Isomorphism problems in algebra

Nitin Saxena

Department of CSE Indian Institute of Technology Kanpur

UPMC Paris, 2014

- Motivation
- Graphs & algebras
- Quadratic forms
- Cubic forms
- Polynomial isomorphism
- Conclusion

Motivation

- Let A be a commutative algebra, over a commutative unital ring R.
 - Assume that A over R has finitely many generators.
 - Eg. $A = R[x]/(x^2-a)$, for R = Z/nZ.
- Algebra Isomorphism: Given two such R-algebras A₁, A₂ in the input, can we test them for isomorphism?
 - Natural question!
 - Is Q-algebra isomorphism even computable?
 - Captures several major open problems in computation.
 - Eg. graph isomorphism, polynomial isomorphism, integer factoring, polynomial factoring.

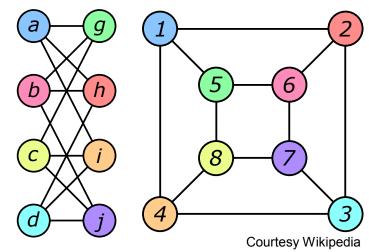
Motivation

- Alg.isomorphism, over *finite fields*, is not believed to be NPhard.
 - It is in NP.
 - It is also in "randomized coNP", i.e. coAM.
 - It's a problem of "intermediate" complexity.
- Similar is the status of graph isomorphism (GI).
 - GI is easy for random input graphs.
 - Alg.isomorphism doesn't seem so.
 - No subexponential algorithms known in *quantum computing*.
- Applications: Chemical database search, electronic circuits design, cryptosystems, hardness of polynomials (Mulmuley's GCT), invariant theory,....

- Motivation
- Graphs & algebras
- Quadratic forms
- Cubic forms
- Polynomial isomorphism
- Conclusion

Graphs, polynomials and algebras

- GI is a well studied problem, with a long history.
 - One way could be to come up with a canonical form of a graph.
 - There might be *less direct*, more computational ways to solve GI.



- There are reductions to algebraic isomorphism problems.
- For a graph G = ([n], E) we can consider the polynomial $p_G := \sum_{(i,j) \in E} x_i x_{j}$.
- [Thierauf 1998] Graphs G, G' are isomorphic iff p_G, p_G, are isomorphic (up to variable *permutations*).

Graphs, polynomials and algebras

- This reduction can be made algebraically nicer!
 - By using it to define an algebra.
- For the graph G=([n],E), the polynomial p_G := ∑_{(i,j) ∈ E} x_i x_j, define an algebra A(G) := F[x₁,...,x_n]/(p_G, x_i², x_ix_jx_k | i,j,k).
 Char(F) ≠ 2.
- [Agrawal,S 2005] Graphs G, G' are isomorphic iff A(G), A(G') are isomorphic algebras.
 - Proof: (⇐) Show that any isomorphism φ is, essentially, a permutation on the variables.
- A(G) is a commutative, local, F-algebra with nilpotency index three.

- Motivation
- Graphs & algebras
- Quadratic forms
- Cubic forms
- Polynomial isomorphism
- Conclusion

Quadratic forms

- Let $f_1, f_2 \in F[x_1, ..., x_n] = F[x]$ be quadratic polynomials.
 - Called isomorphic, $f_1 \sim f_2$, if there is an *invertible* matrix A s.t. $f_1(A\mathbf{x}) = f_2$.
 - Eg. over \mathbb{Q} , $\{\mathbf{x}_1^2, \mathbf{x}_1\mathbf{x}_2\}$ are *not* isomorphic, but $\{\mathbf{x}_1^2 \mathbf{x}_2^2, \mathbf{x}_1\mathbf{x}_2\}$ are.
 - Char(F) \neq 2.
 - Suffices to consider the diagonal form $\sum_{i \in [n]} a_i x_i^2$.
- Quad.forms Isomorphism: Given quadratic forms f₁, f₂ in the input, can we test them for isomorphism?
- It is a well understood problem due to the classical works of Minkowski (1885), Hasse (1921), and Witt (1937).

