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Basic Definitions and Terminologies
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The determinant polynomial– VBP

❑ Let Xs = [xi ,j ]1≤i ,j≤s be an s × s matrix of distinct variables xi ,j . Let
Ss := {𝜋 | 𝜋 : {1, . . . , s} −→ {1, . . . , s} such that 𝜋 is bijective }. Define

dets := det(Xs) =
∑︁
𝜋∈Ss

sgn(𝜋)
s∏

i=1
xi , 𝜋 (i ) .

❑ VBP: The class VBP is defined as the set of all sequences of polynomials (fn)n
with polynomially bounded determinantal-complexity dc(fn).

❑ Relates tightly to Algebraic Branching Programs ABP, or IMM: Iterated Matrix
Multiplication.
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‘Hard’ polynomials?

❑ Hard polynomial family (fn)n such that it cannot be computed by an nc-size
determinant, for every constant c? i.e. size(fn) = n𝜔 (1)?

❑ A random polynomial with 0-1 coefficient is hard [Hrubeš-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

❑ Candidate hard polynomial:

perm(Xs) =
∑︁
𝜋∈Ss

s∏
i=1

xi , 𝜋 (i ) .

❑ The minimum dimension of the matrix Xs to compute f , is called the
permanental complexity pc(f ).
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Valiant’s Conjecture– VNP

VNP = “explicit” (but “hard to compute”?) [Valiant 1979]
The class VNP is defined as the set of all sequences of polynomials
(fn (x1, . . . , xn))n≥1 such that pc(fn) is bounded by nc for some constant c.

❑ VBP ⊆ VP ⊆ VNP.

Valiant’s Conjecture [Valiant 1979]
VBP ≠ VNP & VP ≠ VNP.
Equivalently, dc(permn) and size(permn) are both n𝜔 (1) .
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Border Complexity and GCT



Border complexity

❑ Let Γ be any sensible measure. Eg. it can be size, dc and so on.

❑ For Γ, we can define the border complexity measure Γ via:

Γ(h) is the smallest s such that h(x) can be approximated arbitrarily closely by
polynomials h𝜀 (x) with Γ(h𝜀) ≤ s. In other words,

lim
𝜀→0

h𝜀 = h (least-coefficient-wise) .

Eg. lim𝜀→0
(
𝜀z + 𝜀−1z2x1

)
= lim𝜀→0

(
𝜀2z + z2x1

)
= z2x1 .

❑ This motivates a new model: ‘approximative circuit’.
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Approximative circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

1
𝜀3

𝜀

𝜀3+1

g(x1, . . . , xn, 𝜀) ∈ F(𝜀) [x]

F(𝜀) :=
{

p(𝜀)
q(𝜀) | p, q ∈ F[𝜀], q(𝜀) ≠ 0

}
is the fn.field
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Algebraic approximation

❑ Suppose, we assume the following:
➢ g(x , 𝜀) ∈ F[x1, . . . , xn, 𝜀], i.e. it is a polynomial of the form

g(x , 𝜀) =

M∑︁
i=0

gi (x1, . . . , xn) · 𝜀i ,

➢ How easy is g0 in comparison to g?

❑ Obvious attempt:

➢ Since, g(x , 0) = g0, why not just set 𝜀 = 0?! Setting 𝜀 = 0 may not be
‘valid’ as it could be using 1/𝜀 in the wire. Though it is well-defined!

❑ Summary: g0 is non-trivially ‘approximated’ by the circuit, since
lim𝜀→0 g(x , 𝜀) = g0.
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Algebraic approximation— VP

Algebraic Approximation [Bürgisser 2004]
A polynomial h ∈ F[x] has approximative complexity s, if there is a g ∈ F[𝜀] [x], of
size s, and an error polynomial S(x , 𝜀) ∈ F[𝜀] [x] such that
g(x , 𝜀) = h(x) + 𝜀 · S(x , 𝜀).
Informally we write, lim𝜀→0 g = h.

❑ If g has circuit of size s over F(𝜀), then the degree of 𝜀 in g is at most
exponential, 2s2 [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020].
[Bezout’s degree theorem.]

