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Abstract. We observe that proving lower bounds for the sum of set-
multilinear Algebraic Branching Programs (smABPs) in the low-degree
regime implies Valiant’s conjecture (i.e. it implies general ABP lower
bounds). Using this connection, we obtain lower bounds for the sum of
small-sized general ABPs. In particular, we show that the sum of poly(n)
ABPs, each of size (:= number of vertices) (nd)o(1), cannot compute the
family of Iterated Matrix Multiplication polynomials IMMn,d for any
arbitrary function d = d(n).
We also give a dual version of our result for the sum of low-variate
ROABPs (read-once oblivious ABPs) and read-k oblivious ABPs. Both
smABP and ROABP are very well-studied ‘simple’ models; our work
puts them at the forefront of understanding Valiant’s conjecture.
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1 Introduction

In a pioneering work, Leslie Valiant proposed [35] an algebraic framework to
study efficient ways of computing multivariate polynomials. The computational
model was that of algebraic circuits – layered directed acyclic graphs with ver-
tices in intermediate layers alternately labeled by addition (+) or multiplication
(×), and leaves at the bottom layer labeled with variables x1, . . . , xn or con-
stants of the underlying field F. The circuit inductively computes a multivariate
polynomial f ∈ F[x1, . . . , xn]. Each vertex (gate) performs its corresponding op-
eration (+ or ×) on the inputs it receives until finally, a designated output vertex
computes the polynomial. A measure of efficiency is the size of the circuit, that
is, the number of vertices in the graph. The depth of the circuit is the length of
the longest path from the input leaves to the output vertex and measures the
amount of parallelism in the circuit. For a general survey of algebraic complexity,
see [7,32,23].

Valiant hypothesized that there are explicit polynomials that do not have
small algebraic circuits computing them, which we now call the VP ̸= VNP
hypothesis. As algebraic circuits are non-uniform models of computation, com-
puting a polynomial more precisely refers to computing a family {fn}n≥0 of
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polynomials, one for each n. The class VP consists of families of polynomials
whose degree and circuit size are both polynomially bounded in the number of
variables n (denoted poly(n) from now on). On the other hand, if a polynomial
has degree poly(n) and the coefficient of any given monomial can be computed
in #P/poly, then the polynomial is in VNP 1. It is not difficult to see that
VP ⊆ VNP.

Much like Cook’s original P vs. NP hypothesis [10] in the boolean world,
very little is known in general about Valiant’s hypothesis. A result of Strassen
[33] and Baur-Strassen [5] gives a lower bound of Ω(n log n) against general
circuits. A slightly better lower bound of Ω(n2) is known if the directed acyclic
graph underlying the circuit is a tree – also known as an Algebraic Formula.
All polynomials that have formulas of size poly(n) form the class VF. We refer
the interested reader to the excellent book of Bürgisser [6] for more details on
Valiant’s hypothesis and connections to the Boolean world.

Intermediate in power, and in between circuits and formulas lie Algebraic
Branching Programs (ABPs). An ABP is a layered directed acyclic graph with
edges labeled by affine linear forms. There is a source vertex (s) of in-degree 0
in the first layer and a sink vertex (t) of out-degree 0 in the last layer, and edges
connect vertices in adjacent layers. The maximum number of vertices in any
layer is the width of the ABP and the number of layers is its length. Each path
from s to t computes a polynomial that is the product of the edge labels along
the path. The polynomial computed by the ABP is the sum of the polynomials
computed by all the s⇝ t paths.

An ABP of length ℓ with ni vertices in the i-th layer can be written as a
product of ℓ−1 matrices

∏ℓ−1
i=1 Mi in a natural way: the matrixMi is of dimension

ni ×ni+1 and contains the edge labels between layers i and i+1 as entries. The
size of the ABP is the total number of vertices in the graph (or equivalently, the
sum of the number of rows of the matrices in matrix representation). Similar to
circuits and formulas, the class of polynomials that have ABPs of size poly(n)
is denoted VBP.

It is known that VF ⊆ VBP ⊆ VP, and conjectured that all the inclusions
are strict. Valiant’s hypothesis is considered more generally as the problem of
separating any of the classes VF,VBP or VP from VNP. Unfortunately (although
probably not surprisingly), general lower bounds in any of these models is hard
to come by. In a recent work, Chatterjee, Kumar, She and Volk [8] proved a
lower bound of Ω(n2) for ABPs. Evidently, the state of affairs is quite similar
to that of circuits. In fact, the polynomial

∑n
i=1 x

n
i used in the lower bound is

the same one that Baur and Strassen [5] used for their circuit lower bound.

In this work, we will mainly be interested in set-multilinear polynomials, of
which the Iterated Matrix Multiplication polynomial is an excellent example.
The polynomial IMMn,d is defined on N = dn2 variables. The variable set X
is partitioned into d sets (X1, . . . , Xd) of n2 variables each (viewed as n × n

1 This is simply a sufficient condition for a polynomial to be in VNP, but is enough
for our purpose. A precise definition can be found in [32, Definition 1.3]
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matrices). The polynomial is defined as the (1, 1)-th entry of the matrix product
X1 ·X2 · · ·Xd :

IMMn,d =


 x1,1 . . . x1,n

...
. . .

...
x1,n2−n+1 . . . x1,n2

 · · · · · ·

 xd,1 . . . xd,n

...
. . .

...
xd,n2−n+1 . . . xd,n2




(1,1)

.

As all monomials are of the same degree d, the polynomial is homogeneous.
It is also multilinear since every variable has individual degree at most 1. Addi-
tionally, every monomial has exactly one variable from each of the d sets of the
partition. Thus it is set-multilinear. Henceforth, by a set-multilinear polynomial
Pn,d over the variable set X = X1 ⊔ . . . ⊔Xd (with |Xi| ≤ n for all i ∈ [d]), we
mean a homogeneous multilinear polynomial with the following property: every
monomial m (seen as a set) in Pn,d satisfies |m ∩Xi| = 1 for all i ∈ [d].

1.1 Our Results

Our first result is a lower bound against the sum of general small-size algebraic
branching programs.

Theorem 1 (
∑

ABP lower bound). Let d < no(1). The polynomial IMMn,d

cannot be computed by the sum of poly(n, d) ABPs, each of size (nd)o(1).

