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ABSTRACT
We show that for the blackbox polynomial identity testing (PIT)

problem it suffices to study circuits that depend only on the first

extremely few variables. One only need to consider size-s degree-
s circuits that depend on the first log

◦c s variables (where c is a

constant and we are composing c logarithms). Thus, hitting-set

generator (hsg) manifests a bootstrapping behavior— a partial hsg

against very few variables can be efficiently grown to a complete

hsg. A boolean analog, or a pseudorandom generator property of

this type, is unheard-of. Our idea is to use the partial hsg and its an-

nihilator polynomial to efficiently bootstrap the hsg exponentially

wrt variables. This is repeated c times in an efficient way.

Pushing the envelope further we show that: (1) a quadratic-time

blackbox PIT for 6913-variate degree-s size-s polynomials, will lead

to a “near”-complete derandomization of PIT, and (2) a blackbox
PIT for n-variate degree-s size-s circuits in sn

δ
-time, for δ < 1/2,

will lead to a “near”-complete derandomization of PIT (in contrast,

sn-time is trivial).

Our second idea is to study depth-4 circuits that depend on

constantly many variables. We show that a polynomial-time com-

putable, O (s1.49)-degree hsg for trivariate depth-4 circuits boot-

straps to a quasipolynomial time hsg for general poly-degree cir-

cuits, and implies a lower bound that is a bit stronger than Kabanets-

Impagliazzo (STOC 2003).
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1 INTRODUCTION
Polynomial identity testing (PIT) problem is to decide whether a

multivariate polynomial is zero, where the input is given as an alge-

braic circuit. An algebraic circuit over a field F is a layered acyclic

directed graph with one sink node called output node; source nodes

are called input nodes and are labeled by variables or field con-

stants; non-input nodes are labeled by × (multiplication gate) and +

(addition gate) in alternate layers. Sometimes edges may be labeled

by field constants. The computation is defined in a natural way.

The complexity parameters of a circuit are: 1) size- number of edges

and vertices (including the variables), 2) depth- number of layers,

and 3) degree- maximum degree among all polynomials computed

at each node. Note– The degree of the computed polynomial may

be much smaller than the degree of its circuit.

The polynomial computed by a circuit may have, in the worst-

case, an exponential number of monomials compared to its size.

So, by computing the explicit polynomial from input circuit, we

cannot solve PIT problem in polynomial time. However, evaluation

of the polynomial at a point can be done, in time polynomial in the

circuit size, by assigning the values at input nodes. This helps us

to get a polynomial time randomized algorithm for PIT by evalu-

ating the circuit at a random point, since any nonzero polynomial

evaluated at a random point gives a nonzero value with high prob-

ability [13, 64, 70]. However, finding a deterministic polynomial

time algorithm for PIT is a long-standing open question in algebraic

complexity theory. It naturally appears in the algebraic-geometry

approaches to the P,NP question, eg. [27, 28, 51, 52, 55]. The famous

algebraic analog is the VP,VNP question [67]. The PIT problem

has applications both in proving circuit lower bounds [1, 35, 37]

and in algorithm design [4, 16, 44, 53]. For more details on PIT, see

the surveys [61, 62, 65] or review articles [54, 68].

PIT algorithms are of two kinds: 1) whitebox- use the internal
structure of the circuit, and 2) blackbox- only evaluation of the

circuit is allowed at points in a ‘small’ extension K ⊇ F. Blackbox
PIT for a set of polynomials P ⊂ K[x] is equivalent to efficiently

finding points H ⊂ Kn , called a hitting-set, such that for any

nonzero P ∈ P, the set H contains a point at which P , 0. For

us a more functional approach would be convenient. We think

in terms of an n-tuple of univariates f (y) = ( f1 (y), . . . , fn (y)), in
K[y], whose set of evaluations contain an H . Such an f (y) can
be efficiently obtained from a given H (using interpolation) and

vice-versa. Clearly, ifH is a hitting-set for P then P (f (y)) , 0, for

any nonzero P ∈ P. This tuple of univariates is called a hitting-set

generator (hsg) and its degree is maxi∈[n] deg( fi ), which is ≤ |H |.

