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O Let Xs = [xjj]1<i j<s be an s X s matrix of distinct variables x; j. Let
Ss:={n | n:{1,...,s} — {1,...,s} such that r is bijective }. Define

S
dets := det(Xs) = Z sgn(ﬂ)nx,-’,r(,-).

n€eSs i=1

QO VBP: The class VBP is defined as the set of all sequences of polynomials (fy)n
with polynomially bounded determinantal-complexity de(fp).

O Relates tightly to Algebraic Branching Programs ABP, or IMM: Iterated Matrix

Multiplication.
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‘Hard’ polynomials?

Q Hard polynomial family (f,)s such that it cannot be computed by an n®-size
determinant, for every constant c? i.e. size(fy) = n@Mq

Q A random polynomial with 0-1 coefficient is hard [Hrubes-Yehudayoff
ToC’11]. Challenge: Find an explicit one!

U Candidate hard polynomial:

S
perm(Xs) = Z l_[Xi,n(i)~

meSs i=1

O The minimum dimension of the matrix Xs to compute f, is called the
permanental complexity pc(f).
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Valiant’s Conjecture— VNP

VNP = “explicit” (but ‘“hard to compute”?)
The class VNP is defined as the set of all sequences of polynomials
(fa (X1, - - ., Xn))n>1 such that pc(fy) is bounded by n° for some constant c.

0 VBP C VP C VNP.

Valiant’s Conjecture
VBP # VNP & VP # VNP.

Equivalently, dc(perm,,) and size(perm,,) are both n«(1).
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Border complexity

O Let I" be any sensible measure. Eg. it can be size, dc and so on.
Q For I, we can define the border complexity measure T via:

T'(h) is the smallest s such that h(x) can be approximated arbitrarily closely by
polynomials hg(x) with '(h) < s. In other words,

lim hge = h (least-coefficient-wise) .
e—0

Eg. limz_ (sz+s‘122x1) = lima_y (822+22X1) = 7%x; .

O This motivates a new model: ‘approximative circuit’.
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F(e) = {% | p,q € Fle],q(e) # O} is the fn.field
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O Suppose, we assume the following:

> g(x,e) € F[xq,...,Xn, €], i.e. it is a polynomial of the form

M
g(x.8) = > Gilxt,....xn) &,
i=0

> How easy is gg in comparison to g?
O Obvious attempt:

> Since, g(x,0) = go, why not just set £ = 0?! Setting & = 0 may not be
‘valid’ as it could be using 1/¢ in the wire. Though it is well-defined!

O Summary: gg is non-trivially ‘approximated’ by the circuit, since
lims—09(x, &) =go-
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Algebraic Approximation [Biirgisser 2004]

A polynomial h € F[x] has approximative complexity s, if there is a g € F[&][x], of
size S, and an error polynomial S(x, €) € F[e][x] such that

g(x,e) =h(x)+¢e-S(x,¢).

Informally we write, lim._,og = h.

Q If g has circuit of size s over F(&), then the degree of € in g is at most
exponential, 232 [Lehmkuhl, Lickteig 1989] [Biirgisser 2004, erratum-2020].
[Bezout’s degree theorem.]

Q Let us assume that g(x, &) = Zil\io gie', where M = 2% Note: go =h.
> Pick M + 1 many values from F randomly and interpolate &;
Q size(h) < size(h) < exp(size(h)).

Q Curious eg.: Complexity of degree-s factor of a size-s polynomial? VP? VNP?
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Depth-3 circuits

Q Depth-3 circuits with top fan-in k, are denoted as slkls,

U They compute polynomials (not necessarily homogeneous) of the form
Zf‘ﬂ H}Z Cjj, where {j are linear polynomials (i.e. ag +a4xq +. .. +anpXp, for
aj € F).

Q Product fan-in = maxd.
O How powerful are *[2IIS circuits? Are they universal?

O Impossibility result: The Inner Product polynomial (X, y) := X1y1 + XaY> + X3)3
cannot be written as a Z[21T1S circuit, regardless of the product fan-in (even
allowing exp(n) product fan-in!).

Q How about T[2ITIX ?
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Power of border depth-3 circuits

Q Recall: h € ZIKITIX of size s if there exists a polynomial g such that
g(x,e) =h(x)+¢e-S(x,¢),
where g can be computed by a >KITIE circuit, over F(e), of size s.

Border depth-3 fan-in 2 circuits are ‘universal’ [Kumar 2020]

Let P be any n-variate degree d polynomial. Then, P € Z[2ITIX, where the first
product has fanin exp(n, d) and the second is merely constant !
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Proof.
1. Let WR(P) =: m. Then, there are linear forms ¢; such that
m
P = Z f;j [m can be as large as exp(n,d)] .
i=1
2. Consider A(x) := [—[Ifz1 1+ t’;j) = Hd 1(aj +¢), for a; € C. Note that

A(x) = 1+ P+ B where deg(B) > 2d .

3. Replace x; by € - x; to get that

d
1_[((1'/+s‘fi) = 1+sd'P+82d~R(Xﬂ9)-
j=1

:|s

Il
-y

i

4. Divide by &9 and rearrange to get

m d
P+8d'R(X,8) :—a_d+£_d'r[1_[(aj+e'€,-) e xlellmdly
i=1 j=1
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De-bordering S[2IITY circuits

Q If h is approximated by a 21T circuit with product fanin poly(n), what’s the
exact complexity of h?

Border of poly-size depth-3 top-fanin-2 circuits are ’easy’
[Dutta-Dwivedi-Saxena FOCS’21].