Note that the polynomial IMMn,d has an ABP of size O(nd). The above
theorem shows that reducing the ABP size slightly, suddenly requires a super-
polynomial sum of ABPs to compute the polynomial.

Remark 1. When d > no(1), ABPs of size (nd)o(1) cannot even produce mono-
mials of degree d. Hence, the theorem statement is obtained trivially (in general,
a lower bound of d is trivial for ABPs). But when d < no(1), the model is quite
powerful. In fact, for d < no(1), the power sum polynomial

∑n
i=1 x

d
i , that was

used in previous ABP lower bounds, can be computed efficiently using a sum of
n ABPs, each of size (nd)o(1).

Note that a lower bound of n is not trivial for ABPs (unlike circuits and
formulas). Moreover, each edge label can be a general affine linear form, allowing
a single path to generate exponentially many monomials. Notwithstanding that,
ABPs of size (nd)o(1) are still an incomplete model of computation. Nevertheless,
the sum of such ABPs is a complete model – every polynomial of degree less than
no(1) can be written as a (exponential) sum of width-1 ABPs (monomials).

The lower bound of Theorem 1 also holds if we replace IMM with an appro-
priate polynomial from the family of Nisan-Wigderson design-based polynomials
(see Section B.2).

Our next result is a reformulation of Valiant’s conjecture in terms of a dif-
ferent model: the sum of set-multilinear ABPs (smABPs) on the set of variables
X = X1⊔ . . .⊔Xd. An smABP in the natural order is a (d+1) layered ABP with
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edges between layers i and i+ 1 labeled by linear forms in Xi. More generally,
for a permutation π ∈ Sd of the variable sets, we say that an smABP is in the
order π if the edges between i-th and (i+1)-th layer are labeled by linear forms
in Xπ(i)

2.
We denote by

∑
smABP the sum of set-multilinear ABPs, each in a possi-

bly different order. The width of a
∑

smABP is the sum of the widths of the
constituent smABPs.

We show that in the low-degree regime, superpolynomial lower bounds against∑
smABP imply superpolynomial ABP lower bounds.

Theorem 2 (Hardness bootstrapping). Let n, d be integers such that
d = O(log n/ log log n). Let Pn,d be a set-multilinear polynomial in VNP of de-
gree d. If Pn,d cannot be computed by a

∑
smABP of width poly(n), then

VBP ̸= VNP.

The above theorem shows that the sum of set-multilinear ABPs, which looks
quite restrictive, is surprisingly powerful. This is a recurring theme in algebraic
complexity. Interestingly, analogous reductions to the set-multilinear case were
known for formulas[27, Theorem 3.1] and circuits[25, Lemma 2.11]. A series of
works [36,2,18,34,15] on reducing the depth of algebraic circuits culminated in
the rather surprising fact that good enough lower bounds for depth-3 circuits
imply general circuit lower bounds. The above theorem is in a similar vein. The
model of

∑
smABP is particularly appealing to study since smABPs are one of

the most well-understood objects in algebraic complexity.
Recently, [21] proved near-optimal lower bounds against set-multilinear for-

mulas for a polynomial in VBP. Surprisingly, if the polynomial were computable
by an smABP, we would obtain general formula lower bounds. This further il-
lustrates the need to study smABPs.

Non-commuting matrices make it powerful.

Note that if the matrices in the smABP were commutative, we can treat
∑

smABP
as a single smABP, against which we know how to prove lower bounds (see Sec-
tion 1.2). So in order to lift the lower bound to VNP, it is essential that we
understand the sum of smABPs with non-commuting matrices (see Section 1.3
for a detailed discussion).

Arbitrarily low degree suffices.

The low-degree regime has recently gained a lot of attention. In a breakthrough
work, Limaye Srinivasan and Tavenas [22] showed how to prove superpolynomial
lower bounds for constant-depth set-multilinear formulas when the degree is
small (set-multilinear lower bounds against arbitrary depth were known before

2 This definition differs slightly from that of Forbes [12] as it does not allow affine
linear forms as edge labels. We use this definition as the ABPs we encounter are of
this more restricted form and proving lower bounds for them is sufficient
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[25,26,28], but degenerated to trivial bounds when the degree was small). They
were able to then escalate the low-degree, set-multilinear lower bounds to general
constant-depth circuit lower bounds. The theorem above shows that the low-
degree regime can be helpful in proving lower bounds for ABPs as well.

A spectrum of hardness escalation

We also give a smooth generalization of Theorem 2 using more general versions
of both set-multilinear polynomials and smABPs. The variable set is partitioned
as before: X = X1 ⊔ . . . ⊔Xd with |Xi| ≤ n for all i.

A polynomial g is called set-multi -k-ic with respect to X if every monomial
of g has exactly k variables (with multiplicity) from each of the d sets. That is,
for a monomial m (seen as a multiset) in the support of g, |m ∩Xi| = k. When
k = 1, the polynomial g is set-multilinear.

We call an ABP of length kd a set-multi-k-ic ABP (denoted sm(k)ABP) if
every layer has edges labeled by linear forms from exactly one of the sets Xi,
and there are exactly k layers corresponding to each Xi. As a special case, an
sm(1)ABP is just a set-multilinear ABP as defined before.

Theorem 3 (Hardness bootstrapping spectrum). Let n, d, k be integers
such that min(dkd, (kd)d) = poly(n), and let Pn,d,k be a set-multi-k-ic polynomial
in VNP of degree kd. If Pn,d,k cannot be computed by a

∑
sm(k)ABP of width

poly(n), then VBP ̸= VNP.

Remark 2. We make the following remarks.

– Theorem 2 is an immediate consequence of Theorem 3 when k = 1.
– The above theorem gives more flexibility with the degree of the hard polyno-

mial. For example, if k = d = O(log n/ log log n), the degree of the polyno-
mial we are allowed is O(log2 n/(log log n)2). In contrast, Theorem 2 could
only work when the degree is O(log n/ log log n).

