PRIME NUMBERS AND CIRCUITS

Nitin Saxena

Department of Computer Science & Engineering IIT Kanpur

IIT-ISM Dhanbad (virtual)
December 2021

- BRIEF HISTORY OF PRIMES
- 2 Primality testing
- 3 DERANDOMIZATION?
- 4 CIRCUITS
- **6** Primality Derandomized
- 6 QUESTIONS

OUTLINE

- Brief History of Primes
- 2 Primality testing
- 3 DERANDOMIZATION?
- 4 CIRCUITS
- 5 Primality Derandomized
- 6 QUESTIONS

Fig. Fuclid

- An integer n > 1 is *prime* if its divisors are only 1 and n.
- They are the building blocks of numbers and this means, as Euclid demonstrated in 300 B.C., primes are infinitely many.
- Not only are they pervasive in Mathematics but also appear in practice eg. Cryptography, Communication, ...
- So how do we check and find primes?

FIG: Euclid

- An integer n > 1 is *prime* if its divisors are only 1 and n.
- They are the building blocks of numbers and this means, as Euclid demonstrated in 300 B.C., primes are infinitely many.
- Not only are they pervasive in Mathematics but also appear in practice eg. Cryptography, Communication,
- So how do we check and find primes?

Fig. Fuclid

- An integer n > 1 is *prime* if its divisors are only 1 and n.
- They are the building blocks of numbers and this means, as Euclid demonstrated in 300 B.C., primes are infinitely many.
- Not only are they pervasive in Mathematics but also appear in practice eg. Cryptography, Communication, ...
- So how do we check and find primes?

Fig. Fuclid

- An integer n > 1 is *prime* if its divisors are only 1 and n.
- They are the building blocks of numbers and this means, as Euclid demonstrated in 300 B.C., primes are infinitely many.
- Not only are they pervasive in Mathematics but also appear in practice eg. Cryptography, Communication,
- So how do we check and find primes?

Fig. Fuclid

- An integer n > 1 is *prime* if its divisors are only 1 and n.
- They are the building blocks of numbers and this means, as Euclid demonstrated in 300 B.C., primes are infinitely many.
- Not only are they pervasive in Mathematics but also appear in practice eg. Cryptography, Communication,
- So how do we check and find primes?

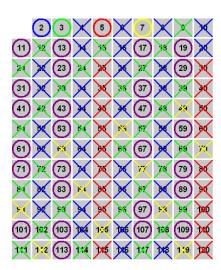
ERATOSTHENES & HIS SIEVE

FIG: Eratosthenes

FIG: The Sieve

ERATOSTHENES & HIS SIEVE

Fig: Eratosthenes



Prime numbers

FIG: The Sieve

- This is the high school method to test primes, attributed to Eratosthenes 200 B.C.
- For a number n, it is sufficient to divide by numbers upto \sqrt{n} .
- Thus, it takes around $O(\sqrt{n})$ steps. For a 100-bit number this means 2^{50} steps!

- This is the high school method to test primes, attributed to Eratosthenes 200 B.C.
- For a number n, it is sufficient to divide by numbers upto \sqrt{n} .
- Thus, it takes around $O(\sqrt{n})$ steps. For a 100-bit number this means 2^{50} steps!

- This is the high school method to test primes, attributed to Eratosthenes 200 B.C.
- For a number n, it is sufficient to divide by numbers upto \sqrt{n} .
- Thus, it takes around $O(\sqrt{n})$ steps. For a 100-bit number this means 2^{50} steps!

- This is the high school method to test primes, attributed to Eratosthenes 200 B.C.
- For a number n, it is sufficient to divide by numbers upto \sqrt{n} .
- Thus, it takes around $O(\sqrt{n})$ steps. For a 100-bit number this means 2^{50} steps!

THEOREM (FERMAT, 1660s)

Fig. Fermat

- It is easy to compute aⁿ(mod n) using repeated squaring (i.e. compute sequentially a(mod n), a²(mod n), a⁴(mod n),...) this takes time log² n, which for a 100-bit number is only 100² steps.
- Can we ascertain the primality of n by checking $a^n = a \pmod{n}$ for few magical a?
- No! Even if we check it for most a (Carmichael, 1910).
- But Fermat gives a starting point!

THEOREM (FERMAT, 1660s)

FIG: Fermat

- It is easy to compute $a^n \pmod{n}$ using repeated squaring (i.e. compute sequentially $a \pmod{n}$, $a^2 \pmod{n}$, $a^4 \pmod{n}$,...) this takes time $\log^2 n$, which for a 100-bit number is only 100^2 steps.
- Can we ascertain the primality of n by checking $a^n = a \pmod{n}$ for few magical a?
- No! Even if we check it for most a (Carmichael, 1910).
- But Fermat gives a starting point!

THEOREM (FERMAT, 1660s)

FIG: Fermat

- It is easy to compute aⁿ (mod n) using repeated squaring (i.e. compute sequentially a(mod n), a² (mod n), a⁴ (mod n),...) this takes time log² n, which for a 100-bit number is only 100² steps.
- Can we ascertain the primality of n by checking $a^n = a \pmod{n}$ for few magical a?
- No! Even if we check it for most a (Carmichael, 1910).
- But Fermat gives a starting point!

THEOREM (FERMAT, 1660s)

FIG: Fermat

- It is easy to compute aⁿ(mod n) using repeated squaring (i.e. compute sequentially a(mod n), a²(mod n), a⁴(mod n),...) this takes time log² n, which for a 100-bit number is only 100² steps.
- Can we ascertain the primality of n by checking $a^n = a \pmod{n}$ for few magical a?
- No! Even if we check it for most a (Carmichael, 1910).
- But Fermat gives a starting point!

