Demystifying the border of depth-3

Joint works with Pranjal Dutta & Prateek Dwivedi. [CCC'21, FOCS'21, FOCS'22]

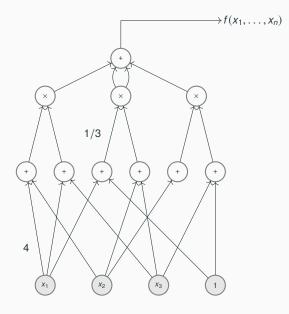
Nitin Saxena CSE, IIT Kanpur

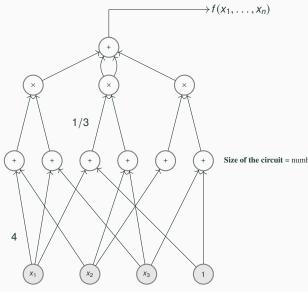
August, 2023 WAC @ Göteborg, Sweden

Table of Contents

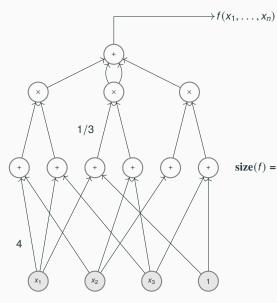
- 1. Basic Definitions and Terminologies
- 2. Border Complexity and GCT
- 3. Border Depth-3 Circuits
- 4. Proving Upper Bounds
- 5. Proving Lower Bounds
- 6. Conclusion

Basic Definitions and Terminologies

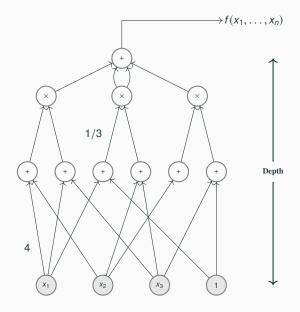


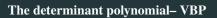


Size of the circuit = number of nodes + edges



size(f) = min size of the circuit computing f





The determinant polynomial-VBP

□ Let $X_s = [x_{i,j}]_{1 \le i,j \le s}$ be an $s \times s$ matrix of distinct variables $x_{i,j}$. Let $S_s := \{\pi \mid \pi : \{1, ..., s\} \longrightarrow \{1, ..., s\}$ such that π is bijective $\}$. Define

$$det_{\mathcal{S}} := det(X_{\mathcal{S}}) = \sum_{\pi \in \mathcal{S}_{\mathcal{S}}} sgn(\pi) \prod_{i=1}^{\mathcal{S}} x_{i,\pi(i)}.$$

The determinant polynomial-VBP

□ Let $X_s = [x_{i,j}]_{1 \le i,j \le s}$ be an $s \times s$ matrix of distinct variables $x_{i,j}$. Let $S_s := \{\pi \mid \pi : \{1, ..., s\} \longrightarrow \{1, ..., s\}$ such that π is bijective $\}$. Define

$$det_{S} := det(X_{S}) = \sum_{\pi \in S_{S}} sgn(\pi) \prod_{i=1}^{S} x_{i,\pi(i)}.$$

□ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded determinantal-complexity $dc(f_n)$.

The determinant polynomial-VBP

□ Let $X_s = [x_{i,j}]_{1 \le i,j \le s}$ be an $s \times s$ matrix of distinct variables $x_{i,j}$. Let $S_s := \{\pi \mid \pi : \{1, ..., s\} \longrightarrow \{1, ..., s\}$ such that π is bijective $\}$. Define

$$det_{S} := det(X_{S}) = \sum_{\pi \in S_{S}} sgn(\pi) \prod_{i=1}^{S} x_{i,\pi(i)}.$$

- □ VBP: The class VBP is defined as the set of all sequences of polynomials $(f_n)_n$ with polynomially bounded determinantal-complexity $dc(f_n)$.
- □ Relates tightly to Algebraic Branching Programs ABP, or IMM: Iterated Matrix Multiplication.

□ Hard polynomial family $(f_n)_n$ such that it cannot be computed by an n^c -size determinant, for *every* constant c? i.e. $\text{size}(f_n) = n^{\omega(1)}$?

- □ Hard polynomial family $(f_n)_n$ such that it cannot be computed by an n^c -size determinant, for *every* constant c? i.e. $\text{size}(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11].

- □ Hard polynomial family $(f_n)_n$ such that it cannot be computed by an n^c -size determinant, for *every* constant c? i.e. $\text{size}(f_n) = n^{\omega(1)}$?
- □ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!

- □ Hard polynomial family $(f_n)_n$ such that it cannot be computed by an n^c -size determinant, for *every* constant c? i.e. $\text{size}(f_n) = n^{\omega(1)}$?
- ☐ A *random* polynomial with **0-1** coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!
- ☐ Candidate hard polynomial:

$$\operatorname{perm}(X_{S}) = \sum_{\pi \in S_{S}} \prod_{i=1}^{S} x_{i,\pi(i)}.$$

- □ Hard polynomial family $(f_n)_n$ such that it cannot be computed by an n^c -size determinant, for *every* constant c? i.e. $\text{size}(f_n) = n^{\omega(1)}$?
- ☐ A *random* polynomial with 0-1 coefficient is **hard** [Hrubeš-Yehudayoff ToC'11]. Challenge: Find an **explicit** one!
- ☐ Candidate hard polynomial:

$$\operatorname{perm}(X_{S}) = \sum_{\pi \in S_{S}} \prod_{i=1}^{S} x_{i,\pi(i)}.$$

☐ The minimum dimension of the matrix X_s to compute f, is called the **permanental complexity** pc(f).

Valiant's Conjecture- VNP

VNP = "explicit" (but "hard to compute"?) [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1,...,x_n))_{n\geq 1}$ such that $pc(f_n)$ is bounded by n^c for some constant c.

Valiant's Conjecture- VNP

VNP = "explicit" (but "hard to compute"?) [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1,...,x_n))_{n\geq 1}$ such that $pc(f_n)$ is bounded by n^c for some constant c.

 \square VBP \subseteq VP \subseteq VNP.