❑ Let us assume that g(x , 𝜀) = ∑M
i=0 gi𝜀

i , where M = 2s2 . Note: g0 = h.

➢ Pick M + 1 many values from F randomly and interpolate 𝜀;

❑ size(h) ≤ size(h) ≤ exp(size(h)).

❑ Curious eg.: Complexity of degree-s factor of a size-s polynomial? VP? VNP?
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Border Depth-3 Circuits



Depth-3 circuits

❑ Depth-3 circuits with top fan-in k, are denoted as Σ[k ]ΠΣ.

❑ They compute polynomials (not necessarily homogeneous) of the form∑k
i=1

∏di
j=1 ℓij , where ℓij are linear polynomials (i.e. a0 + a1x1 + . . . + anxn, for

ai ∈ F).

❑ Product fan-in = max di .

❑ How powerful are Σ[2]ΠΣ circuits? Are they universal?

❑ Impossibility result: The Inner Product polynomial ⟨x , y⟩ := x1y1 + x2y2 + x3y3
cannot be written as a Σ[2]ΠΣ circuit, regardless of the product fan-in (even
allowing exp(n) product fan-in!).

❑ How about Σ[2]ΠΣ ?
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Power of border depth-3 circuits

❑ Recall: h ∈ Σ[k ]ΠΣ of size s if there exists a polynomial g such that

g(x , 𝜀) = h(x) + 𝜀 · S(x , 𝜀) ,

where g can be computed by a Σ[k ]ΠΣ circuit, over F(𝜀), of size s.

Border depth-3 fan-in 2 circuits are ‘universal’ [Kumar 2020]

Let P be any n-variate degree d polynomial. Then, P ∈ Σ[2]ΠΣ, where the first
product has fanin exp(n, d) and the second is merely constant !
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Proof of Kumar’s result

Proof.
skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓi such that

P =

m∑︁
i=1

ℓd
i [m can be as large as exp(n, d)] .

2. Consider A(x) := ∏m
i=1 (1 + ℓd

i ) =
∏m

i=1
∏d

j=1 (𝛼j + ℓi ), for 𝛼j ∈ C. Note that

A(x) = 1 + P + B where deg(B) ≥ 2d .

3. Replace xi by 𝜀 · xi to get that

m∏
i=1

d∏
j=1

(𝛼j + 𝜀 · ℓi ) = 1 + 𝜀d · P + 𝜀2d · R(x , 𝜀) .

4. Divide by 𝜀d and rearrange to get

P + 𝜀d · R(x , 𝜀) = −𝜀−d + 𝜀−d ·
m∏

i=1

d∏
j=1

(𝛼j + 𝜀 · ℓi ) ∈ Σ[2]Π [md ]Σ .

□
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Proving Upper Bounds



De-bordering Σ[2]ΠΣ circuits

❑ If h is approximated by a Σ[2]ΠΣ circuit with product fanin poly(n), what’s the
exact complexity of h?

Border of poly-size depth-3 top-fanin-2 circuits are ’easy’
[Dutta-Dwivedi-Saxena FOCS’21].

Σ[2]ΠΣ ⊆ VBP, for polynomial-sized Σ[2]ΠΣ-circuits.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.
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Proof sketch for k = 2

Grand Idea: Reduce to k = 1 !

❑ T1 + T2 = f (x) + 𝜀 · S(x , 𝜀), where Ti ∈ ΠΣ ∈ F(𝜀) [x]. Assume deg(f ) = d.

❑ Apply a map Φ, defined by Φ : xi ↦→ z · xi + 𝛼i , where 𝛼i ∈ F are random.

➢ The variable z is the “degree counter”,

➢ 𝛼i ensures “unit” : If ℓ | Ti , then Φ(ℓ) |z=0 = ℓ(𝛼1, . . . , 𝛼n) ∈ F(𝜀)∗.

❑ There’s no loss if we study Φ(f ) mod zd+1. [Truncation by degree.]