Our Work.We study the phenomenon of bootstrapping: convert-
ing an hsg for size-s degree-s n-variate circuits to hsg for size-s
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degree-s L(n)-variate circuits with L(n) > n. In the boolean set-

tings, this phenomenon is well understood. The analog of hsg is

pseudo-random generator (prg) that stretches a seed by several bits,

or, the s-extender that stretches n by a single bit. By [56, Sec.2-3] it

is known that an extender for size-s (log s )-variate boolean circuits

can be converted to an optimal prg for size-s circuits with L(n) = 2
n
.

No further “reduction” in number of variables is possible since the

size of a (ϵ log s )-variate circuit can be reduced to < s if ϵ < 1.

The situation is less clear in algebraic settings. On one hand, n-
variate polynomials requiring circuits of size s exist for every n and

s (due to the fact that polynomials can have arbitrarily large degrees

unlike boolean settings where every function is multilinear). On

the other hand, bootstrapping fromO (log s ) variables to s variables
is not studied explicitly in the literature.

We close this gap in knowledge by showing that an hsg for

size-s degree-s (log◦c s )-variate circuit can be efficiently converted

to an hsg for size-s degree-s s-variate circuit; where log
◦c s :=

log · · · (c times ) · · · log s . Furthermore, at the cost of making the

final hsg slightly superpolynomial = sexp ◦ exp(O (log⋆ s ))
, we show

that bootstrapping can be done from even a constant number of

variables! Our results can also be viewed as a powerful amplification
of derandomization: a “slight” derandomization (= sn

δ
time hsg for

size-s degree-s n-variate circuits, for a constant δ < 1/2) implies

“nearly” complete derandomization (= sexp ◦ exp(O (log⋆ s ))
time hsg

for size-s degree-s s-variate circuits). Compare the required sn
δ
-

time PIT with the trivial sn-time PIT.

We prove an additional result for shallow circuits: poly(s)-time

computable and O
(
sn/2/ log2 s

)
degree hsg for size-s n-variate

depth four circuits (for some constant n ≥ 3) implies quasipoly-

nomial time blackbox PIT for size-s degree-s s-variate circuits (&
strong exponential lower bounds). See Theorems 1–4 for more

formal statements.

We see our results as a positive development; since, they reduce

PIT to cases that are special in an unprecedented way. Such special-

case PIT algorithms are waiting to be discovered.

Existing deterministic algorithms solving PIT for restricted classes

have been developed by leveraging insight into their weaknesses.

For example, deterministic PIT algorithms are known for sub-

classes of depth-3 circuits [40, 60, 63], subclasses of depth-4 circuits

[5, 9, 19, 45, 46, 57, 58], read-once algebraic branching programs

(ROABP) and related models [3, 6, 21, 22, 31, 32, 50], certain sym-

bolic determinants [17, 33, 34, 66], as well as non-commutative

models [26, 47, 48]. An equally large number of special models

have been used to prove lower bounds, see for example the ongoing

online survey of Saptharishi [59]. Also, blackbox PIT relates to

conjectures that bar certain algebraic circuit lower bound methods

[24].

Our Notation. [n] refers to {1,2, . . . ,n}. Logarithms are wrt base 2.

Iterated logarithm log
⋆ s is the least number of iterated applications

of log that gives a result ≤ 1. When we say that a circuit is of size-s
(resp. depth-∆, or degree-d) we use the parameters as an upper
bound.

Field. To appreciate the most important aspects of this work

keep in mind the “practical” fields F = Q or Fq . Interestingly, our
main theorems (Thms. 1–4) hold for any field. However, the other

theorems require field characteristic to be zero or large. Common

examples are: complex C, reals R, algebraic numbers Q, local fields
Qp or their extensions, or finite fields Fq of characteristic p >
degree of the input.