Quadratic forms

- Over \mathbb{C} , a quadratic form $\sum_{i \in [n]} a_i x_i^2$ is isomorphic to $\sum_{i \in [n]} x_i^2$.
 - Isomorphism testing boils down to counting the variables!
- Over \mathbb{Q} and \mathbf{F}_{a} the problem is highly nontrivial.
 - Historically, the algorithm has two parts Root finding and Witt decomposition.
- Root finding: If $\sum_{i \in [n]} a_i x_i^2 \sim \sum_{i \in [n]} b_i x_i^2$, then the isomorphism would *contain* a root of the equation $\sum_{i \in [n]} a_i Y_i^2 = b_1$.

How to find a root of a quadratic equation?

Quadratic forms – root finding

- Over finite fields, a random setting of all, but one, variables in ∑_{i∈[n]} a_iY_i² = b₁ would yield a root!
 - Weil's character sum estimates from 1940s.
 - Root finding is in randomized poly-time.
- Over rationals, it boils down to solving $a_1 Y_1^2 + a_2 Y_2^2 = 1$.
 - Legendre gave a classical method, using Lagrange's descent, to solve this.
 - The starting point is to compute $\sqrt{a_1 \mod a_2}$.
 - Given an oracle for integer factorization, root finding is in randomized poly-time.

Quadratic forms – Witt decomposition

- Once we've a root α of $\sum_{i \in [n]} a_i Y_i^2 = b_1$, Witt's decomposition, and *cancellation*, reduces the isomorphism question to $\sum_{i \in [n-1]} a'_i X_i^2 \sim \sum_{i \in [2...n]} b_i X_i^2$?
 - Associate the form ∑_{i∈[n]} $a_i x_i^2$ with a symmetric bilinear map Θ: Fⁿ x Fⁿ → Fⁿ.
 - Consider the smaller subspace U := { u ∈ Fⁿ | Θ(α, u)=0 }.
 - The (n-1)-variate quadratic form to consider is $\Theta(U,U)$.
- These classical tools give us a randomized poly-time algorithm to find an isomorphism between quadratic forms –
 - Over finite fields.
 - Over rationals, assuming integer factorization.
- [Wallenborn,S 2013] Equivalence with integer factorization.

- Motivation
- Graphs & algebras
- Quadratic forms
- Cubic forms
- Polynomial isomorphism
- Conclusion

Cubic forms

- Let $f_1, f_2 \in F[x_1, ..., x_n] = F[x]$ be cubic polynomials.
 - Called isomorphic, $f_1 \sim f_2$, if there is an *invertible* matrix A s.t. $f_1(A\mathbf{x}) = f_2$.
 - Eg. over \mathbb{Q} , { $x_1^3 + x_1^2 x_2^2$, $x_2^3 + x_1^2 x_2^2$ } are *not* isomorphic, but { $x_1^3 + x_1^2 x_2^2$, $x_1^2 x_2^2$ } are.
 - Char(F) ≠ 2, 3.
- Cubic forms isomorphism is not understood, over any field!
 Issue-1: Cannot be diagonalized. Eg. x₁²x₂.
- Root finding of quadratic eqns reduced to questions modulo primes.
 - Local-global principle for a quadratic equation, over rationals.
 - → False for cubics (Selmer'57). Trivial in \geq 14 variables (Heath-Brown 2007).

Cubic forms

- Over \mathbb{C} , cubic forms isomorphism gives an algebraic system $f_1(A\mathbf{x}) = f_2(\mathbf{x})$ in the unknowns A.
 - If we denote the corresponding ideal by I, then the question is 1∉ I ? (Hilbert's Nullstellensatz)
 - A linear algebraic way to solve it in PSPACE.
- Over finite fields, cubic forms isomorphism is in NP ∩ coAM.
 - It's a problem of "intermediate" complexity.
- Over rationals, is cubic forms isomorphism even computable?
 - Note that solving algebraic equations, over rationals, is *not known* to be computable.
 - [Matiyasevich'70] Solving algebraic equations, over integers, is uncomputable.

