Testing Algebraic Independence over Finite Fields

Nitin Saxena (IIT Kanpur, India)

(Joint work with Johannes Mittmann, Peter Scheiblechner)

**all pictures are works of others.

2013

- Algebraic independence
- Jacobian criterion
- p-adic Jacobian
- Witt-Jacobian criterion
- Proof de Rham-Witt complex
- At the end...

Algebraic independence

- We call polynomials f₁,...,f_m ∈ F[x₁,...,x_n] algebraically dependent if there is an A ∈ F[y₁,...,y_m] such that A(f₁,...,f_m)=0.
- A is called an annihilating polynomial.
 - Eg. polynomials x_1 , x_2^2 , $x_1^2 + x_2$:
 - They annihilate $A := (y_3 y_1^2)^2 y_2$.
- This concept defines the transcendence degree of a set of polynomials.
 - trdeg{f₁,...,f_m} = the maximal number of alg.independent polynomials there.

Alg. independence – Applications

- trdeg generalizes linear-algebra to higher-degree.
- So, it has several known applications in algebraic complexity.
 - [Kalorkoti '85] showed a formula lower bound for determinant.
 - → It provides a notion of entropy for polynomial maps G: $F_p^n \rightarrow F_p^n$.
 - [Dvir Gabizon Wigderson '07] used this to construct explicit extractors, condensers and dispersers.
 - [Beecken-Mitmann-S '11, Agrawal-Saha-Saptharishi-S '12] have shown various *identity testing* algorithms.
 - Forsman '92] gives applications in *control theory*.

Alg. independence – Geometry?

- trdeg is a concept in the center of commutative algebra.
- Does it have a *geometric* meaning?
 - Eg. trdeg{ x_1, x_1x_2 } = 2.
 - $\Rightarrow \dim F[x_1, x_2] / \langle x_1, x_1 x_2 \rangle = 1.$ Krull dimension
 - dim $F[x_1, x_1x_2] = 2$.

Krull 1899-1971

F is alg.closed

trdeg equals the dim of the subset { (f₁(α),...,f_m(α)) | α ∈ Fⁿ }, in the m-affine space.

Alg. Independence – Bounds

- Given explicit polynomials f₁,...,f_m ∈ F[x₁,...,x_n] of degrees at most d.
- [Perron 1927] The annihilating polynomial degree is at most d^{trdeg}.

Perron 1880-1975

- Thus, using linear-algebra we can produce the annihilating polynomial in PSPACE ! Log of size of system of eqns.
- [Kayal '09] showed that computing the annihilating polynomial is #P hard (*per coefficient*).
- Annihilating polynomial route is hard!

- Algebraic independence
- Jacobian criterion
- p-adic Jacobian
- Witt-Jacobian criterion
- Proof de Rham-Witt complex
- At the end...

Jacobian criterion

- Definition: The m x n matrix (∂_jf_i)_{i,j} is called the Jacobian J_x(f₁,...,f_m).
- Theorem [Jacobi 1841, BMS'11]: If char(F)=0 or >d^r then rk J_x(f₁,...,f_m) = trdeg{f₁,...,f_m} =:r.
 Efficiently computable !

Jacobi 1804-51

- A modern proof is via the de Rham complex.
- Let A be an R-algebra then the de Rham complex is:
 - $\Omega^{\bullet}_{A/R}: 0 \to A \to \Omega^{1}_{A/R} \to \Omega^{2}_{A/R} \to \cdots \to \Omega^{i}_{A/R} \to \Omega^{i+1}_{A/R} \to \cdots$
 - Each is an R-module.
 - $\Omega^{1}_{A/R}$ has elements da (a \in A) satisfying d(ab) = a.db+b.da.

Kähler differentials module

Leibniz rule

de Rham 1903-90

Jacobian criterion – Proof

Let A be an R-algebra. The de Rham complex is: → $\Omega^{\bullet}_{A/R}$: $0 \rightarrow A = \Omega^{0}_{A/R} \rightarrow \Omega^{1}_{A/R} \rightarrow \Omega^{2}_{A/R} \rightarrow \cdots \rightarrow \Omega^{i}_{A/R} \rightarrow \Omega^{i+1}_{A/R} \rightarrow \cdots$

- $\Omega^{i}_{A/R}$ is defined as the i-fold wedge-product $\Lambda^{i} \Omega^{1}_{A/R}$.
 - Like i-th tensor-product, with extra conditions: $da \wedge db = -db \wedge da$.
- The maps d: Ωⁱ_{A/R} → Ωⁱ⁺¹_{A/R} in de Rham complex are derivatives.
 Defined via d: a.da₁∧…∧da_i ↦ da∧da₁∧…∧da_i.
- Eg. when R is the field F, and A the n-variate polynomial ring:
 - → For any polynomial $f \in A$, $df = (\partial_1 f) dx_1 + ... + (\partial_n f) dx_n$.
 - $\Omega^{\bullet}_{A/R}$ is zero beyond i=n.
 - $\Omega^{n}_{A/R}$ is a 1-dim A-module generated by $dx_1 \wedge \cdots \wedge dx_n$.

