Identities & Sylvester-Gallai Configurations

Nitin Saxena (Hausdorff Center for Mathematics, Bonn)

Joint work with
C. Seshadhri (IBM Almaden Research Center, San Jose)
The problem of PIT

- Polynomial identity testing: given a polynomial $p(x_1, x_2, \ldots, x_n)$ over F, is it identically zero?
 - All coefficients of $p(x_1, \ldots, x_n)$ are zero.

- $(x+y)^2 - x^2 - y^2 - 2xy$ is identically zero.
- So is: $(a^2+b^2+c^2+d^2)(A^2+B^2+C^2+D^2)$
 - $- (aA+bB+cC+dD)^2 - (aB-bA+cD-dC)^2$
 - $- (aC-bD-cA+dB)^2 - (aD-dA+bC-cB)^2$

- $x(x-1)$ is NOT identically zero over F_2.
Circuits: Blackbox or not

- **Non blackbox**: can analyze structure of C
- **Blackbox**: cannot look *inside* C
 - Feed values and see what you get

We want an algorithm whose running time is polynomial in size of the circuit.

\[p(x_1, \ldots, x_n) + x_1 x_2 x_3 + \alpha p_1 + \beta p_2 + \gamma p_3 \]
A simple, randomized test

- [Schwartz80, Zippel79] This is a randomized blackbox poly-time algorithm.

- (Big) open problem: Find a deterministic polynomial time algorithm.
 - We would really like a black box algorithm

If output is 0, we guess it is identity.
Otherwise, we know it isn’t.
Why?

- Come on, it’s an interesting mathematical problem. Do you need a further reason?
- [Impagliazzo Kabanets 03] Derandomization implies circuit lower bounds for permanent
- [AKS] Primality Testing ; $(x + a)^n - x^n - a = 0 \pmod{n}$
- [L, MVV] Bipartite matching in NC?...
- Many more
What do we do?

If you can't solve a problem, then there is an easier problem you can solve. Find it.

George Pólya 1887-1985
Get shallow results

- Let’s restrict the depth and see what we get
- Depth 2? Non-blackbox trivial!
 - [GK87, BOT88,…,KS01, A05] Polytime & blackbox
- Depth 3?

\[C = \sum_{i=1}^{k} \prod_{j=1}^{d} L_{ij} = \sum_{i=1}^{k} T_i \]

Sum of products of kd linear forms in n variables
Some good news

- They say...
- [Agrawal Vinay 08] Chasm at Depth 4!
- If you can solve blackbox PIT for depth 4, then you’ve “solved” it all.

- Build the bridge from depth 3 end!
The past...

- A $\Sigma \Pi \Sigma(k,d,n)$ circuit:

- [Dvir Shpilka 05] Non-blackbox $\text{poly}(n)\exp((\log d)^k)$ algorithm.
- [Kayal Saxena 06] Non-blackbox $\text{poly}(n,d^k)$ algorithm.
The past...

A Tale of Three Methods

- [Karnin Shpilka 08] $\text{poly}(n)\exp((\log d)^k)$ algorithm.
- [Saxena Seshadhri 09] $\text{poly}(n)\exp(k^3(\log d)^2)$ algorithm.
- [Kayal Saraf 09] $\text{poly}(n)\exp(k^k\log d)$ algorithm over \mathbb{Q}.

- [Us] $\text{poly}(n)\exp(k^2\log d)$ algorithm over \mathbb{Q}. This almost matches the non-blackbox test!
- [Us] $\text{poly}(n)\exp(k^2(\log d)^2)$ algorithm.
The rank

\[M = \alpha_1 \alpha_2 \cdots \alpha_n \]

\[\text{Rank}(C) = \text{Rank}(M) \]

- Introduced by [DS05]: fundamental property of depth 3 circuits
- [DS] Rank of \textit{simple minimal} identity < \((\log d)^{k-2}\)
 (compare with \(kd\))
- How many independent variables can an identity have?
 - An identity is very constrained, so few degrees of freedom

\[C \equiv \sum_{i=1}^{k} \prod_{j=1}^{d} L_{ij} \]

\[L_{ij} = \sum_{r=1}^{n} \alpha_r x_r \]

n-dim vector over \(F\)
What we did

- Rank of depth 3 (simple minimal) real identity < $3k^2$
 - There is identity with rank k, so this is almost optimal.
 - Over any field, we prove $3k^2(\log 2d)$.
- Therefore, [KS] gives det. blackbox $\exp(k^2\log d)$ test.

