Isomorphism Problems of Graphs, F-algebras and Cubic Forms

Manindra Agrawal, Nitin Saxena

IIT Kanpur

IRISS, Jan 2006
The **Graph Isomorphism** problem is to *efficiently* check whether two given graphs are isomorphic.

- This is a fundamental problem in computer science and not even a subexponential time algorithm is known yet.
- In this talk we will display connections of Graph Isomorphism to the isomorphism problems of basic algebraic structures like \mathbb{F}-algebras and cubic forms.
- The hope is that a better understanding of these algebraic structures might shed light on the graph isomorphism problem.
Motivation

- The **Graph Isomorphism** problem is to *efficiently* check whether two given graphs are isomorphic.
- This is a fundamental problem in computer science and not even a subexponential time algorithm is known yet.
- In this talk we will display connections of Graph Isomorphism to the isomorphism problems of basic algebraic structures like \mathbb{F}-algebras and cubic forms.
- The hope is that a better understanding of these algebraic structures might shed light on the graph isomorphism problem.
Motivation

The Graph Isomorphism problem is to *efficiently* check whether two given graphs are isomorphic.

This is a fundamental problem in computer science and not even a subexponential time algorithm is known yet.

In this talk we will display connections of Graph Isomorphism to the isomorphism problems of basic algebraic structures like F-algebras and cubic forms.

The hope is that a better understanding of these algebraic structures might shed light on the graph isomorphism problem.
Motivation

- The **Graph Isomorphism** problem is to *efficiently* check whether two given graphs are isomorphic.
- This is a fundamental problem in computer science and not even a subexponential time algorithm is known yet.
- In this talk we will display connections of Graph Isomorphism to the isomorphism problems of basic algebraic structures like F-algebras and cubic forms.
- The hope is that a better understanding of these algebraic structures might shed light on the graph isomorphism problem.
GI is in NP

- Given two graphs G_1, G_2 and a map π, it is easy to check whether π is an isomorphism from $G_1 \to G_2$.
- Thus, GI can be verified in polynomial time or GI \in NP.
- Is graph non-isomorphism, i.e. $\overline{\text{GI}}$, in NP too?
- Whether $\overline{\text{GI}} \in \text{NP}$ is not known but it can be shown that $\overline{\text{GI}}$ is verifiable in randomized polynomial time.
Given two graphs G_1, G_2 and a map π, it is easy to check whether π is an isomorphism from $G_1 \rightarrow G_2$.

Thus, GI can be verified in polynomial time or $\text{GI} \in \text{NP}$.

Is graph non-isomorphism, i.e. $\overline{\text{GI}}$, in NP too?

Whether $\overline{\text{GI}} \in \text{NP}$ is not known but it can be shown that $\overline{\text{GI}}$ is verifiable in randomized polynomial time.
GI is in NP

- Given two graphs G_1, G_2 and a map π, it is easy to check whether π is an isomorphism from $G_1 \rightarrow G_2$.
- Thus, GI can be verified in polynomial time or $\text{GI} \in \text{NP}$.
- Is graph non-isomorphism, i.e. $\overline{\text{GI}}$, in NP too?
- Whether $\overline{\text{GI}} \in \text{NP}$ is not known but it can be shown that $\overline{\text{GI}}$ is verifiable in randomized polynomial time.
GI is in NP

• Given two graphs G_1, G_2 and a map π, it is easy to check whether π is an isomorphism from $G_1 \rightarrow G_2$.
• Thus, GI can be verified in polynomial time or GI \in NP.
• Is graph non-isomorphism, i.e. \overline{GI}, in NP too?
• Whether $\overline{GI} \in NP$ is not known but it can be shown that \overline{GI} is verifiable in randomized polynomial time.
GI is in AM

- Suppose the verifier has two graphs G_1, G_2 and he wants to verify whether the graphs are non-isomorphic by querying a prover.
- The verifier randomly chooses a permutation π on the vertex set and an $i \in \{1, 2\}$.
- The verifier sends the graph $\pi(G_i)$ to the prover and asks the prover to send back a $j \in \{1, 2\}$ and an isomorphism $\sigma : G_j \rightarrow \pi(G_i)$. The verifier accepts iff $j = i$.
- Observe that:

 $G_1 \not\sim G_2 \Rightarrow \Pr[\text{Verifier accepts}] = 1$

 $G_1 \sim G_2 \Rightarrow \Pr[\text{Verifier accepts}] \leq \frac{1}{2}$
GI IS IN AM

• Suppose the verifier has two graphs G_1, G_2 and he wants to verify whether the graphs are non-isomorphic by querying a prover.