The set-multi-k-ic ABP is inspired from the well-studied multi-k-ic depth-
restricted circuits and formulas. Kayal and Saha [17] initiated the study on
these models and obtained exponential lower bounds when k is small. Similar
lower bounds can be obtained for set-multi-k-ic ABP when k is small (refer
remark following Corollary 2). We encourage readers to refer [29, Chapter 14]
and references therein for a comprehensive discussion.

1.2 The sum of ROABPs perspective: the arbitrarily low variate
case

One can also view Theorem 2 through the lens of another well-studied model in
the literature, first defined by Forbes and Shpilka [11]. An algebraic branching
program over the variables (x1, . . . , xn) is said to be oblivious if, for every layer,
all the edge labels are univariate polynomials in a single variable. It is further
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called a read-once oblivious ABP (or a ROABP) if every variable appears in at
most one layer.

A ROABP in the natural order is n+1 layered ABP where the edges between
layers i and i + 1 are labeled by univariate polynomials in xi of degree d. If,
instead, the labels were univariate polynomials in xπ(i) for some permutation
π ∈ Sd of the variables, then we say that the ROABP is in the order π.

The computation that a ROABP (or equivalently, an smABP) performs is
essentially non-commutative since the variables along a path get multiplied in
the same order π as that of the ROABP (smABP). Nisan [24] introduced the
powerful technique of using spaces of partial derivatives to study lower bound
questions in non-commutative models. This technique can be used to calculate
the exact width of the ROABP computing a polynomial.

Following our definition for smABPs, we denote by
∑

RO the sum of
ROABPs, each possibly in a different order. The width of a

∑
RO is the sum

of the widths of the constituent ROABPs. A version of Theorem 2 can also be
stated for this model (proved in Section A). In contrast to the case of smABPs,
we will be interested in the dual low-variate regime.

Corollary 1 (Low variate
∑

RO). Let n, d be integers such that
n = O(log d/ log log d). Let f ∈ VNP be a polynomial on n variables of indi-
vidual degree d. If f cannot be computed by a

∑
RO of width poly(d), then

VBP ̸= VNP.

The low-variate regime has also recently been shown to be extremely im-
portant. The Polynomial Identity Testing (PIT) problem asks to efficiently test
whether a polynomial (given as an algebraic circuit, for example) is identically
zero. In the black-box setting, we are only allowed to evaluate the polynomial
(circuit) at various points. Hence, PIT algorithms are equivalent to the con-
struction of hitting sets – a collection of points that witness the (non)zeroness
of the polynomial computed by the circuit (see [30,31] for a survey of PIT and
techniques used).

Recently, several surprising results [1,20,14] essentially conclude that hitting
sets for circuits computing extremely low-variate polynomials can be “boot-
strapped” to obtain hitting sets for general circuits. See the survey of Kumar
and Saptharishi [19] for an exposition of the ideas involved.

We now give a corollary of Theorem 3 (see Section A for the proof) by
a statement analogous to Corollary 1. An oblivious ABP is said to be read -k
if each variable xi appears in at most k layers. We denote the sum of read -k
oblivious ABPs as

∑
R(k)O. Once again, the width of a

∑
R(k)O is the sum of

the widths of the constituent branching programs.

Corollary 2. Let n, d, k be integers such that min(nkn, (kn)n) = poly(d). Let
f ∈ VNP be a polynomial on n variables of individual degree d. If f cannot be
computed by a

∑
R(k)O of width poly(d), then VBP ̸= VNP.

Read -k oblivious ABPs were studied in [3] as a natural generalisation of
ROABPs. They prove a lower bound of exp(n/kO(k)) for a single read -k oblivious
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ABP. It remains open to improve this result to prove non-trivial lower bounds
when k is large.

1.3 Proof techniques and previous work

Simulating ABPs using sum of smABPs Unlike the boolean world, both the
degree d of the polynomial, and the number of variables n are important param-
eters in algebraic complexity. Often times, it is reasonable and useful to impose
restrictions on one of them. Even in the definitions VP and VNP, we require that
the degree d be restricted by a polynomial in n (see [13] for more discussion on
the motivation behind this choice). Further restrictions on the degree help in
proving better structural results which would otherwise be prohibitively costly
to perform.

In order to prove Theorem 2, we perform a sequence of structural transfor-
mations to the algebraic branching program to obtain a

∑
smABP. We first

homogenize the ABP (Lemma 2), i.e., we alter the ABP so that every vertex
in the ABP computes a homogeneous polynomial. In addition, we will ensure
that the ABP has d layers and all the edge labels are linear forms. The homog-
enization of ABPs to this form was folklore. Subsequently, we set-multilinearize
the branching program (Lemma 1). This step is only efficient in the low-degree
regime since what we obtain is a sum of dO(d) set-multilinear ABPs.

With the reduction in place, superpolynomial lower bounds for
∑

smABP
imply the same for ABPs, albeit in the low-degree regime. The proof of Theorem
3 is similar and is detailed in Section A.

Lower bounds for the sum of ABPs Using Nisan’s characterization [24]
mentioned before, we can prove exponential lower bounds against smABPs
(ROABPs), but their sums have resisted attempts at strong lower bounds since
the characterization does not extend to the sum. The best known lower bound is
due to Arvind and Raja [4] who proved that, in any sum of k ROABPs comput-
ing the Permanent polynomial Pern =

∑
π∈Sn

∏n
i=1 xi,π(i), at least one of them

must have size 2Ω(n/k). Notice that if we want to prove a superpolynomial lower
bound of nΩ(logn) (say), then the number of ROABPs in the sum can only be
about O(n/ log2 n).

Our proof of the
∑

ABP lower bound (Theorem 1) uses the implicit reduction
of Theorem 2 to

∑
smABP. To prove lower bounds for the latter model, we use

the partial derivative method, introduced in the highly influential work of Nisan
and Wigderson [25]. We show that the partial derivative measure µ(·) is large
for our hard polynomial but small for the model. In fact, a majority of the lower
bounds in algebraic complexity (including the Arvind–Raja bound described
above) use modifications and extensions of this measure. For a comprehensive
survey of lower bounds and the use of partial derivative measure in algebraic
complexity, see [9,29].