Finally, one can generalize our work to the field K = F(ϵ ) with
ϵ → 0 in a certain way. This leads to approximative complexity

size of polynomials in F[x] [10, Defn.3.1]. Efficient hitting-sets wrt

size are equivalent to explicit system of parameters (esop) of the
invariant ring of a related variety ∆[det(X ),s] with a given group

action [52, Thm.4.9]. Our work (Theorem 4) will imply that to prove

the existence of such a (quasi-)esop it suffices to study esop wrt X
that depend on ‘constantly few’ variables (also see the reduction of

derandomized Noether Normalization problem NNL to blackbox

PIT in [52, Sec.4.3]).

A basic algebraic algorithm used in our results is circuit fac-

toring, that relies on field properties. A classic result is [39] that

constructs small circuits for factors that have multiplicity coprime

to the characteristic (see [15] for recent factoring results and the

related rich background).

Hitting-set Generator (hsg). Let P be a set of n-variate poly-
nomials. We call an n-tuple of univariates f (y) = ( f1 (y), . . . , fn (y))
a (t ,d )-hsg for P if: (1) for any nonzero P ∈ P, P (f (y)) , 0, and (2)

f has time-complexity t and the degree of each fi is less than d . By
t-time hsg or t-time hitting-set or t-time blackbox PIT, we always
mean a (t ,t )-hsg.

The computational problem of designing and verifying an hsg

for size-s circuits family is in PSPACE; however, that for size-s
circuits family is in EXPSPACE (recently brought down to PSPACE

[23, 29]). The major open question is to bring this complexity down

to P; this is christened ‘GCT Chasm’ in [52, Sec.11] and has since

then become a fundamental difficulty common to geometry and

complexity theories. It means that we have to discover algebraic

properties that are specific to only those polynomials that have

small circuit representation. We will investigate such properties

closely in this work.

Variables.A polynomial P computed by a size-s algebraic circuit
C can have at most {x1, . . . ,xs } variables. For k < s , if we say that

C depends only on the first k variables, then it is meant that the

computed polynomial P ∈ F[x1,x2, . . . ,xk ].

Multi-δ-ic. A polynomial family { fn (x1, . . . ,xn )}n≥1 over a

field F is called multi-δ -ic, if degree of each variable in fn is less

than δ . For eg. when δ = 2, { fn }n≥1 is multilinear.

E-computable Polynomial Family. For constant δ , a multi-

δ -ic polynomial family { fn }n with integer coefficients is called

E-computable if: there exists a 2O (n)
-time algorithm that on input e,

outputs the coefficient of xe in fn in binary; say the leading bit will

denote the sign of the coefficient, with 0 implying a positive coeffi-

cient and 1 implying negative. This makes coeff(·) ( fn ) a boolean
function ({0,1}∗ → {0,1}∗) whose bits are E-computable as well.

1.1 Our Motivation and Main Results
Pseudorandom generator (prg) is a well studied object in boolean

circuit complexity theory and cryptography [69] & [8, Chap.10].

One of the main motivations of studying prg is to efficiently deran-

domize all randomized algorithms. Indeed one can show that if we

have an optimal prg against BPP, then BPP=P. By optimal prg, we
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mean a prg which stretches an n-length string to 2
n
-length and is

computable in 2
O (n)

time. Interestingly, an optimal prg is closely

related to strong circuit lower bound. It is a celebrated result that

designing optimal prg against P/poly is equivalent to finding an E-

computable boolean function which has boolean circuit complexity

2
Ω(n)

[56, Secs.2.5 & 3.1], [36, Thm.2].

Naturally, an algebraic analog of the latter property would be to

identify an E-computable polynomial family which has algebraic
circuit complexity 2

Ω(n)
. By Valiant’s criterion [11, Prop.2.20] if one

replaces E by #P/poly then we are directly talking about a strong
version of VNP,VP. As a first challenge, we can pose the following

reasonable complexity conjecture.