THEOREM (FERMAT, 1660s)

FIG: Fermat

- It is easy to compute aⁿ(mod n) using repeated squaring (i.e. compute sequentially a(mod n), a²(mod n), a⁴(mod n),...) this takes time log² n, which for a 100-bit number is only 100² steps.
- Can we ascertain the primality of n by checking $a^n = a \pmod{n}$ for few magical a?
- No! Even if we check it for most a (Carmichael, 1910).
- But Fermat gives a starting point!

THEOREM (FERMAT, 1660s)

FIG: Fermat

- It is easy to compute aⁿ(mod n) using repeated squaring (i.e. compute sequentially a(mod n), a²(mod n), a⁴(mod n),...) this takes time log² n, which for a 100-bit number is only 100² steps.
- Can we ascertain the primality of n by checking $a^n = a \pmod{n}$ for few magical a?
- No! Even if we check it for most a (Carmichael, 1910).
- But Fermat gives a starting point!

THEOREM (FERMAT, 1660s)

FIG: Fermat

- It is easy to compute aⁿ(mod n) using repeated squaring (i.e. compute sequentially a(mod n), a²(mod n), a⁴(mod n),...) this takes time log² n, which for a 100-bit number is only 100² steps.
- Can we ascertain the primality of n by checking $a^n = a \pmod{n}$ for few magical a?
- No! Even if we check it for most a (Carmichael, 1910).
 - But Fermat gives a starting point!

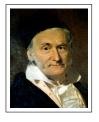


Fig. Gauss

- For any real x > 1, let $\pi(x)$ be the number of primes $p \le x$.
- By looking at the tables of primes Legendre and Gauss (independently) conjectured in 1796 that:

 $\pi(x)$ might be appoximated by $\frac{x}{\ln x}$

Fig. Gauss

- For any real x > 1, let $\pi(x)$ be the number of primes $p \le x$.
- By looking at the tables of primes Legendre and Gauss (independently) conjectured in 1796 that:

 $\pi(x)$ might be appoximated by $\frac{x}{\ln x}$



Fig. Gauss

- For any real x > 1, let $\pi(x)$ be the number of primes $p \le x$.
- By looking at the tables of primes Legendre and Gauss (independently) conjectured in 1796 that:

 $\pi(x)$ might be appoximated by $\frac{x}{\ln x}$.

Fig. Gauss

- For any real x > 1, let $\pi(x)$ be the number of primes $p \le x$.
- By looking at the tables of primes Legendre and Gauss (independently) conjectured in 1796 that:

 $\pi(x)$ might be appoximated by $\frac{x}{\ln x}$.

FIG: Chebyshev

- This conjectured estimate was proved by Chebyshev in 1848.
- He found explicit constants *c*, *d* around 1 such that:

$$\frac{cx}{\ln x} \le \pi(x) \le \frac{dx}{\ln x}$$

FIG: Chebyshev

- This conjectured estimate was proved by Chebyshev in 1848.
- He found explicit constants *c*, *d* around 1 such that:

$$\frac{cx}{\ln x} \le \pi(x) \le \frac{dx}{\ln x}$$

FIG: Chebyshev

- This conjectured estimate was proved by Chebyshev in 1848.
- He found explicit constants c, d around 1 such that:

$$\frac{cx}{\ln x} \le \pi(x) \le \frac{dx}{\ln x}$$

FIG: Chebyshev

- This conjectured estimate was proved by Chebyshev in 1848.
- He found explicit constants c, d around 1 such that:

$$\frac{cx}{\ln x} \le \pi(x) \le \frac{dx}{\ln x}$$

OUTLINE

- BRIEF HISTORY OF PRIMES
- 2 Primality testing
- 3 DERANDOMIZATION?
- 4 CIRCUITS
- 5 Primality Derandomized
- 6 QUESTIONS

DEFINING EFFICIENCY

FIG: Gödel

- Kurt Gödel was probably the first to define the question of primality testing, and with it a notion of computational efficiency itself.
- In 1956, he asked in a letter to John von Neumann: Can we check whether n is a prime in time polynomial in log n.
- This gave the modern question: Is there a polynomial time algorithm for primality?

Defining Efficiency

FIG: Gödel

- Kurt Gödel was probably the first to define the question of primality testing, and with it a notion of computational efficiency itself.
- In 1956, he asked in a letter to John von Neumann: Can we check whether n is a prime in time polynomial in log n.
- This gave the modern question: Is there a polynomial time algorithm for primality?

DEFINING EFFICIENCY

FIG: Gödel

- Kurt Gödel was probably the first to define the question of primality testing, and with it a notion of computational efficiency itself.
- In 1956, he asked in a letter to John von Neumann: Can we check whether n is a prime in time polynomial in log n.
- This gave the modern question: Is there a polynomial time algorithm for primality?

DEFINING EFFICIENCY

FIG: Gödel

- Kurt Gödel was probably the first to define the question of primality testing, and with it a notion of computational efficiency itself.
- In 1956, he asked in a letter to John von Neumann: Can we check whether n is a prime in time polynomial in log n.
- This gave the modern question: Is there a polynomial time algorithm for primality?

CAN'T DECIDE? TOSS A COIN!

THEOREM (SOLOVAY-STRASSEN, 1977)

An odd number n is prime iff for most a, $a^{\frac{n-1}{2}} = (\frac{a}{n}) \pmod{n}$.

- Jacobi symbol $(\frac{a}{n})$ is computable in time $O^{\sim}(\log^2 n)$.
- We check the above equation for a random a.
- This gives a randomized test that takes time $O^{\sim}(\log^2 n)$.
- It errs with probability at most $\frac{1}{2}$.
- Thus, repeating this process 100 times makes the error probability $\frac{1}{2^{100}}$.