Consider first the problem of proving lower bounds for
∑

smABP with no
restriction. A major impediment to using Pern as the hard polynomial is its
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degree n, which is polynomially related to the number of variables n2, making
it infeasible to handle sums that are exponentially large in the degree. Instead,
we work with IMMn,d, which gives us more flexibility in terms of independently
choosing n and d. Unfortunately, this choice creates a two-fold problem. The
fundamental one is that IMMn,d has a small smABP. So we can never prove a
superpolynomial lower bound for even a single poly(n, d) sized smABP (let alone
their sum).

One might try to avoid this by choosing a different hard polynomial that
gives similar flexibility, perhaps something from the family of Nisan-Wigderson
design-based polynomials. But in fact, the complexity measure µ is also maximal
for IMMn,d. Hence, the partial derivative method cannot be used to prove lower
bounds against any model that efficiently computes IMMn,d. Be that as it may,
it might still be possible to use the same technique to prove lower bounds for
restrictions of the model. We are able to do this when the widths of the smABPs
are small. It also enables us to handle extremely large sums of smABPs (including
those that occur from considering sums of multiple ABPs). The recent low-depth
circuit lower bound of LST [22] does something very similar in spirit. Although
IMMn,d can be computed efficiently using depth O(log d) circuits, they were able
to use (a slight but ingenious modification of) the partial derivative method to
prove superpolynomial lower bounds for constant-depth circuits.

It is worth recalling that the techniques we just described work only in the
low-degree regime, since our reductions are only efficient if the degree is very
small. To handle higher degrees, we note that IMMn,d′ with d′ small can be
obtained as a set-multilinear restriction of IMMn,d. Therefore, our lower bounds
translate to higher degrees to finally give superpolynomial lower bounds against
sums of small-sized general ABPs.

2 Hardness Bootstrapping Spectrum

We begin by showing that in the low-degree regime, a small sized ABP can be
simulated by a

∑
smABP of small width. This is very much in the spirit of the

set-multilinearization result of Limaye, Srinivasan and Tavenas ([22], Proposition
9) for small-depth circuits.

Lemma 1 (ABP set-multilinearization). Let Pn,d be a polynomial of degree
d, set-multilinear with respect to the partition X = X1 ⊔ . . .⊔Xd where |Xi| ≤ n
for all i ∈ [d]. If Pn,d can be computed by an ABP of size s, then there is a∑

smABP of width dO(d)s computing the same polynomial.

We immediately obtain

Proof (of Theorem 2). Suppose that the polynomial Pn,d ∈ VNP can be com-
puted by an ABP of size s. By Lemma 1, the polynomial can also be computed
by a

∑
smABP of width dO(d)s. The width of any

∑
smABP computing Pn,d

is, by assumption nω(1).
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Consequently, our desired separation is obtained by first noting that dO(d)s ≥
nω(1), whereby the degree bound d = O(log n/ log logn) implies dO(d) = poly(n)
and hence s ≥ nω(1). ⊓⊔

In order to prove Lemma 1, we first homogenize the ABP (similar to the
approach of Raz [27] and LST [22]). Any vertex v in an ABP can be thought of
as computing a polynomial corresponding to the ‘sub-ABP’ between the source
s and the vertex v. An ABP is homogenous if the polynomial computed at every
vertex is homogenous.

Lemma 2 (ABP homogenization). Let f(x1, . . . , xn) be a degree d polyno-
mial. Suppose that f can be computed by an ABP of size s. Then there is a
homogeneous ABP of width s and length d that can compute the same polyno-
mial. Furthermore, all the edge labels are linear forms.

The above lemma is “folklore” with the proof idea already present in [24].
We provide a proof for completeness (see Appendix C), based on the exposi-
tion of [16]. It turns out that this homogeneous ABP can be efficiently set-
multilinearized.

Proposition 1. Consider a set-multilinear polynomial Pn,d over the variable
set X = X1⊔ . . .⊔Xd (with |Xi| ≤ n for all i ∈ [d]) computed by a homogeneous
ABP of width w and length d. Then, there is a

∑
smABP of width d!w computing

Pn,d.

We postpone the proof to Section A. With the transformation in hand, we
can complete the reduction.

Proof (of Lemma 1). Suppose that the ABP for the polynomial Pn,d has size s.
Using Lemma 2, we can homogenize it to obtain a d-layered homogeneous ABP
of width s. By Proposition 1, we obtain a

∑
smABP of width d!s = dO(d)s. ⊓⊔

The proof of Theorem 3 follows the template of Theorem 2. We begin with
ABP homogenization, followed by a structural transformation to the sum of set-
multi-k-ic ABP. The superpolynomial lower bound assumption on

∑
sm(k)ABP

gives the desired separation result. The following lemma is analogous to Lemma
1.

Lemma 3 (ABPs to
∑

sm(k)ABP). Let P be a set-multi-k-ic polynomial
with respect to the partition X = X1 ⊔ . . . ⊔Xd where |Xi| ≤ n for all i ∈ [d]. If
P can be computed by an ABP of size s, then there is a

∑
sm(k)ABP of width

s ·
(
d+kd

d

)
computing the same polynomial.

We prove the above lemma in Section A. Using it, we complete the proof of
Theorem 3.

Proof (Theorem 3). Suppose that the polynomial Pn,d,k ∈ VNP can be com-
puted by an ABP of size s. Using Lemma 3, it can also be computed by a∑

sm(k)ABP of width s ·
(
d+kd

d

)
. By assumption, the width of any

∑
sm(k)ABP
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computing P is nω(1). We obtain the desired separation s ≥ nω(1) by observing
that:

s ·min(dkd, (kd)d) ≥ s ·
(
d+ kd

d

)
≥ nω(1),

since min(dkd, (kd)d) ≤ poly(n). ⊓⊔

3 Lower Bound for the sum of ABPs

We are now ready to show that in the low degree regime, the Iterated Matrix
Multiplication polynomial IMMn,d cannot be computed even by a polynomially
large sum of ABPs, provided that each of the ABPs is small in size. We begin
by stating a lower bound for

∑
smABP in the low-degree regime. Note that in

this regime, IMM has an smABP of width O(nd). The lemma shows that even
using the sum of multiple smABPs cannot help in reducing the width. We refer
the reader to Section B.1 for details.

Lemma 4. Any
∑

smABP computing the polynomial IMMn,d with
d = O(log n/ log log n), must have width at least nΩ(1).