Valiant's Conjecture- VNP

VNP = "explicit" (but "hard to compute"?) [Valiant 1979]

The class VNP is defined as the set of all sequences of polynomials $(f_n(x_1, \ldots, x_n))_{n \ge 1}$ such that $pc(f_n)$ is bounded by n^c for some constant c.

 \square VBP \subseteq VP \subseteq VNP.

Valiant's Conjecture [Valiant 1979]

 $VBP \neq VNP \& VP \neq VNP$.

Equivalently, $dc(perm_n)$ and $size(perm_n)$ are both $n^{\omega(1)}$.

Border Complexity and GCT

 $\hfill \square$ Let Γ be any sensible measure. Eg. it can be size, $\hfill dc$ and so on.

- \square Let Γ be any sensible measure. Eg. it can be size, dc and so on.
- \square For Γ , we can define the border complexity measure $\overline{\Gamma}$ via:
 - $\overline{\Gamma}(h)$ is the *smallest* s such that h(x) can be approximated arbitrarily closely by polynomials $h_{\varepsilon}(x)$ with $\Gamma(h_{\varepsilon}) \leq s$.

- \square Let Γ be any sensible measure. Eg. it can be size, dc and so on.
- \square For Γ , we can define the border complexity measure $\overline{\Gamma}$ via:

 $\overline{\Gamma}(h)$ is the *smallest* s such that h(x) can be approximated arbitrarily closely by polynomials $h_{\varepsilon}(x)$ with $\Gamma(h_{\varepsilon}) \leq s$. In other words,

 $\lim_{\varepsilon \to 0} h_{\varepsilon} = h \text{ (least-coefficient-wise)}.$

- \square Let Γ be any sensible measure. Eg. it can be size, dc and so on.
- \square For Γ , we can define the border complexity measure $\overline{\Gamma}$ via:

 $\overline{\Gamma}(h)$ is the *smallest* s such that h(x) can be approximated arbitrarily closely by polynomials $h_{\varepsilon}(x)$ with $\Gamma(h_{\varepsilon}) \leq s$. In other words,

$$\lim_{\varepsilon \to 0} h_{\varepsilon} = h \text{ (least-coefficient-wise)}.$$

Eg.
$$\lim_{\varepsilon \to 0} \left(\varepsilon z + \varepsilon^{-1} z^2 x_1 \right) = \lim_{\varepsilon \to 0} \left(\varepsilon^2 z + z^2 x_1 \right) = z^2 x_1$$
.

- \square Let Γ be any sensible measure. Eg. it can be size, dc and so on.
- \square For Γ , we can define the border complexity measure $\overline{\Gamma}$ via:

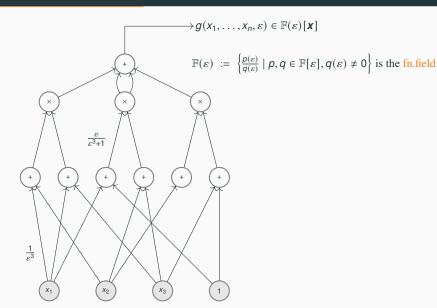
 $\overline{\Gamma}(h)$ is the *smallest* s such that h(x) can be approximated arbitrarily closely by polynomials $h_{\varepsilon}(x)$ with $\Gamma(h_{\varepsilon}) \leq s$. In other words,

$$\lim_{\varepsilon \to 0} h_{\varepsilon} = h \text{ (least-coefficient-wise)}.$$

Eg.
$$\lim_{\varepsilon \to 0} \left(\varepsilon z + \varepsilon^{-1} z^2 x_1 \right) = \lim_{\varepsilon \to 0} \left(\varepsilon^2 z + z^2 x_1 \right) = z^2 x_1$$
.

☐ This motivates a new model: 'approximative circuit'.

Approximative circuits



 \square Suppose, we assume the following:

$$ightharpoonup g(\mathbf{x}, \varepsilon) \in \mathbb{F}[x_1, \dots, x_n, \varepsilon]$$
, i.e. it is a polynomial of the form

$$g(\mathbf{x},\varepsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \varepsilon^i$$
,

- \Box Suppose, we assume the following:
 - $ightharpoonup g(\mathbf{x}, \varepsilon) \in \mathbb{F}[x_1, \dots, x_n, \varepsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\varepsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \varepsilon^i,$$

 \triangleright How easy is g_0 in comparison to g?

- \Box Suppose, we assume the following:
 - $ightharpoonup g(\mathbf{x}, \varepsilon) \in \mathbb{F}[x_1, \dots, x_n, \varepsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\varepsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \varepsilon^i$$
,

- \triangleright How easy is g_0 in comparison to g?
- ☐ Obvious attempt:
 - ightharpoonup Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\varepsilon = 0$?!

- ☐ Suppose, we assume the following:
 - $ightharpoonup g(\mathbf{x}, \varepsilon) \in \mathbb{F}[x_1, \dots, x_n, \varepsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\varepsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \varepsilon^i,$$

- \triangleright How easy is g_0 in comparison to g?
- ☐ Obvious attempt:
 - ightharpoonup Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\varepsilon = 0$?! Setting $\varepsilon = 0$ may not be 'valid' as it could be using $1/\varepsilon$ in the wire. Though it is well-defined!

- ☐ Suppose, we assume the following:
 - $ightharpoonup g(\mathbf{x}, \varepsilon) \in \mathbb{F}[x_1, \dots, x_n, \varepsilon]$, i.e. it is a polynomial of the form

$$g(\mathbf{x},\varepsilon) = \sum_{i=0}^{M} g_i(x_1,\ldots,x_n) \cdot \varepsilon^i$$
,

- \triangleright How easy is g_0 in comparison to g?
- ☐ Obvious attempt:
 - ightharpoonup Since, $g(\mathbf{x}, 0) = g_0$, why not just set $\varepsilon = 0$?! Setting $\varepsilon = 0$ may not be 'valid' as it could be using $1/\varepsilon$ in the wire. Though it is well-defined!
- □ Summary: g_0 is **non-trivially** 'approximated' by the circuit, since $\lim_{\varepsilon \to 0} g(\mathbf{x}, \varepsilon) = g_0$.