>[2ITT1Z ¢ VBP, for polynomial-sized =[21TTZ-circuits.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.
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Grand Idea: Reducetok = 1!
Q Ty +To =f(x)+&-S(x,¢&), where T; € IIX € F(g)[x]. Assume deg(f) =d.
U Apply a map ®, defined by ® : x; — z - xj + @;, where @; € F are random.
> The variable z is the “degree counter”,
> q; ensures “unit” : If £ | T;, then ®(€)|,—g = €(aq,...,an) € F(e)*.
Q There’s no loss if we study ®(f) mod z4*'. [Truncation by degree.]

O We devise a technique called DiDIL - Divide, Derive, Induct with Limit.
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Q valz(-) denotes the highest power of z dividing it (= least one across

monomials). B.g., h= ez +¢& 122xy = (¢z) - (1 + £ 22x4). Then, val,(h) = 1.

QO Analysis trivia: val;(h) = 0 makes 1/h a power-series in F(e, x)[[2]].
U Wlog valz(®(T»)) < valz(d(Ty)), else we can rearrange.
QO Divide both sides by ®(T») and take partial derivative with respect to z, to get:

O(f)+e-D(S) = O(T1) +D(Tn)
= O(f/To) + £- DO(S/To)= ®(T1/To) + 1
= 0;O(f/T2) + &0, P(S/T2) = 0;P(T1/T2) =1 91 . (1)



k = 2 proof continued: Divide and Derive

Q valz(-) denotes the highest power of z dividing it (= least one across

monomials). B.g., h= ez +¢& 122xy = (¢z) - (1 + £ 22x4). Then, val,(h) = 1.

QO Analysis trivia: val;(h) = 0 makes 1/h a power-series in F(e, x)[[2]].
U Wlog valz(®(T»)) < valz(d(Ty)), else we can rearrange.
QO Divide both sides by ®(T») and take partial derivative with respect to z, to get:

O(f)+e-D(S) = O(T1) +D(Tn)
= O(f/To) + £- DO(S/To)= ®(T1/To) + 1
= 0;O(f/T2) + &0, P(S/T2) = 0;P(T1/T2) =1 91 . (1)

Q limg 091 =limg_0 0zO(T1/T2) = limg_,0 0, D(f/T2).
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k = 2 proof continued: Linearize the product

Q First target: compute limz_,g g1 = 9D (f/T).
Q Logarithmic derivative: dlog,(h) := dz(h)/h.
U dlog linearizes product: dlog(hyho) = dlog(hq) +dlog(hs). Note:

0z®(T1/Tp) = ®(T1/Tp) - dlogd(T1/T2)
O(T1/Tp) - (dlog®(T1) — dlogd(T>)) .

O Both ©(T4) and ®(T») have I1Z circuits (they have z and &).
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k = 2 proof: Why does dlog deborder?

O What is dlog(¢)? Note, £ =: A—z - B, where A € F(g)*, B € F(e)[x].
8
A(1-z-B/A)
B T (z-BY
-5
€ XAX. [Magic trick]

dlog(A - zB) =

U Thus,

lim T12/I15 (Z dIog(Z)) mod 2%

|im0 (/ML) - (EAE) mod z9
E—

lim
g, 91

(TIZ/TIZ) - (ZA ) mod 29 .

m
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Finishing the proof- Induct and Limit

Q C-D cC-D. Therefore,

(MZ/IE)- (EA%) Cc (MZ/OZ)-ZAZ
(ABP/ABP) - ABP
= ABP/ABP .

N

U Integrate gy (i.e. interpolate 9;®(Ty/To) wrt z), eliminate division, to get
O(f)/(limg_0 D(T2)) = ABP = O(f) = ABP — f = ABP.

Q Note: Definite integration requires setting z = 0 in ®@(T4/T5) + 1; that’s why we

need power-series in Z.
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Looking for finer lower bounds

Q Can we show an exponential gap between Z[21TIZ and VBP?

QO Ambitious goal: Can we separate ZIKITTE and ZIK+1ITIX ?
O Note: This (impossibility) is already known in the classical setting!
Q Xq - y1+...+ Xkq1 - Yie1 cannot be computed by KIS circuits!

Q Catch: X1 - Y1 + ...+ Xk - Yk+1 does not work anymore in border, since,
X1 Y1+ .o+ Xpa1 - Yie1 € Z[RITTIOKO) 3 1

O What does work (if at all!)?
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[Dutta-Saxena FOCS’22]

Fix any constant k > 1. There is an explicit n-variate and < n degree polynomial f
such that f can be computed by a ZIK*1ITIE circuit of size O(n);

but, f requires 22" size SIKITIY circuits.

QO Fix k = 2. Define the polynomial Py := X1 ---Xqg+Yy{ - - Yqg+21- 24,2
degree-d polynomial on n = 3d-variables.

U Py has trivial fanin-3 depth-3 circuit (and hence in border too!).
O We will show that Py requires 22(d) gize 21T circuits.

U Kumar’s proof establishes that Py has a 20(d) size $[2IT13 circuits, showing
optimality!

Q Classical is about impossibility. While, border is about optimality.
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Concluding remarks

U ROABP core gives us many PIT results (see our two papers).

U Can we show m C ZIIZ (resp. VF)?

U What is the border of the sum of two products of univariate matrices (ROABPs)?
Q Is the border of VP explicit; i.e. in VNP?

O Are degree-s factors of a size-s polynomial explicit?

Thank you! Questions?

21
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