Suppose we had to prove the lower bound of Theorem 1 for a single ABP
computing IMM. We could then use Lemma 4 above in conjunction with Lemma
1 to conclude the result. But when we are dealing with a sum of ABPs, we need
to be more careful in how we set-multilinearize since the ABPs no longer need
to compute set-multilinear or even homogenous polynomials. We give the details
in Section B.1.

4 Discussion and Open problems

In order to separate VBP from VNP, we will need to prove super-polynomial
lower bounds against

∑
smABP for a polynomial in VNP that we expect to be

hard. As noted above, the IMM polynomial is in VBP (in fact, it is a canonical
way to define the class VBP) and hence cannot be used for such a separation.
Our Theorem 1 also holds for a polynomial from the Nisan-Wigderson family of
design-based polynomials that is in VNP and has been used in many other lower
bound results (details in Section B.2).

A first step toward proving ABP lower bounds would be to prove lower
bounds against the sum of O(n) smABPs in the low degree regime. But the
question is open even in the high-degree regime. Another interesting direction
is to show a reduction from ABPs to the sum of fewer than d! smABPs, with a
possibly super polynomial blow up in the smABP size. This would still lead to
ABP lower bounds if we can prove strongly exponential lower bounds against
the sum of (fewer) smABPs. This question remains open as well.



Small-size ABP lower bounds 11

References

1. Agrawal, M., Ghosh, S., Saxena, N.: Bootstrapping variables in alge-
braic circuits. Proc. Natl. Acad. Sci. USA 116(17), 8107–8118 (2019).
https://doi.org/10.1073/pnas.1901272116, https://doi.org/10.1073/pnas.
1901272116

2. Agrawal, M., Vinay, V.: Arithmetic circuits: A chasm at depth four. In: 2008 49th
Annual IEEE Symposium on Foundations of Computer Science. pp. 67–75 (2008).
https://doi.org/10.1109/FOCS.2008.32

3. Anderson, M., Forbes, M.A., Saptharishi, R., Shpilka, A., Volk, B.L.: Identity
testing and lower bounds for read-k oblivious algebraic branching programs. ACM
Trans. Comput. Theory 10(1), 3:1–3:30 (2018). https://doi.org/10.1145/3170709,
https://doi.org/10.1145/3170709

4. Arvind, V., Raja, S.: Some lower bound results for set-multilinear arith-
metic computations. Chic. J. Theoret. Comput. Sci. pp. Art. 6, 26 (2016).
https://doi.org/10.4086/cjtcs.2016.006, https://doi.org/10.4086/cjtcs.2016.006

5. Baur, W., Strassen, V.: The complexity of partial derivatives. Theoret. Comput.
Sci. 22(3), 317–330 (1983). https://doi.org/10.1016/0304-3975(83)90110-X, https:
//doi.org/10.1016/0304-3975(83)90110-X

6. Bürgisser, P.: Completeness and reduction in algebraic complexity the-
ory, Algorithms and Computation in Mathematics, vol. 7. Springer-Verlag,
Berlin (2000). https://doi.org/10.1007/978-3-662-04179-6, https://doi.org/10.
1007/978-3-662-04179-6

7. Bürgisser, P., Clausen, M., Shokrollahi, M.A.: Algebraic complexity the-
ory, Grundlehren der mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences], vol. 315. Springer-Verlag, Berlin
(1997). https://doi.org/10.1007/978-3-662-03338-8, https://doi.org/10.1007/
978-3-662-03338-8, with the collaboration of Thomas Lickteig

8. Chatterjee, P., Kumar, M., She, A., Volk, B.L.: Quadratic lower bounds for alge-
braic branching programs and formulas. Comput. Complexity 31(2), Paper No. 8,
54 (2022). https://doi.org/10.1007/s00037-022-00223-8, https://doi.org/10.1007/
s00037-022-00223-8

9. Chen, X., Kayal, N., Wigderson, A.: Partial derivatives in arithmetic complexity
and beyond. Found. Trends Theor. Comput. Sci. 6(1-2), front matter, 1–138 (2010).
https://doi.org/10.1561/0400000043, https://doi.org/10.1561/0400000043

10. Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of
the Third Annual ACM Symposium on Theory of Computing. p. 151–158.
STOC ’71, Association for Computing Machinery, New York, NY, USA (1971).
https://doi.org/10.1145/800157.805047, https://doi.org/10.1145/800157.805047

11. Forbes, M.A., Shpilka, A.: Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In: 2013
IEEE 54th Annual Symposium on Foundations of Computer Science—
FOCS 2013, pp. 243–252. IEEE Computer Soc., Los Alamitos, CA (2013).
https://doi.org/10.1109/FOCS.2013.34, https://doi.org/10.1109/FOCS.2013.34

12. Forbes, M.A.: Polynomial Identity Testing of Read-Once Oblivious Algebraic
Branching Programs. ProQuest LLC, Ann Arbor, MI (2014), thesis (Ph.D.)–
Massachusetts Institute of Technology

13. (https://cstheory.stackexchange.com/users/129/joshua grochow), J.G.:
Degree restriction for polynomials in VP. Theoretical Computer Sci-
ence Stack Exchange, https://cstheory.stackexchange.com/q/19268,
uRL:https://cstheory.stackexchange.com/q/19268 (version: 2013-10-03)

https://doi.org/10.1073/pnas.1901272116
https://doi.org/10.1073/pnas.1901272116
https://doi.org/10.1073/pnas.1901272116
https://doi.org/10.1109/FOCS.2008.32
https://doi.org/10.1145/3170709
https://doi.org/10.1145/3170709
https://doi.org/10.4086/cjtcs.2016.006
https://doi.org/10.4086/cjtcs.2016.006
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1007/978-3-662-04179-6
https://doi.org/10.1007/978-3-662-04179-6
https://doi.org/10.1007/978-3-662-04179-6
https://doi.org/10.1007/978-3-662-03338-8
https://doi.org/10.1007/978-3-662-03338-8
https://doi.org/10.1007/978-3-662-03338-8
https://doi.org/10.1007/s00037-022-00223-8
https://doi.org/10.1007/s00037-022-00223-8
https://doi.org/10.1007/s00037-022-00223-8
https://doi.org/10.1561/0400000043
https://doi.org/10.1561/0400000043
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1109/FOCS.2013.34
https://doi.org/10.1109/FOCS.2013.34
https://cstheory.stackexchange.com/q/19268