CAN'T DECIDE? TOSS A COIN!

THEOREM (SOLOVAY-STRASSEN, 1977)

An odd number n is prime iff for most a, $a^{\frac{n-1}{2}} = (\frac{a}{n}) \pmod{n}$.

- Jacobi symbol $(\frac{a}{n})$ is computable in time $O^{\sim}(\log^2 n)$.
- We check the above equation for a random a.
- This gives a randomized test that takes time $O^{\sim}(\log^2 n)$.
- It errs with probability at most $\frac{1}{2}$.
- Thus, repeating this process 100 times makes the error probability $\frac{1}{2^{100}}$.

THEOREM (SOLOVAY-STRASSEN, 1977)

- Jacobi symbol $(\frac{a}{n})$ is computable in time $O^{\sim}(\log^2 n)$.
- We check the above equation for a random a.
- This gives a randomized test that takes time $O^{\sim}(\log^2 n)$.
- It errs with probability at most $\frac{1}{2}$.
- Thus, repeating this process 100 times makes the error probability $\frac{1}{2^{100}}$.

THEOREM (SOLOVAY-STRASSEN, 1977)

- Jacobi symbol $(\frac{a}{n})$ is computable in time $O^{\sim}(\log^2 n)$.
- We check the above equation for a random a.
- This gives a randomized test that takes time $O^{\sim}(\log^2 n)$.
- It errs with probability at most $\frac{1}{2}$.
- Thus, repeating this process 100 times makes the error probability $\frac{1}{2^{100}}$.

THEOREM (SOLOVAY-STRASSEN, 1977)

- Jacobi symbol $(\frac{a}{n})$ is computable in time $O^{\sim}(\log^2 n)$.
- We check the above equation for a random a.
- This gives a randomized test that takes time $O^{\sim}(\log^2 n)$.
- It errs with probability at most $\frac{1}{2}$.
- Thus, repeating this process 100 times makes the error probability $\frac{1}{2^{100}}$.

THEOREM (SOLOVAY-STRASSEN, 1977)

- Jacobi symbol $(\frac{a}{n})$ is computable in time $O^{\sim}(\log^2 n)$.
- We check the above equation for a random a.
- This gives a randomized test that takes time $O^{\sim}(\log^2 n)$.
- It errs with probability at most $\frac{1}{2}$.
- Thus, repeating this process 100 times makes the error probability $\frac{1}{2^{100}}$.

THEOREM (MILLER-RABIN, 1980)

- We check the above condition for a random a.
- This gives a randomized test that takes time $O^{\sim}(\log^2 n)$.
- It errs with probability at most $\frac{1}{4}$.
- The most popular primality test!

THEOREM (MILLER-RABIN, 1980)

- We check the above condition for a random a.
- This gives a randomized test that takes time $O^{\sim}(\log^2 n)$.
- It errs with probability at most $\frac{1}{4}$.
- The most popular primality test!

THEOREM (MILLER-RABIN, 1980)

- We check the above condition for a random a.
- This gives a randomized test that takes time $O^{\sim}(\log^2 n)$.
- It errs with probability at most $\frac{1}{4}$.
- The most popular primality test!

THEOREM (MILLER-RABIN, 1980)

- We check the above condition for a random a.
- This gives a randomized test that takes time $O^{\sim}(\log^2 n)$.
- It errs with probability at most $\frac{1}{4}$.
- The most popular primality test!

THEOREM (MILLER-RABIN, 1980)

- We check the above condition for a random a.
- This gives a randomized test that takes time $O^{\sim}(\log^2 n)$.
- It errs with probability at most $\frac{1}{4}$.
- The most popular primality test!

OUTLINE

- BRIEF HISTORY OF PRIMES
- 2 Primality testing
- 3 DERANDOMIZATION?
- 4 CIRCUITS
- 5 Primality Derandomized
- 6 QUESTIONS

FIG: Riemann

- Can we select the random bits carefully in a randomized algorithm such that there is no error?
- For example, if we assume generalized Riemann Hypothesis (GRH) then the first $(2 \log^2 n)$ a's suffice to test primality of n in Solovay-Strassen and Miller-Rabin tests.
- Can we derandomize any randomized polynomial time algorithm?
- Is BPP=P? or

"God does not play dice...."??

FIG: Riemann

algorithm such that there is no error?

• For example, if we assume generalized Riemann Hypothesis (GRH) then the first $(2 \log^2 n)$ a's suffice to

• Can we select the random bits carefully in a randomized

- test primality of n in Solovay-Strassen and Miller-Rabin tests.
- Can we derandomize any randomized polynomial time algorithm?
- Is BPP=P? or

'God does not play dice...."??

FIG: Riemann

- Can we select the random bits carefully in a randomized algorithm such that there is no error?
- For example, if we assume generalized Riemann Hypothesis (GRH) then the first $(2 \log^2 n)$ a's suffice to test primality of n in Solovay-Strassen and Miller-Rabin tests.
- Can we derandomize any randomized polynomial time algorithm?
- Is BPP=P? or

"God does not play dice...."??

FIG: Riemann

- Can we select the random bits carefully in a randomized algorithm such that there is no error?
- For example, if we assume generalized Riemann Hypothesis (GRH) then the first $(2 \log^2 n)$ a's suffice to test primality of n in Solovay-Strassen and Miller-Rabin tests.
- Can we derandomize any randomized polynomial time algorithm?
- Is BPP=P? or

FIG: Riemann

- Can we select the random bits carefully in a randomized algorithm such that there is no error?
- For example, if we assume generalized Riemann Hypothesis (GRH) then the first $(2 \log^2 n)$ a's suffice to test primality of n in Solovay-Strassen and Miller-Rabin tests.
- Can we derandomize any randomized polynomial time algorithm?
- Is BPP=P? or

"God does not play dice...."??

