjecturally there are "many" numbers between  $[(\sqrt{n}-1)^2, (\sqrt{n}+1)^2]$  that are twice a prime and for a random E,  $\#E(\mathbb{Z}_n)$  will hit such numbers whp when n is prime.
- Suppose *n* is composite with a prime factor  $p \le \sqrt{n}$  but the Step 4 condition holds.
- Since  $\#E(\mathbb{Z}_p) \leq (p+1+2\sqrt{p}) < \frac{n+1-2\sqrt{n}}{2} \leq q$  we get that:

q is prime and  $q \cdot A = O \Rightarrow A = O$  in  $E(\mathbb{Z}_p)$ 

• Thus, A will factor n.

- Pick a random elliptic curve E over  $\mathbb{Z}_n$  and a random point  $A \in E$ .
- Sompute  $\#E(\mathbb{Z}_n)$ . If  $\#E(\mathbb{Z}_n)$  is odd then output COMPOSITE.
- So Let  $\#E(\mathbb{Z}_n) =: 2q$ . Prove the primality of q recursively.
- If q is prime and  $q \cdot A = O$  then output PRIME else output COMPOSITE.

#### PROOF OF CORRECTNESS:

- Firstly, note that conjecturally there are "many" numbers between  $[(\sqrt{n}-1)^2, (\sqrt{n}+1)^2]$  that are twice a prime and for a random E,  $\#E(\mathbb{Z}_n)$  will hit such numbers whp when n is prime.
- Suppose *n* is composite with a prime factor  $p \le \sqrt{n}$  but the Step 4 condition holds.
- Since  $\#E(\mathbb{Z}_p) \leq (p+1+2\sqrt{p}) < \frac{n+1-2\sqrt{n}}{2} \leq q$  we get that:

q is prime and  $q \cdot A = O \Rightarrow A = O$  in  $E(\mathbb{Z}_p)$ 

• Thus, A will factor n.

NITIN SAXENA (CSE@IITK)

- Pick a random elliptic curve E over  $\mathbb{Z}_n$  and a random point  $A \in E$ .
- Sompute  $\#E(\mathbb{Z}_n)$ . If  $\#E(\mathbb{Z}_n)$  is odd then output COMPOSITE.
- So Let  $\#E(\mathbb{Z}_n) =: 2q$ . Prove the primality of q recursively.
- If q is prime and  $q \cdot A = O$  then output PRIME else output COMPOSITE.

#### PROOF OF CORRECTNESS:

- Firstly, note that conjecturally there are "many" numbers between  $[(\sqrt{n}-1)^2, (\sqrt{n}+1)^2]$  that are twice a prime and for a random E,  $\#E(\mathbb{Z}_n)$  will hit such numbers whp when n is prime.
- Suppose *n* is composite with a prime factor  $p \le \sqrt{n}$  but the Step 4 condition holds.
- Since  $\#E(\mathbb{Z}_p) \leq (p+1+2\sqrt{p}) < \frac{n+1-2\sqrt{n}}{2} \leq q$  we get that:

q is prime and  $q \cdot A = O \Rightarrow A = O$  in  $E(\mathbb{Z}_p)$ 

• Thus, A will factor n.

NITIN SAXENA (CSE@IITK)

- Pick a random elliptic curve E over  $\mathbb{Z}_n$  and a random point  $A \in E$ .
- Sompute  $\#E(\mathbb{Z}_n)$ . If  $\#E(\mathbb{Z}_n)$  is odd then output COMPOSITE.
- So Let  $\#E(\mathbb{Z}_n) =: 2q$ . Prove the primality of q recursively.
- If q is prime and  $q \cdot A = O$  then output PRIME else output COMPOSITE.

#### PROOF OF CORRECTNESS:

- Firstly, note that conjecturally there are "many" numbers between  $[(\sqrt{n}-1)^2, (\sqrt{n}+1)^2]$  that are twice a prime and for a random E,  $\#E(\mathbb{Z}_n)$  will hit such numbers whp when n is prime.
- Suppose *n* is composite with a prime factor  $p \le \sqrt{n}$  but the Step 4 condition holds.
- Since  $\#E(\mathbb{Z}_p) \leq (p+1+2\sqrt{p}) < \frac{n+1-2\sqrt{n}}{2} \leq q$  we get that:

q is prime and  $q \cdot A = O \Rightarrow A = O$  in  $E(\mathbb{Z}_p)$ 

• Thus, *A* will factor *n*.

- This is the first randomized test that never errs when *n* is composite (1986).
- Time complexity (Atkin-Morain 1993):  $\tilde{O}(\log^4 n)$ .
- But its proof assumed a conjecture about the density of primes in the interval  $\left[\frac{n+1-2\sqrt{n}}{2}, \frac{n+1+2\sqrt{n}}{2}\right]$ .
- Currently, it is not even known if there is always a prime between  $m^2$  and  $(m+1)^2$  (Legendre's conjecture).