12 C.S. Bhargav, Prateek Dwivedi and Nitin Saxena

14. Guo, Z., Kumar, M., Saptharishi, R., Solomon, N.: Derandomization
from algebraic hardness. SIAM J. Comput. 51(2), 315–335 (2022).
https://doi.org/10.1137/20M1347395, https://doi.org/10.1137/20M1347395

15. Gupta, A., Kamath, P., Kayal, N., Saptharishi, R.: Arithmetic cir-
cuits: a chasm at depth 3. SIAM J. Comput. 45(3), 1064–1079 (2016).
https://doi.org/10.1137/140957123, https://doi.org/10.1137/140957123

16. Ikenmeyer, C., Landsberg, J.M.: On the complexity of the permanent in various
computational models. Journal of Pure and Applied Algebra 221(12), 2911–2927
(2017). https://doi.org/10.1016/j.jpaa.2017.02.008

17. Kayal, N., Saha, C.: Multi-k-ic depth three circuit lower bound. Theory Comput.
Syst. 61(4), 1237–1251 (2017). https://doi.org/10.1007/S00224-016-9742-9, https:
//doi.org/10.1007/s00224-016-9742-9

18. Koiran, P.: Arithmetic circuits: the chasm at depth four gets wider. Theoret.
Comput. Sci. 448, 56–65 (2012). https://doi.org/10.1016/j.tcs.2012.03.041, https:
//doi.org/10.1016/j.tcs.2012.03.041

19. Kumar, M., Saptharishi, R.: Hardness-randomness tradeoffs for algebraic compu-
tation. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 3(129), 56–87 (2019)

20. Kumar, M., Saptharishi, R., Tengse, A.: Near-optimal bootstrapping of hit-
ting sets for algebraic circuits. In: Proceedings of the Thirtieth Annual ACM-
SIAM Symposium on Discrete Algorithms. pp. 639–646. SIAM, Philadelphia,
PA (2019). https://doi.org/10.1137/1.9781611975482.40, https://doi.org/10.1137/
1.9781611975482.40

21. Kush, D., Saraf, S.: Near-optimal set-multilinear formula lower bounds. In:
38th Computational Complexity Conference, LIPIcs. Leibniz Int. Proc. Inform.,
vol. 264, pp. Art. No. 15, 33. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern
(2023). https://doi.org/10.4230/lipics.ccc.2023.15, https://doi.org/10.4230/lipics.
ccc.2023.15

22. Limaye, N., Srinivasan, S., Tavenas, S.: Superpolynomial lower bounds against low-
depth algebraic circuits. In: 2021 IEEE 62nd Annual Symposium on Foundations of
Computer Science—FOCS 2021, pp. 804–814. IEEE Computer Soc., Los Alamitos,
CA ([2022] ©2022). https://doi.org/10.1109/FOCS52979.2021.00083

23. Mahajan, M.: Algebraic complexity classes. In: Perspectives in computational com-
plexity, Progr. Comput. Sci. Appl. Logic, vol. 26, pp. 51–75. Birkhäuser/Springer,
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Note that since Pn,d is a homogeneous set-multilinear polynomial, the non-
set-multilinear products in this expression can be ignored. The matrices only
contain linear forms, and thus non-set-multilinear products in the above equation
only produce non-set-multilinear monomials. We can ignore any product of the
form (· · ·Mij · · ·Mi′j · · · ) for different i, i′. We can rearrange to obtain

Pn,d =
∑
π∈Sd

d∏
i=1

Miπ(i). (3)

This represents Pn,d as the sum of d! set-multilinear ABPs, each of width
w. ⊓⊔

We now prove the analogous result of Theorem 2 for ROABPs that was stated
earlier.

Corollary 1 (Low variate
∑

RO). Let n, d be integers such that
n = O(log d/ log log d). Let f ∈ VNP be a polynomial on n variables of indi-
vidual degree d. If f cannot be computed by a

∑
RO of width poly(d), then

VBP ̸= VNP.

Proof. Consider the invertible map ϕ : xj
i 7→ xij for the indices i ∈ [n] and

j ∈ [d]. This transforms a ROABP on n variables (x1, . . . , xn) of individual
degree d and order π, to an smABP in the same order that is set-multilinear
with respect to X = X1 ⊔ . . . ⊔Xn with |Xi| ≤ d.

We apply the map ϕ to the
∑

RO computing f . This gives us a
∑

smABP
of the same width that computes a set-multilinear polynomial Qd,n over O(nd)
variables with n = O(log d/ log log d). Since f does not have a

∑
RO of width

poly(d), Qd,n does not have
∑

smABP of width poly(d). Now Theorem 2 gives
us our desired separation. ⊓⊔

We now reduce ABPs to the sum of set-multi-k-ic ABPs.

Lemma 3 (ABPs to
∑

sm(k)ABP). Let P be a set-multi-k-ic polynomial with
respect to the partition X = X1 ⊔ . . . ⊔ Xd where |Xi| ≤ n for all i ∈ [d]. If P
can be computed by an ABP of size s, then there is a

∑
sm(k)ABP of width

s ·
(
d+kd

d

)
computing the same polynomial.

Proof. Using Lemma 2 on the ABP of size s computing the polynomial P of
degree kd, we obtain a kd-layered homogeneous ABP of width s. Consider the
homogeneous ABP in its matrix form:

P =

kd∏
i=1

Mi,

where each Mi is a s×s matrix with entries that are linear forms in the variable
X. Express each Mi as a sum

∑d
j=1 Mij , where for all j, Mij is a s × s matrix
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with entries that are linear forms only in Xj variables. Doing this for every Mi

yields

P =

kd∏
i=1

d∑
j=1

Mij .

Since P is a homogeneous set-multi-k-ic polynomial, products of the form
(· · ·Mij · · ·Mi′j · · · ) for different i, i′ are allowed in the expression, but not more
than k. Formally, we say a tuple j := (j1, . . . , jd) ∈ [d]d is k-unbiased if all the
elements of the tuple repeats exactly k times. Let S be the set of such k-unbiased
tuples. We rearrange to obtain

P =
∑
j∈S

kd∏
i=1

Miji .