- In the 1990s it was observed that if there are hard problems then they can be used to derandomize.
- Specifically, Impagliazzo & Wigderson showed in 1997 that BPP=P if E has exponentially hard functions.
- But proving hardness has always been a hard problem!
- Some hoped that Primality might have an easier proof. After all, there were several intermediate results in that direction.

- In the 1990s it was observed that if there are hard problems then they can be used to derandomize.
- Specifically, Impagliazzo & Wigderson showed in 1997 that BPP=P if E has exponentially hard functions.
- But proving hardness has always been a hard problem!
- Some hoped that Primality might have an easier proof. After all, there were several intermediate results in that direction.

- In the 1990s it was observed that if there are hard problems then they can be used to derandomize.
- Specifically, Impagliazzo & Wigderson showed in 1997 that BPP=P if E has exponentially hard functions.
- But proving hardness has always been a hard problem!
- Some hoped that Primality might have an easier proof. After all, there were several intermediate results in that direction.

- In the 1990s it was observed that if there are hard problems then they can be used to derandomize.
- Specifically, Impagliazzo & Wigderson showed in 1997 that BPP=P if E has exponentially hard functions.
- But proving hardness has always been a hard problem!
- Some hoped that Primality might have an easier proof. After all, there were several intermediate results in that direction.

OUTLINE

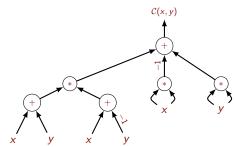
- BRIEF HISTORY OF PRIMES
- 2 Primality testing
- 3 DERANDOMIZATION?
- 4 CIRCUITS
- 5 Primality Derandomized
- 6 QUESTIONS

PRIMALITY TESTING & CIRCUITS

- Finally, the answer came forth by a rephrasal of primality testing in terms of an *arithmetic circuit*.
- A circuit \mathcal{C} over a ring R is a directed acyclic graph with inputs at the leaves, output at the root, + and * as internal nodes, and constants from R at the edges.

PRIMALITY TESTING & CIRCUITS

- Finally, the answer came forth by a rephrasal of primality testing in terms of an *arithmetic circuit*.
- A circuit \mathcal{C} over a ring R is a directed acyclic graph with inputs at the leaves, output at the root, + and * as internal nodes, and constants from R at the edges.



- For any integers n > 0 and $1 \le a \le n$ define a circuit $C_{n,a}(x) := (x+a)^n (x^n+a) \pmod{n}$.
- Note that, using repeated squaring, circuit $C_{n,a}$ can be expressed as a directed acyclic graph of size $O(\log n)$.
- It is a simple property of binomial coefficients that:

n is prime iff
$$C_{n,1}(x) = 0$$
.

- It can be viewed as a generalization of Fermat's little theorem.
- It was used by Agrawal & Biswas (1999) to give a new kind of randomized primality test.

- For any integers n > 0 and $1 \le a \le n$ define a circuit $C_{n,a}(x) := (x+a)^n (x^n+a) \pmod{n}$.
- Note that, using repeated squaring, circuit $C_{n,a}$ can be expressed as a directed acyclic graph of size $O(\log n)$.
- It is a simple property of binomial coefficients that:

n is prime iff
$$C_{n,1}(x) = 0$$
.

- It can be viewed as a generalization of Fermat's little theorem.
- It was used by Agrawal & Biswas (1999) to give a new kind of randomized primality test.

- For any integers n > 0 and $1 \le a \le n$ define a circuit $C_{n,a}(x) := (x+a)^n (x^n+a) \pmod{n}$.
- Note that, using repeated squaring, circuit $C_{n,a}$ can be expressed as a directed acyclic graph of size $O(\log n)$.
- It is a simple property of binomial coefficients that:

n is prime iff
$$C_{n,1}(x) = 0$$
.

- It can be viewed as a generalization of Fermat's little theorem.
- It was used by Agrawal & Biswas (1999) to give a new kind of randomized primality test.

- For any integers n > 0 and $1 \le a \le n$ define a circuit $C_{n,a}(x) := (x+a)^n (x^n+a) \pmod{n}$.
- Note that, using repeated squaring, circuit $C_{n,a}$ can be expressed as a directed acyclic graph of size $O(\log n)$.
- It is a simple property of binomial coefficients that:

n is prime iff
$$C_{n,1}(x) = 0$$
.

- It can be viewed as a generalization of Fermat's little theorem.
- It was used by Agrawal & Biswas (1999) to give a new kind of randomized primality test.

- For any integers n > 0 and $1 \le a \le n$ define a circuit $C_{n,a}(x) := (x+a)^n (x^n+a) \pmod{n}$.
- Note that, using repeated squaring, circuit $C_{n,a}$ can be expressed as a directed acyclic graph of size $O(\log n)$.
- It is a simple property of binomial coefficients that:

n is prime iff
$$C_{n,1}(x) = 0$$
.

- It can be viewed as a generalization of Fermat's little theorem.
- It was used by Agrawal & Biswas (1999) to give a new kind of randomized primality test.

- For any integers n > 0 and $1 \le a \le n$ define a circuit $C_{n,a}(x) := (x+a)^n (x^n+a) \pmod{n}$.
- Note that, using repeated squaring, circuit $C_{n,a}$ can be expressed as a directed acyclic graph of size $O(\log n)$.
- It is a simple property of binomial coefficients that:

n is prime iff
$$C_{n,1}(x) = 0$$
.

- It can be viewed as a generalization of Fermat's little theorem.
- It was used by Agrawal & Biswas (1999) to give a new kind of randomized primality test.