- This is the first randomized test that never errs when *n* is composite (1986).
- Time complexity (Atkin-Morain 1993):  $\tilde{O}(\log^4 n)$ .
- But its proof assumed a conjecture about the density of primes in the interval  $\left[\frac{n+1-2\sqrt{n}}{2}, \frac{n+1+2\sqrt{n}}{2}\right]$ .
- Currently, it is not even known if there is always a prime between  $m^2$  and  $(m+1)^2$  (Legendre's conjecture).

- This is the first randomized test that never errs when *n* is composite (1986).
- Time complexity (Atkin-Morain 1993):  $\tilde{O}(\log^4 n)$ .
- But its proof assumed a conjecture about the density of primes in the interval  $\left[\frac{n+1-2\sqrt{n}}{2}, \frac{n+1+2\sqrt{n}}{2}\right]$ .
- Currently, it is not even known if there is always a prime between m<sup>2</sup> and (m + 1)<sup>2</sup> (Legendre's conjecture).

- This is the first randomized test that never errs when *n* is composite (1986).
- Time complexity (Atkin-Morain 1993):  $\tilde{O}(\log^4 n)$ .
- But its proof assumed a conjecture about the density of primes in the interval  $\left[\frac{n+1-2\sqrt{n}}{2}, \frac{n+1+2\sqrt{n}}{2}\right]$ .
- Currently, it is not even known if there is always a prime between m<sup>2</sup> and (m + 1)<sup>2</sup> (Legendre's conjecture).

### ADLEMAN-HUANG TEST

- Using hyperelliptic curves they made Goldwasser-Kilian test unconditional (1992).
- Time complexity:  $O(\log^c n)$  where c > 30 !

### ADLEMAN-HUANG TEST

- Using hyperelliptic curves they made Goldwasser-Kilian test unconditional (1992).
- Time complexity:  $O(\log^{c} n)$  where c > 30 !

## OUTLINE

#### **1** The problem

- 2 The high school method
- 3 PRIME GENERATION & TESTING
- STUDYING INTEGERS MODULO N
- 5 STUDYING QUADRATIC EXTENSIONS MOD N
- 6 Studying elliptic curves mod n
- **7** Studying cyclotomic extensions mod n

#### 8 QUESTIONS

- Recall how Lucas-Lehmer-Williams tested *n* for primality when  $(n-1), (n+1), (n^2 n + 1)$  or  $(n^2 + n + 1)$  was smooth.
- What can we do when  $(n^m 1)$  is smooth? Maybe go to some *m*-th extension of  $\mathbb{Z}_n$  ?
- This question inspired the APR test (1980). Speeded up by Cohen and Lenstra (1981).
- Deterministic algorithm with time complexity  $\log^{O(\log \log \log n)} n$ .
- Is conceptually the most complex algorithm of all.
- Attempts to find a prime factor of n using higher reciprocity laws in cyclotomic extensions of  $\mathbb{Z}_n$ .

- Recall how Lucas-Lehmer-Williams tested *n* for primality when  $(n-1), (n+1), (n^2 n + 1)$  or  $(n^2 + n + 1)$  was smooth.
- What can we do when  $(n^m 1)$  is smooth? Maybe go to some *m*-th extension of  $\mathbb{Z}_n$ ?
- This question inspired the APR test (1980). Speeded up by Cohen and Lenstra (1981).
- Deterministic algorithm with time complexity  $\log^{O(\log \log \log n)} n$ .
- Is conceptually the most complex algorithm of all.
- Attempts to find a prime factor of n using higher reciprocity laws in cyclotomic extensions of  $\mathbb{Z}_n$ .

• • • • • • • • •

- Recall how Lucas-Lehmer-Williams tested n for primality when  $(n-1), (n+1), (n^2 n + 1)$  or  $(n^2 + n + 1)$  was smooth.
- What can we do when  $(n^m 1)$  is smooth? Maybe go to some *m*-th extension of  $\mathbb{Z}_n$ ?
- This question inspired the APR test (1980). Speeded up by Cohen and Lenstra (1981).
- Deterministic algorithm with time complexity  $\log^{O(\log \log \log n)} n$ .
- Is conceptually the most complex algorithm of all.
- Attempts to find a prime factor of *n* using higher reciprocity laws in cyclotomic extensions of  $\mathbb{Z}_n$ .

• • = • • = •

- Recall how Lucas-Lehmer-Williams tested n for primality when  $(n-1), (n+1), (n^2 n + 1)$  or  $(n^2 + n + 1)$  was smooth.
- What can we do when  $(n^m 1)$  is smooth? Maybe go to some *m*-th extension of  $\mathbb{Z}_n$ ?
- This question inspired the APR test (1980). Speeded up by Cohen and Lenstra (1981).
- Deterministic algorithm with time complexity  $\log^{O(\log \log \log n)} n$ .
- Is conceptually the most complex algorithm of all.
- Attempts to find a prime factor of n using higher reciprocity laws in cyclotomic extensions of  $\mathbb{Z}_n$ .