Algebraic approximation— $\overline{\text{VP}}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[x]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\varepsilon][x]$, of size s, and an error polynomial $S(x, \varepsilon) \in \mathbb{F}[\varepsilon][x]$ such that

$$g(\mathbf{x}, \varepsilon) = h(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon).$$

Informally we write, $\lim_{\varepsilon \to 0} g = h$.

Algebraic approximation— $\overline{\mathrm{VP}}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[x]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\varepsilon][x]$, of size s, and an error polynomial $S(x, \varepsilon) \in \mathbb{F}[\varepsilon][x]$ such that $g(x, \varepsilon) = h(x) + \varepsilon \cdot S(x, \varepsilon)$.

Informally we write, $\lim_{\varepsilon \to 0} g = h$.

□ If g has circuit of size s over $\mathbb{F}(\varepsilon)$, then the degree of ε in g is at most exponential, 2^{s^2} [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020].

Algebraic approximation— $\overline{\mathrm{VP}}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[x]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\varepsilon][x]$, of size s, and an error polynomial $S(x, \varepsilon) \in \mathbb{F}[\varepsilon][x]$ such that $g(x, \varepsilon) = h(x) + \varepsilon \cdot S(x, \varepsilon)$.

Informally we write, $\lim_{\varepsilon \to 0} g = h$.

☐ If g has circuit of size s over $\mathbb{F}(\varepsilon)$, then the degree of ε in g is at most *exponential*, 2^{s^2} [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020]. [Bezout's degree theorem.]

Algebraic approximation— $\overline{\text{VP}}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[x]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\varepsilon][x]$, of size s, and an error polynomial $S(x, \varepsilon) \in \mathbb{F}[\varepsilon][x]$ such that $g(x, \varepsilon) = h(x) + \varepsilon \cdot S(x, \varepsilon)$.

$$g(\mathbf{x},\varepsilon) = H(\mathbf{x}) + \varepsilon \cdot G(\mathbf{x},\varepsilon).$$

Informally we write, $\lim_{\varepsilon \to 0} g = h$.

- ☐ If g has circuit of size s over $\mathbb{F}(\varepsilon)$, then the degree of ε in g is at most exponential, 2^{s^2} [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020]. [Bezout's degree theorem.]
- \square Let us assume that $g(\mathbf{x}, \varepsilon) = \sum_{i=0}^{M} g_i \varepsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.

Algebraic approximation— $\overline{ m VP}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[x]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\varepsilon][x]$, of size s, and an error polynomial $S(x, \varepsilon) \in \mathbb{F}[\varepsilon][x]$ such that

$$g(\mathbf{x}, \varepsilon) = h(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon).$$

Informally we write, $\lim_{\varepsilon \to 0} g = h$.

- ☐ If g has circuit of size s over $\mathbb{F}(\varepsilon)$, then the degree of ε in g is at most exponential, 2^{s^2} [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020]. [Bezout's degree theorem.]
- \square Let us assume that $g(\mathbf{x}, \varepsilon) = \sum_{i=0}^{M} g_i \varepsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.
 - ightharpoonup Pick M+1 many values from \mathbb{F} randomly and interpolate ε ;

Algebraic approximation— $\overline{ m VP}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[x]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\varepsilon][x]$, of size s, and an error polynomial $S(x, \varepsilon) \in \mathbb{F}[\varepsilon][x]$ such that

$$g(\mathbf{x}, \varepsilon) = h(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon).$$

Informally we write, $\lim_{\varepsilon \to 0} g = h$.

- ☐ If g has circuit of size s over $\mathbb{F}(\varepsilon)$, then the degree of ε in g is at most exponential, 2^{s^2} [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020]. [Bezout's degree theorem.]
- \square Let us assume that $g(\mathbf{x}, \varepsilon) = \sum_{i=0}^{M} g_i \varepsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.
 - ightharpoonup Pick M+1 many values from \mathbb{F} randomly and interpolate ε ;
- \square $\overline{\text{size}}(h) \leq \text{size}(h) \leq \exp(\overline{\text{size}}(h)).$

Algebraic approximation— $\overline{ m VP}$

Algebraic Approximation [Bürgisser 2004]

A polynomial $h \in \mathbb{F}[x]$ has approximative complexity s, if there is a $g \in \mathbb{F}[\varepsilon][x]$, of size s, and an error polynomial $S(x, \varepsilon) \in \mathbb{F}[\varepsilon][x]$ such that

$$g(\mathbf{x}, \varepsilon) = h(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon).$$

Informally we write, $\lim_{\varepsilon \to 0} g = h$.

- ☐ If g has circuit of size s over $\mathbb{F}(\varepsilon)$, then the degree of ε in g is at most exponential, 2^{s^2} [Lehmkuhl, Lickteig 1989] [Bürgisser 2004, erratum-2020]. [Bezout's degree theorem.]
- \square Let us assume that $g(\mathbf{x}, \varepsilon) = \sum_{i=0}^{M} g_i \varepsilon^i$, where $M = 2^{s^2}$. Note: $g_0 = h$.
 - ightharpoonup Pick M+1 many values from \mathbb{F} randomly and interpolate ε ;
- \square $\overline{\text{size}}(h) \leq \text{size}(h) \leq \exp(\overline{\text{size}}(h)).$
- ☐ Curious eg.: Complexity of degree-**s** factor of a size-**s** polynomial? VP? VNP?

Border Depth-3 Circuits

 \square Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]}\Pi\Sigma$.

- \square Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).

- \square Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- \square Product fan-in = $\max d_i$.

- \square Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- \square Product fan-in = $\max d_i$.
- $\hfill \Box$ How powerful are $\Sigma^{\hfill [2]}\Pi\Sigma$ circuits? Are they universal?

- \square Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- \square Product fan-in = $\max d_i$.
- \square How powerful are $\Sigma^{[2]}\Pi\Sigma$ circuits? Are they *universal*?
- □ Impossibility result: The *Inner Product* polynomial $\langle \boldsymbol{x}, \boldsymbol{y} \rangle := x_1 y_1 + x_2 y_2 + x_3 y_3$ cannot be written as a $\Sigma^{[2]}\Pi\Sigma$ circuit,

- \square Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- \square Product fan-in = $\max d_i$.
- \square How powerful are $\Sigma^{[2]}\Pi\Sigma$ circuits? Are they *universal*?
- □ Impossibility result: The *Inner Product* polynomial $\langle x, y \rangle := x_1y_1 + x_2y_2 + x_3y_3$ cannot be written as a $\Sigma^{[2]}\Pi\Sigma$ circuit, *regardless* of the product fan-in (even allowing exp(n) product fan-in!).

