Faster hitting-sets for certain ROABP

Nitin Saxena (IIT Kanpur, India)

(Based on joint works with Rohit, Rishabh, Arpita)

2016, \mathcal{T}, Tel-Aviv
Contents

- Polynomial identity testing
 - ABP
 - ROABP ideas
 - Deg-insensitive, width-sensitive idea
 - Commutative ROABP
 - Conjectures for poly-time
 - Conclusion
Polynomial identity testing

Given an arithmetic circuit \(C(x_1, \ldots, x_n) \) of size \(s \), whether it is zero?

- In \(\text{poly}(s) \) many bit operations?
- Think of field \(F = \text{finite field or rationals} \).

Brute-force expansion is as expensive as \(s^s \).

Randomization gives a practical solution.
- Evaluate \(C(x_1, \ldots, x_n) \) at a random point in \(F^n \).
- (Ore 1922), (DeMillo & Lipton 1978), (Zippel 1979), (Schwartz 1980).

This test is blackbox, i.e. one does not need to see \(C \).
- Whitebox PIT – where we are allowed to look inside \(C \).

Blackbox PIT is equivalent to designing a hitting-set \(H \subset F^n \).
- \(H \) contains a non-root of each nonzero \(C(x_1, \ldots, x_n) \) of size \(s \).
Polynomial identity testing

- Question of interest: Design hitting-sets for circuits.
- Appears in numerous guises in computation:

Complexity results
- Interactive protocol (Babai, Lund, Fortnow, Karloff, Nisan, Shamir 1990), PCP theorem (Arora, Safra, Lund, Motwani, Sudan, Szegedy 1998), …

Algorithms
Polynomial identity testing

- Hitting-sets relate to circuit lower bounds.

- It is conjectured that $\text{VP} \neq \text{VNP}$.
 - Or, permanent is harder than determinant?

- "proving permanent hardness" flips to "designing hitting-sets".
 - Almost, (Heintz, Schnorr 1980), (Kabanets, Impagliazzo 2004),
 (Agrawal 2005 2006), (Dvir, Shpilka, Yehudayoff 2009), (Koiran 2011) ...

- Designing an efficient algorithm leads to awesome tools!

- Connections to Geometric Complexity Theory and derandomizing
 the Noether's normalization lemma. (Mulmuley 2011, 2012)
Contents

- Polynomial identity testing
- ABP
- ROABP ideas
- Deg-insensitive, width-sensitive idea
- Commutative ROABP
- Conjectures for poly-time
- Conclusion
Arithmetic branching program (ABP)

- ABP are special circuits.
 - More suited to low degree polynomial computation.

- **Definition:** Suppose $f(x)$ is the $(1,1)$-th entry in the iterated matrix product $A_1(x)...A_D(x)$, where A_i are $w \times w$ matrices with entries in $\mathbb{R} \cup \mathbb{F}$.
 - $f(x)$ is said to have an ABP of width-w and depth-D.

- ABP is as strong as *symbolic determinant* (Mahajan, Vinay '97).
 - Width-3 is as strong as *formulas* (Ben-Or, Cleve '92).
 - Width-2 PIT captures *depth-3 circuit* PIT (Saha, Saptharishi, S.'09).
 - Depth-3 circuit *chasm* (Gupta, Kamath, Kayal, Saptharishi '13).
Read-once oblivious ABP (ROABP)

Definition (ROABP): \(f(x) \) is the \((1,1)\)-th entry in the matrix product \(A_1(x_{\pi(1)})...A_n(x_{\pi(n)}) \), where \(A_i \) is a \(w \times w \) matrix with entries in \(F[x_{\pi(i)}] \) of degree at most \(d \).
- In blackbox model, \(\pi \) may be unknown.
- Set-multilinear and diagonal depth-3 models reduce to ROABP.

Let \(C(x_1,...,x_n) = \sum_{i \in [k]} \prod_{j \in [d]} L_{ij} \) be a depth-3 circuit.

\(C \) is set-multilinear if there is a partition \(P \) of \([n]\) s.t. the variables in \(L_{ij} \) come only from the \(j \)-th part of \(P \).
- (Raz,Shpilka'04) gave a poly-time whitebox PIT.