向下 イヨト イヨト

- Recall how Lucas-Lehmer-Williams tested n for primality when  $(n-1), (n+1), (n^2 n + 1)$  or  $(n^2 + n + 1)$  was smooth.
- What can we do when  $(n^m 1)$  is smooth? Maybe go to some *m*-th extension of  $\mathbb{Z}_n$ ?
- This question inspired the APR test (1980). Speeded up by Cohen and Lenstra (1981).
- Deterministic algorithm with time complexity  $\log^{O(\log \log \log n)} n$ .
- Is conceptually the most complex algorithm of all.
- Attempts to find a prime factor of *n* using higher reciprocity laws in cyclotomic extensions of  $\mathbb{Z}_n$ .

向下 イヨト イヨト

- Recall how Lucas-Lehmer-Williams tested n for primality when  $(n-1), (n+1), (n^2 n + 1)$  or  $(n^2 + n + 1)$  was smooth.
- What can we do when  $(n^m 1)$  is smooth? Maybe go to some *m*-th extension of  $\mathbb{Z}_n$ ?
- This question inspired the APR test (1980). Speeded up by Cohen and Lenstra (1981).
- Deterministic algorithm with time complexity  $\log^{O(\log \log \log n)} n$ .
- Is conceptually the most complex algorithm of all.
- Attempts to find a prime factor of *n* using higher reciprocity laws in cyclotomic extensions of  $\mathbb{Z}_n$ .

# AGRAWAL-KAYAL-S (AKS) TEST

#### THEOREM (A GENERALIZATION OF FLT)

If n is a prime then for all  $a \in \mathbb{Z}_n$ ,  $(x + a)^n = (x^n + a) \pmod{n, x^r - 1}$ .

- This was the basis of the AKS test proposed in 2002.
- It was the first unconditional, deterministic and polynomial time primality test.

# AGRAWAL-KAYAL-S (AKS) TEST

#### THEOREM (A GENERALIZATION OF FLT)

If n is a prime then for all  $a \in \mathbb{Z}_n$ ,  $(x + a)^n = (x^n + a) \pmod{n, x^r - 1}$ .

- This was the basis of the AKS test proposed in 2002.
- It was the first unconditional, deterministic and polynomial time primality test.
# AGRAWAL-KAYAL-S (AKS) TEST

#### THEOREM (A GENERALIZATION OF FLT)

If n is a prime then for all  $a \in \mathbb{Z}_n$ ,  $(x + a)^n = (x^n + a) \pmod{n, x^r - 1}$ .

- This was the basis of the AKS test proposed in 2002.
- It was the first unconditional, deterministic and polynomial time primality test.

#### If n is a prime power, it is composite.

- Select an r such that  $\operatorname{ord}_r(n) > 4 \log^2 n$  and work in the ring  $R := \mathbb{Z}_n[x]/(x^r 1).$
- For each  $a, 1 \le a \le \ell := \lceil 2\sqrt{r} \log n \rceil$ , check if  $(x + a)^n = (x^n + a)$ .
- If yes then *n* is prime else composite.

- If n is a prime power, it is composite.
- Select an r such that  $\operatorname{ord}_r(n) > 4 \log^2 n$  and work in the ring  $R := \mathbb{Z}_n[x]/(x^r 1).$
- For each  $a, 1 \le a \le \ell := \lceil 2\sqrt{r} \log n \rceil$ , check if  $(x + a)^n = (x^n + a)$ .
- If yes then n is prime else composite.

- If n is a prime power, it is composite.
- Select an r such that  $\operatorname{ord}_r(n) > 4 \log^2 n$  and work in the ring  $R := \mathbb{Z}_n[x]/(x^r 1).$
- For each  $a, 1 \le a \le \ell := \lfloor 2\sqrt{r} \log n \rfloor$ , check if  $(x + a)^n = (x^n + a)$ .

If yes then *n* is prime else composite.

- If n is a prime power, it is composite.
- Select an r such that  $\operatorname{ord}_r(n) > 4 \log^2 n$  and work in the ring  $R := \mathbb{Z}_n[x]/(x^r 1).$
- For each  $a, 1 \le a \le \ell := \lfloor 2\sqrt{r} \log n \rfloor$ , check if  $(x + a)^n = (x^n + a)$ .
- If yes then *n* is prime else composite.

- Suppose all the congruences hold and *p* is a prime factor of *n*.
- The group  $I := \langle n, p \pmod{r} \rangle$ .  $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$ .
- The group J := ⟨(x + 1),...,(x + ℓ) (mod p, h(x))⟩ where h(x) is an irreducible factor of x<sup>r</sup>-1/x-1 modulo p.
   #J ≥ 2<sup>min{t,ℓ}</sup> > 2<sup>2√t log n</sup> ≥ n<sup>2√t</sup>.
- Proof: Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose f(x) = g(x) (mod p, h(x)).</li>
- The test tells us that  $f(x^{n^i \cdot p^j}) = g(x^{n^i \cdot p^j}) \pmod{p, h(x)}$ .
- But this means that f(z) g(z) has atleast t roots in the field  $\mathbb{F}_p[x]/(h(x))$ , which is a contradiction.