Since, |S| ≤
(
d+kd

d

)
, the expression above represents P as sum of

(
d+kd

d

)
set-

multi-k-ic ABP, each of width s. ⊓⊔

Analogous to smABP, hardness escalation of sm(k)ABP has a dual using
read -k oblivious ABPs, as stated in Corollary 2. We will prove it as we did for
Corollary 1.

Corollary 2. Let n, d, k be integers such that min(nkn, (kn)n) = poly(d). Let
f ∈ VNP be a polynomial on n variables of individual degree d. If f cannot be
computed by a

∑
R(k)O of width poly(d), then VBP ̸= VNP.

Proof. Consider the invertible map ϕ : xj
i 7→ xij for the indices i ∈ [n] and

j ∈ [d]. This transforms an R(k)OABP on n variables (x1, . . . , xn) of individual
degree d, to an sm(k)ABP of width d and length kn wrt variable partitioning
X = X1 ⊔ . . . ⊔Xn with |Xi| ≤ d.

We apply the map ϕ to the
∑

R(k)O computing f . This gives us a∑
sm(k)ABP of length kn that computes a set-multi-k-ic polynomial Qd,n,k

over nd variables. Since f does not have a
∑

R(k)O of width poly(d), the trans-
formation induced by the map implies that Qd,n,k does not have

∑
sm(k)ABP

of width poly(d). Moreover min(nkn, (kn)n) = poly(d). Then Theorem 3 gives
us our desired separation. ⊓⊔

B Missing proofs of the lower bound

In this section, we prove the lower bounds for IMMn,d and NWn,d against sum
of small-sized ABPs.

B.1 Lower Bound for IMMn,d

Lemma 4. Any
∑

smABP computing the polynomial IMMn,d with
d = O(log n/ log log n), must have width at least nΩ(1).



16 C.S. Bhargav, Prateek Dwivedi and Nitin Saxena

Proof. Let the maximum width of any smABP in the sum be w. Every path
in a particular set-multilinear ABP is of length d and computes a product of
linear forms. Using the definition of ABP computation, we sum over all paths to
obtain a depth-3 set-multilinear circuit3 of top fanin wd. Doing the same for all
the smABPs, we get a depth-3 set-multilinear circuit of top fan-in at most d!wd.

We now apply the partial derivative method. Split X = X1 ⊔ . . . ⊔Xd into
‘even’ and ‘odd’ parts. That is, we consider the partition X = X(0) ⊔X(1), with

X(0) = X2 ⊔X4 ⊔ . . . ⊔Xk, and X(1) = X1 ⊔X3 ⊔ . . . ⊔Xk′ , (4)

where k = 2⌊d/2⌋ and k′ = 2⌈d/2⌉ − 1.
The partial derivative matrix M(f) for any polynomial f has rows indexed

by set-multilinear monomials in X(0) and columns indexed by set-multilinear
monomials in X(1). Consider now monomials m0,m1 that are set-multilinear
in X(0), X(1) respectively. For any set-multilinear polynomial f , the (m0,m1)
entry in M(f) is the coefficient of the monomial m0 ·m1 in f . It is straightfor-
ward to see that the partial derivative matrix of IMMn,d is of full rank, that is,
rank(M(IMMn,d)) = nd/2.

On the other hand, when we consider a set-multilinear
∑∏∑

circuit, the
linear forms at the bottom have a rank of at most 1 with respect to any partition
ofX. Consequently, taking products of linear forms cannot result in a polynomial
of rank greater than 1. Finally, subadditivity of matrix rank implies that the rank
of the set-multilinear circuit is at most the top-fanin d!wd, giving

nd/2 ≤ d!wd. (5)

Using the fact that d! = O(dd) = poly(n) for our degree regime, it now follows
that w = nΩ(1) and we obtain the

∑
smABP lower bound. ⊓⊔

The resistance of IMM to width reduction even by a
∑

smABP helps us in
proving our main lower bound against a sum of general ABPs.

Proof (of Theorem 1). Suppose that IMMn,d (with d ≤ no(1)) can be written as
the sum of m ABPs of size s = no(1) each4. In the corresponding matrix form,
we have

IMMn,d =

m∑
i=1

ℓ∏
j=1

Mij , (6)

where each Mij is an s× s matrix and ℓ ≤ s.
Consider now the polynomial IMMn,d′ with d′ = O(log n/ log log n). This

polynomial can be obtained as a restriction of IMMn,d by setting all matrices
other than the first d′ in the definition of IMM to the identity matrix In. Cor-
respondingly, Equation 6 now becomes

IMMn,d′ =

m∑
i=1

ℓ∏
j=1

M ′
ij , (7)

3 Every vertex in a set-multilinear circuit computes a set-multilinear polynomial with
respect to a subset of the variable sets.

4 When d > no(1), the lower bound trivially holds.
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where just like in (6), each M ′
ij is an s×s matrix and ℓ ≤ s. Note that any lower

bound on IMMn,d′ also holds for IMMn,d.

We would like to set-multilinearize Equation 7. But we cannot directly apply
Lemma 1 since the ABPs in the sum need not compute a set-multilinear polyno-
mial anymore. In fact, they need not even compute a homogeneous polynomial.
Nevertheless, we are only interested in the homogeneous component of degree
d′ of the polynomials that these ABPs compute, the rest vanishing in the final
sum.

Consider a single ABP A of size s = no(1) from the sum of m ABPs above.
Suppose that it computes a (possibly non-homogenous) polynomial of degree dA.
Using Lemma 2, we can homogenize A to obtain an ABP of length dA and width
s, with linear forms on the edges. Consider now the (possibly empty) set T of
vertices in layer d′ of this ABP that have no outgoing edges. For every v ∈ T , the
sub-ABP between the start vertex s and the vertex v computes a homogeneous
polynomial of degree d′, monomials of which might occur in the final polynomial
IMMn,d′ . Vertices not in T can be safely ignored as they have outgoing edges
with linear forms on them and hence will only contribute to monomials of degree
greater than d′ in the polynomial computed by A.