• The verifier randomly chooses a permutation π on the vertex set and an $i \in \{1, 2\}$.

• The verifier sends the graph $\pi(G_i)$ to the prover and asks the prover to send back a $j \in \{1, 2\}$ and an isomorphism $\sigma : G_j \rightarrow \pi(G_i)$. The verifier accepts iff $j = i$.

• Observe that:

\[
G_1 \not\cong G_2 \quad \Rightarrow \quad \Pr[\text{Verifier accepts}] = 1
\]

\[
G_1 \cong G_2 \quad \Rightarrow \quad \Pr[\text{Verifier accepts}] \leq \frac{1}{2}
\]
GI IS IN AM

- Suppose the verifier has two graphs G_1, G_2 and he wants to verify whether the graphs are non-isomorphic by querying a prover.
- The verifier randomly chooses a permutation π on the vertex set and an $i \in \{1, 2\}$.
- The verifier sends the graph $\pi(G_i)$ to the prover and asks the prover to send back a $j \in \{1, 2\}$ and an isomorphism $\sigma : G_j \rightarrow \pi(G_i)$. The verifier accepts iff $j = i$.
- Observe that:

\[
G_1 \not\cong G_2 \Rightarrow \Pr[\text{Verifier accepts}] = 1
\]
\[
G_1 \cong G_2 \Rightarrow \Pr[\text{Verifier accepts}] \leq \frac{1}{2}
\]
Suppose the verifier has two graphs G_1, G_2 and he wants to verify whether the graphs are non-isomorphic by querying a prover.

The verifier randomly chooses a permutation π on the vertex set and an $i \in \{1, 2\}$.

The verifier sends the graph $\pi(G_i)$ to the prover and asks the prover to send back a $j \in \{1, 2\}$ and an isomorphism $\sigma : G_j \rightarrow \pi(G_i)$. The verifier accepts iff $j = i$.

Observe that:

$$G_1 \not\cong G_2 \quad \Rightarrow \quad \Pr[\text{Verifier accepts}] = 1$$

$$G_1 \cong G_2 \quad \Rightarrow \quad \Pr[\text{Verifier accepts}] \leq \frac{1}{2}$$
GI “cannot be” NP-hard

- The previous two slides tell us that \(GI \in \text{NP} \cap \text{coAM} \).
- This means that GI is unlikely to be NP-hard or else polynomial hierarchy will collapse.
GI “cannot be” NP-hard

- The previous two slides tell us that $\text{GI} \in \text{NP} \cap \text{coAM}$.
- This means that GI is unlikely to be NP-hard or else polynomial hierarchy will collapse.
Outline

Motivation

Complexity of GI

F-algebra Isomorphism
 Definitions
 The Complexity

Cubic Form Equivalence
 Definitions
 The Complexity

Conclusion
F-algebras

- Let \(F \) be a finite field. **F**-algebra is a set of elements with operations of addition and multiplication *suitably* defined on the elements.
- For example, \(F_p[x]/(x^2) \) is an \(F \)-algebra with elements of the form \((a + bx) \), \(a, b \in F_p \). Addition is natural while multiplication is defined as:
 \[
 (a + bx)(c + dx) = ac + (ad + bc)x \pmod{p}.
 \]
- Let \(R \) be an \(F \)-algebra such that its elements look like:
 \[
 (\alpha_1 b_1 + \cdots + \alpha_n b_n), \quad \alpha_1, \ldots, \alpha_n \in F.
 \]
- \(b_1, \ldots, b_n \) are called **basis** elements and \(R \) is completely defined by specifying the products \(b_i \cdot b_j \).
F-algebras