\(C \) is diagonal if each product gate is a \(d \)-th power.
- (S.'08) gave a poly-time PIT. Devised a dual form. Whitebox.
Contents

- Polynomial identity testing
- ABP
- ROABP ideas
- Deg-insensitive, width-sensitive idea
- Commutative ROABP
- Conjectures for poly-time
- Conclusion
ROABP ideas

- ROABP is a fertile model to study.
 - (Raz, Shpilka'04) gave a poly-time whitebox PIT.
 - (Forbes, Shpilka'12; '13; Agrawal, Saha, S.'13; Forbes, Saptharishi, Shpilka'14) progress towards quasipoly-time hitting-set.

- (Agrawal, Gurjar, Korwar, S.'15) gave a \((\text{wnd})^{O(\lg n)} \) time hitting-set for width-\(w \), deg-\(d \) ROABP.
 - **Idea**: design a monomial ordering \(\varphi \) that isolates a least basis in the coeffs of \(A_1(x_{\pi(1)}) \ldots A_n(x_{\pi(n)}) =: D(x) \).
 - It's constructed recursively; a pair of variables at a time.
 - Then: \(D(x + \varphi(x)) \) has \((\lg w) \)-support rank concentration.

- Nonzeroness of ROABP can be pushed to \(O(\lg w) \)-support.
ROABP ideas

- ROABP is a building block for greater models.
- (Gurjar, Korwar, S., Thierauf'15) gave a \((\text{wnd})^{\lg(\text{wnd}) \cdot 2^k}\) time hitting-set for sum of \(k\) ROABPs.
 - The proof achieves \((2^k \cdot \lg(\text{wnd}))\)-support rank concentration as well.
 - Puts whitebox PIT in \((\text{wnd})^{O(2^k)}\) time!
 - Idea: testing equality of two ROABPs reduces to several ROABP zero tests.

- (Oliveira, Shpilka, Volk'15) gave a \((kn)^{\tilde{O}(n^{2/3})}\) time hitting-set for multilinear depth-3.
 - Idea: Consider various projections of the circuit that look like ROABP.
Contents

- Polynomial identity testing
- ABP
- ROABP ideas
 - Deg-insensitive, width-sensitive idea
- Commutative ROABP
- Conjectures for poly-time
- Conclusion
Deg-insensitive, width-sensitive map

This new idea emerges from a bivariate ROABP.

\[f = R.A_1(x_1).A_2(x_2).C, \] where \(R\) resp. \(C\) is a row resp. a column, and \(A_1, A_2\) are \(w \times w\) matrices.

Thus, \[f = \sum_{r \in [w]} g_r(x_1).h_r(x_2) \] in terms of polynomials.

(Nisan’91) The coeff.matrix \(M(f) := (\text{coeff}(x_1^i x_2^j)(f))_{i,j} \) has rank at most \(w\).

Theorem: Our map \(\varphi : (x_1, x_2) \mapsto (t^w, t^w + t^{w-1}) \) keeps \(f \) nonzero, assuming zero/large characteristic.

Proof: Monomial \(x_1^i x_2^j \) is mapped to \(t^{w(i+j)} (1 + t^{-1})^j \).
Deg-insensitive, width-sensitive map

Let $k=i+j$ be the largest diagonal that contributes in $M(f)$. There can be at most $rk M(f) \leq w$ such monomials in f.

Then, $f'(t) := f(t^w, t^w + t^{w-1})$ has leading contributions from the images $t^{wk}(1 + t^{-1})^j$.

The lower contributions are, at best, from $t^{w(k-1)}(1 + t^{-1})^j$.

Thus, the monomials $t^{wk}, t^{wk-1}, \ldots, t^{wk-w+1}$ could only come from the images of the leading monomials.

Consider the t^{-w} part of the distinct “polynomials” $(1 + t^{-1})^j_a$, $a \in [w]$.

Prove the “binomial vectors” linearly independent. □
Deg-insensitive, width-sensitive map

- $\varphi : (x_1, x_2) \mapsto (t^w, t^w + t^{w-1})$ being deg-insensitive is what helps in extending it to more variables.
 - Shall recurse on n, halving the variables.

- $f = R.A_1(x_1).A_2(x_2)\ldots A_{n-1}(x_{n-1}).A_n(x_n).C$ be width-w ROABP.

- We'll map the i-th pair to t_i using φ to get:
 $$f_1 = R. B_1(t_1) \ldots B_{n/2}(t_{n/2}). C .$$

- Individual degree grows w times. Width unchanged.

