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The problem

Point counting

Given a system of equations over a ring k , can we efficiently
count /classify its number of points defined over k?

If k = Z, there is no general-purpose algorithm which does
this (Matiyasevich 1970). k = Q is open, even when the
system has dimension 1.
k = Q, for an elliptic curve, algorithm known conjecturally,
under BSD: Birch–Swinnerton-Dyer conjecture (1965).
k = Q smooth projective higher genus curves:
Alpöge-Lawrence (2024) under heavy-duty conjectures.
dim > 1: Completely open. e.g.: Euler’s brick (6 lengths).
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The problem

Point counting

We are concerned with k a finite field of char p.
We’ve a smooth, projective geometrically irreducible
variety X ⊂ PN of dimension n and degree D over Q, given
by homogeneous forms f1, . . . , fm, each of degree ≤ d . Let
p be a prime of good reduction.
(Question) Does there exist an algorithm which computes
#X (Fp) in time poly(log p)?
(Serre) What if X is simply a scheme of finite type over Z?
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Motivation

Cryptography

Elliptic and hyperelliptic curve cryptography.
Coding theory, in particular Goppa codes.

Distribution of point-counts

Sato-Tate conjecture, 1960: equidistribution of Frobenius
angles/ errors in the point-count.
Katz-Sarnak philosophy, 1999: statistics of zeros of L –
functions of varieties over finite fields and links to
eigenvalues of random matrices in classical groups.
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Zeta function

Let X be as above. Define the zeta-function

Z (X/Fq,T ) := exp

 ∞∑
j=1

#X (Fqj )
T j

j

 .

It encodes the point-counts over all finite extensions of Fq, in an
exponential generating function. (Power-series)

Computational Qn: can one compute Z (X/Fq,T ) in time
polynomial in log q?
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Weil Conjectures (Deligne 1974)

Rational function:

Z (X/Fq,T ) =
2n∏

i=0

Pi(T )(−1)i+1 ∈ Q(T ).

Functional equation:

Z (X/Fq,1/qnT ) = ±qn(χ/2) · Tχ · Z (X/Fq,T ).

Riemann hypothesis: If Pi(T ) =:
∏degPi

j=1 (1 − αi,jT ), then
|αi,j | = qi/2. [i.e. complex roots ‘know’ q]
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Instantiate it to Curves

Artin, Hasse, Weil

Let C/Fq be a smooth projective curve of genus g. Then,

Z (C/Fq,T ) =
P(T )

(1 − T )(1 − qT )
,

where P(T ) ∈ Z[T ], of degree 2g such that P(0) = 1.
Z (C/Fq,1/qT ) = q1−g · T 2−2g · Z (C/Fq,T ) .

Finally, writing P(T ) =
∏2g

i=1(1 − αiT ), we have |αi | =
√

q.
This is equivalent to the Weil-bound

|#C(Fq)− (q + 1)| ≤ 2g
√

q .
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Elliptic Curves

Schoof (1985)

Let E/Fq be an elliptic curve, i.e., a smooth projective curve of
genus 1. There exists an algorithm that computes #E(Fq) in
time polynomial in log q.

Idea:

The charpoly (inverted) of the Frobenius endomorphism ϕq
is qT 2 − aqT + 1 = 0, where aq = q + 1 −#E(Fq).
Compute aq mod ℓ by working with E [ℓ], using division
polynomials for small primes ℓ.
Recover aq by CRT using Hasse bound.
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Generalize to curves and abelian varieties

Pila (1988), Huang-Ierardi (1993)

Let C/Fq be a smooth projective curve of fixed genus g. There
exists an algorithm that computes #C(Fq) in time polynomial in
log q.

Idea:

Move to the Jacobian variety J = J(C) by choosing a
rational point.
Use ideal theory/ semi-algebraic sets to compute
representatives of J[ℓ] for small primes ℓ.
Recover char poly of Frobenius via action on J[ℓ] and CRT.
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Beyond Curves? – Weil cohomology

A contravariant functor (from prime char(k ) to zero char(K ))

H• : SmVark −→ GrAlgK

H•(X ) =
⊕
j∈Z

H j(X )

satisfying several ‘nice’ analytic properties such as
Trace map
Cycle class map
Künneth formula
Poincaré duality

S & V CSE, IIT Kanpur

Computing the zeta function of varieties over finite fields



Introduction Basic algorithms Cohomology First cohomology Second cohomology Algorithm

Cohomological interpretation

Consequence: Zeta has a nice closed form expression coming
from the Lefschetz trace formula.