- \square Depth-3 circuits with top fan-in k, are denoted as $\Sigma^{[k]}\Pi\Sigma$.
- □ They compute polynomials (*not necessarily* homogeneous) of the form $\sum_{i=1}^{k} \prod_{j=1}^{d_i} \ell_{ij}$, where ℓ_{ij} are linear polynomials (i.e. $a_0 + a_1x_1 + \ldots + a_nx_n$, for $a_i \in \mathbb{F}$).
- \square Product fan-in = $\max d_i$.
- \square How powerful are $\Sigma^{[2]}\Pi\Sigma$ circuits? Are they *universal*?
- □ Impossibility result: The *Inner Product* polynomial $\langle \mathbf{x}, \mathbf{y} \rangle := x_1y_1 + x_2y_2 + x_3y_3$ **cannot** be written as a $\Sigma^{[2]}\Pi\Sigma$ circuit, *regardless* of the product fan-in (even allowing exp(n) product fan-in!).
- \square How about $\overline{\Sigma^{[2]}\Pi\Sigma}$?

 \square Recall: $h \in \overline{\Sigma^{[k]}\Pi\Sigma}$ of size s if there exists a polynomial g such that

 \square Recall: $h \in \overline{\sum_{k=1}^{\lfloor k \rfloor} \prod \sum_{k=1}^{l}}$ of size s if there exists a polynomial g such that

$$g(\boldsymbol{x},\varepsilon) = h(\boldsymbol{x}) + \varepsilon \cdot S(\boldsymbol{x},\varepsilon) \; ,$$

 \square Recall: $h \in \overline{\sum_{k=1}^{\lfloor k \rfloor} \prod \sum_{k=1}^{l}}$ of size s if there exists a polynomial g such that

$$g(\mathbf{x}, \varepsilon) = h(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon)$$
,

where g can be computed by a $\Sigma^{[k]}\Pi\Sigma$ circuit, over $\mathbb{F}(\varepsilon)$, of size s.

 \square Recall: $h \in \overline{\Sigma^{[k]}\Pi\Sigma}$ of size s if there exists a polynomial g such that

$$g(\mathbf{x}, \varepsilon) = h(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon)$$
,

where g can be computed by a $\Sigma^{[k]}\Pi\Sigma$ circuit, over $\mathbb{F}(\varepsilon)$, of size s.

Border depth-3 fan-in 2 circuits are 'universal' [Kumar 2020]

Let P be any n-variate degree d polynomial. Then, $P \in \overline{\Sigma^{[2]}\Pi\Sigma}$,

 \square Recall: $h \in \overline{\Sigma^{[k]}\Pi\Sigma}$ of size s if there exists a polynomial g such that

$$g(\mathbf{x}, \varepsilon) = h(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon)$$
,

where g can be computed by a $\Sigma^{[k]}\Pi\Sigma$ circuit, over $\mathbb{F}(\varepsilon)$, of size s.

Border depth-3 fan-in 2 circuits are 'universal' [Kumar 2020]

Let P be any n-variate degree d polynomial. Then, $P \in \Sigma^{[2]}\Pi\Sigma$, where the first product has fanin $\exp(n, d)$ and the second is merely constant!

Proof.

1. Let $\mathsf{WR}(P) =: m$. Then, there are linear forms ℓ_i such that

Proof.

→ skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d \qquad [m \text{ can be as large as } \exp(n, d)].$$

Proof.

→ skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d$$
 [m can be as large as $\exp(n, d)$].

2. Consider
$$A(\boldsymbol{x}):=\prod_{i=1}^m(1+\ell_i^d)=\prod_{i=1}^m\prod_{j=1}^d(\alpha_j+\ell_i),$$
 for $\alpha_j\in\mathbb{C}.$

Proof.

→ skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d$$
 [m can be as large as $\exp(n, d)$].

2. Consider
$$A(\mathbf{x}) := \prod_{i=1}^m (1 + \ell_i^d) = \prod_{i=1}^m \prod_{j=1}^d (\alpha_j + \ell_i)$$
, for $\alpha_j \in \mathbb{C}$. Note that

$$A(\mathbf{x}) = 1 + P + B \text{ where } \deg(B) \ge 2d$$
.

Proof.

→ skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d$$
 [m can be as large as $\exp(n, d)$].

2. Consider $A(\mathbf{x}) := \prod_{i=1}^m (1 + \ell_i^d) = \prod_{i=1}^m \prod_{j=1}^d (\alpha_j + \ell_i)$, for $\alpha_j \in \mathbb{C}$. Note that

$$A(\mathbf{x}) = 1 + P + B \text{ where } \deg(B) \ge 2d$$
.

3. Replace x_i by $\varepsilon \cdot x_i$ to get that

Proof.

→ skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d$$
 [m can be as large as $\exp(n, d)$].

2. Consider $A(\mathbf{x}) := \prod_{i=1}^m (1 + \ell_i^d) = \prod_{i=1}^m \prod_{j=1}^d (\alpha_j + \ell_i)$, for $\alpha_j \in \mathbb{C}$. Note that

$$A(\mathbf{x}) = 1 + P + B \text{ where } \deg(B) \ge 2d$$
.

3. Replace x_i by $\varepsilon \cdot x_i$ to get that

$$\prod_{i=1}^m \prod_{j=1}^d (\alpha_j + \varepsilon \cdot \ell_i) = 1 + \varepsilon^d \cdot P + \varepsilon^{2d} \cdot R(\boldsymbol{x}, \varepsilon) .$$

Proof.

→ skip proof

1. Let WR(P) =: m. Then, there are linear forms ℓ_i such that

$$P = \sum_{i=1}^{m} \ell_i^d$$
 [m can be as large as $\exp(n, d)$].