Jacobian criterion – Proof contd.

Let A be an R-algebra. The de Rham complex is: → $\Omega^{\bullet}_{A/R}$: $0 \rightarrow A = \Omega^{0}_{A/R} \rightarrow \Omega^{1}_{A/R} \rightarrow \Omega^{2}_{A/R} \rightarrow \cdots \rightarrow \Omega^{i}_{A/R} \rightarrow \Omega^{i+1}_{A/R} \rightarrow \cdots$

- It is particularly well-behaved as we change
 - → **R** to another **R**-algebra **R**'. $\Omega^{\bullet}_{A/R'} \cong \mathbf{R}' \otimes_{\mathbf{R}} \Omega^{\bullet}_{A/R}$
 - → A to a localization B. $\Omega^{\bullet}_{B/R} \cong B \otimes_A \Omega^{\bullet}_{A/R}$
 - → Field A to a separable algebraic extn. B. $\Omega^{\bullet}_{B/R} \cong B \otimes_A \Omega^{\bullet}_{A/R}$
- These neatly prove the Jacobian criterion.
 - *Pf. sketch*: Let r:=trdeg{f₁,...,f_m} & R:=F. Wlog let B:=F(x₁,...,x_n) be algebraic over A:=F(f₁,...,f_r,x_{r+1},...,x_n).
 - If char(F)=0 then B/A is a separable algebraic field extension.
 - Thus, $J(f):=df_1 \wedge \cdots \wedge df_r$ which is nonzero in $\Omega^r_{A/R}$, remains nonzero in $\Omega^r_{B/R}$.

Is exactly Jacobian matrix condition!

- Algebraic independence
- Jacobian criterion
- p-adic Jacobian
- Witt-Jacobian criterion
- Proof de Rham-Witt complex
- At the end...

p-adic Jacobian

- Why does the Jacobian fail?
 - → Eg. B:= $F_p(x) \supset A$:= $F_p(x^p) \supset R$:= F_p .
 - Here, dx^p is nonzero in $\Omega^1_{A/R}$, but vanishes in $\Omega^1_{B/R}$.
 - Because, B/A is an inseparable algebraic field extension.
- A natural way, to avoid this problem, is to change the characteristic!
 - Instead of F_p move to the p-adic integers Z_p .
 - Recall, a p-adic integer corresponds to a *formal* series [a₀] +
 [a₁]p + [a₂]p² +..., where a₀, a₁,... ∈ F_p.
 - → In particular, Z_p has characteristic zero and $Z_p/pZ_p \cong F_p$.

p-adic Jacobian – Witt ring

- We now fix k=F_p, for a prime p.
- Construction of p-adic integers was significantly generalized by Witt (1936).
 - For any k-algebra A, there is a Z_p -algebra W(A).
- W(A) is the Witt ring of A.
 - → Its elements are $a = [a_0] + [a_1]p + [a_2]p^2 + \cdots$, where $a_0, a_1, \ldots \in A$.
 - → The ring morphism F: $a \mapsto [a_0^p] + [a_1^p]p + [a_2^p]p^2 + \cdots$. (Frobenius)
 - The additive morphism V: $a \mapsto pF^{-1}$. (Verschiebung)
- Thus, any $a \in W(A)$ has the form $a = [a_0] + V[a_1] + V^2[a_2] + \cdots$, where $a_0, a_1, \ldots \in A$. (a is a Witt vector)

p-adic Jacobian – Filtration

The nice action of V defines a filtration on W(A).

- VW(A), $V^2W(A)$, $V^3W(A)$,... are ideals of W(A).
- → Further, W(A) \supset VW(A) \supset V²W(A) \supset V³W(A) \supset ...
- So, the projection of W(A) to the first l coordinates is $W_l(A) := W(A) / V^l W(A)$.
 - W_l(A) is called Witt vectors of A of length l.
 - $W_1(A) = A$.
 - → V induces a map $W_l(A) \rightarrow W_{l+1}(A)$.
- When A := k[x], W_l(A) is explicitly realizable in[−] C := W(k)[x⁴{p^{-∞}}] := U_{i≥0}W(k)[x⁴{p⁻ⁱ}].

→ *Idea:* To realize F^{-1} ,..., F^{-l} we need $x_1^{1/p}$,..., $x_1^{1/(p^{-l})}$.

