
Testing Algebraic Independence over 
Finite Fields

Nitin Saxena (IIT Kanpur, India)

(Joint work with Johannes Mittmann, Peter Scheiblechner)

**all pictures are works of others. 

2013



Independence over finite fields 2

Contents

Algebraic independence

Jacobian criterion

p-adic Jacobian

Witt-Jacobian criterion

Proof – de Rham-Witt complex 

At the end... 



Independence over finite fields 3

Algebraic independence

We call polynomials f1,...,fm ∊ F[x1,...,xn] algebraically 
dependent if there is an A ∊ F[y1,...,ym] such that 
A(f1,...,fm)=0.

A is called an annihilating polynomial. 
Eg. polynomials x1, x2

2, x1
2+x2 :

They annihilate A := (y3 – y1
2)2 – y2. 

This concept defines the transcendence degree of a set of 
polynomials.

trdeg{f1,...,fm} = the maximal number of alg.independent 

polynomials there.
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Alg. independence – Applications
trdeg generalizes linear-algebra to higher-degree.

So, it has several known applications in algebraic complexity.

[Kalorkoti '85] showed a formula lower bound for determinant.
It provides a notion of entropy for polynomial maps G: Fp

n → Fp
n.

[Dvir Gabizon Wigderson '07] used this to construct explicit 
extractors, condensers and dispersers.
[Beecken-Mitmann-S '11, Agrawal-Saha-Saptharishi-S '12] have 
shown various identity testing algorithms.

[Forsman '92] gives applications in control theory. 
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Alg. independence – Geometry? 
trdeg is a concept in the center of commutative algebra.

Does it have a geometric meaning?

Eg. trdeg{x1, x1x2} = 2.

dim F[x1, x2] / ⟨x1, x1x2⟩ = 1. 

dim F[x1, x1x2] = 2. 

trdeg equals the dim of the subset { (f1(α),...,fm(α)) | α ∊ 
Fn }, in the m-affine space.  

Krull dimension
Krull 1899-1971

F is alg.closed
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Alg. Independence – Bounds
Given explicit polynomials f1,...,fm ∈ F[x1,...,xn] of degrees
at most d.

[Perron 1927] The annihilating polynomial degree 
is at most dtrdeg.

Thus, using linear-algebra we can produce the annihilating 
polynomial in PSPACE ! 

[Kayal '09] showed that computing the annihilating polynomial
is #P hard (per coefficient).
Annihilating polynomial route is hard!

Perron 1880-1975

Log of size of system of eqns.
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Jacobian criterion
Definition: The m x n matrix (∂jfi)i,j is called the 
Jacobian Jx(f1,...,fm).

Theorem [Jacobi 1841, BMS'11]: If char(F)=0 or >dr  

     then rk Jx(f1,...,fm) = trdeg{f1,...,fm} =:r.

A modern proof is via the de Rham complex.

Let A be an R-algebra then the de Rham complex is:
Ω•

A/R : 0 → A → Ω1
A/R → Ω2

A/R →⋯→ Ωi
A/R → Ωi+1

A/R →⋯
Each is an R-module.
Ω1

A/R has elements da (a∊A) satisfying d(ab) = a.db+b.da.

Jacobi 1804-51

Kähler differentials module Leibniz rule

de Rham 1903-90

Efficiently computable !
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Jacobian criterion – Proof
Let A be an R-algebra. The de Rham complex is:

Ω•
A/R : 0 → A=Ω0

A/R → Ω1
A/R → Ω2

A/R →⋯→ Ωi
A/R → Ωi+1

A/R →⋯

Ωi
A/R is defined as the i-fold wedge-product ⋀i Ω1

A/R .
Like i-th tensor-product, with extra conditions: da∧db = – db∧da.

The maps d: Ωi
A/R → Ωi+1

A/R in de Rham complex are derivatives.
Defined via d: a.da1∧⋯∧dai ↦ da∧da1∧⋯∧dai .

Eg. when R is the field F, and A the n-variate polynomial ring:
For any polynomial f∊A, df = (∂1f)dx1 +...+ (∂nf)dxn .
Ω•

A/R is zero beyond i=n.
Ωn

A/R is a 1-dim A-module generated by dx1∧⋯∧dxn .
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Jacobian criterion – Proof contd.
Let A be an R-algebra. The de Rham complex is:

Ω•
A/R : 0 → A=Ω0

A/R → Ω1
A/R → Ω2

A/R →⋯→ Ωi
A/R → Ωi+1

A/R →⋯

It is particularly well-behaved as we change
R to another R-algebra R'.   Ω•

A/R' ≅ R' ⊗R Ω•
A/R 

A to a localization B.  Ω•
B/R ≅ B ⊗A Ω•

A/R 

Field A to a separable algebraic extn. B.  Ω•
B/R ≅ B ⊗A Ω•

A/R 

These neatly prove the Jacobian criterion.
Pf. sketch: Let r:=trdeg{f1,...,fm} & R:=F. Wlog let B:=F(x1,...,xn) 

be algebraic over A:=F(f1,...,fr,xr+1,...,xn).  
If char(F)=0 then B/A is a separable algebraic field extension.
Thus, J(f):=df1∧⋯∧dfr which is nonzero in Ωr

A/R, remains nonzero in 
Ωr

B/R.
Is exactly Jacobian matrix condition!
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p-adic Jacobian
Why does the Jacobian fail?

Eg. B:=Fp(x) ⊃ A:=Fp(xp) ⊃ R:=Fp.