- We develop powerful techniques to study depth 3 circuits.
 - Probably more interesting/important than result.
- Every depth 3 identity contains a $(k-1)$-dim Sylvester-Gallai Configuration (SG_{k-1} config.).
To be simple and minimal

- Depth-3: $C = T_1 + T_2 + \ldots + T_k$
- **Simplicity**: no common (linear) factor for all T_r’s
 - $x_1 x_2 \ldots x_n - x_1 x_2 \ldots x_n$ (Rank = n)

- **Minimality**: no subset of T_r’s is identity
 - $x_1 x_2 \ldots x_n z_1 - x_1 x_2 \ldots x_n z_1 + y_1 y_2 \ldots y_n z_2 - y_1 y_2 \ldots y_n z_2$ (Rank = $2n+2$)

- **Strong minimality**: T_1, \ldots, T_{k-1} are linearly independent.
Theorem: If $S \subset \mathbb{R}^2$ is a finite set whose every two points lie on a line passing through a third point. Then S is collinear.

This is a fundamental property of the field \mathbb{R}.

It is not true for \mathbb{C}^2.

We abstract the following concepts out,

SG_k-closed: $S \subset F^n$ such that for all linearly independent $v_1, ..., v_k \in S$, there is another point of S in $\text{span}(v_1, ..., v_k)$.

$SG_k(F,m)$: the largest rank of a SG_k-closed subset S ($|S| \leq m$) of F^n.

Rephrasing SG Theorem: $SG_2(\mathbb{R},m) \leq 2$, for all m.

Meet Sylvester-Gallai (SG_2 Config.)
More Examples of SG_2 Config.

- **SG_2 Config. in \mathbb{R}^n of rank 2**

- **SG_2 Config. in \mathbb{C}^n of rank 3**

- **SG_2 Config. in \mathbb{F}_2^n of rank 3**

- Points in \mathbb{C}^n and \mathbb{F}_2^n are represented as tuples $(x_1 : x_2 : \cdots : x_n)$.
Higher dim Sylvester-Gallai

- Theorem [Hansen65, BE67]: \(\text{SG}_k(R,m) \leq 2(k-1) \).

- We feel that for any field \(F \) of zero char:
 \[\text{SG}_k(F,m) = O(k). \]

- \(S := \mathbb{F}_p^r \) is \(\text{SG}_2 \)-closed. Thus \(\text{SG}_2(F_p,m) = \Omega(\log_p m) \).

- We prove for any field: \(\text{SG}_k(F,m) = O(k \log m) \).
Our Structure Theorem

- The rank of a simple, strongly minimal $\Sigma\Pi\Sigma(k,d)$ identity is: $SG_{k-1}(F,d) + 2k^2$.

- Let the identity be $C=T_1+...+T_k$. We show that forms in T_i yield a SG_{k-1}-configuration in F^n.

- Meta-Theorem: $\Sigma\Pi\Sigma(k)$ identity is an SG_{k-1}-configuration.

- From SG Theorems this gives rank bounds of:
 - $O(k^2)$ over reals.
 - $O(k^2\log d)$ over all fields.
Where's the Beef? k=3.

- $C = T_1 + T_2 + T_3 = \prod L_i + \prod M_j + \prod N_k = 0$
- [AB99,AKS02,KS06] Go modulo!

\[\prod L_i + \prod M_j + \prod N_k = 0 \]

Vanishes! \[\prod L_i + \prod M_j + \prod N_k = 0 \pmod{L_1} \]

\[\prod M_j = - \prod N_k \pmod{L_1} \]

- By unique factorization, there is a bijection between M’s and N’s (they are same up to constants)
- This is the L_1 matching.
Matching all the Gates

\[M_j \equiv \alpha N_k \pmod{L_1} \]
\[M_j = \alpha N_k + \beta L_1 \]

and

\[L_j \equiv \alpha' N_k \pmod{M_1} \]
\[L_j = \alpha' N_k + \beta' M_1 \]
We get to the Nucleus

Forms in nucleus are in \(\text{span}(L_1, M_1) =: K \).