- Let \mathbb{F} be a finite field. \mathbb{F}-algebra is a set of elements with operations of addition and multiplication suitably defined on the elements.
- For example, $\mathbb{F}_p[x]/(x^2)$ is an \mathbb{F}-algebra with elements of the form $(a + bx)$, $a, b \in \mathbb{F}_p$. Addition is natural while multiplication is defined as:
 $$(a + bx)(c + dx) = ac + (ad + bc)x \pmod{p}.$$
- Let R be an \mathbb{F}-algebra such that its elements look like:
 $$(\alpha_1 b_1 + \cdots + \alpha_n b_n), \, \alpha_1, \ldots, \alpha_n \in \mathbb{F}.$$
- b_1, \ldots, b_n are called basis elements and R is completely defined by specifying the products $b_i \cdot b_j$.
Let \mathbb{F} be a finite field. \mathbb{F}-algebra is a set of elements with operations of addition and multiplication *suitably* defined on the elements.

For example, $\mathbb{F}_p[x]/(x^2)$ is an \mathbb{F}-algebra with elements of the form $(a + bx)$, $a, b \in \mathbb{F}_p$. Addition is natural while multiplication is defined as:

$$(a + bx)(c + dx) = ac + (ad + bc)x \pmod{p}.$$

Let R be an \mathbb{F}-algebra such that its elements look like:

$$(\alpha_1 b_1 + \cdots + \alpha_n b_n), \quad \alpha_1, \ldots, \alpha_n \in \mathbb{F}.$$

b_1, \ldots, b_n are called *basis* elements and R is completely defined by specifying the products $b_i \cdot b_j$.

F-algebras
\textbf{F-ALGEBRAS}

- Let \(F \) be a finite field. \(F \)-algebra is a set of elements with operations of addition and multiplication \textit{suitably} defined on the elements.
- For example, \(\mathbb{F}_p[x]/(x^2) \) is an \(F \)-algebra with elements of the form \((a + bx) \), \(a, b \in \mathbb{F}_p \). Addition is natural while multiplication is defined as:
 \[
 (a + bx)(c + dx) = ac + (ad + bc)x \pmod{p}.
 \]
- Let \(R \) be an \(F \)-algebra such that its elements look like:
 \[
 (\alpha_1 b_1 + \cdots + \alpha_n b_n), \quad \alpha_1, \ldots, \alpha_n \in F.
 \]
- \(b_1, \ldots, b_n \) are called \textit{basis} elements and \(R \) is completely defined by specifying the products \(b_i \cdot b_j \).
Let \mathbb{F} be a finite field. \mathbb{F}-algebra is a set of elements with operations of addition and multiplication *suitably* defined on the elements.

For example, $\mathbb{F}_p[x]/(x^2)$ is an \mathbb{F}-algebra with elements of the form $(a + bx)$, $a, b \in \mathbb{F}_p$. Addition is natural while multiplication is defined as:

$$(a + bx)(c + dx) = ac + (ad + bc)x \pmod{p}.$$

Let R be an \mathbb{F}-algebra such that its elements look like:

$$(\alpha_1 b_1 + \cdots + \alpha_n b_n), \quad \alpha_1, \ldots, \alpha_n \in \mathbb{F}.$$

b_1, \ldots, b_n are called *basis* elements and R is completely defined by specifying the products $b_i \cdot b_j$.

F-ALGEBRAS
Problem Statement

- The \mathbb{F}-algebra Isomorphism problem is to check whether two given \mathbb{F}-algebras R_1, R_2 are isomorphic,

- For example, $\mathbb{F}_p[x]/(x^2)$ and $\mathbb{F}_p[x]/((x - 1)^2)$ are isomorphic \mathbb{F}-algebras.

- Of course, we want to solve this problem in time polynomial in the size of the basis representations of R_1 and R_2.
Problem Statement

• The \mathbb{F}-algebra Isomorphism problem is to check whether two given \mathbb{F}-algebras R_1, R_2 are isomorphic, i.e. whether there is a bijective map from $R_1 \rightarrow R_2$ that preserves the addition and multiplication operations.