Z (X/Fq,T ) =
P1(T ) · · ·P2n−1(T )

P0(T ) · · ·P2n(T )
=

2n∏
i=0

(Pi(T ))(−1)i+1

where
Pi(T ) = det

(
1 − TF ⋆

q | H i(X )
)
.
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Étale cohomology development

Modern School [Grothendieck et.al. 1950s - 60s]:
Identified that constant (non-torsion) coefficients cannot
work, Zariski topology is too coarse.
Changed the notion of ‘open set’ to étale covers.
Realized constant torsion coefficients within the structure
sheaf by the Kummer sequence by choosing ℓ coprime to
base char p.
Defined ℓ-adic (étale) cohomology as the limit of
ℓr -cohomology groups.
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p-adic cohomologies – better for computation?

Monsky-Washnitzer cohomology.
Crystalline cohomology.
Rigid cohomology.

Algorithms

Kedlaya 2002, and others, for curves.
Lauder 2004 Deformation theory and p-adic calculus.
Lauder-Wan 2006 Dwork type trace-formula.
Harvey 2015 ‘Non-cohomological’ trace formula.

Problem: They’re all exponential-time in log p.
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H1 or Tate/ Picard computation?

Kummer sequence makes it explicit.
Isomorphic to Tate module of Picard variety.
Schoof’85–Pila’88 is actually étale algorithm in disguise.

Higher-dimension issues

A priori, Picard group has sums of codim=1 subvarieties
modulo a relation.
The equivalence relation is non-explicit.
How to computationally represent the required divisors?
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Computing P1(T ) – char poly of H1

Theorem (Roy, Saxena, Venkatesh 2024)

Let X ⊂ PN be a smooth projective variety over Fq of degree D
and let P1(X/Fq,T ) := det(1 − TF ⋆

q | H1(X ,Qℓ)). There exists:
randomised algorithm to compute P1(X/Fq,T ) for fixed D
in time O((log q)∆),
quantum algorithm to compute P1(X/Fq,T ) in time
polynomial in D log q.

Can also certify (in the sense of Arthur-Merlin
protocol) with similar time complexity.
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Algorithm

Reduce to surface-case via weak-Lefschetz.
Let (Xt)t∈P1 be a Lefschetz pencil of hyperplane sections
on X .
Sample smooth curves Xu1 , Xu2 for u1,u2 ∈ FQ, in a
poly-bounded field extension.
Compute their zeta functions and take gcd of the
numerators. With high probability this is P1(X/FQ,T ).
Recover P1(X/Fq,T ) using Kedlaya’s recipe.

Proof Ideas

Hard-Lefschetz, big mod-ℓ monodromy of vanishing cycles.
Equidistribution of Frobenius mod-ℓ.
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Zeta function of a surface

Question (Couveignes-Edixhoven, 2011)

When X is a surface, i.e., dim=2, is there an algorithm that
counts points in poly(log q) time?

Difficulties

While our earlier algorithm computes P1(T ), it doesn’t
make H1(X , µℓ) explicit.
Higher degree cohomology only recently shown to be
computable (Madore-Orgogozo, 2015), with no complexity
analysis.
Levrat 2023: Proposes a strategy to reduce to a curve of
genus poly(ℓ), by moving over a function field.
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Cohomology reduction & challenges

Let η → P1 be a geometric generic point and write the
push-forward sheaf F := R1π⋆µℓ . F|U is locally constant. By
Léray sequence Hi(P1,R jπ⋆µℓ) ⇒ Hi+j(X , µℓ), we have

Hi(X , µℓ) ≃


H0(P1,F), i = 1;
H1(P1,F)⊕ ⟨γE⟩ ⊕ ⟨γF ⟩, i = 2;
H2(P1,F), i = 3.