向下 イヨト イヨト

- Suppose all the congruences hold and *p* is a prime factor of *n*.
- The group  $I := \langle n, p \pmod{r} \rangle$ .  $t := \# I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$ .
- The group J := ⟨(x + 1),...,(x + ℓ) (mod p, h(x))⟩ where h(x) is an irreducible factor of x<sup>r</sup>-1/x-1 modulo p.
   #J ≥ 2<sup>min{t,ℓ}</sup> > 2<sup>2√t log n</sup> ≥ n<sup>2√t</sup>.
- Proof: Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose f(x) = g(x) (mod p, h(x)).</li>
- The test tells us that  $f(x^{n^i \cdot p^j}) = g(x^{n^i \cdot p^j}) \pmod{p, h(x)}$ .
- But this means that f(z) g(z) has atleast t roots in the field  $\mathbb{F}_p[x]/(h(x))$ , which is a contradiction.

伺い イヨト イヨト

- Suppose all the congruences hold and *p* is a prime factor of *n*.
- The group  $I := \langle n, p \pmod{r} \rangle$ .  $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$ .
- The group J := ⟨(x + 1),...,(x + ℓ) (mod p, h(x))⟩ where h(x) is an irreducible factor of x<sup>r</sup>-1/x-1 modulo p.
   #J ≥ 2<sup>min{t,ℓ}</sup> > 2<sup>2√t log n</sup> ≥ n<sup>2√t</sup>.
- Proof: Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose f(x) = g(x) (mod p, h(x)).</li>
- The test tells us that  $f(x^{n^i \cdot p^j}) = g(x^{n^i \cdot p^j}) \pmod{p, h(x)}$ .
- But this means that f(z) g(z) has atleast t roots in the field  $\mathbb{F}_p[x]/(h(x))$ , which is a contradiction.

NWCNS'19 31 / 37

向下 イヨト イヨト

- Suppose all the congruences hold and *p* is a prime factor of *n*.
- The group  $I := \langle n, p \pmod{r} \rangle$ .  $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$ .
- The group J := ⟨(x + 1),..., (x + ℓ) (mod p, h(x))⟩ where h(x) is an irreducible factor of x<sup>r</sup>-1/x-1 modulo p.
  - $\#J \ge 2^{\min\{t,\ell\}} > 2^{2\sqrt{t}\log n} \ge n^{2\sqrt{t}}$
- Proof: Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose f(x) = g(x) (mod p, h(x)).</li>
- The test tells us that  $f(x^{n^i \cdot p^j}) = g(x^{n^i \cdot p^j}) \pmod{p, h(x)}$ .
- But this means that f(z) g(z) has atleast t roots in the field  $\mathbb{F}_p[x]/(h(x))$ , which is a contradiction.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Suppose all the congruences hold and *p* is a prime factor of *n*.
- The group  $I := \langle n, p \pmod{r} \rangle$ .  $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$ .
- The group J := ⟨(x + 1),..., (x + ℓ) (mod p, h(x))⟩ where h(x) is an irreducible factor of x<sup>r</sup>-1/x-1 modulo p. #J ≥ 2<sup>min{t,ℓ}</sup> > 2<sup>2√t log n</sup> ≥ n<sup>2√t</sup>.
- Proof: Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose f(x) = g(x) (mod p, h(x)).</li>
- The test tells us that  $f(x^{n^i \cdot p^j}) = g(x^{n^i \cdot p^j}) \pmod{p, h(x)}$ .
- But this means that f(z) g(z) has atleast t roots in the field  $\mathbb{F}_p[x]/(h(x))$ , which is a contradiction.

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Suppose all the congruences hold and *p* is a prime factor of *n*.
- The group  $I := \langle n, p \pmod{r} \rangle$ .  $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$ .
- The group  $J := \langle (x + 1), \dots, (x + \ell) \pmod{p, h(x)} \rangle$  where h(x) is an irreducible factor of  $\frac{x^r 1}{x 1} \mod p$ .  $\#J \ge 2^{\min\{t, \ell\}} > 2^{2\sqrt{t} \log n} \ge n^{2\sqrt{t}}$ .
- Proof: Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose f(x) = g(x) (mod p, h(x)).</li>
- The test tells us that  $f(x^{n^i \cdot p^j}) = g(x^{n^i \cdot p^j}) \pmod{p, h(x)}$ .
- But this means that f(z) g(z) has atleast t roots in the field  $\mathbb{F}_p[x]/(h(x))$ , which is a contradiction.

NWCNS'19 31 / 37

(人間) とうき くうい

- Suppose all the congruences hold and *p* is a prime factor of *n*.
- The group  $I := \langle n, p \pmod{r} \rangle$ .  $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$ .
- The group  $J := \langle (x + 1), \dots, (x + \ell) \pmod{p, h(x)} \rangle$  where h(x) is an irreducible factor of  $\frac{x^r 1}{x 1} \mod p$ .  $\#J \ge 2^{\min\{t, \ell\}} > 2^{2\sqrt{t} \log n} \ge n^{2\sqrt{t}}$ .
- Proof: Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose f(x) = g(x) (mod p, h(x)).</li>
- The test tells us that  $f(x^{n^i \cdot p^j}) = g(x^{n^i \cdot p^j}) \pmod{p, h(x)}$ .
- But this means that f(z) g(z) has atleast t roots in the field  $\mathbb{F}_p[x]/(h(x))$ , which is a contradiction.