• For example, $\mathbb{F}_p[x]/(x^2)$ and $\mathbb{F}_p[x]/((x - 1)^2)$ are isomorphic \mathbb{F}-algebras.

• Of course, we want to solve this problem in time polynomial in the size of the basis representations of R_1 and R_2.
The F-algebra Isomorphism problem is to check whether two given F-algebras R_1, R_2 are isomorphic, i.e. whether there is a bijective map from $R_1 \rightarrow R_2$ that preserves the addition and multiplication operations.

For example, $F_p[x]/(x^2)$ and $F_p[x]/((x - 1)^2)$ are isomorphic F-algebras.

Of course, we want to solve this problem in time polynomial in the size of the basis representations of R_1 and R_2.
Problem Statement

- The \mathbb{F}-algebra Isomorphism problem is to check whether two given \mathbb{F}-algebras R_1, R_2 are isomorphic, i.e. whether there is a bijective map from $R_1 \rightarrow R_2$ that preserves the addition and multiplication operations.

- For example, $\mathbb{F}_p[x]/(x^2)$ and $\mathbb{F}_p[x]/((x - 1)^2)$ are isomorphic \mathbb{F}-algebras.

- Of course, we want to solve this problem in time polynomial in the size of the basis representations of R_1 and R_2.
Outline

Motivation

Complexity of GI

F-algebra Isomorphism
- Definitions
- The Complexity

Cubic Form Equivalence
- Definitions
- The Complexity

Conclusion
Clearly, \mathbb{F}-algebra Isomorphism is in NP.

The proof of GI in coAM can be modified to show \mathbb{F}-algebra Isomorphism in coAM.

- The verifier applies random invertible linear transformation on the basis b_1, \ldots, b_n.

Thus, \mathbb{F}-algebra Isomorphism is in $\text{NP} \cap \text{coAM}$.
Clearly, \mathbf{F}-algebra Isomorphism is in NP.

The proof of GI in coAM can be modified to show \mathbf{F}-algebra Isomorphism in coAM.

- The verifier applies random invertible linear transformation on the basis b_1, \ldots, b_n.

Thus, \mathbf{F}-algebra Isomorphism is in $\text{NP} \cap \text{coAM}$.
Unlikely to be NP-hard

- Clearly, F-algebra Isomorphism is in NP.
- The proof of GI in coAM can be modified to show F-algebra Isomorphism in coAM.
 - The verifier applies random invertible linear transformation on the basis b_1, \ldots, b_n.
- Thus, F-algebra Isomorphism is in $NP \cap coAM$.
UNLIKELY TO BE NP-HARD

- Clearly, F-algebra Isomorphism is in NP.
- The proof of GI in coAM can be modified to show F-algebra Isomorphism in coAM.
 - The verifier applies random invertible linear transformation on the basis b_1, \ldots, b_n.
- Thus, F-algebra Isomorphism is in $NP \cap coAM$.
We will now outline how a solution to \mathbb{F}-algebra isomorphism can solve the graph isomorphism problem too!

Given a graph G with n vertices and edge set E we construct the \mathbb{F}-algebra: $R(G) := \mathbb{F}[x_1, \ldots, x_n]/\mathcal{I}_G$

where, \mathcal{I}_G is an ideal generated by the polynomials:

$$\{x_i^2\}_{i \in [n]} \cup \left\{ \sum_{(i,j) \in E} x_ix_j \right\} \cup \{x_ix_jx_k\}_{i,j,k \in [n]}$$

It can be shown that $G \cong G'$ iff $R(G) \cong R(G')$.
Reduction from Graph Isomorphism

- We will now outline how a solution to \mathbb{F}-algebra isomorphism can solve the graph isomorphism problem too!
- Given a graph G with n vertices and edge set E we construct the \mathbb{F}-algebra:
 \[R(G) := \mathbb{F}[x_1, \ldots, x_n]/\mathcal{I}_G \]
 where, \mathcal{I}_G is an ideal generated by the polynomials:
 \[
 \{ x_i^2 \}_{i \in [n]} \cup \left\{ \sum_{(i,j) \in E} x_i x_j \right\} \cup \{ x_i x_j x_k \}_{i,j,k \in [n]} \]
- It can be shown that $G \cong G'$ iff $R(G) \cong R(G')$.
Reduction from Graph Isomorphism

- We will now outline how a solution to \(\mathbb{F} \)-algebra isomorphism can solve the graph isomorphism problem too!