2. Consider $A(\mathbf{x}) := \prod_{i=1}^m (1 + \ell_i^d) = \prod_{i=1}^m \prod_{j=1}^d (\alpha_j + \ell_i)$, for $\alpha_j \in \mathbb{C}$. Note that

$$A(\mathbf{x}) = 1 + P + B \text{ where } \deg(B) \ge 2d$$
.

3. Replace x_i by $\varepsilon \cdot x_i$ to get that

$$\prod_{i=1}^{m} \prod_{i=1}^{d} (\alpha_j + \varepsilon \cdot \ell_i) = 1 + \varepsilon^d \cdot P + \varepsilon^{2d} \cdot R(\boldsymbol{x}, \varepsilon) .$$

4. Divide by ε^d and rearrange to get

$$P + \varepsilon^d \cdot R(\boldsymbol{x}, \varepsilon) = -\varepsilon^{-d} + \varepsilon^{-d} \cdot \prod_{i=1}^m \prod_{j=1}^d (\alpha_j + \varepsilon \cdot \ell_i) \ \in \ \Sigma^{[2]} \Pi^{[md]} \Sigma \ .$$

Proving Upper Bounds

De-bordering $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits

□ If h is approximated by a $\Sigma^{[2]}\Pi\Sigma$ circuit with product fanin poly(n), what's the *exact* complexity of h?

De-bordering $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits

□ If h is approximated by a $\Sigma^{[2]}\Pi\Sigma$ circuit with product fanin poly(n), what's the *exact* complexity of h?

Border of poly-size depth-3 top-fanin-2 circuits are 'easy'

[Dutta-Dwivedi-Saxena FOCS'21].

 $\overline{\Sigma^{[2]}\Pi\Sigma}\subseteq \mathsf{VBP}$, for polynomial-sized $\overline{\Sigma^{[2]}\Pi\Sigma}$ -circuits.

De-bordering $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits

□ If h is approximated by a $\Sigma^{[2]}\Pi\Sigma$ circuit with product fanin poly(n), what's the *exact* complexity of h?

Border of poly-size depth-3 top-fanin-2 circuits are 'easy' [Dutta-Dwivedi-Saxena FOCS'21].

 $\overline{\Sigma^{[2]}\Pi\Sigma}\subseteq \mathsf{VBP},$ for polynomial-sized $\overline{\Sigma^{[2]}\Pi\Sigma}$ -circuits.

Remark. The result holds if one replaces the top-fanin-2 by arbitrary constant k.

$$\square$$
 $T_1 + T_2 = f(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon)$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\varepsilon)[\mathbf{x}]$. Assume $\deg(f) = d$.

Grand Idea: Reduce to k = 1!

$$\Box \ T_1 + T_2 = f(\boldsymbol{x}) + \varepsilon \cdot S(\boldsymbol{x}, \varepsilon), \text{ where } T_i \in \Pi\Sigma \in \mathbb{F}(\varepsilon)[\boldsymbol{x}]. \text{ Assume deg}(f) = d.$$

 \square Apply a map Φ , defined by $\Phi: x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.

- $\Box T_1 + T_2 = f(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon)$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\varepsilon)[\mathbf{x}]$. Assume $\deg(f) = d$.
- \square Apply a map Φ , defined by $\Phi: x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.
 - \succ The variable z is the "degree counter",

- $\Box T_1 + T_2 = f(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon)$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\varepsilon)[\mathbf{x}]$. Assume $\deg(f) = d$.
- \square Apply a map Φ , defined by $\Phi: x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.
 - ➤ The variable **z** is the "degree counter",
 - $ightharpoonup \alpha_i$ ensures "unit": If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\varepsilon)^*$.

- $\Box T_1 + T_2 = f(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon)$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\varepsilon)[\mathbf{x}]$. Assume $\deg(f) = d$.
- \square Apply a map Φ , defined by $\Phi: x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.
 - ➤ The variable **z** is the "degree counter",
 - $ightharpoonup \alpha_i$ ensures "unit": If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\varepsilon)^*$.
- \square There's *no* loss if we study $\Phi(f) \mod z^{d+1}$.

- $\Box T_1 + T_2 = f(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon)$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\varepsilon)[\mathbf{x}]$. Assume $\deg(f) = d$.
- \square Apply a map Φ , defined by $\Phi: x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.
 - ➤ The variable **z** is the "degree counter",
 - $\succ \alpha_i$ ensures "unit": If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\varepsilon)^*$.
- \square There's *no* loss if we study $\Phi(f) \mod z^{d+1}$. [Truncation by degree.]

- $\Box T_1 + T_2 = f(\mathbf{x}) + \varepsilon \cdot S(\mathbf{x}, \varepsilon)$, where $T_i \in \Pi\Sigma \in \mathbb{F}(\varepsilon)[\mathbf{x}]$. Assume $\deg(f) = d$.
- \square Apply a map Φ , defined by $\Phi: x_i \mapsto z \cdot x_i + \alpha_i$, where $\alpha_i \in \mathbb{F}$ are *random*.
 - ➤ The variable **z** is the "degree counter",
 - $\succ \alpha_i$ ensures "unit": If $\ell \mid T_i$, then $\Phi(\ell)|_{z=0} = \ell(\alpha_1, \dots, \alpha_n) \in \mathbb{F}(\varepsilon)^*$.
- \Box There's *no* loss if we study $\Phi(f) \mod z^{d+1}$. [Truncation by degree.]
- ☐ We devise a technique called DiDIL Divide, Derive, Induct with Limit.

k = 2 proof continued: *Di*vide and *D*erive

 \square val_z(·) denotes the highest power of z dividing it (= least one across monomials). E.g., $h = \varepsilon z + \varepsilon^{-1} z^2 x_1 = (\varepsilon z) \cdot (1 + \varepsilon^{-2} z x_1)$. Then, val_z(h) = 1.

k = 2 proof continued: *Di*vide and *D*erive

- \square val_z(·) denotes the highest power of z dividing it (= least one across monomials). E.g., $h = \varepsilon z + \varepsilon^{-1} z^2 x_1 = (\varepsilon z) \cdot (1 + \varepsilon^{-2} z x_1)$. Then, val_z(h) = 1.
- □ Analysis trivia: $val_z(h) = 0$ makes 1/h a power-series in $\mathbb{F}(\varepsilon, \mathbf{x})[[z]]$.