OUTLINE

- BRIEF HISTORY OF PRIMES
- 2 Primality testing
- 3 DERANDOMIZATION?
- 4 CIRCUITS
- **5** Primality Derandomized
- 6 QUESTIONS

- Although $C_{n,a}(x) := (x+a)^n (x^n+a) \pmod{n}$ is a $O(\log n)$ sized circuit, checking it for zeroness seems to require computing all the n terms in the expansion of $(x+a)^n$.
- However, if r is "small" we can check $C_{n,a}(x) = 0 \pmod{x^r 1}$ efficiently.
- Does checking this for few different a & r imply $C_{n,1}(x) = 0$?
- Agrawal, Kayal & Saxena (2002) showed that a, r below $(\log n)^5$ will do!
- It was the first unconditional, deterministic and polynomial time primality test.

- Although $C_{n,a}(x) := (x+a)^n (x^n+a) \pmod{n}$ is a $O(\log n)$ sized circuit, checking it for zeroness seems to require computing all the n terms in the expansion of $(x+a)^n$.
- However, if r is "small" we can check $C_{n,a}(x) = 0 \pmod{x^r 1}$ efficiently.
- Does checking this for few different a & r imply $C_{n,1}(x) = 0$?
- Agrawal, Kayal & Saxena (2002) showed that a, r below $(\log n)^5$ will do!
- It was the first unconditional, deterministic and polynomial time primality test.

- Although $C_{n,a}(x) := (x+a)^n (x^n+a) \pmod{n}$ is a $O(\log n)$ sized circuit, checking it for zeroness seems to require computing all the n terms in the expansion of $(x+a)^n$.
- However, if r is "small" we can check $C_{n,a}(x) = 0 \pmod{x^r 1}$ efficiently.
- Does checking this for few different a & r imply $C_{n,1}(x) = 0$?
- Agrawal, Kayal & Saxena (2002) showed that a, r below $(\log n)^5$ will do!
- It was the first unconditional, deterministic and polynomial time primality test.

- Although $C_{n,a}(x) := (x+a)^n (x^n+a) \pmod{n}$ is a $O(\log n)$ sized circuit, checking it for zeroness seems to require computing all the n terms in the expansion of $(x+a)^n$.
- However, if r is "small" we can check $C_{n,a}(x) = 0 \pmod{x^r 1}$ efficiently.
- Does checking this for few different a & r imply $C_{n,1}(x) = 0$?
- Agrawal, Kayal & Saxena (2002) showed that a, r below $(\log n)^5$ will do!
- It was the first unconditional, deterministic and polynomial time primality test.

- Although $C_{n,a}(x) := (x+a)^n (x^n+a) \pmod{n}$ is a $O(\log n)$ sized circuit, checking it for zeroness seems to require computing all the n terms in the expansion of $(x+a)^n$.
- However, if r is "small" we can check $C_{n,a}(x) = 0 \pmod{x^r 1}$ efficiently.
- Does checking this for few different a & r imply $C_{n,1}(x) = 0$?
- Agrawal, Kayal & Saxena (2002) showed that a, r below $(\log n)^5$ will do!
- It was the first unconditional, deterministic and polynomial time primality test.

AGRAWAL-KAYAL-S TEST

- If n is a^b (b > 1), it is composite.
- ② Select an r such that $\operatorname{ord}_r(n) > 4 \log^2 n$ and work in the ring $R := \mathbb{Z}_n[x]/(x^r 1)$.
- **1** For each $a, 1 \le a \le \ell := \lceil 2\sqrt{r} \log n \rceil$, check if $(x+a)^n = (x^n+a)$.
- If yes then n is prime else composite.

AGRAWAL-KAYAL-S TEST

- If n is a^b (b > 1), it is composite.
- ② Select an r such that $\operatorname{ord}_r(n) > 4 \log^2 n$ and work in the ring $R := \mathbb{Z}_n[x]/(x^r 1)$.
- ① For each $a, 1 \le a \le \ell := \lceil 2\sqrt{r} \log n \rceil$, check if $(x+a)^n = (x^n+a)$.
- If yes then n is prime else composite.

AGRAWAL-KAYAL-S TEST

- If n is a^b (b > 1), it is composite.
- ② Select an r such that $\operatorname{ord}_r(n) > 4 \log^2 n$ and work in the ring $R := \mathbb{Z}_n[x]/(x^r 1)$.
- **3** For each $a, 1 \le a \le \ell := \lceil 2\sqrt{r} \log n \rceil$, check if $(x+a)^n = (x^n+a)$.
- If yes then n is prime else composite.

AGRAWAL-KAYAL-S TEST

- If n is a^b (b > 1), it is composite.
- ② Select an r such that $\operatorname{ord}_r(n) > 4 \log^2 n$ and work in the ring $R := \mathbb{Z}_n[x]/(x^r 1)$.
- **3** For each $a, 1 \le a \le \ell := \lceil 2\sqrt{r} \log n \rceil$, check if $(x+a)^n = (x^n+a)$.
- \bigcirc If yes then n is prime else composite.

- Suppose all the congruences hold and p is a prime factor of n.
- The group $I := \langle n, p \pmod{r} \rangle$. $t := \# I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$.
- The group $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$ where h(x) is an irreducible factor of $\frac{x^r-1}{x-1}$ modulo p.

```
\#J > 2^{\min\{t,\ell\}} > 2^{2\sqrt{t}\log n} > n^{2\sqrt{t}}.
```

- *Proof:* Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose $f(x) = g(x) \pmod{p, h(x)}$.
 - ▶ The test tells us that $f(x^{n' \cdot p'}) = g(x^{n' \cdot p'}) \pmod{p, h(x)}$
 - ▶ But this means that f(z) g(z) has atleast t roots in the field $\mathbb{F}_p[x]/(h(x))$, which is a contradiction.