We now identify all the vertices in T with a single vertex t. Furthermore,
we replace all the possible multi-edges generated between a vertex u in layer
d′ − 1 and the vertex t, with a single edge that has as its edge label the sum
of all the multi-edge labels. This gives us a homogeneous ABP of width s and
length d′ computing the homogeneous component of degree d′ of the polynomial
computed by A. Performing this operation for each of the m ABPs, we can write

IMMn,d′ =

m∑
i=1

d′∏
j=1

M ′
ij , (8)

where the new matrices obtained after homogenization have been renamed to

M ′ for brevity. As before, we split each M ′
ij as a sum

∑d′

k=1 M
′
ijk where for all

k ∈ [d′], M ′
ijk is an s × s matrix with entries that are linear forms in the Xk

variables5.

IMMn,d′ =

m∑
i=1

d′∏
j=1

d′∑
k=1

M ′
ijk, (9)

In the proof of Proposition 1, we were crucially using the fact that the polynomial
computed by the ABP was set-multilinear in order to ignore non-set-multilinear
products. Although this is not the case any longer, we can still ignore all the non-
set-multilinear products since they only produce non-set-multilinear monomials
and the sum of the ABPs is IMMn,d′ , a set-multilinear polynomial. We obtain

5 Alternately, we can directly convert each of the m ABPs to a homogenous depth-3
circuit and use the result of [25] to prove our result.
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an expression similar to Equation 3:

IMMn,d′ =

m∑
i=1

∑
π∈Sd′

d′∏
j=1

M ′
ijπ(j). (10)

That is, IMMn,d′ can be written as the sum of md′! smABPs, each of width s. We
now analyze similarly to the proof of Lemma 4. We convert the

∑
smABP to a

depth 3 set-multilinear circuit of top-fanin at most md′!sd
′
. Using the exact same

partition of X into X(0) and X(1) as in (4), we construct the partial derivative
matrix M for IMMn,d′ and the set-multilinear

∑∏∑
circuit that we obtained.

The rank calculation results in

nd′/2 ≤ md′!sd
′
, (11)

which along with s = no(1) and d′! = poly(n) gives m = nω(1). ⊓⊔

B.2 Lower Bound for NWn,d

We show that the lower bound of Theorem 1 also holds for a polynomial from
the family of Nisan-Wigderson design-based polynomials.

Let Fn be a field of size n (we assume that n is a power of a prime). We will
work in the low-degree regime. For d = O(log n/ log log n), consider the set of
variables X = X1 ⊔ . . . ⊔Xd where Xi = {xij | j ∈ [n]} for all i ∈ [d]. Let F be
the set of all univariate polynomials f(y) ∈ Fn[y] of degree less than d/2. The
polynomial NWn,d on the above nd variables is defined as

NWn,d(X) =
∑
f∈F

∏
i∈[d]

xif(i).

Each monomial encodes a univariate polynomial of degree less than d/2. Con-
sider the partition X = X(0) ⊔X(1) from (4). For a monomial m0 = x2j2 · · ·xkjk

(with all j indices in [n]) that is set-multilinear in X(0), there is a unique “exten-
sion monomial” m1 (set-multilinear in X(1)) such that m0m1 is a monomial of
NWn,d. This is because m0 encodes the evaluations of some univariate polyno-
mial on points {2, . . . , k}. As the length of m0 is at least d/2, interpolating these
values gives a unique polynomial f which then determines the corresponding m1

– obtained by evaluating f on the remaining points {1, 3, . . . , k′} in [d].

This implies that the partial derivative matrix M(NWn,d) of size n
d/2×nd/2

has full rank. The same rank analysis as before on sums of ABPs gives us Theo-
rem 1, but with NWn,d as the hard polynomial. Nevertheless, the techniques used
seem to not be enough to get us any better lower bounds. In particular, the loss
of information in the conversion of an smABP (an essentially non-commutative
model) to a set-multilinear circuit seems to be too large.
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C ABP homogenization

To perform the homogenization of ABPs, we follow the exposition in [16].

Lemma 2 (ABP homogenization). Let f(x1, . . . , xn) be a degree d polyno-
mial. Suppose that f can be computed by an ABP of size s. Then there is a
homogeneous ABP of width s and length d that can compute the same polyno-
mial. Furthermore, all the edge labels are linear forms.

Proof. We first homogenize the ABP in a manner similar to the case of circuits.
For every vertex v (other than the start vertex), we replace it with d+1 vertices
v(0), v(1), . . . , v(d). Each v(i) corresponds to the homogeneous degree i component
of the polynomial computed at v. In the original ABP, say an edge from vertex
u to v is labelled ℓ+ δ (ℓ is a linear form and δ is a constant). We replace it with
2d+ 1 edges. We add edges from u(i) to v(i) with label δ for 0 ≤ i ≤ d. And we
add edges from u(i) to v(i+1) with the label ℓ for 0 ≤ i ≤ d− 1. This ABP now
computes the same polynomial as before and is homogeneous.

vu
ℓ+ δ −→

v(0)

v(1)

...

v(d)

u(0)
δ

ℓ

u(1)
δ

ℓ

...

u(d)

δ

To make the length d, we modify it so that all vertices computing degree i
polynomials are in the layer i (this makes the width s). If some of these vertices
have no incoming edges from layer i− 1, we can safely remove them. Note that
the edges between layers will be linear forms. But we may have edges labeled
with constants between two vertices in the i-th layer due to our reorganisation.

w(i+1)

v(i)

ℓ′

u(i)
ℓ

δ

−→ w(i+1)

v(i)

ℓ′

u(i)
ℓ+ δℓ′

So for every vertex u in the i-th layer, and vertex w in the (i+1)-th layer, we
add an edge with a linear form obtained by the sub-ABP between u and w. Then
we drop all the in-layer edges. This gives a homogeneous ABP of d layers with
all edges being linear forms. Indeed, the edges we added initially were already
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linear forms, and the sub-ABPs all compute linear forms as well since every path
is of length 2 with one edge label being a constant and the other being a linear
form. Note that there are multiple output vertices now. In layer i for example,
the sum of the polynomials computed at vertices with no outgoing edges is the
degree i homogeneous component of f . ⊓⊔
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