- □ $\operatorname{val}_{Z}(\cdot)$ denotes the highest power of z dividing it (= least one across monomials). E.g., $h = \varepsilon z + \varepsilon^{-1} z^{2} x_{1} = (\varepsilon z) \cdot (1 + \varepsilon^{-2} z x_{1})$. Then, $\operatorname{val}_{Z}(h) = 1$.
- □ Analysis trivia: $\operatorname{val}_{Z}(h) = 0$ makes 1/h a power-series in $\mathbb{F}(\varepsilon, \mathbf{x})[[z]]$.
- \square Wlog $\operatorname{val}_{Z}(\Phi(T_{2})) \leq \operatorname{val}_{Z}(\Phi(T_{1}))$, else we can rearrange.

- \Box val_z(·) denotes the highest power of z dividing it (= least one across monomials). E.g., $h = \varepsilon z + \varepsilon^{-1} z^2 x_1 = (\varepsilon z) \cdot (1 + \varepsilon^{-2} z x_1)$. Then, val_z(h) = 1.
- □ Analysis trivia: $val_Z(h) = 0$ makes 1/h a power-series in $\mathbb{F}(\varepsilon, \mathbf{x})[[z]]$.
- □ Wlog $\operatorname{val}_{Z}(\Phi(T_{2})) \leq \operatorname{val}_{Z}(\Phi(T_{1}))$, else we can rearrange.
- \Box Divide both sides by $\Phi(T_2)$ and take partial derivative with respect to z, to get:

- □ $\operatorname{val}_{z}(\cdot)$ denotes the highest power of z dividing it (= least one across monomials). E.g., $h = \varepsilon z + \varepsilon^{-1} z^{2} x_{1} = (\varepsilon z) \cdot (1 + \varepsilon^{-2} z x_{1})$. Then, $\operatorname{val}_{z}(h) = 1$.
- □ Analysis trivia: $\operatorname{val}_{Z}(h) = 0$ makes 1/h a power-series in $\mathbb{F}(\varepsilon, \mathbf{x})[[z]]$.
- □ Wlog $val_z(\Phi(T_2)) \le val_z(\Phi(T_1))$, else we can rearrange.
- \Box Divide both sides by $\Phi(T_2)$ and take partial derivative with respect to z, to get:

$$\begin{split} \Phi(f) + \varepsilon \cdot \Phi(S) &= \Phi(T_1) + \Phi(T_2) \\ \Longrightarrow \Phi(f/T_2) + \varepsilon \cdot \Phi(S/T_2) &= \Phi(T_1/T_2) + 1 \\ \Longrightarrow \partial_Z \Phi(f/T_2) + \varepsilon \cdot \partial_Z \Phi(S/T_2) &= \partial_Z \Phi(T_1/T_2) =: g_1 \; . \end{split} \tag{1}$$

- □ $\operatorname{val}_{Z}(\cdot)$ denotes the highest power of Z dividing it (= least one across monomials). E.g., $h = \varepsilon Z + \varepsilon^{-1} Z^{2} x_{1} = (\varepsilon Z) \cdot (1 + \varepsilon^{-2} Z x_{1})$. Then, $\operatorname{val}_{Z}(h) = 1$.
- □ Analysis trivia: $val_Z(h) = 0$ makes 1/h a power-series in $\mathbb{F}(\varepsilon, \mathbf{x})[[z]]$.
- □ Wlog $\operatorname{val}_{Z}(\Phi(T_{2})) \leq \operatorname{val}_{Z}(\Phi(T_{1}))$, else we can rearrange.
- \Box Divide both sides by $\Phi(T_2)$ and take partial derivative with respect to z, to get:

$$\begin{split} \Phi(f) + \varepsilon \cdot \Phi(S) &= \Phi(T_1) + \Phi(T_2) \\ \Longrightarrow \Phi(f/T_2) + \varepsilon \cdot \Phi(S/T_2) &= \Phi(T_1/T_2) + 1 \\ \Longrightarrow \partial_Z \Phi(f/T_2) + \varepsilon \cdot \partial_Z \Phi(S/T_2) &= \partial_Z \Phi(T_1/T_2) =: g_1 \; . \end{split} \tag{1}$$

 \Box First target: compute $\lim_{\varepsilon \to 0} g_1 = \partial_z \Phi(f/T_2)$.

- \Box First target: compute $\lim_{\varepsilon \to 0} g_1 = \partial_z \Phi(f/T_2)$.
- □ Logarithmic derivative: $dlog_Z(h) := \partial_Z(h)/h$.

- \Box First target: compute $\lim_{\varepsilon \to 0} g_1 = \partial_z \Phi(f/T_2)$.
- \square Logarithmic derivative: $dlog_z(h) := \partial_z(h)/h$.
- \square dlog *linearizes* product: dlog(h_1h_2) = dlog(h_1) + dlog(h_2).

- \Box First target: compute $\lim_{\varepsilon \to 0} g_1 = \partial_z \Phi(f/T_2)$.
- \square Logarithmic derivative: $\operatorname{dlog}_{z}(h) := \partial_{z}(h)/h$.
- \square dlog *linearizes* product: dlog(h_1h_2) = dlog(h_1) + dlog(h_2). Note:

$$\begin{split} \partial_z \Phi(T_1/T_2) &= \ \Phi(T_1/T_2) \cdot \mathsf{dlog} \Phi(T_1/T_2) \\ &= \ \Phi(T_1/T_2) \cdot (\mathsf{dlog} \Phi(T_1) - \mathsf{dlog} \Phi(T_2)) \enspace . \end{split}$$

- \Box First target: compute $\lim_{\varepsilon \to 0} g_1 = \partial_z \Phi(f/T_2)$.
- \square Logarithmic derivative: $\operatorname{dlog}_{z}(h) := \partial_{z}(h)/h$.
- \square dlog *linearizes* product: dlog(h_1h_2) = dlog(h_1) + dlog(h_2). Note:

$$\begin{split} \partial_z \Phi(T_1/T_2) &= \ \Phi(T_1/T_2) \cdot \mathsf{dlog} \Phi(T_1/T_2) \\ &= \ \Phi(T_1/T_2) \cdot (\mathsf{dlog} \Phi(T_1) - \mathsf{dlog} \Phi(T_2)) \enspace . \end{split}$$

 \square Both $\Phi(T_1)$ and $\Phi(T_2)$ have $\Pi\Sigma$ circuits (they have Z and ε).