- Suppose all the congruences hold and p is a prime factor of n.
- The group $I := \langle n, p \pmod{r} \rangle$. $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$.
- The group $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$ where h(x) is an irreducible factor of $\frac{x^r-1}{x-1}$ modulo p.

```
\#J > 2^{\min\{t,\ell\}} > 2^{2\sqrt{t}\log n} > n^{2\sqrt{t}}.
```

- *Proof:* Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose $f(x) = g(x) \pmod{p, h(x)}$.
 - ▶ The test tells us that $f(x^{n' \cdot p'}) = g(x^{n' \cdot p'}) \pmod{p, h(x)}$
 - ▶ But this means that f(z) g(z) has atleast t roots in the field $\mathbb{F}_p[x]/(h(x))$, which is a contradiction.

- Suppose all the congruences hold and p is a prime factor of n.
- The group $I := \langle n, p \pmod{r} \rangle$. $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$.
- The group $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$ where h(x) is an irreducible factor of $\frac{x'-1}{x-1}$ modulo p.
 - $\#J > 2^{\min\{t,\ell\}} > 2^{2\sqrt{t \log n}} > n^{2\sqrt{t}}$.
- *Proof:* Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose $f(x) = g(x) \pmod{p, h(x)}$.
 - ▶ The test tells us that $f(x^{n' \cdot p'}) = g(x^{n' \cdot p'}) \pmod{p, h(x)}$.
 - ▶ But this means that f(z) g(z) has atleast t roots in the field $\mathbb{F}_p[x]/(h(x))$, which is a contradiction.

- Suppose all the congruences hold and p is a prime factor of n.
- The group $I := \langle n, p \pmod{r} \rangle$. $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$.
- The group $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$ where h(x) is an irreducible factor of $\frac{x^r-1}{x-1}$ modulo p.

$$\#J > 2^{\min\{t,\ell\}} > 2^{2\sqrt{t}\log n} > n^{2\sqrt{t}}$$
.

- *Proof:* Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose $f(x) = g(x) \pmod{p, h(x)}$.
 - ▶ The test tells us that $f(x^{n \cdot p'}) = g(x^{n \cdot p'}) \pmod{p, h(x)}$
 - ▶ But this means that f(z) g(z) has atleast t roots in the field $\mathbb{F}_p[x]/(h(x))$, which is a contradiction.

AKS Test: The Proof

- Suppose all the congruences hold and p is a prime factor of n.
- The group $I := \langle n, p \pmod{r} \rangle$. $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$.
- The group $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$ where h(x) is an irreducible factor of $\frac{x^r-1}{x-1}$ modulo p.

$$\#J \ge 2^{\min\{t,\ell\}} > 2^{2\sqrt{t}\log n} \ge n^{2\sqrt{t}}.$$

- *Proof:* Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose $f(x) = g(x) \pmod{p, h(x)}$.
 - ▶ The test tells us that $f(x^{n \cdot p'}) = g(x^{n \cdot p'}) \pmod{p, h(x)}$
 - ▶ But this means that f(z) g(z) has atleast t roots in the field $\mathbb{F}_p[x]/(h(x))$, which is a contradiction.

- Suppose all the congruences hold and p is a prime factor of n.
- The group $I := \langle n, p \pmod{r} \rangle$. $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$.
- The group $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$ where h(x) is an irreducible factor of $\frac{x^r-1}{x-1}$ modulo p.

$$\#J \ge 2^{\min\{t,\ell\}} > 2^{2\sqrt{t}\log n} \ge n^{2\sqrt{t}}.$$

- *Proof:* Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose $f(x) = g(x) \pmod{p, h(x)}$.
 - ▶ The test tells us that $f(x^{n' \cdot p'}) = g(x^{n' \cdot p'}) \pmod{p, h(x)}$.
 - ▶ But this means that f(z) g(z) has at least t roots in the field $\mathbb{F}_p[x]/(h(x))$, which is a contradiction.

- Suppose all the congruences hold and p is a prime factor of n.
- The group $I := \langle n, p \pmod{r} \rangle$. $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$.
- The group $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$ where h(x) is an irreducible factor of $\frac{x^r-1}{x-1}$ modulo p.

$$\#J \ge 2^{\min\{t,\ell\}} > 2^{2\sqrt{t}\log n} \ge n^{2\sqrt{t}}.$$

- Proof: Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose $f(x) = g(x) \pmod{p, h(x)}$.
 - ▶ The test tells us that $f(x^{n^i \cdot p^j}) = g(x^{n^i \cdot p^j}) \pmod{p, h(x)}$.
 - ▶ But this means that f(z) g(z) has at least t roots in the field $\mathbb{F}_p[x]/(h(x))$, which is a contradiction.

- Suppose all the congruences hold and p is a prime factor of n.
- The group $I := \langle n, p \pmod{r} \rangle$. $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$.
- The group $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$ where h(x) is an irreducible factor of $\frac{x^r-1}{x-1}$ modulo p.

$$\#J \ge 2^{\min\{t,\ell\}} > 2^{2\sqrt{t}\log n} \ge n^{2\sqrt{t}}.$$

- Proof: Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose $f(x) = g(x) \pmod{p, h(x)}$.
 - ▶ The test tells us that $f(x^{n^i \cdot p^j}) = g(x^{n^i \cdot p^j}) \pmod{p, h(x)}$.
 - ▶ But this means that f(z) g(z) has atleast t roots in the field $\mathbb{F}_p[x]/(h(x))$, which is a contradiction.