Here, dxp is nonzero in Ω1
A/R, but vanishes in Ω1

B/R.

Because, B/A is an inseparable algebraic field extension.

A natural way, to avoid this problem, is to change the characteristic!

Instead of Fp move to the p-adic integers – Ƶp.

Recall, a p-adic integer corresponds to a formal series [a0] +
[a1]p + [a2]p2 +⋯, where a0, a1,... ∊ Fp .

In particular, Ƶp has characteristic zero and  Ƶp/pƵp ≅ Fp .
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p-adic Jacobian – Witt ring
We now fix k=Fp , for a prime p.

Construction of p-adic integers was significantly 
generalized by Witt (1936).

For any k-algebra A, there is a Ƶp-algebra W(A).

W(A) is the Witt ring of A. 
Its elements are a = [a0] + [a1]p + [a2]p2 +⋯, where a0, a1,... ∊A.

The ring morphism F: a ↦ [a0
p] + [a1

p]p + [a2
p]p2 +⋯. (Frobenius)

The additive morphism V: a ↦ pF-1. (Verschiebung)

Thus, any a∊W(A) has the form a = [a0] + V[a1] + V2[a2] +⋯, 
where a0, a1,... ∊A. (a is a Witt vector)

Witt 1911-91
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p-adic Jacobian – Filtration
The nice action of V defines a filtration on W(A).

VW(A), V2W(A), V3W(A),... are ideals of W(A).
Further, W(A) ⊃ VW(A) ⊃ V2W(A) ⊃ V3W(A) ⊃⋯ .

So, the projection of W(A) to the first Ɩ coordinates is 
WƖ(A) := W(A) / VƖW(A).

WƖ(A) is called Witt vectors of A of length Ɩ.
W1(A) = A.

V induces a map WƖ(A) → WƖ+1(A).

When A := k[x], WƖ(A) is explicitly realizable in 
C := W(k)[x^{p-∞}] := ⋃i≥0W(k)[x^{p-i}].

Idea: To realize F-1 ,..., F-Ɩ we need x1
1/p ,..., x1

1/(p^Ɩ) .

Realize for finite Ɩ, not the Witt vectors of infinite length

    Frobenius is not surjective 
on the polynomial ring
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p-adic Jacobian – Degeneracy
Fix k=Fp and A = k[x]. Let f := {f1,...,fn}⊂A.

Consider their lift f' := { f1' ,..., fn'} ⊂ W(k)[x].
Whereby, the coefficients have been lifted from k ↞ W(k).

Consider the p-adic Jacobian polynomial,
J'(f) := (x1⋯xn)∙det (∂jfi')i,j .
What could be a possible criterion for the alg.independence of f?

Degeneracy: J' is degenerate if for every α, vp(coef(xα)(J')) > vp(α). 

Theorem 1: f are alg.dependent ⇒ J'(f) is degenerate.
Converse is false 
Eg. J'(x1

p, x2
p) = p2 x1

p x2
p.

vp is the p-adic 

valuationNew notion of zeroness
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Witt-Jacobian criterion
The correct version of p-adic Jacobian is Witt-Jacobian, for Ɩ ≥ 0,

WJPƖ+1(f) := (f1'⋯fn')^{pƖ –1} ∙ J'(f)
                = (f1'⋯fn')^{pƖ –1} ∙ (x1⋯xn)∙det (∂jfi')i,j .

The Witt-Jacobian criterion is ( fix Ɩ ≥ logpdeg(f) ) – 

Theorem 2: f are alg.dependent ⇔ WJPƖ+1(f) is degenerate.

Efficiency issues: 
Degeneracy testing requires computing coefficients of a compactly 
given polynomial. So, doable in NP#P ⊆ PSPACE.
But, is also #P-hard !

Conjecture: Alg.dependence testing has an efficient algorithm.
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Proof – de Rham-Witt Complex
We prove the Witt-Jacobian criterion using the 
de Rham-Witt pro-complex of A.

Essentially, we would like to work with the de Rham complex of the 
WƖ(k)-algebra WƖ(A), i.e. Ω•

W_Ɩ(A) / W_Ɩ(k) .  

But, we can do better: We can remember the V-filtration of WƖ(A).
This gives us quotient-modules, WƖΩ•

A .
We get the following pro-complex W•Ω•

A (with action of V & derivation d).

W1Ω•
A :  0 → W1Ω0

A → W1Ω1
A →⋯→ W1Ωi

A → W1Ωi+1
A →⋯

W2Ω•
A :  0 → W2Ω0

A → W2Ω1
A →⋯→ W2Ωi

A → W2Ωi+1
A →⋯

Illusie 1940-



Independence over finite fields 20

Proof – de Rham-Witt Complex
All that's left is:

Show that the pro-complex W•Ω•
A changes in a natural 

way as we vary A.

Consider the differential WJ(f):=d[f1]∧⋯∧d[fn]  in 

WƖΩn
A , for a suitable Ɩ ≥ 0.

Show that: WJ(f) vanishes  iff  f are alg.dependent.

The explicit form of WJ(f) using C = W(k)[x^{p-∞}] 
proves the Witt-Jacobian criterion. 
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At the end …
We proved the first nontrivial criterion for alg.independence 
over k=Fp.

Explicitization of the functorial properties of the de Rham-
Witt pro-complex of A=k[x].

It is not efficient enough. We expect a better criterion to exist.
Is there a more geometric approach?
Is p-adic analysis of use?

Study WJP for really small primes, eg. p=2 (=m=n)?

Thank you!
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