Introduc		Basic algorithms	Cohomology	First cohomology	Second cohomology	Algorithm
	Computing the zeta function of varieties over					
	finite fields					

Nitin Saxena and Madhavan Venkatesh

CSE, IIT Kanpur

National Mathematics Day

IITK MTH-STAT, February 2025

CSE, IIT Kanpur

Computing the zeta function of varieties over finite fields

S&V

Introduction	Basic algorithms	Cohomology	First cohomology	Second cohomology	Algorithm

Outline

1 Introduction

- 2 Basic algorithms
- 3 Cohomology
- 4 First cohomology
- 5 Second cohomology

6 Algorithm

S & V

The problem

Point counting

Given a system of equations over a ring k, can we efficiently count /classify its number of points defined over k?

- If k = Z, there is no general-purpose algorithm which does this (Matiyasevich 1970). k = Q is open, even when the system has dimension 1.
- $k = \mathbb{Q}$, for an elliptic curve, algorithm known conjecturally, under BSD: Birch–Swinnerton-Dyer conjecture (1965).
- $k = \mathbb{Q}$ smooth projective higher genus curves: Alpöge-Lawrence (2024) under heavy-duty conjectures.
- dim > 1: Completely open. e.g.: Euler's brick (6 lengths).

First cohomology

イロト イヨト イヨト イヨト

The problem

Point counting

- We are concerned with k a finite field of char p.
- We've a smooth, projective geometrically irreducible variety X ⊂ P^N of dimension *n* and degree *D* over Q, given by homogeneous forms f₁,..., f_m, each of degree ≤ d. Let *p* be a prime of good reduction.
- (Question) Does there exist an algorithm which computes #X(F_p) in time poly(log p)?
- (Serre) What if X is simply a scheme of finite type over Z?

Image: A matrix

Motivation

Cryptography

- Elliptic and hyperelliptic curve cryptography.
- Coding theory, in particular Goppa codes.

Distribution of point-counts

- Sato-Tate conjecture, 1960: equidistribution of Frobenius angles/ errors in the point-count.
- Katz-Sarnak philosophy, 1999: statistics of zeros of L functions of varieties over finite fields and links to eigenvalues of random matrices in classical groups.

<ロ> (四) (四) (日) (日) (日)

Zeta function

Let X be as above. Define the zeta-function

$$Z(X/\mathbb{F}_q, T) := \exp\left(\sum_{j=1}^{\infty} \#X(\mathbb{F}_{q^j}) \frac{T^j}{j}\right)$$

It encodes the point-counts over all finite extensions of \mathbb{F}_{q} , in an exponential generating function. (Power-series)

Computational Qn: can one compute $Z(X/\mathbb{F}_q, T)$ in time polynomial in $\log q$?

Basic algorithms

Cohomolog

First cohomology

Second cohomology

Algorithm

Weil Conjectures (Deligne 1974)

Rational function:

$$Z(X/\mathbb{F}_q, T) = \prod_{i=0}^{2n} P_i(T)^{(-1)^{i+1}} \in \mathbb{Q}(T).$$

Functional equation:

$$Z(X/\mathbb{F}_q, 1/q^nT) = \pm q^{n(\chi/2)} \cdot T^{\chi} \cdot Z(X/\mathbb{F}_q, T).$$

Riemann hypothesis: If $P_i(T) =: \prod_{j=1}^{\deg P_i} (1 - \alpha_{i,j}T)$, then $|\alpha_{i,j}| = q^{i/2}$. [i.e. complex roots 'know' q]

Cohomology

First cohomology

Second cohomology

Algorithm

Instantiate it to Curves

Artin, Hasse, Weil

Let C/\mathbb{F}_q be a smooth projective curve of genus g. Then,

$$Z(C/\mathbb{F}_q,T)=\frac{P(T)}{(1-T)(1-qT)},$$

where $P(T) \in \mathbb{Z}[T]$, of degree 2g such that P(0) = 1.