❑ We devise a technique called DiDIL - Divide, Derive, Induct with Limit.
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k = 2 proof continued: Divide and Derive

❑ valz (·) denotes the highest power of z dividing it (= least one across
monomials). E.g., h = 𝜀z + 𝜀−1z2x1 = (𝜀z) · (1 + 𝜀−2zx1). Then, valz (h) = 1.

❑ Analysis trivia: valz (h) = 0 makes 1/h a power-series in F(𝜀, x) [[z]].

❑ Wlog valz (Φ(T2)) ≤ valz (Φ(T1)), else we can rearrange.

❑ Divide both sides by Φ(T2) and take partial derivative with respect to z, to get:

Φ(f ) + 𝜀 · Φ(S) = Φ(T1) +Φ(T2)
=⇒ Φ(f/T2) + 𝜀 · Φ(S/T2) = Φ(T1/T2) + 1

=⇒ 𝜕zΦ(f/T2) + 𝜀 · 𝜕zΦ(S/T2) = 𝜕zΦ(T1/T2) =: g1 . (1)

❑ lim𝜀→0 g1 = lim𝜀→0 𝜕zΦ(T1/T2) = lim𝜀→0 𝜕zΦ(f/T2).

15
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k = 2 proof continued: Linearize the product

❑ First target: compute lim𝜀→0 g1 = 𝜕zΦ(f/T2).

❑ Logarithmic derivative: dlogz (h) := 𝜕z (h)/h.

❑ dlog linearizes product: dlog(h1h2) = dlog(h1) + dlog(h2). Note:

𝜕zΦ(T1/T2) = Φ(T1/T2) · dlogΦ(T1/T2)
= Φ(T1/T2) · (dlogΦ(T1) − dlogΦ(T2)) .

❑ Both Φ(T1) and Φ(T2) have ΠΣ circuits (they have z and 𝜀).
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k = 2 proof: Why does dlog deborder?

❑ What is dlog(ℓ)?

Note, ℓ =: A − z · B, where A ∈ F(𝜀)∗, B ∈ F(𝜀) [x].

dlog(A − zB) = − B
A (1 − z · B/A)

= −B
A

·
d−1∑︁
j=0

(
z · B

A

) j

∈ Σ ∧ Σ . [Magic trick]

❑ Thus,

lim
𝜀→0

g1 ≡ lim
𝜀→0

ΠΣ/ΠΣ ·
(∑︁

dlog(Σ)
)

mod zd

≡ lim
𝜀→0

(ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd

∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd .

17



k = 2 proof: Why does dlog deborder?

❑ What is dlog(ℓ)? Note, ℓ =: A − z · B, where A ∈ F(𝜀)∗, B ∈ F(𝜀) [x].

dlog(A − zB) = − B
A (1 − z · B/A)

= −B
A

·
d−1∑︁
j=0

(
z · B

A

) j

∈ Σ ∧ Σ . [Magic trick]

❑ Thus,

lim
𝜀→0

g1 ≡ lim
𝜀→0

ΠΣ/ΠΣ ·
(∑︁

dlog(Σ)
)

mod zd

≡ lim
𝜀→0

(ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd

∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd .

17



k = 2 proof: Why does dlog deborder?

❑ What is dlog(ℓ)? Note, ℓ =: A − z · B, where A ∈ F(𝜀)∗, B ∈ F(𝜀) [x].

dlog(A − zB) = − B
A (1 − z · B/A)

= −B
A

·
d−1∑︁
j=0

(
z · B

A

) j

∈ Σ ∧ Σ . [Magic trick]

❑ Thus,

lim
𝜀→0

g1 ≡ lim
𝜀→0

ΠΣ/ΠΣ ·
(∑︁

dlog(Σ)
)

mod zd

≡ lim
𝜀→0

(ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd

∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd .

17



k = 2 proof: Why does dlog deborder?