Cubic forms – lower bound

- [Agrawal,S 2006] Commutative F-algebra isomorphism reduces to cubic forms isomorphism.
- An F-algebra R is given by a *formal* additive basis $\{b_1, \dots, b_n\}$.
 - The multiplicative structure is compactly specified as, for all i, j ∈ [n], b_i b_j = ∑_{k ∈ [n]} a_{i,i,k} b_k.
 - R is an n dimensional algebra over F.

L(R) is commutative and *local*.

First, we consider a related F-algebra L(R) := F[z,b,u] / (p₃, up₂, u²)+(z,b,u)⁴.

• $p_3 := \sum_{i,j \in [n]} z_{i,j} b_i b_j$, $p_2 := \sum_{i,j \in [n]} z_{i,j} (\sum_{k \in [n]} a_{i,j,k} b_k)$.

• $R \cong S \text{ iff } L(R) \cong L(S).$

Cubic forms – lower bound

• $R \cong S \text{ iff } L(R) \cong L(S).$

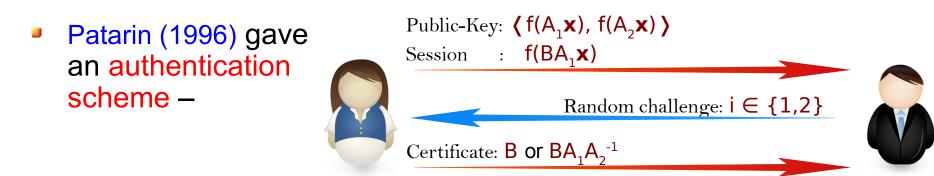
- Proof idea: (⇐) Show that the linear part of any isomorphism φ yields an isomorphism from R to S.
- Thus, we can as well assume R, S to be local commutative Falgebras.
- Now we define a cubic form $f_R(\mathbf{y}, \mathbf{c}, \mathbf{v}) := \sum_{i,j \in [n']} y_{i,j} c_i c_j \mathbf{v} \sum_{i,j \in [n']} y_{i,j} (\sum_{k \in [n']} a_{i,j,k} c_k)$.
- A messy proof shows: $f_R \sim f_S$ iff $R \cong S$.

Cubic forms are *isomorphism hard* !`

- Motivation
- Graphs & algebras
- Quadratic forms
- Cubic forms
- Polynomial isomorphism
- Conclusion

Polynomial isomorphism

- Let $f_1, f_2 \in F[x_1, ..., x_n] = F[x]$ be degree d polynomials.
 - Specifying equivalence classes is a problem in invariant theory.
 - Algorithmically, can we improve the situation?
 - Clearly, at least as hard as cubic forms isomorphism.



- Cryptanalytic attacks are known by solving several cases of polynomial isomorphism:
 - [Kayal 2011] Multilinear f.
 - Bouillaguet, Faugère, Fouque, Perret 2011] Quadratic and cubic f.

Polynomial isomorphism

- Idea in the multilinear case: Consider the space of 2nd-order partial derivatives of f₁, f₂.
- Idea in the quadratic/ cubic case: Analyze Gröbner basis method on a random input.
- It's not clear what to do in the worst-cases of multilinear or cubic polynomials.

Polynomial isomorphism

- In general, polynomial isomorphism has a status similar to that of cubic forms.
- Morally, polynomial isomorphism reduces to F-algebra isomorphism.
 - Thus, reduces to cubic forms equivalence.
- For a degree d form $f \in F[x_1, ..., x_n]$ define an F-algebra $L(f) := F[\mathbf{x}] / \langle f \rangle + \langle \mathbf{x} \rangle^{d+1}$.

• $L(f_1) \cong L(f_2) \Leftrightarrow f_1 \approx f_2$ (up to a constant multiple).

- Motivation
- Graphs & algebras
- Quadratic forms
- Cubic forms
- Polynomial isomorphism
- Conclusion

Conclusion

- The isomorphism problems of graphs, algebras, polynomials are all related to those of cubic forms.
- Show that cubic forms isomorphism, over \mathbb{Q} , is computable.
- Is there a local-global principle for this problem?