- $Z(C/\mathbb{F}_q, 1/qT) = q^{1-g} \cdot T^{2-2g} \cdot Z(C/\mathbb{F}_q, T).$
- Finally, writing $P(T) = \prod_{i=1}^{2g} (1 \alpha_i T)$, we have $|\alpha_i| = \sqrt{q}$. This is equivalent to the Weil-bound

$$|\#\mathcal{C}(\mathbb{F}_q)-(q+1)|\leq 2g\sqrt{q}$$
.

First cohomology

ヘロン ヘロン ヘヨン ヘ

Elliptic Curves

Schoof (1985)

Let E/\mathbb{F}_q be an elliptic curve, i.e., a smooth projective curve of genus 1. There exists an algorithm that computes $\#E(\mathbb{F}_q)$ in time polynomial in log q.

Idea:

S & V

- The charpoly (inverted) of the Frobenius endomorphism ϕ_q is $qT^2 a_qT + 1 = 0$, where $a_q = q + 1 \#E(\mathbb{F}_q)$.
- Compute $a_q \mod \ell$ by working with $E[\ell]$, using division polynomials for small primes ℓ .
- Recover a_q by CRT using Hasse bound.

Cohomology 0000 irst cohomology

Second cohomology

ヘロン ヘロン ヘビン ヘ

Algorithm

Generalize to curves and abelian varieties

Pila (1988), Huang-Ierardi (1993)

Let C/\mathbb{F}_q be a smooth projective curve of fixed genus g. There exists an algorithm that computes $\#C(\mathbb{F}_q)$ in time polynomial in $\log q$.

Idea:

- Move to the Jacobian variety J = J(C) by choosing a rational point.
- Use ideal theory/ semi-algebraic sets to compute representatives of J[ℓ] for small primes ℓ.
- Recover char poly of Frobenius via action on $J[\ell]$ and CRT.

Cohomology

First cohomology

Second cohomology

.

CSE, IIT Kanpur

Algorithm

Beyond Curves? - Weil cohomology

A contravariant functor (from prime char(k) to zero char(K))

 $H^{\bullet}: \mathbf{SmVar}_k \longrightarrow \mathbf{GrAlg}_K$

$$H^{ullet}(X) = \bigoplus_{j \in \mathbb{Z}} H^j(X)$$

satisfying several 'nice' analytic properties such as

- Trace map
- Cycle class map
- Künneth formula
- Poincaré duality

Cohomology

First cohomology 000 Second cohomolog

Algorithm

Cohomological interpretation

Consequence: Zeta has a nice closed form expression coming from the Lefschetz trace formula.

$$Z(X/\mathbb{F}_q, T) = \frac{P_1(T)\cdots P_{2n-1}(T)}{P_0(T)\cdots P_{2n}(T)} = \prod_{i=0}^{2n} (P_i(T))^{(-1)^{i+1}}$$

where

S & V

$$P_i(T) = \det\left(1 - TF_q^\star \mid H^i(X)\right).$$

First cohomology

Second cohomology

< <p>O > < <p>O >

Algorithm

Étale cohomology development

- Modern School [Grothendieck et.al. 1950s 60s]:
- Identified that constant (non-torsion) coefficients cannot work, Zariski topology is too coarse.
- Changed the notion of 'open set' to étale covers.
- Realized constant torsion coefficients within the structure sheaf by the Kummer sequence by choosing ℓ coprime to base char *p*.
- Defined *l*-adic (étale) cohomology as the limit of *l*^r-cohomology groups.

First cohomology

Second cohomology

Image: A matrix

Algorithm

p-adic cohomologies – better for computation?

- Monsky-Washnitzer cohomology.
- Crystalline cohomology.
- Rigid cohomology.

Algorithms

- Kedlaya 2002, and others, for curves.
- Lauder 2004 Deformation theory and *p*-adic calculus.
- Lauder-Wan 2006 Dwork type trace-formula.
- Harvey 2015 'Non-cohomological' trace formula.