❑ What is dlog(ℓ)? Note, ℓ =: A − z · B, where A ∈ F(𝜀)∗, B ∈ F(𝜀) [x].

dlog(A − zB) = − B
A (1 − z · B/A)

= −B
A

·
d−1∑︁
j=0

(
z · B

A

) j

∈ Σ ∧ Σ . [Magic trick]

❑ Thus,

lim
𝜀→0

g1 ≡ lim
𝜀→0

ΠΣ/ΠΣ ·
(∑︁

dlog(Σ)
)

mod zd

≡ lim
𝜀→0

(ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd

∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd .

17



k = 2 proof: Why does dlog deborder?

❑ What is dlog(ℓ)? Note, ℓ =: A − z · B, where A ∈ F(𝜀)∗, B ∈ F(𝜀) [x].

dlog(A − zB) = − B
A (1 − z · B/A)

= −B
A

·
d−1∑︁
j=0

(
z · B

A

) j

∈ Σ ∧ Σ . [Magic trick]

❑ Thus,

lim
𝜀→0

g1 ≡ lim
𝜀→0

ΠΣ/ΠΣ ·
(∑︁

dlog(Σ)
)

mod zd

≡ lim
𝜀→0

(ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd

∈ (ΠΣ/ΠΣ) · (Σ ∧ Σ) mod zd .

17



Finishing the proof– Induct and Limit

❑ C · D ⊆ C · D. Therefore,

(ΠΣ/ΠΣ) · (Σ ∧ Σ) ⊆ (ΠΣ/ΠΣ) · Σ ∧ Σ

⊆ (ABP/ABP) · ABP

= ABP/ABP .

❑ Integrate g1 (i.e. interpolate 𝜕zΦ(T1/T2) wrt z), eliminate division, to get
Φ(f )/(lim𝜀→0 Φ(T2)) = ABP =⇒ Φ(f ) = ABP =⇒ f = ABP.

❑ Note: Definite integration requires setting z = 0 in Φ(T1/T2) + 1; that’s why we
need power-series in z.
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Proving Lower Bounds



Looking for finer lower bounds

skip the section

❑ Can we show an exponential gap between Σ[2]ΠΣ and VBP?

❑ Ambitious goal: Can we separate Σ[k ]ΠΣ and Σ[k+1]ΠΣ ?

❑ Note: This (impossibility) is already known in the classical setting!

❑ x1 · y1 + . . . + xk+1 · yk+1 cannot be computed by Σ[k ]ΠΣ circuits!

❑ Catch: x1 · y1 + . . . + xk+1 · yk+1 does not work anymore in border, since,
x1 · y1 + . . . + xk+1 · yk+1 ∈ Σ[2]ΠO (k )Σ !

❑ What does work (if at all!)?
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Our results

[Dutta-Saxena FOCS’22]
Fix any constant k ≥ 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a Σ[k+1]ΠΣ circuit of size O(n);

but, f requires 2Ω(n) -size Σ[k ]ΠΣ circuits.

❑ Fix k = 2. Define the polynomial Pd := x1 · · · xd + y1 · · · yd + z1 · · · zd , a
degree-d polynomial on n = 3d-variables.

❑ Pd has trivial fanin-3 depth-3 circuit (and hence in border too!).

❑ We will show that Pd requires 2Ω(d ) -size Σ[2]ΠΣ circuits.

❑ Kumar’s proof establishes that Pd has a 2O (d ) -size Σ[2]ΠΣ circuits, showing
optimality!

❑ Classical is about impossibility. While, border is about optimality.
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❑ Pd has trivial fanin-3 depth-3 circuit (and hence in border too!).

❑ We will show that Pd requires 2Ω(d ) -size Σ[2]ΠΣ circuits.

❑ Kumar’s proof establishes that Pd has a 2O (d ) -size Σ[2]ΠΣ circuits, showing
optimality!

❑ Classical is about impossibility. While, border is about optimality.
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Conclusion



Concluding remarks

❑ ROABP core gives us many PIT results (see our two papers).

❑ Can we show Σ[k ]ΠΣ ⊆ ΣΠΣ (resp. VF)?

❑ What is the border of the sum of two products of univariate matrices (ROABPs)?

❑ Is the border of VP explicit; i.e. in VNP?

❑ Are degree-s factors of a size-s polynomial explicit?

Thank you! Questions?
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