 \square What is $dlog(\ell)$?

 \square What is $dlog(\ell)$? Note, $\ell =: A - z \cdot B$, where $A \in \mathbb{F}(\varepsilon)^*, B \in \mathbb{F}(\varepsilon)[x]$.

 \square What is $dlog(\ell)$? Note, $\ell =: A - z \cdot B$, where $A \in \mathbb{F}(\varepsilon)^*, B \in \mathbb{F}(\varepsilon)[x]$.

$$dlog(A - zB) = -\frac{B}{A (1 - z \cdot B/A)}$$
$$= -\frac{B}{A} \cdot \sum_{j=0}^{d-1} \left(\frac{z \cdot B}{A}\right)^{j}$$
$$\in \Sigma \wedge \Sigma \cdot [Magic trick]$$

 \square What is $dlog(\ell)$? Note, $\ell =: A - z \cdot B$, where $A \in \mathbb{F}(\varepsilon)^*, B \in \mathbb{F}(\varepsilon)[x]$.

$$dlog(A - zB) = -\frac{B}{A(1 - z \cdot B/A)}$$
$$= -\frac{B}{A} \cdot \sum_{j=0}^{d-1} \left(\frac{z \cdot B}{A}\right)^{j}$$
$$\in \Sigma \wedge \Sigma \cdot [Magic trick]$$

☐ Thus,

 \square What is $dlog(\ell)$? Note, $\ell =: A - z \cdot B$, where $A \in \mathbb{F}(\varepsilon)^*, B \in \mathbb{F}(\varepsilon)[x]$.

$$dlog(A - zB) = -\frac{B}{A(1 - z \cdot B/A)}$$
$$= -\frac{B}{A} \cdot \sum_{j=0}^{d-1} \left(\frac{z \cdot B}{A}\right)^{j}$$
$$\in \Sigma \wedge \Sigma \cdot [Magic trick]$$

☐ Thus,

$$\begin{split} & \lim_{\varepsilon \to 0} g_1 \equiv \lim_{\varepsilon \to 0} \Pi \Sigma / \Pi \Sigma \cdot \left(\sum \mathsf{dlog}(\Sigma) \right) \mod z^d \\ & \equiv \lim_{\varepsilon \to 0} \left(\Pi \Sigma / \Pi \Sigma \right) \cdot \left(\Sigma \wedge \Sigma \right) \mod z^d \\ & \in \overline{\left(\Pi \Sigma / \Pi \Sigma \right) \cdot \left(\Sigma \wedge \Sigma \right)} \mod z^d \;. \end{split}$$

$$\square$$
 $\overline{C \cdot \mathcal{D}} \subseteq \overline{C} \cdot \overline{\mathcal{D}}$. Therefore,

$$\begin{tabular}{ll} \square $\overline{C} \cdot \overline{\mathcal{D}} \subseteq \overline{C} \cdot \overline{\mathcal{D}}$. Therefore, \\ \hline $(\overline{\Pi\Sigma/\Pi\Sigma}) \cdot (\Sigma \wedge \Sigma) \subseteq \overline{(\Pi\Sigma/\Pi\Sigma)} \cdot \overline{\Sigma} \wedge \overline{\Sigma}$ \\ $\subseteq (\mathsf{ABP/ABP}) \cdot \mathsf{ABP}$ \\ $= \mathsf{ABP/ABP} \ . \end{tabular}$$

 \square $\overline{C} \cdot \mathcal{D} \subseteq \overline{C} \cdot \overline{\mathcal{D}}$. Therefore,

$$\begin{array}{l} \overline{(\Pi\Sigma/\Pi\Sigma)\cdot(\Sigma\wedge\Sigma)}\subseteq \ \overline{(\Pi\Sigma/\Pi\Sigma)}\cdot\overline{\Sigma\wedge\Sigma} \\ \\ \subseteq \ (\mathsf{ABP/ABP})\cdot\mathsf{ABP} \\ \\ = \ \mathsf{ABP/ABP} \ . \end{array}$$

□ Integrate g_1 (i.e. interpolate $\partial_z \Phi(T_1/T_2)$ wrt z), eliminate division, to get $\Phi(f)/(\lim_{\varepsilon \to 0} \Phi(T_2)) = \mathsf{ABP} \implies \Phi(f) = \mathsf{ABP} \implies f = \mathsf{ABP}.$

 \square $\overline{C \cdot \mathcal{D}} \subseteq \overline{C} \cdot \overline{\mathcal{D}}$. Therefore,

$$\begin{array}{l} \overline{(\Pi\Sigma/\Pi\Sigma)\cdot(\Sigma\wedge\Sigma)}\subseteq \ \overline{(\Pi\Sigma/\Pi\Sigma)}\cdot\overline{\Sigma\wedge\Sigma} \\ \\ \subseteq \ (\mathsf{ABP}/\mathsf{ABP})\cdot\mathsf{ABP} \\ \\ = \ \mathsf{ABP}/\mathsf{ABP} \ . \end{array}$$

- □ Integrate g_1 (i.e. interpolate $\partial_z \Phi(T_1/T_2)$ wrt z), eliminate division, to get $\Phi(f)/(\lim_{\varepsilon \to 0} \Phi(T_2)) = \mathsf{ABP} \implies \Phi(f) = \mathsf{ABP} \implies f = \mathsf{ABP}.$
- Note: Definite integration requires setting z = 0 in $\Phi(T_1/T_2) + 1$; that's why we need power-series in z.

Proving Lower Bounds

→ skip the section

 \square Can we show an *exponential* gap between $\overline{\Sigma^{[2]}\Pi\Sigma}$ and VBP?