Problem: They're all exponential-time in log p.

Cohomology

First cohomology

Second cohomology

Image: A matrix

Algorithm

H^1 or Tate/ Picard computation?

- Kummer sequence makes it explicit.
- Isomorphic to Tate module of Picard variety.
- Schoof'85–Pila'88 is actually étale algorithm in disguise.

Higher-dimension issues

- A priori, Picard group has sums of codim=1 subvarieties modulo a relation.
- The equivalence relation is non-explicit.
- How to computationally represent the required divisors?

Cohomology 0000 First cohomology

Second cohomology

ヘロト ヘ団ト ヘヨト ヘヨト

Algorithm

Computing $P_1(T)$ – char poly of H^1

Theorem (Roy, Saxena, Venkatesh 2024)

Let $X \subset \mathbb{P}^N$ be a smooth projective variety over \mathbb{F}_q of degree Dand let $P_1(X/\mathbb{F}_q, T) := \det(1 - TF_q^* \mid \mathrm{H}^1(X, \mathbb{Q}_\ell))$. There exists:

■ randomised algorithm to compute P₁(X/𝔽_q, T) for fixed D in time O((log q)^Δ),

• quantum algorithm to compute $P_1(X/\mathbb{F}_q, T)$ in time polynomial in $D \log q$.

Can also certify (in the sense of Arthur-Merlin protocol) with similar time complexity.

troduction

Basic algorithms

Cohomolog

First cohomology

Algorithm

Reduce to surface-case via weak-Lefschetz.

- Let (X_t)_{t∈P¹} be a Lefschetz pencil of hyperplane sections on X.
- Sample smooth curves X_{u1}, X_{u2} for u1, u2 ∈ F_Q, in a *poly*-bounded field extension.
- Compute their zeta functions and take gcd of the numerators. With high probability this is P₁(X/𝔽_Q, T).
- Recover $P_1(X/\mathbb{F}_q, T)$ using Kedlaya's recipe.

Proof Ideas

S & V

- Hard-Lefschetz, big mod-ℓ monodromy of vanishing cycles.
- Equidistribution of Frobenius mod-*l*.

500

Cohomology

First cohomology

Second cohomology

Algorithm

Zeta function of a surface

Question (Couveignes-Edixhoven, 2011)

When X is a surface, i.e., dim=2, is there an algorithm that counts points in poly(log q) time?

Difficulties

- While our earlier algorithm computes P₁(T), it doesn't make H¹(X, µℓ) explicit.
- Higher degree cohomology only recently shown to be computable (Madore-Orgogozo, 2015), with no complexity analysis.
- Levrat 2023: Proposes a strategy to reduce to a curve of genus poly(ℓ), by moving over a function field.

000

Basic algorithms

Cohomolog

First cohomology

Second cohomology

Algorithm

Cohomology reduction & challenges

Let $\overline{\eta} \to \mathbb{P}^1$ be a geometric generic point and write the push-forward sheaf $\mathcal{F} := R^1 \pi_* \mu_\ell$. $\mathcal{F}|_U$ is locally constant. By Léray sequence $\mathrm{H}^i(\mathbb{P}^1, R^j \pi_* \mu_\ell) \Rightarrow \mathrm{H}^{i+j}(X, \mu_\ell)$, we have

$$\mathrm{H}^{i}(\boldsymbol{X},\mu_{\ell}) \simeq \begin{cases} \mathrm{H}^{0}(\mathbb{P}^{1},\mathcal{F}), i = 1; \\ \mathrm{H}^{1}(\mathbb{P}^{1},\mathcal{F}) \oplus \langle \gamma_{\boldsymbol{E}} \rangle \oplus \langle \gamma_{\boldsymbol{F}} \rangle, i = 2; \\ \mathrm{H}^{2}(\mathbb{P}^{1},\mathcal{F}), i = 3. \end{cases}$$
(1)

If we trivialise $\mathcal{F}|_U$ with a cover $V \to U$, then $\mathrm{H}^2(X, \mu_\ell)$ can be found inside $\mathrm{H}^1(V, \mu_\ell)$, where *V* is the normalisation of $k(\mathbb{P}^1)$ in $k(\mathrm{Pic}^0(X_{\overline{\eta}})[\ell])$. But, *V* has genus $\mathrm{poly}(\ell)$ and algos to compute H^1 run in time exp in genus.