Conjecture 1. There is an E-computable polynomial which has

algebraic complexity 2
Ω(n)

. Thus, either E ⊈ #P/poly or VNP has a

polynomial family of algebraic circuit complexity 2
Ω(n)

.

In the world of algebraic circuits, hitting-set generator (hsg) is in

direct analogy with prg. So one can naturally ask about the relation

between hsg and algebraic circuit lower bound. Heintz and Schnorr

[35, Thm.4.5] introduced the concept of an efficient annihilator of

the hsg. They showed that if we can efficiently compute an hsg

for a set of polynomials P, then we can also efficiently compute

a polynomial (namely, annihilator) which does not belong to P.

This technique can be easily extended to get the following circuit

lower bound result. Like boolean world, our hard polynomial is

also E-computable but has algebraic circuit complexity 2
Ω(n)

.

Theorem 0 (Connection). If we have poly(s )-time blackbox PIT for

size-s degree-s circuits Ps , then Conjecture 1 holds. (Proof sketched
in Section A.)

A weak converse of the above theorem, i.e. hardness to hsg, is

well-known due to [38, Thm.7.7]. We state a revised version of it

as Lemma 9. If we have an exponentially hard but E-computable

polynomial family, then by using Lemma 9 we can efficiently reduce

the number of variables in any circuit, from s toO (log s ), preserving
the nonzeroness. Next, one applies a “trivial” hitting-set on the

O (log s ) variables, which gives a quasipolynomial time hsg for Ps
[12]. This suggests that the ‘hardness vs randomness’ connection

here is less satisfactory than the boolean world. Nonetheless, one

wonders whether the conclusion in Theorem 0 can be strengthened

in a different way, so that we get a perfect equivalence. In this work,

we answer this question by introducing the concept of partial hsg.

Indeed, we give infinitely many different-looking statements that

are all equivalent to the hypothesis in Theorem 0.

Partial Hsg. For all s ∈ N, let gs = (дs,1 (y), . . . ,дs,s (y)) be an

hsg of Ps . Suppose we can efficiently compute only the first “few”

polynomials of the hsg. Can we bootstrap it, i.e. recover the whole
hsg efficiently? Formally, we can describe this as follows. For any

m ∈ [s − 1], the partial hsg gs,m is defined as (дs,1, . . . ,дs,m ). The
partial hsg gs,m can be seen as the hsg of those polynomials in Ps
which depend only on the firstm variables. Suppose that form ≪ s ,
we can compute gs,m in poly(s )-time. Then, using this partial hsg,

can we also design a complete hsg for Ps in poly(s )-time?

Ifm = s1/c for some c ∈ N, then the answer is ‘Yes’ and it follows
from the definition. The set Ps can be thought of as a subset of

those polynomials in Psc which depend only on the first s vari-
ables. So gsc ,s = (дsc ,1, . . . ,дsc ,s ) is a hsg for Ps . Clearly, gsc ,s can

be computed in poly(s)-time. However, form ≤ so(1) , we cannot
use the same argument for the following reason. To compute the

hsg of Ps , we have to compute the partial hsg for Psω (1) , which

may not be computable in poly(s)-time. Naively speaking, there

is no reason why a partial hsg gs,so(1) could be bootstrapped ef-

ficiently to gs . The former is a property of the polynomial ring

F[x1, . . . ,xso(1) ] compared to that of the latter “much larger” poly-

nomial ring F[x1, . . . ,xs ]; so in the underlying algebraic-geometry

concepts a terrible blow up is warranted.

For any c ∈ N, let log◦c be defined as c-times application of the

base-2 logarithm function (eg. log
◦3 s = log log log s). Somewhat

surprisingly, we give a positive answer form as small as log
◦c s , for

any c ∈ N. For smaller values ofm (eg.m = log
⋆ s ), we leave it as

an open question.