(1)

If we trivialise F|U with a cover V → U, then H2(X , µℓ) can be
found inside H1(V , µℓ), where V is the normalisation of k(P1) in
k(Pic0(Xη)[ℓ]). But, V has genus poly(ℓ) and algos to compute
H1 run in time exp in genus.
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Vanishing cycles (Monodromy around singularities)

Let Z be the singular locus of X over the line. Consider
now a singular fibre Xz for z ∈ Z and its normalisation
X̃z → Xz . It induces the map on torsion Pic0(Xz)[ℓ] →
Pic0(X̃z)[ℓ]. Its kernel is rk one and generated by say δz ,
the vanishing cycle at z.
Under a cospecialisation map Fz ↪→ Fη, the vanishing
cycle δz is uniquely determined (upto sign) by the
Picard-Lefschetz formula

σz(γ) = γ − ⟨γ, δz⟩δz . (2)

To realize σz : Fix root of unity ζℓ s.t. σz

(
θ

1/ℓ
z

)
= ζℓ · θ

1/ℓ
z

for a local parameter θz at z (say, t − z).

S & V CSE, IIT Kanpur

Computing the zeta function of varieties over finite fields



Introduction Basic algorithms Cohomology First cohomology Second cohomology Algorithm

Cohomology of a surface, algebraically

From the Galois cohomology of étale fundamental group of X ,
one gets the following complex

Fη
α−→ µr

ℓ
β−→ Fη (3)

where r := #Z and with, for any γ ∈ Fη, use Weil pairing,

α(γ) := (⟨γ, δz1⟩, . . . , ⟨γ, δzr ⟩)

and for any r – tuple (a1, . . . ,ar ) ∈ µr
ℓ

β(a) := a1 · δz1 + a2 · σz1(δz2) + . . .+ ar · σz1 · · ·σzr−1(δzr ) .
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H2 of a surface, algebraically

The cohomology groups of the above complex are related to
the cohomology of X , i.e.,

Hi(X ,Z/ℓZ) ≃


ker(α), i = 1;
(ker(β)/im(α))⊕ ⟨γE⟩ ⊕ ⟨γF ⟩, i = 2;
coker(β), i = 3.

(4)

The second cohomology measures the subtlety of monodromy
across the singular loci.
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Surface algorithm

Theorem 1 (Saxena-Venkatesh, 2025).

Let X ⊂ PN be a nice surface of fixed degree D over a finite
field Fq, obtained via good reduction from a nice surface X
defined over a number field K at a prime p ⊂ OK . Further,
assume the coefficients of the equations defining X have Weil
– height bounded by H ∈ R>0 and write ∆ = [K : Q]. Then,
there exists a randomised algorithm that outputs

on input a prime number ℓ coprime to q, the étale
cohomology groups Hi(X ,Z/ℓZ) for 0 ≤ i ≤ 4 along with
the Frobenius action in time poly(ℓ · H ·∆)

the zeta function Z (X/Fq,T ), and the point-count #X (Fq)
in time poly(log q · H ·∆).
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Puiseux series makes things explicit

Goal: Make the complex (3) explicit along with the maps α, β
and Gal(Fq/Fq) – action.

This gives Hi(X ,Z/ℓZ) with Frobenius action, from which
zeta fn and point-count follow via standard arguments.

Main question

How to view the cospecialisation map Fz ↪→ Fη? In particular,
for z ∈ Z , what is δz ∈ Fη?

Toy example: Given a plane curve F (x , y) = 0, with
x-singularities parametrized by set Z . For z1, z2 ∈ Z , how to
consistently identify Puiseux branches δz1 , δz2 of y around
x = z1, z2 respectively, with roots of F (x , y) living in k [x ]?
E.g. F : y2 = x(1 − x), with z1 = 0, z2 = 1. The root y requires Puiseux
series in the local parameters ±

√
x , ±

√
1 − x respectively. (x 7→ 0.4?)
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High-level algorithm

Idea: To complex analysis and back!

Use Puiseux expansions for cospec. to the generic fibre,
after computing an ℓ – division polynomial system.
As the situation is over Q, for each z ∈ Z , work around a
smooth point uz lying within the radii of convergence.
Compute the vanishing cycle in the fibre of the cohomology
at uz using the Picard-Lefschetz formulas.
Reduce to positive characteristic assuming the uz are all
congruent modulo the prime ideal p to a common u ∈ Fq.
This collects all the vanishing cycles in a common fibre Fu,
from which the result follows.
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Our papers

Based on: [Click here for the Preprints]

(i) Diptajit Roy, Nitin Saxena, Madhavan Venkatesh
“Complexity of counting points on curves, and the factor
P1(T ) of the zeta function of surfaces", submitted, 2024.

(ii) Nitin Saxena, Madhavan Venkatesh “Counting points on
surfaces in polynomial time", submitted, 2025.
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Thank you!
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