- Given a graph \(G \) with \(n \) vertices and edge set \(E \) we construct the \(\mathbb{F} \)-algebra: \(R(G) := \mathbb{F}[x_1, \ldots, x_n]/\mathcal{I}_G \)

where, \(\mathcal{I}_G \) is an ideal generated by the polynomials:

\[
\{ x_i^2 \}_{i \in [n]} \cup \left\{ \sum_{(i,j) \in E} x_i x_j \right\} \cup \{ x_i x_j x_k \}_{i,j,k \in [n]}
\]

- It can be shown that \(G \cong G' \) iff \(R(G) \cong R(G') \).
We will now outline how a solution to F-algebra isomorphism can solve the graph isomorphism problem too!

Given a graph G with n vertices and edge set E we construct the F-algebra: $R(G) := F[x_1, \ldots, x_n]/I_G$ where, I_G is an ideal generated by the polynomials:

$$\{x_i^2\}_{i \in [n]} \cup \left\{ \sum_{(i,j) \in E} x_i x_j \right\} \cup \left\{ x_i x_j x_k \right\}_{i,j,k \in [n]}$$

It can be shown that $G \cong G'$ iff $R(G) \cong R(G')$.
Outline

Motivation

Complexity of GI

F-algebra Isomorphism
- Definitions
- The Complexity

Cubic Form Equivalence
- Definitions
- The Complexity

Conclusion
Cubic Forms

- Cubic Forms are degree 3 homogeneous polynomials over a field \mathbb{F}.
- Given two cubic forms $f(x_1, \ldots, x_n)$, $g(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$, we say that f is equivalent to g if there is an invertible linear transformation τ such that:
 \[f(\tau(x_1), \ldots, \tau(x_n)) = g(x_1, \ldots, x_n). \]
- For example, $x_1^3 + x_2^2x_3$ is equivalent to $x_2^3 - (x_1 + x_2)^2x_3$.
- Cubic Form Equivalence is the problem of checking whether two given cubic forms are equivalent in time polynomial in the size of the cubic forms.
Cubic Forms

- Cubic Forms are degree 3 homogeneous polynomials over a field \mathbb{F}. We assume that \mathbb{F} is a finite field.

- Given two cubic forms $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$, we say that f is equivalent to g if there is an invertible linear transformation τ such that:

$$f(\tau(x_1), \ldots, \tau(x_n)) = g(x_1, \ldots, x_n).$$

- For example, $x_1^3 + x_2^2 x_3$ is equivalent to $x_2^3 - (x_1 + x_2)^2 x_3$.

- Cubic Form Equivalence is the problem of checking whether two given cubic forms are equivalent in time polynomial in the size of the cubic forms.
Cubic Forms

- Cubic Forms are degree 3 homogeneous polynomials over a field \mathbb{F}. We assume that \mathbb{F} is a finite field.
- Given two cubic forms $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$, we say that f is equivalent to g if there is an invertible linear transformation τ such that:
 $$f(\tau(x_1), \ldots, \tau(x_n)) = g(x_1, \ldots, x_n).$$
- For example, $x_1^3 + x_2^2 x_3$ is equivalent to $x_2^3 - (x_1 + x_2)^2 x_3$.
- Cubic Form Equivalence is the problem of checking whether two given cubic forms are equivalent in time polynomial in the size of the cubic forms.
Cubic Forms

- Cubic Forms are degree 3 homogeneous polynomials over a field \mathbb{F}. We assume that \mathbb{F} is a finite field.
- Given two cubic forms $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$, we say that f is equivalent to g if there is an invertible linear transformation τ such that:
 $$f(\tau(x_1), \ldots, \tau(x_n)) = g(x_1, \ldots, x_n).$$
- For example, $x_1^3 + x_2^2x_3$ is equivalent to $x_2^3 - (x_1 + x_2)^2x_3$.
- Cubic Form Equivalence is the problem of checking whether two given cubic forms are equivalent in time polynomial in the size of the cubic forms.
Cubic Forms

- Cubic Forms are degree 3 homogeneous polynomials over a field \mathbb{F}. We assume that \mathbb{F} is a finite field.