- Suppose all the congruences hold and p is a prime factor of n.
- The group $I := \langle n, p \pmod{r} \rangle$. $t := \#I \ge \operatorname{ord}_r(n) \ge 4 \log^2 n$.
- The group $J := \langle (x+1), \dots, (x+\ell) \pmod{p, h(x)} \rangle$ where h(x) is an irreducible factor of $\frac{x^r-1}{x-1}$ modulo p. $\# J > 2^{\min\{t,\ell\}} > 2^{2\sqrt{t}\log n} > n^{2\sqrt{t}}$
- Proof: Let f(x), g(x) be two different products of (x + a)'s, having degree < t. Suppose $f(x) = g(x) \pmod{p, h(x)}$.
 - ▶ The test tells us that $f(x^{n^i \cdot p^j}) = g(x^{n^i \cdot p^j}) \pmod{p, h(x)}$.
 - ▶ But this means that f(z) g(z) has atleast t roots in the field $\mathbb{F}_p[x]/(h(x))$, which is a contradiction.

THE TWO GROUPS

- There exist tuples $(i,j) \neq (i',j')$ such that $0 \leq i,j,i',j' \leq \sqrt{t}$ and $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$.
- The test tells us that for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$ and $f(x)^{n^{i'} \cdot p^{j'}} = f(x^{n^{i'} \cdot p^{j'}})$.
- Thus, for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x)^{n^{i'} \cdot p^{j'}}$.
- As J is a cyclic group: $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$.
- As #J is large, $n^i \cdot p^j = n^{i'} \cdot p^{j'}$. Hence, n = p a prime

THE TWO GROUPS

- There exist tuples $(i,j) \neq (i',j')$ such that $0 \leq i,j,i',j' \leq \sqrt{t}$ and $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$.
- The test tells us that for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$ and $f(x)^{n^{i'} \cdot p^{j'}} = f(x^{n^{i'} \cdot p^{j'}})$.
- Thus, for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x)^{n^{i'} \cdot p^{j'}}$.
- As J is a cyclic group: $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$.
- As #J is large, $n^i \cdot p^j = n^{i'} \cdot p^{j'}$. Hence, n = p a prime

THE TWO GROUPS

- There exist tuples $(i,j) \neq (i',j')$ such that $0 \leq i,j,i',j' \leq \sqrt{t}$ and $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$.
- The test tells us that for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$ and $f(x)^{n^{i'} \cdot p^{j'}} = f(x^{n^{i'} \cdot p^{j'}})$.
- Thus, for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x)^{n^{i'} \cdot p^{j'}}$.
- As J is a cyclic group: $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$.
- As #J is large, $n^i \cdot p^j = n^{i'} \cdot p^{j'}$. Hence, n = p a prime

THE TWO GROUPS

- There exist tuples $(i,j) \neq (i',j')$ such that $0 \leq i,j,i',j' \leq \sqrt{t}$ and $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$.
- The test tells us that for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$ and $f(x)^{n^{i'} \cdot p^{i'}} = f(x^{n^{i'} \cdot p^{i'}})$.
- Thus, for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x)^{n^{i'} \cdot p^{j'}}$.
- As J is a cyclic group: $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$.
- As #J is large, $n^i \cdot p^j = n^{i'} \cdot p^{j'}$. Hence, n = p a prime

THE TWO GROUPS

- There exist tuples $(i,j) \neq (i',j')$ such that $0 \leq i,j,i',j' \leq \sqrt{t}$ and $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$.
- The test tells us that for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$ and $f(x)^{n^{i'} \cdot p^{i'}} = f(x^{n^{i'} \cdot p^{i'}})$.
- Thus, for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x)^{n^{i'} \cdot p^{j'}}$.
- As J is a cyclic group: $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$.
- As #J is large, $n^i \cdot p^j = n^{i'} \cdot p^{j'}$. Hence, n = p a prime

THE TWO GROUPS

- There exist tuples $(i,j) \neq (i',j')$ such that $0 \leq i,j,i',j' \leq \sqrt{t}$ and $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$.
- The test tells us that for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$ and $f(x)^{n^{i'} \cdot p^{j'}} = f(x^{n^{i'} \cdot p^{j'}})$.
- Thus, for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x)^{n^{i'} \cdot p^{j'}}$.
- As J is a cyclic group: $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$.
- As #J is large, $n^i \cdot p^j = n^{i'} \cdot p^{j'}$. Hence, n = p a prime.

THE TWO GROUPS

- There exist tuples $(i,j) \neq (i',j')$ such that $0 \leq i,j,i',j' \leq \sqrt{t}$ and $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{r}$.
- The test tells us that for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x^{n^i \cdot p^j})$ and $f(x)^{n^{i'} \cdot p^{i'}} = f(x^{n^{i'} \cdot p^{i'}})$.
- Thus, for all $f(x) \in J$, $f(x)^{n^i \cdot p^j} = f(x)^{n^{i'} \cdot p^{j'}}$.
- As J is a cyclic group: $n^i \cdot p^j \equiv n^{i'} \cdot p^{j'} \pmod{\#J}$.
- As #J is large, $n^i \cdot p^j = n^{i'} \cdot p^{j'}$. Hence, n = p a prime.

AKS Test: Time Complexity

- Recall that r is the least number such that $\operatorname{ord}_r(n) > 4 \log^2 n$.
- Prime number theorem gives $r = O(\log^5 n)$ and the algorithm takes time $O^{\sim}(\log^{10.5} n)$.
- Lenstra and Pomerance (2003) further reduced the time complexity to $O^{\sim}(\log^6 n)$.

AKS Test: Time Complexity

- Recall that r is the least number such that $\operatorname{ord}_r(n) > 4 \log^2 n$.
- Prime number theorem gives $r = O(\log^5 n)$ and the algorithm takes time $O^{\sim}(\log^{10.5} n)$.
- Lenstra and Pomerance (2003) further reduced the time complexity to $O^{\sim}(\log^6 n)$.