- After $(\lg n)$ iterations, we get a univariate of degree grown $w^{\lg n} = n^{\lg w}$ times.
Deg-insensitive, width-sensitive map

- **Theorem (Gurjar,Korwar,S.'15):** There's a $\text{poly}(d, n^{\lg w})$ time hitting-set for width-w, deg-d ROABP (known order, char=0).

- In this constant-width model, poly-sized hitting-sets were not known before.
Contents

- Polynomial identity testing
- ABP
- ROABP ideas
- Deg-insensitive, width-sensitive idea
- Commutative ROABP
- Conjectures for poly-time
- Conclusion
Commutative ROABP

Definition: \(f = R.A_1(x_1) \ldots A_n(x_n).C \) is called a width-\(w \) commutative ROABP if the matrix product commutes.

- So, every variable order works.
- (S.'08) reduced diagonal depth-3 circuit to commutative ROABP.

Let \(l := O(\lg w) \). (AGKS'15) can be applied to get a monomial ordering \(\varphi \) that isolates a least basis in any sub-ABP \(A'_{i_1}(x_{i_1}) \ldots A'_{i_l}(x_{i_l}) =: D_{\ell} \), in \((wd)^{O(\lg l)} \) time, such that

- \(D_{\ell}(x + \varphi(x)) \) has \(\ell \)-support rank concentration.

Applying this idea on all the sub-ABP's of \(A_1(x_1) \ldots A_n(x_n) \) yields a shift \(f' \), of \(f \), that's \(\ell \)-concentrated.
- Use commutativity.
Commutative ROABP

- We can use the transformation from (Forbes, Saptharishi, Shpilka'14) on f' to get $O(l^2)$-variate commutative ROABP f''.

- Applying (AGKS'15) on f'' yields:

 - **Theorem (Gurjar, Korwar, S.'15):** There's a $(w d n)^{O(lg lg w)}$ time hitting-set for width-w, deg-d commutative ROABP. □

- This extends the (FSS'14) result of diagonal circuits to all commutative ROABPs.
 - Much better than ROABP.
Contents

- Polynomial identity testing
- ABP
- ROABP ideas
- Deg-insensitive, width-sensitive idea
- Commutative ROABP
- Conjectures for poly-time
- Conclusion
Conjectured poly-time hitting-sets for ROABP

- How could we improve the commutative ROABP hitting-set from \((\text{wdn})^{O(\log \log w)}\) to really poly-time?
 - Find a non-recursive argument?

- Let \(f = R.A_1(x_1) \ldots A_n(x_n).C\) be a width-\(w\) commutative ROABP.
 - Assume that the underlying rank is also \(w\).

- **Idea** [(\(m, w\))-implicit hash]: Find a monomial ordering \(\varphi\) s.t.
 for any weight \(k\) and large (\(\geq m\)) subset \(M \subseteq \varphi^{-1}(t^k)\):
 - There exists \(S \subseteq [n]\) with the restriction \(M_S\) having a large image.
 - i.e. \(|\varphi(M_S)| > w\).

Restrict \(x_1^{e_1} \ldots x_n^{e_n}\) to \(\prod_{i \in S} x_i^{e_i}\)
Conjectured poly-time hitting-sets for ROABP

Conjecture: There exists (efficient) \((m,w)\)-implicit hash \(\varphi\), with weight-bound \(+ m = \text{poly}(w_{dn})\).
- \(\Phi\) maps ind.deg=\(d\), \(n\)-var. monomials to \(t\)-monomials.

Theorem (Vaid,S.'15): Conjecture \(\Rightarrow\) poly-time hitting-set for commutative ROABP.
- Extendible to general ROABPs.
- (Vaid'15) has made partial progress towards Conjecture.

Pf sketch: Consider the largest monomials \(M\) in \(f\) wrt the ordering \(\varphi\).
- Let \(S \subseteq [n]\) be a subset with \(|\varphi(M_S)| > w\).
- Since *coeff-matrix* of \(f\) wrt \(S \times [n] \setminus S\) has rank at most \(w\), we can deduce that \(|M| \leq m\).
Contents

- Polynomial identity testing
- ABP
- ROABP ideas
- Deg-insensitive, width-sensitive idea
- Commutative ROABP
- Conjectures for poly-time

Conclusion
At the end …

- Solved the case of constant-width ROABP (for char=0).
 - Can such deg-insensitive maps be designed in other cases?
- Gave hitting-sets for commutative ROABP, just shy of poly-time.
- Design efficient \((m,w)\)-implicit hash maps?

Thank you!