Realize for finite l, not the Witt vectors of *infinite* length

Frobenius is *not surjective*on the polynomial ring

p-adic Jacobian – Degeneracy

- Fix $k=F_p$ and A = k[x]. Let $f := \{f_1, ..., f_n\} \subset A$.
- Consider their lift $\mathbf{f'} := \{ f_1', ..., f_n' \} \subset W(k)[\mathbf{x}].$
- Consider the p-adic Jacobian polynomial,
 - → $J'(\mathbf{f}) := (x_1 \cdots x_n) \cdot \det (\partial_j f_i')_{i,j}$.
 - What could be a possible criterion for the alg.independence of f?
- Degeneracy: J' is degenerate if for every α , $v_p(coef(\mathbf{x}^{\alpha})(J')) > v_p(\alpha)$.
- Theorem 1: **f** are alg.dependent \Rightarrow J'(**f**) is degenerate.
 - Converse is false
 - Eg. J'(x_1^p , x_2^p) = $p^2 x_1^p x_2^p$.

New notion of zeroness

v_p is the p-adic valuation

- Algebraic independence
- Jacobian criterion
- p-adic Jacobian
- Witt-Jacobian criterion
- Proof de Rham-Witt complex
- At the end...

Witt-Jacobian criterion

The correct version of p-adic Jacobian is Witt-Jacobian, for l ≥ 0,
WJP_{l+1}(f) := (f₁'…f_n')^{p^l-1} • J'(f)
= (f₁'…f_n')^{p^l-1} • (x₁…x_n) • det (∂_if_i')_{i,i}.

• The Witt-Jacobian criterion is $(fix l \ge log_p deg(f)) -$

Theorem 2: **f** are alg.dependent \Leftrightarrow WJP_{l+1}(**f**) is degenerate.

- Efficiency issues:
 - Degeneracy testing requires computing coefficients of a compactly given polynomial. So, doable in NP^{#P} ⊆ PSPACE.
 - But, is also #P-hard !
- Conjecture: Alg.dependence testing has an efficient algorithm.

- Algebraic independence
- Jacobian criterion
- p-adic Jacobian
- Witt-Jacobian criterion
- Proof de Rham-Witt complex
- At the end...

Proof – de Rham-Witt Complex

 We prove the Witt-Jacobian criterion using the de Rham-Witt pro-complex of A.

Illusie 1940-

- Essentially, we would like to work with the de Rham complex of the W_l(k)-algebra W_l(A), i.e. Ω[•]_{W l(A) / W l(k)}.
- But, we can do better: We can remember the V-filtration of W_l(A).
 - This gives us quotient-modules, $W_{l}\Omega^{\bullet}_{A}$.
- We get the following pro-complex $W_{\bullet}\Omega_{A}^{\bullet}$ (with action of V & derivation d).

$$W_{1}\Omega^{\bullet}{}_{A}: 0 \rightarrow W_{1}\Omega^{0}{}_{A} \rightarrow W_{1}\Omega^{1}{}_{A} \rightarrow \cdots \rightarrow W_{1}\Omega^{i}{}_{A} \rightarrow W_{1}\Omega^{i+1}{}_{A} \rightarrow \cdots$$

$$W_{2}^{\bullet}\Omega^{\bullet}{}_{A}: 0 \rightarrow W_{2}^{\bullet}\Omega^{0}{}_{A} \rightarrow W_{2}^{\bullet}\Omega^{1}{}_{A} \rightarrow \cdots \rightarrow W_{2}^{\bullet}\Omega^{i}{}_{A} \rightarrow W_{2}^{\bullet}\Omega^{i+1}{}_{A} \rightarrow \cdots$$

Proof – de Rham-Witt Complex

- All that's left is:
 - Show that the pro-complex W_•Ω[•]_A changes in a *natural* way as we vary A.
 - Consider the differential WJ(f):=d[f₁]∧···∧d[f_n] in W_lΩⁿ_A, for a suitable l ≥ 0.
 - Show that: WJ(f) vanishes iff f are alg.dependent.
 - The explicit form of WJ(f) using C = W(k)[x^{p-∞}] proves the Witt-Jacobian criterion.

- Algebraic independence
- Jacobian criterion
- p-adic Jacobian
- Witt-Jacobian criterion
- Proof de Rham-Witt complex
- At the end...

At the end ...

- We proved the first *nontrivial* criterion for alg.independence over k=F_p.
 - Explicitization of the functorial properties of the de Rham-Witt pro-complex of A=k[x].
- It is not efficient enough. We expect a better criterion to exist.
 - Is there a more geometric approach?
 - Is p-adic analysis of use?
- Study WJP for really small primes, eg. p=2 (=m=n)?