AKS TEST: TIME COMPLEXITY

- Recall that r is the least number such that $\operatorname{ord}_r(n) > 4 \log^2 n$.
- Prime number theorem gives $r = O(\log^5 n)$ and the algorithm takes time $O^{\sim}(\log^{10.5} n)$.
- Lenstra and Pomerance (2003) further reduced the time complexity to $O^{\sim}(\log^6 n)$.

OUTLINE

- BRIEF HISTORY OF PRIMES
- 2 Primality testing
- 3 DERANDOMIZATION?
- 4 CIRCUITS
- 5 Primality Derandomized
- 6 QUESTIONS

- The AKS primality test solves a long-standing open question but cannot compete with the randomized tests used in practice.
- However, several modifications have been suggested to AKS test that are faster than the original proposal.
- Can we reduce the number of a for which the test is performed? Here is a conjecture that can bring down the complexity to $O^{\sim}(\log^3 n)$:

Conjecture: (Bhattacharjee-Pandey 2001; AKS 2004)

Let $r > \log n$ be a prime number that does not divide $(n^3 - n)$. Then $(x-1)^n \equiv (x^n-1) \pmod{n, x^r-1}$ iff n is prime.

- The AKS primality test solves a long-standing open question but cannot compete with the randomized tests used in practice.
- However, several modifications have been suggested to AKS test that are faster than the original proposal.
- Can we reduce the number of a for which the test is performed? Here is a conjecture that can bring down the complexity to $O^{\sim}(\log^3 n)$:

Conjecture: (Bhattacharjee-Pandey 2001; AKS 2004)

Let $r > \log n$ be a prime number that does not divide $(n^3 - n)$. Then $(x-1)^n \equiv (x^n-1) \pmod{n, x^r-1}$ iff n is prime.

- The AKS primality test solves a long-standing open question but cannot compete with the randomized tests used in practice.
- However, several modifications have been suggested to AKS test that are faster than the original proposal.
- Can we reduce the number of a for which the test is performed? Here is a conjecture that can bring down the complexity to $O^{\sim}(\log^3 n)$:

Conjecture: (Bhattacharjee-Pandey 2001; AKS 2004)

Let $r > \log n$ be a prime number that does not divide $(n^3 - n)$. Then $(x-1)^n \equiv (x^n-1) \pmod{n, x^r-1}$ iff n is prime.

- The AKS primality test solves a long-standing open question but cannot compete with the randomized tests used in practice.
- However, several modifications have been suggested to AKS test that are faster than the original proposal.
- Can we reduce the number of a for which the test is performed? Here is a conjecture that can bring down the complexity to $O^{\sim}(\log^3 n)$:

Conjecture: (Bhattacharjee-Pandey 2001; AKS 2004)

Let $r > \log n$ be a prime number that does not divide $(n^3 - n)$. Then $(x - 1)^n \equiv (x^n - 1) \pmod{n}$, $x^r - 1$ iff n is prime.

- An even more interesting question is that of Polynomial Identity Testing (PIT).
- Given a circuit $C(x_1, ..., x_n)$, determine whether it is the zero circuit in time polynomial in the size of C??
- Note that AKS primality test solved this question for the special circuit $C(x) = (x+1)^n (x^n+1) \pmod{n}$.
- There has been some progress but the big question of PIT is very much open.
- It has also been shown that PIT is related to the "holy-grail" of complexity theory: proving lower bounds.

- An even more interesting question is that of Polynomial Identity Testing (PIT).
- Given a circuit $C(x_1, ..., x_n)$, determine whether it is the zero circuit in time polynomial in the size of C??
- Note that AKS primality test solved this question for the special circuit $C(x) = (x+1)^n (x^n+1) \pmod{n}$.
- There has been some progress but the big question of PIT is very much open.
- It has also been shown that PIT is related to the "holy-grail" of complexity theory: proving lower bounds.

- An even more interesting question is that of Polynomial Identity Testing (PIT).
- Given a circuit $C(x_1,...,x_n)$, determine whether it is the zero circuit in time polynomial in the size of \mathbb{C} ?
- Note that AKS primality test solved this question for the special circuit $C(x) = (x+1)^n (x^n+1) \pmod{n}$.
- There has been some progress but the big question of PIT is very much open.
- It has also been shown that PIT is related to the "holy-grail" of complexity theory: proving lower bounds.

- An even more interesting question is that of Polynomial Identity Testing (PIT).
- Given a circuit $C(x_1, ..., x_n)$, determine whether it is the zero circuit in time polynomial in the size of \mathbb{C} ?
- Note that AKS primality test solved this question for the special circuit $C(x) = (x+1)^n (x^n+1) \pmod{n}$.
- There has been some progress but the big question of PIT is very much open.
- It has also been shown that PIT is related to the "holy-grail" of complexity theory: proving lower bounds.

- An even more interesting question is that of Polynomial Identity Testing (PIT).
- Given a circuit $C(x_1, ..., x_n)$, determine whether it is the zero circuit in time polynomial in the size of \mathbb{C} ?
- Note that AKS primality test solved this question for the special circuit $C(x) = (x+1)^n (x^n+1) \pmod{n}$.
- There has been some progress but the big question of PIT is very much open.
- It has also been shown that PIT is related to the "holy-grail" of complexity theory: proving lower bounds.

- An even more interesting question is that of Polynomial Identity Testing (PIT).
- Given a circuit $C(x_1,...,x_n)$, determine whether it is the zero circuit in time polynomial in the size of \mathbb{C} ?
- Note that AKS primality test solved this question for the special circuit $C(x) = (x+1)^n (x^n+1) \pmod{n}$.
- There has been some progress but the big question of PIT is very much open.
- It has also been shown that PIT is related to the "holy-grail" of complexity theory: proving lower bounds.