- 本部 とくき とくき とうき

- Suppose all the congruences hold and *p* is a prime factor of *n*.
- The group  $I := \langle n, p \pmod{r} \rangle$ .  $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$ .
- The group  $J := \langle (x + 1), \dots, (x + \ell) \pmod{p, h(x)} \rangle$  where h(x) is an irreducible factor of  $\frac{x^r 1}{x 1} \mod p$ .  $\#J \ge 2^{\min\{t, \ell\}} > 2^{2\sqrt{t} \log n} \ge n^{2\sqrt{t}}$ .
- Proof: Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose f(x) = g(x) (mod p, h(x)).</li>
- The test tells us that  $f(x^{n^i \cdot p^j}) = g(x^{n^i \cdot p^j}) \pmod{p, h(x)}$ .
- But this means that f(z) g(z) has atleast t roots in the field  $\mathbb{F}_p[x]/(h(x))$ , which is a contradiction.

イボト イヨト イヨト 二日

#### The Two Groups

Group  $I := \langle n, p \pmod{r} \rangle$  is of size  $t > 4 \log^2 n$ . Group  $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$  is of size  $> n^{2\sqrt{t}}$ .

- There exist tuples  $(i,j) \neq (i',j')$  such that  $0 \leq i,j,i',j' \leq \sqrt{t}$  and  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$ .
- The test tells us that for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$  and  $f(x)^{n^{i'} \cdot p^{j'}} = f(x^{n^{i'} \cdot p^{j'}})$ .
- Thus, for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x)^{n^{i'} \cdot p^{j'}}$ .
- As J is a cyclic group:  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$ .
- As #J is large,  $n^i \cdot p^j = n^{i'} \cdot p^{j'}$ . Hence, n = p a prime.

#### The Two Groups

Group  $I := \langle n, p \pmod{r} \rangle$  is of size  $t > 4 \log^2 n$ . Group  $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$  is of size  $> n^{2\sqrt{t}}$ .

- There exist tuples  $(i,j) \neq (i',j')$  such that  $0 \leq i,j,i',j' \leq \sqrt{t}$  and  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$ .
- The test tells us that for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$  and  $f(x)^{n^{i'} \cdot p^{j'}} = f(x^{n^{i'} \cdot p^{j'}})$ .
- Thus, for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x)^{n^{i'} \cdot p^{j'}}$ .
- As J is a cyclic group:  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$ .
- As #J is large,  $n^i \cdot p^j = n^{i'} \cdot p^{j'}$ . Hence, n = p a prime.

伺下 イヨト イヨト

#### The Two Groups

Group  $I := \langle n, p \pmod{r} \rangle$  is of size  $t > 4 \log^2 n$ . Group  $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$  is of size  $> n^{2\sqrt{t}}$ .

- There exist tuples  $(i, j) \neq (i', j')$  such that  $0 \leq i, j, i', j' \leq \sqrt{t}$  and  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$ .
- The test tells us that for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$  and  $f(x)^{n^{i'} \cdot p^{j'}} = f(x^{n^{i'} \cdot p^{j'}})$ .
- Thus, for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x)^{n^{i'} \cdot p^{j'}}$ .
- As J is a cyclic group:  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$ .
- As #J is large,  $n^i \cdot p^j = n^{i'} \cdot p^{j'}$ . Hence, n = p a prime.

- 本部 とくき とくき とうき

#### The Two Groups

Group  $I := \langle n, p \pmod{r} \rangle$  is of size  $t > 4 \log^2 n$ . Group  $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$  is of size  $> n^{2\sqrt{t}}$ .

- There exist tuples  $(i,j) \neq (i',j')$  such that  $0 \leq i,j,i',j' \leq \sqrt{t}$  and  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$ .
- The test tells us that for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$  and  $f(x)^{n^{i'} \cdot p^{j'}} = f(x^{n^{i'} \cdot p^{j'}})$ .
- Thus, for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x)^{n^{i'} \cdot p^{j'}}$ .
- As J is a cyclic group:  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$ .

• As #J is large,  $n^i \cdot p^j = n^{i'} \cdot p^{j'}$ . Hence, n = p a prime.

- 不得下 イヨト イヨト - ヨ

#### The Two Groups

Group  $I := \langle n, p \pmod{r} \rangle$  is of size  $t > 4 \log^2 n$ . Group  $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$  is of size  $> n^{2\sqrt{t}}$ .

- There exist tuples  $(i, j) \neq (i', j')$  such that  $0 \leq i, j, i', j' \leq \sqrt{t}$  and  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$ .
- The test tells us that for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$  and  $f(x)^{n^{i'} \cdot p^{j'}} = f(x^{n^{i'} \cdot p^{j'}})$ .
- Thus, for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x)^{n^{i'} \cdot p^{j'}}$ .
- As J is a cyclic group:  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$ .
- As #J is large,  $n^i \cdot p^j = n^{i'} \cdot p^{j'}$ . Hence, n = p a prime.