- Given two cubic forms $f(x_1, \ldots, x_n), g(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$, we say that f is equivalent to g if there is an invertible linear transformation τ such that:

$$f(\tau(x_1), \ldots, \tau(x_n)) = g(x_1, \ldots, x_n).$$

- For example, $x_1^3 + x_2^2x_3$ is equivalent to $x_2^3 - (x_1 + x_2)^2x_3$.

- Cubic Form Equivalence is the problem of checking whether two given cubic forms are equivalent in time polynomial in the size of the cubic forms.
Outline

Motivation

Complexity of GI

F-algebra Isomorphism

Definitions

The Complexity

Cubic Form Equivalence

Definitions

The Complexity

Conclusion
Unlikely to be NP hard

- Clearly, Cubic Form Equivalence is in NP.
- The proof of GI in coAM can be modified to show Cubic Form Equivalence in coAM.
 - The verifier applies random invertible linear transformation on the variables x_1, \ldots, x_n.
- Thus, Cubic Form Equivalence is in $\mathsf{NP} \cap \mathsf{coAM}$.
Unlikely to be NP hard

- Clearly, Cubic Form Equivalence is in NP.
- The proof of GI in coAM can be modified to show Cubic Form Equivalence in coAM.
 - The verifier applies random invertible linear transformation on the variables x_1, \ldots, x_n.
- Thus, Cubic Form Equivalence is in $\text{NP} \cap \text{coAM}$.
Unlikely to be NP hard

- Clearly, Cubic Form Equivalence is in NP.
- The proof of GI in coAM can be modified to show Cubic Form Equivalence in coAM.
 - The verifier applies random invertible linear transformation on the variables x_1, \ldots, x_n.
- Thus, Cubic Form Equivalence is in $\text{NP} \cap \text{coAM}$.
Unlikely to be NP hard

- Clearly, Cubic Form Equivalence is in NP.
- The proof of GI in coAM can be modified to show Cubic Form Equivalence in coAM.
 - The verifier applies random invertible linear transformation on the variables x_1, \ldots, x_n.
- Thus, Cubic Form Equivalence is in $NP \cap coAM$.
Reduction from F-algebra Isomorphism

- Interestingly, F-algebra isomorphism reduces to cubic form equivalence.
- Let R be an F-algebra given by its basis elements b_1, \ldots, b_n and the multiplication defined as: $b_i \cdot b_j = \sum_{k=1}^{n} a_{i,j,k} b_k$ where for all $i, j, k \in [n], \ a_{i,j,k} \in F$.
- From R we construct a cubic form f_R as:

$$f_R(b, z, y) := \sum_{1 \leq i \leq j \leq n} z_{i,j} \left(b_i \cdot b_j - y \cdot \sum_{k=1}^{n} a_{i,j,k} b_k \right)$$

- It can be shown that for two given F-algebras R and R' we have: $R \cong R'$ iff $f_R \sim f_{R'}$.

Reduction from \mathbb{F}-algebra Isomorphism

- Interestingly, \mathbb{F}-algebra isomorphism reduces to cubic form equivalence.

- Let R be an \mathbb{F}-algebra given by its basis elements b_1, \ldots, b_n and the multiplication defined as: $b_i \cdot b_j = \sum_{k=1}^{n} a_{i,j,k} b_k$ where for all $i, j, k \in [n]$, $a_{i,j,k} \in \mathbb{F}$.