Forms in non-nucleus are matched mod \(K \).
Proof Idea

- Pick \(M_i, M_j \) non-similar mod \(K \).
- \(T_1 \equiv 0 \) (mod \(M_i, N_h \))
- There exists \(L \) in \(T_1 \) s.t. \(L = \alpha M_i + \beta N_h \)
- Its image \(M \) satisfies : \(M \) (mod \(K \)) \(\in \) span(\(M_i, M_j \))
Proof Idea (Contd.)

- \(M \ (\text{mod} \ K) \in \text{span}(M_i, M_j) \)
- The non-nucleus part of \(T_i \) is \(\text{SG}_2 \)-closed (mod \(K \)).
- Explicitly, the map \((\sum \alpha_i x_i) \mapsto (\alpha_1, \ldots, \alpha_n) \) converts linear forms to a \(\text{SG}_2 \)-closed subset of \(F^n/K \).
The non-nucleus part of T_i is SG_2-closed (mod K).

Rank of this identity $\leq 2 + SG_2(F,d)$

- Over reals, $\leq 2 + 2 = 4$
- Any field, $\leq 2 + \log d = O(\log d)$
The non-nucleus part of T_i is SG_2-closed (mod K).

By degree comparison, the green part forms a subidentity.

The nucleus part is a simple minimal subidentity.
Larger k: can’t induct easily

- $C = T_1 + T_2 + T_3 + T_4$
- $L \in T_1$. So how about $C \pmod{L}$? Top fanin is now 3.
- But $C \pmod{L}$ may not be simple or minimal any more!
 - $x_1x_2 + (x_3-x_1)x_2 + (x_4-x_2)x_3 - x_3x_4$
 - Going ($\pmod{x_1}$), we get $x_2x_3 + (x_4-x_2)x_3 - x_3x_4$
The ideal way to Matchings

- We'll avoid induction and attack directly!
- We saw the power of matchings for $k=3$
- We extend matchings to ideal matchings for all k
 - Looking at C modulo an ideal, not just a linear form
Ideal matchings

- $C \pmod{L_1, L_2}$ or $C \pmod{I}$
 - I is ideal $<L_1, L_2>$

- $T_3 + T_4 = 0 \pmod{I}$
 - By unique factorization, we get I-matching
Life isn’t ideal

- C (mod L_1, L_2) has no terms (i.e. we get 0=0)
- How can we get a matching?
- We need L_1, L_2 s.t. T_3 (mod L_1, L_2) is nonzero.
The Right Path

- We need L_1, L_2 s.t. $T_3 \pmod{L_1, L_2}$ is nonzero.
- By minimality of C, $T_1 + T_2 + T_3 \neq 0$.
- A generalization of [KS06]'s non-blackbox ideas ensures the existence of a path $\{L_1, L_2\}$ not hitting T_3.
- Now $T_3 + T_4 = 0 \pmod{L_1, L_2}$ is nontrivial and matches.
Summing Up...

- The non-nucleus part of T_i is SG_3-closed (mod K).
- Rank of this identity $\leq (rk K) + SG_3(F,d)$
- This idea (with a lot of work!) gives $\leq 2k^2 + SG_{k-1}(F,d)$
- The nucleus part is a simple, strongly minimal subidentity.
In conclusion…

- Interesting matching & geometric structures in depth 3 identities.
 - Combinatorial view of algebraic properties

- Every depth 3 identity hides a nucleus subidentity.
 - Can we characterize the nucleus?

- $SG_k(F,d)$ is a fundamental property of fields.
 - Is $SG_k(F,d)=O(k)$ for fields of zero char. (large char.)?
A Saxena-Seshadhri paper