イロト イポト イヨト イヨト 二日

#### The Two Groups

Group  $I := \langle n, p \pmod{r} \rangle$  is of size  $t > 4 \log^2 n$ . Group  $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$  is of size  $> n^{2\sqrt{t}}$ .

- There exist tuples  $(i,j) \neq (i',j')$  such that  $0 \leq i,j,i',j' \leq \sqrt{t}$  and  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$ .
- The test tells us that for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$  and  $f(x)^{n^{i'} \cdot p^{j'}} = f(x^{n^{i'} \cdot p^{j'}})$ .
- Thus, for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x)^{n^{i'} \cdot p^{j'}}$ .
- As J is a cyclic group:  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$ .
- As #J is large,  $n^i \cdot p^j = n^{i'} \cdot p^{j'}$ . Hence, n = p a prime.

- イヨト イヨト イヨト - ヨ

#### The Two Groups

Group  $I := \langle n, p \pmod{r} \rangle$  is of size  $t > 4 \log^2 n$ . Group  $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$  is of size  $> n^{2\sqrt{t}}$ .

- There exist tuples  $(i, j) \neq (i', j')$  such that  $0 \leq i, j, i', j' \leq \sqrt{t}$  and  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$ .
- The test tells us that for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$  and  $f(x)^{n^{i'} \cdot p^{j'}} = f(x^{n^{i'} \cdot p^{j'}})$ .
- Thus, for all  $f(x) \in J$ ,  $f(x)^{n^i \cdot p^j} = f(x)^{n^{j'} \cdot p^{j'}}$ .
- As J is a cyclic group:  $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$ .
- As #J is large,  $n^i \cdot p^j = n^{i'} \cdot p^{j'}$ . Hence, n = p a prime.

- 本部 とくき とくき とうき

- Each congruence (x + a)<sup>n</sup> = (x<sup>n</sup> + a) (mod n, x<sup>r</sup> − 1) can be tested in time Õ(r log<sup>2</sup> n).
- The algorithm takes time  $\tilde{O}(r^{\frac{3}{2}} \cdot \log^3 n)$ .
- Recall that r is the least number such that  $\operatorname{ord}_r(n) > 4 \log^2 n$ .
- Prime number theorem gives  $r = O(\log^5 n)$  and thus, time  $\tilde{O}(\log^{10.5} n)$ .
- **Proof:** Stare at the product:

$$\Pi := (n-1)(n^2-1)\cdots(n^{\lfloor 4\log^2 n\rfloor}-1)$$

- Each congruence (x + a)<sup>n</sup> = (x<sup>n</sup> + a) (mod n, x<sup>r</sup> − 1) can be tested in time Õ(r log<sup>2</sup> n).
- The algorithm takes time  $\tilde{O}(r^{\frac{3}{2}} \cdot \log^3 n)$ .
- Recall that r is the least number such that  $\operatorname{ord}_r(n) > 4 \log^2 n$ .
- Prime number theorem gives  $r = O(\log^5 n)$  and thus, time  $\tilde{O}(\log^{10.5} n)$ .
- **Proof:** Stare at the product:

$$\Pi := (n-1)(n^2-1)\cdots(n^{\lfloor 4\log^2 n\rfloor}-1)$$

NWCNS'19 33 / 37

- Each congruence (x + a)<sup>n</sup> = (x<sup>n</sup> + a) (mod n, x<sup>r</sup> − 1) can be tested in time Õ(r log<sup>2</sup> n).
- The algorithm takes time  $\tilde{O}(r^{\frac{3}{2}} \cdot \log^3 n)$ .
- Recall that r is the least number such that  $\operatorname{ord}_r(n) > 4 \log^2 n$ .
- Prime number theorem gives  $r = O(\log^5 n)$  and thus, time  $\tilde{O}(\log^{10.5} n)$ .
- **Proof:** Stare at the product:

$$\Pi := (n-1)(n^2-1)\cdots(n^{\lfloor 4\log^2 n\rfloor}-1)$$

NWCNS'19 33 / 37

- Each congruence (x + a)<sup>n</sup> = (x<sup>n</sup> + a) (mod n, x<sup>r</sup> − 1) can be tested in time Õ(r log<sup>2</sup> n).
- The algorithm takes time  $\tilde{O}(r^{\frac{3}{2}} \cdot \log^3 n)$ .
- Recall that r is the least number such that  $\operatorname{ord}_r(n) > 4 \log^2 n$ .
- Prime number theorem gives  $r = O(\log^5 n)$  and thus, time  $\tilde{O}(\log^{10.5} n)$ .
- **Proof:** Stare at the product:

$$\Pi := (n-1)(n^2-1)\cdots(n^{\lfloor 4\log^2 n\rfloor}-1)$$

- Each congruence (x + a)<sup>n</sup> = (x<sup>n</sup> + a) (mod n, x<sup>r</sup> − 1) can be tested in time Õ(r log<sup>2</sup> n).
- The algorithm takes time  $\tilde{O}(r^{\frac{3}{2}} \cdot \log^3 n)$ .
- Recall that r is the least number such that  $\operatorname{ord}_r(n) > 4 \log^2 n$ .
- Prime number theorem gives  $r = O(\log^5 n)$  and thus, time  $\tilde{O}(\log^{10.5} n)$ .
- Proof: Stare at the product:

$$\Pi := (n-1)(n^2-1)\cdots(n^{\lfloor 4\log^2 n \rfloor}-1)$$

THEOREM (FOUVRY 1985)

$$\#\left\{ \textit{prime } p \leq x \mid \exists \textit{ prime } q \geq p^{rac{2}{3}}, q | (p-1) 
ight\} \sim rac{x}{\log x}.$$

- Fouvry's theorem gives  $r = O(\log^3 n)$  and thus, time  $\tilde{O}(\log^{7.5} n)$ .
- Proof: A "Fouvry prime" r = Õ(log<sup>3</sup> n) with ord<sub>r</sub>(n) ≤ 4 log<sup>2</sup> n has to divide the product:

$$\Pi' := (n-1)(n^2 - 1) \cdots (n^{O(\log n)} - 1)$$

THEOREM (FOUVRY 1985) # { prime  $p \le x \mid \exists \text{ prime } q \ge p^{\frac{2}{3}}, q \mid (p-1)$  }  $\sim \frac{x}{\log x}$ .

- Fouvry's theorem gives  $r = O(\log^3 n)$  and thus, time  $\tilde{O}(\log^{7.5} n)$ .
- Proof: A "Fouvry prime" r = Õ(log<sup>3</sup> n) with ord<sub>r</sub>(n) ≤ 4 log<sup>2</sup> n has to divide the product:

$$\Pi' := (n-1)(n^2 - 1) \cdots (n^{O(\log n)} - 1)$$

THEOREM (FOUVRY 1985) # {prime  $p \le x \mid \exists \text{ prime } q \ge p^{\frac{2}{3}}, q \mid (p-1) \} \sim \frac{x}{\log x}.$ 

- Fouvry's theorem gives  $r = O(\log^3 n)$  and thus, time  $\tilde{O}(\log^{7.5} n)$ .
- **Proof:** A "Fouvry prime"  $r = \tilde{O}(\log^3 n)$  with  $\operatorname{ord}_r(n) \le 4\log^2 n$  has to divide the product:

$$\Pi' := (n-1)(n^2-1)\cdots(n^{O(\log n)}-1)$$

THEOREM (FOUVRY 1985) # {prime  $p \le x \mid \exists \text{ prime } q \ge p^{\frac{2}{3}}, q \mid (p-1) \} \sim \frac{x}{\log x}.$ 

- Fouvry's theorem gives  $r = O(\log^3 n)$  and thus, time  $\tilde{O}(\log^{7.5} n)$ .
- **Proof:** A "Fouvry prime"  $r = \tilde{O}(\log^3 n)$  with  $\operatorname{ord}_r(n) \le 4\log^2 n$  has to divide the product:

$$\Pi' := (n-1)(n^2 - 1) \cdots (n^{O(\log n)} - 1)$$

But we can find a "Fouvry prime" r = Õ(log<sup>3</sup> n) not dividing Π'.
Thus, there is a "Fouvry prime" r = Õ(log<sup>3</sup> n) satisfying ord<sub>r</sub>(n) > 4 log<sup>2</sup> n.

向下 イヨト イヨト

THEOREM (FOUVRY 1985) # {prime  $p \le x \mid \exists \text{ prime } q \ge p^{\frac{2}{3}}, q \mid (p-1) \} \sim \frac{x}{\log x}.$ 

- Fouvry's theorem gives  $r = O(\log^3 n)$  and thus, time  $\tilde{O}(\log^{7.5} n)$ .
- **Proof:** A "Fouvry prime"  $r = \tilde{O}(\log^3 n)$  with  $\operatorname{ord}_r(n) \le 4\log^2 n$  has to divide the product:

$$\Pi' := (n-1)(n^2 - 1) \cdots (n^{O(\log n)} - 1)$$

## AKS TEST: VARIANTS

- Original AKS test took time  $\tilde{O}(\log^{12} n)$ . The above improvement used ideas from Hendrik Lenstra Jr.
- Lenstra and Pomerance (2003) further reduced the time complexity to  $\tilde{O}(\log^6 n)$ .

## AKS TEST: VARIANTS

- Original AKS test took time  $\tilde{O}(\log^{12} n)$ . The above improvement used ideas from Hendrik Lenstra Jr.
- Lenstra and Pomerance (2003) further reduced the time complexity to  $\tilde{O}(\log^6 n)$ .