- From R we construct a cubic form f_R as:

$$f_R(b, z, y) := \sum_{1 \leq i \leq j \leq n} z_{i,j} \left(b_i \cdot b_j - y \cdot \sum_{k=1}^{n} a_{i,j,k} b_k \right)$$

- It can be shown that for two given \mathbb{F}-algebras R and R' we have: $R \cong R'$ iff $f_R \sim f_{R'}$.
Reduction from \mathbb{F}-algebra Isomorphism

- Interestingly, \mathbb{F}-algebra isomorphism reduces to cubic form equivalence.

- Let R be an \mathbb{F}-algebra given by its basis elements b_1, \ldots, b_n and the multiplication defined as: $b_i \cdot b_j = \sum_{k=1}^{n} a_{i,j,k} b_k$ where for all $i, j, k \in [n]$, $a_{i,j,k} \in \mathbb{F}$.

- From R we construct a cubic form f_R as:

$$f_R(b, z, y) := \sum_{1 \leq i \leq j \leq n} z_{i,j} \left(b_i \cdot b_j - y \cdot \sum_{k=1}^{n} a_{i,j,k} b_k \right)$$

- It can be shown that for two given \mathbb{F}-algebras R and R' we have: $R \simeq R'$ iff $f_R \sim f_{R'}$.
Reduction from \(\mathbb{F} \)-algebra Isomorphism

- Interestingly, \(\mathbb{F} \)-algebra isomorphism reduces to cubic form equivalence.

- Let \(R \) be an \(\mathbb{F} \)-algebra given by its basis elements \(b_1, \ldots, b_n \) and the multiplication defined as: \(b_i \cdot b_j = \sum_{k=1}^{n} a_{i,j,k} b_k \) where for all \(i, j, k \in [n], \ a_{i,j,k} \in \mathbb{F} \).

- From \(R \) we construct a cubic form \(f_R \) as:

\[
f_R(\overline{b}, \overline{z}, y) := \sum_{1 \leq i \leq j \leq n} z_{i,j} \left(b_i \cdot b_j - y \cdot \sum_{k=1}^{n} a_{i,j,k} b_k \right)
\]

- It can be shown that for two given \(\mathbb{F} \)-algebras \(R \) and \(R' \) we have: \(R \cong R' \) iff \(f_R \sim f_{R'} \).
The Results

- The isomorphism problems of graphs, F-algebras and F-cubic forms are of intermediate complexity (for finite F).
- These problems satisfy the following relation:

 \[
 \text{Graph Isomorphism} \leq F - \text{algebra Isomorphism} \leq \text{Cubic Form Equivalence}
 \]
The Results

- The isomorphism problems of graphs, \mathbb{F}-algebras and \mathbb{F}-cubic forms are of intermediate complexity (for finite \mathbb{F}).
- These problems satisfy the following relation:

\[
\text{Graph Isomorphism} \leq \mathbb{F} - \text{algebra Isomorphism} \leq \text{Cubic Form Equivalence}
\]
The Results

- The isomorphism problems of graphs, \mathbb{F}-algebras and \mathbb{F}-cubic forms are of intermediate complexity (for finite \mathbb{F}).
- These problems satisfy the following relation:

\[
\text{Graph Isomorphism} \leq \mathbb{F} - \text{algebra Isomorphism} \leq \text{Cubic Form Equivalence}
\]
The Results

- The isomorphism problems of graphs, F-algebras and F-cubic forms are of intermediate complexity (for finite F).
- These problems satisfy the following relation:

\[
\text{Graph Isomorphism} \leq \text{F} \text{— algebra Isomorphism} \leq \text{Cubic Form Equivalence}
\]
Open Problems

We find the following problems of interest:

• Is there a way to solve cubic form equivalence in subexponential time?

• Is the cubic form equivalence problem over an infinite field F decidable?
Open Problems

We find the following problems of interest:

- Is there a way to solve cubic form equivalence in subexponential time?
- Is the cubic form equivalence problem over an infinite field \(F \) decidable?
Open Problems

We find the following problems of interest:

- Is there a way to solve cubic form equivalence in subexponential time?
- Is the cubic form equivalence problem over an infinite field \(\mathbb{F} \) decidable?
Thank You!

Questions?