- \square Can we show an *exponential* gap between $\overline{\Sigma^{[2]}\Pi\Sigma}$ and VBP?
- \square Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?

- \square Can we show an *exponential* gap between $\overline{\Sigma^{[2]}\Pi\Sigma}$ and VBP?
- \square Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- ☐ Note: This (impossibility) is already known in the classical setting!

- \square Can we show an *exponential* gap between $\overline{\Sigma^{[2]}\Pi\Sigma}$ and VBP?
- \square Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- ☐ Note: This (impossibility) is already known in the classical setting!
- $\square x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!

- \square Can we show an *exponential* gap between $\Sigma^{[2]}\Pi\Sigma$ and VBP?
- \square Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- ☐ Note: This (impossibility) is already known in the classical setting!
- $\square x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!
- □ Catch: $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot \underline{y_{k+1}}$ does not work anymore in *border*, since, $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot \underline{y_{k+1}} \in \Sigma^{[2]} \Pi^{O(k)} \Sigma$!

- \square Can we show an *exponential* gap between $\overline{\Sigma^{[2]}\Pi\Sigma}$ and VBP?
- \square Ambitious goal: Can we separate $\overline{\Sigma^{[k]}\Pi\Sigma}$ and $\overline{\Sigma^{[k+1]}\Pi\Sigma}$?
- ☐ Note: This (impossibility) is already known in the classical setting!
- \square $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1}$ cannot be computed by $\Sigma^{[k]} \Pi \Sigma$ circuits!
- □ Catch: $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot \underline{y_{k+1}}$ does not work anymore in *border*, since, $x_1 \cdot y_1 + \ldots + x_{k+1} \cdot y_{k+1} \in \overline{\Sigma^{[2]}} \Pi^{O(k)} \Sigma$!
- ☐ What does work (if at all!)?

[Dutta-Saxena FOCS'22]

Fix any constant $k \ge 1$. There is an explicit n-variate and < n degree polynomial f such that f can be computed by a $\sum_{n=0}^{\infty} |I| = \sum_{n=0}^{\infty} I_n$ circuit of size O(n);

[Dutta-Saxena FOCS'22]

Fix any constant $k \ge 1$. There is an explicit n-variate and < n degree polynomial f such that f can be computed by a $\sum_{i=1}^{\lfloor k+1\rfloor} \prod \Sigma_i$ circuit of size O(n); but, f requires $2^{\Omega(n)}$ -size $\overline{\Sigma_i^{\lfloor k\rfloor}} \prod \Sigma_i$ circuits.

[Dutta-Saxena FOCS'22]

Fix any constant $k \ge 1$. There is an explicit n-variate and < n degree polynomial f such that f can be computed by a $\sum_{k=1}^{n} |I| \sum_{k=1}^{n} |I$

□ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-d polynomial on n = 3d-variables.

[Dutta-Saxena FOCS'22]

- □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-d polynomial on n = 3d-variables.
- \square P_d has trivial fanin-3 depth-3 circuit (and hence in border too!).

[Dutta-Saxena FOCS'22]

- □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-d polynomial on n = 3d-variables.
- \square P_d has trivial fanin-3 depth-3 circuit (and hence in border too!).
- \square We will show that P_d requires $2^{\Omega(d)}$ -size $\Sigma^{[2]}\Pi\Sigma$ circuits.

[Dutta-Saxena FOCS'22]

- □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-d polynomial on n = 3d-variables.
- \square P_d has trivial fanin-3 depth-3 circuit (and hence in border too!).
- \square We will show that P_d requires $2^{\Omega(d)}$ -size $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits.
- □ Kumar's proof establishes that P_d has a $2^{O(d)}$ -size $\Sigma^{[2]}\Pi\Sigma$ circuits, showing *optimality*!

[Dutta-Saxena FOCS'22]

- □ Fix k = 2. Define the polynomial $P_d := x_1 \cdots x_d + y_1 \cdots y_d + z_1 \cdots z_d$, a degree-d polynomial on n = 3d-variables.
- \square P_d has trivial fanin-3 depth-3 circuit (and hence in border too!).
- \square We will show that P_d requires $2^{\Omega(d)}$ -size $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits.
- □ Kumar's proof establishes that P_d has a $2^{O(d)}$ -size $\overline{\Sigma^{[2]}\Pi\Sigma}$ circuits, showing *optimality*!
- ☐ Classical is about *impossibility*. While, border is about *optimality*.

Conclusion

 $\hfill \square$ ROABP core gives us many PIT results (see our two papers).

- ☐ ROABP core gives us many PIT results (see our two papers).
- \square Can we show $\overline{\Sigma^{[k]}\Pi\Sigma} \subseteq \Sigma\Pi\Sigma$ (resp. VF)?

- ☐ ROABP core gives us many PIT results (see our two papers).
- \square Can we show $\overline{\Sigma^{[k]}\Pi\Sigma} \subseteq \Sigma\Pi\Sigma$ (resp. VF)?
- ☐ What is the border of the *sum of two* products of univariate matrices (ROABPs)?

- ☐ ROABP core gives us many PIT results (see our two papers).
- \square Can we show $\overline{\Sigma^{[k]}\Pi\Sigma} \subseteq \Sigma\Pi\Sigma$ (resp. VF)?
- ☐ What is the border of the *sum of two* products of univariate matrices (ROABPs)?
- ☐ Is the border of VP explicit; i.e. in VNP?

□ ROABP core gives us many PIT results (see our two papers).
 □ Can we show Σ[k]ΠΣ ⊆ ΣΠΣ (resp. VF)?
 □ What is the border of the *sum of two* products of univariate matrices (ROABPs)?
 □ Is the border of VP explicit; i.e. in VNP?
 □ Are degree-s factors of a size-s polynomial explicit?

□ ROABP core gives us many PIT results (see our two papers).
 □ Can we show Σ[k]ΠΣ ⊆ ΣΠΣ (resp. VF)?
 □ What is the border of the *sum of two* products of univariate matrices (ROABPs)?
 □ Is the border of VP explicit; i.e. in VNP?
 □ Are degree-s factors of a size-s polynomial explicit?

Thank you! Questions?