## OUTLINE

- 1 The problem
- 2 The high school method
- 3 PRIME GENERATION & TESTING
- **4** Studying integers modulo n
- 5 Studying quadratic extensions mod n
- 6 Studying elliptic curves mod n
- 7 Studying cyclotomic extensions mod n
- 8 QUESTIONS

## QUESTIONS

#### Can we reduce the number of *a*'s for which the test is performed?

CONJECTURE: (BHATTACHARJEE-PANDEY 2001; AKS 2004) Let  $r > \log n$  be a prime number that does not divide  $(n^3 - n)$ . Then  $(x-1)^n \equiv (x^n - 1) \pmod{n, x^r - 1}$  iff n is prime.

#### Evidence:

- Even for r = 5 the above conjecture holds for all  $n \le 10^{11}$ .
- The above conjecture holds for all primes  $r \le 100$  and  $n \le 10^{10}$ . Could this test be used for *factoring* integers? (Agrawal, S, Srivastava, MFCS 2016)

### Thank you!

## QUESTIONS

Can we reduce the number of *a*'s for which the test is performed?

CONJECTURE: (BHATTACHARJEE-PANDEY 2001; AKS 2004) Let  $r > \log n$  be a prime number that does not divide  $(n^3 - n)$ . Then  $(x - 1)^n \equiv (x^n - 1) \pmod{n, x^r - 1}$  iff *n* is prime.

Evidence:

- Even for r = 5 the above conjecture holds for all  $n \le 10^{11}$ .
- The above conjecture holds for all primes  $r \leq 100$  and  $n \leq 10^{10}$ .

Could this test be used for *factoring* integers? (Agrawal, S, Srivastava, MFCS 2016)

### Thank you!

不得下 イラト イラト

## QUESTIONS

Can we reduce the number of *a*'s for which the test is performed?

CONJECTURE: (BHATTACHARJEE-PANDEY 2001; AKS 2004) Let  $r > \log n$  be a prime number that does not divide  $(n^3 - n)$ . Then  $(x - 1)^n \equiv (x^n - 1) \pmod{n, x^r - 1}$  iff *n* is prime.

#### Evidence:

• Even for r = 5 the above conjecture holds for all  $n \le 10^{11}$ .

• The above conjecture holds for all primes  $r \le 100$  and  $n \le 10^{10}$ . Could this test be used for *factoring* integers? (Agrawal, S, Srivastava, MFCS 2016)

### Thank you!

伺下 イヨト イヨト
Can we reduce the number of *a*'s for which the test is performed?

CONJECTURE: (BHATTACHARJEE-PANDEY 2001; AKS 2004) Let  $r > \log n$  be a prime number that does not divide  $(n^3 - n)$ . Then  $(x - 1)^n \equiv (x^n - 1) \pmod{n, x^r - 1}$  iff *n* is prime.

#### Evidence:

• Even for r = 5 the above conjecture holds for all  $n \le 10^{11}$ .

• The above conjecture holds for all primes  $r \le 100$  and  $n \le 10^{10}$ . Could this test be used for *factoring* integers? (Agrawal, S, Srivastava, MFCS 2016)

### Thank you!

(人間) とうり くうり

Can we reduce the number of *a*'s for which the test is performed?

CONJECTURE: (BHATTACHARJEE-PANDEY 2001; AKS 2004) Let  $r > \log n$  be a prime number that does not divide  $(n^3 - n)$ . Then  $(x - 1)^n \equiv (x^n - 1) \pmod{n, x^r - 1}$  iff *n* is prime.

Evidence:

- Even for r = 5 the above conjecture holds for all  $n \le 10^{11}$ .
- The above conjecture holds for all primes  $r \le 100$  and  $n \le 10^{10}$ .

Could this test be used for *factoring* integers? (Agrawal, S, Srivastava, MFCS 2016)

### Thank you!

- 4 回 ト 4 ヨ ト 4 ヨ ト

Can we reduce the number of *a*'s for which the test is performed?

CONJECTURE: (BHATTACHARJEE-PANDEY 2001; AKS 2004) Let  $r > \log n$  be a prime number that does not divide  $(n^3 - n)$ . Then  $(x - 1)^n \equiv (x^n - 1) \pmod{n, x^r - 1}$  iff *n* is prime.

Evidence:

- Even for r = 5 the above conjecture holds for all  $n \le 10^{11}$ .
- The above conjecture holds for all primes  $r \le 100$  and  $n \le 10^{10}$ .

Could this test be used for *factoring* integers? (Agrawal, S, Srivastava, MFCS 2016)

#### Thank you!

向下 イヨト イヨト

Can we reduce the number of *a*'s for which the test is performed?

CONJECTURE: (BHATTACHARJEE-PANDEY 2001; AKS 2004) Let  $r > \log n$  be a prime number that does not divide  $(n^3 - n)$ . Then  $(x - 1)^n \equiv (x^n - 1) \pmod{n, x^r - 1}$  iff *n* is prime.

Evidence:

- Even for r = 5 the above conjecture holds for all  $n \le 10^{11}$ .
- The above conjecture holds for all primes  $r \le 100$  and  $n \le 10^{10}$ .

Could this test be used for *factoring* integers? (Agrawal, S, Srivastava, MFCS 2016)

### Thank you!