Vanishing cycles (Monodromy around singularities)

- Let Z be the singular locus of X over the line. Consider now a singular fibre X_z for z ∈ Z and its normalisation X̃_z → X_z. It induces the map on torsion Pic⁰(X_z)[ℓ] → Pic⁰(X̃_z)[ℓ]. Its kernel is rk one and generated by say δ_z, the vanishing cycle at z.
- Under a cospecialisation map *F_z* → *F_{η̄}*, the vanishing cycle δ_z is uniquely determined (upto sign) by the Picard-Lefschetz formula

$$\sigma_{z}(\gamma) = \gamma - \langle \gamma, \delta_{z} \rangle \frac{\delta_{z}}{\delta_{z}}.$$
 (2)

Second cohomology

00000

To realize σ_z : Fix root of unity ζ_ℓ s.t. $\sigma_z \left(\theta_z^{1/\ell}\right) = \zeta_\ell \cdot \theta_z^{1/\ell}$ for a local parameter θ_z at *z* (say, *t* – *z*).

Algorithm

Computing the zeta function of varieties over finite fields

S & V

Basic algorithms

Cohomolog 0000 First cohomology

Second cohomology

< ロ > < 同 > < 臣 > < 臣

Algorithm

Cohomology of a surface, algebraically

From the Galois cohomology of étale fundamental group of X, one gets the following complex

$$\mathcal{F}_{\overline{\eta}} \xrightarrow{\alpha} \mu_{\ell}^{r} \xrightarrow{\beta} \mathcal{F}_{\overline{\eta}}$$
 (3)

where r := #Z and with, for any $\gamma \in \mathcal{F}_{\overline{\eta}}$, use Weil pairing,

$$\alpha(\gamma) := (\langle \gamma, \delta_{z_1} \rangle, \dots, \langle \gamma, \delta_{z_r} \rangle)$$

and for any r – tuple $(a_1, \ldots, a_r) \in \mu_{\ell}^r$

$$\beta(\mathbf{a}) := \mathbf{a}_1 \cdot \delta_{\mathbf{z}_1} + \mathbf{a}_2 \cdot \sigma_{\mathbf{z}_1}(\delta_{\mathbf{z}_2}) + \ldots + \mathbf{a}_r \cdot \sigma_{\mathbf{z}_1} \cdots \sigma_{\mathbf{z}_{r-1}}(\delta_{\mathbf{z}_r}).$$

CSE, IIT Kanpur

Computing the zeta function of varieties over finite fields

First cohomology

Second cohomology

Algorithm

H^2 of a surface, algebraically

The cohomology groups of the above complex are related to the cohomology of X, i.e.,

$$\mathrm{H}^{i}(\boldsymbol{X}, \mathbb{Z}/\ell\mathbb{Z}) \simeq \begin{cases} \ker(\alpha), \ i = 1; \\ (\ker(\beta)/\mathrm{im}(\alpha)) \oplus \langle \gamma_{\boldsymbol{E}} \rangle \oplus \langle \gamma_{\boldsymbol{F}} \rangle, \ i = 2; \\ \mathrm{coker}(\beta), \ i = 3. \end{cases}$$
(4)

CSE, IIT Kanpur

Computing the zeta function of varieties over finite fields

S & V

First cohomology

Second cohomology

Image: A matrix

Algorithm 00000

CSE, IIT Kanpur

H^2 of a surface, algebraically

The cohomology groups of the above complex are related to the cohomology of X, i.e.,

$$\mathrm{H}^{i}(X,\mathbb{Z}/\ell\mathbb{Z}) \simeq \begin{cases} \mathrm{ker}(\alpha), \ i = 1; \\ (\mathrm{ker}(\beta)/\mathrm{im}(\alpha)) \oplus \langle \gamma_{E} \rangle \oplus \langle \gamma_{F} \rangle, \ i = 2; \\ \mathrm{coker}(\beta), \ i = 3. \end{cases}$$
(4)

The second cohomology measures the subtlety of monodromy across the singular loci.

Cohomolog

First cohomology

Second cohomology

Surface algorithm

Theorem 1 (Saxena-Venkatesh, 2025).

Let $X \subset \mathbb{P}^N$ be a nice surface of fixed degree D over a finite field \mathbb{F}_q , obtained via good reduction from a nice surface \mathcal{X} defined over a number field K at a prime $\mathfrak{p} \subset \mathcal{O}_K$. Further, assume the coefficients of the equations defining \mathcal{X} have Weil – height bounded by $H \in \mathbb{R}_{>0}$ and write $\Delta = [K : \mathbb{Q}]$. Then, there exists a randomised algorithm that outputs

- on input a prime number ℓ coprime to q, the étale cohomology groups Hⁱ(X, Z/ℓZ) for 0 ≤ i ≤ 4 along with the Frobenius action in time poly(ℓ · H · Δ)
- the zeta function $Z(X/\mathbb{F}_q, T)$, and the point-count $\#X(\mathbb{F}_q)$ in time poly(log $q \cdot H \cdot \Delta$).

Cohomolog

First cohomology

Second cohomology

Puiseux series makes things explicit

Goal: Make the complex (3) explicit along with the maps α , β and $\operatorname{Gal}(\overline{\mathbb{F}}_q/\mathbb{F}_q)$ – action.

This gives $\mathrm{H}^{i}(X,\mathbb{Z}/\ell\mathbb{Z})$ with Frobenius action, from which zeta fn and point-count follow via standard arguments.

Main question

- How to view the cospecialisation map *F_z* → *F_η*? In particular, for *z* ∈ *Z*, what is δ_z ∈ *F_η*?
- Toy example: Given a plane curve F(x, y) = 0, with x-singularities parametrized by set Z. For z₁, z₂ ∈ Z, how to consistently identify Puiseux branches δ_{z1}, δ_{z2} of y around x = z₁, z₂ respectively, with roots of F(x, y) living in k[x]?
 E.g. F : y² = x(1 x), with z₁ = 0, z₂ = 1. The root y requires Puiseux series in the *local* parameters ±√x, ±√1 x respectively. (x → 0.4?)

S&V

First cohomology

ヘロト ヘヨト ヘヨト

High-level algorithm

Idea: To complex analysis and back!

- Use Puiseux expansions for cospec. to the generic fibre, after computing an *ℓ* division polynomial system.
- As the situation is over Q, for each z ∈ Z, work around a smooth point u_z lying within the radii of convergence.
- Compute the vanishing cycle in the fibre of the cohomology at u_z using the Picard-Lefschetz formulas.
- Reduce to positive characteristic assuming the u_z are all congruent modulo the prime ideal p to a common u ∈ F_q. This collects all the vanishing cycles in a common fibre F_u, from which the result follows.

First cohomology

Second cohomology

Our papers

Based on: [Click here for the Preprints]

- (i) Diptajit Roy, Nitin Saxena, Madhavan Venkatesh
 *"Complexity of counting points on curves, and the factor P*₁(*T*) *of the zeta function of surfaces"*, submitted, 2024.
- (ii) Nitin Saxena, Madhavan Venkatesh "Counting points on surfaces in polynomial time", submitted, 2025.

ntroduction	Basic algorithms

Cohomology 0000 irst cohomology 00 Second cohomolo

Algorithm

Thank you!

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国 → のへの

CSE, IIT Kanpur

Computing the zeta function of varieties over finite fields

S & V