Theorem 1 (Bootstrap hsg). Suppose, for some c ∈ N, we have
a poly(s )-time blackbox PIT for size-s degree-s circuits that depend
only on the first ⌈log◦c s⌉ variables. Then, we have a poly(sd)-time
blackbox PIT for size-s degree-d circuits and Conjecture 1 holds.

Remark. 1) In the boolean world, there is no extender that can

stretch 0.99 log s bits and “fool” size-s circuits. Because boolean

functions on that many bits have circuit-size < s .
2)We also study the case when our partial hsg can be computed

in subexponential time, which is far worse than polynomial time. In

this case, our result is not as strong as Theorem 1. However, in the

hypothesis we still deal with anm = so(1) and manage to bootstrap

that partial hsg in subexponential time. Also, an E-computable

super-polynomially hard polynomial family is implied (say, weak
Conjecture 1). For details see Theorem 13.

The bootstrapping idea brings forth pleasant surprises if we are

willing to content ourselves with a “slightly super”-polynomial

time blackbox PIT in the conclusion. Though we do not get an

equivalence result now, we do however weaken the hypothesis

very significantly.

Theorem 2. Suppose, for constants e ≥ 2 and 1 > ϵ ≥ (3 +

6 log(128e2))/(128e2), we have anO (se )-time blackbox PIT for degree-
s polynomials computed by size-s circuits that depend only on the
first n := ⌈max{192e2 log(128e2)1/ϵ , (64e2)1/ϵ }⌉ variables. Then,
we have an sexp ◦ exp(O (log⋆ s ))-time blackbox PIT for size-s degree-s
circuits and Conjecture 1 holds.

Remark. If we fix e = 2 and ϵ = 6912/6913, then the hypothesis

required is: Quadratic-time (i.e.O (s2)) blackbox PIT for 6913-variate

degree-s size-s polynomials.

In the above theorem, the exponent e in the complexity of PIT

is a constant just below

√
n/8, where n is the (constant) number of

variables. This can be achieved from a “poor” quality blackbox PIT

algorithm (varying both s and n as independent parameters):

Theorem 3. Suppose, for constant δ < 1/2, we have an sn
δ
-time

blackbox PIT for size-s degree-s circuits that depend only on the first
n variables. Then, we have an sexp ◦ exp(O (log⋆ s ))-time blackbox PIT
for size-s degree-s circuits and Conjecture 1 holds.

Note that in an n-variate degree-s polynomial, there are at most

1 + sn monomials. So, the above hypothesis is unexpectedly weak.
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Additionally, the lower bound result that it will give is truly ex-

ponential. Next, we show that bootstrapping can be done even at

shallow depths.

Theorem 4 (Depth-4 tiny variables). Suppose, for constant n ≥
3, we have a

(
poly(sn ),O

(
sn/2

log
2 s

) )
-hsg for size-s depth-4 circuits that

depend only on the first n variables. Then, we have a quasipoly(sd )-
time blackbox PIT for size-s , degree-d circuits and Conjecture 1 holds.

Remark. 1) If we fix n = 3, then the hypothesis required is:(
poly(s ),O (s1.5/ log2 s )

)
-hsg for trivariate size-s depth-4 circuits.

While

(
Õ (s3), (s + 1)3

)
-hsg is trivial to design.

2) Depth-4 circuit is denoted as ΣΠΣΠ to specify the alternating

layers starting with the top addition gate. In older works it had

been fruitful to restrict one of the product layer to mere powering
gates [30, 60]. Indeed, we can prove stronger versions of Theorem

4: for Σ ∧ ΣΠ (Theorem 20) resp. ΣΠΣ∧ (Theorem 22) circuits in

the hypothesis. But, these results (unlike Theorems 1–4) require

the field characteristic to be zero or large.

3) Our conclusion is as strong as those obtained via the well-

known ‘constant-depth reduction’ results in [7, 30]. But our hypoth-

esis needs an hsg only slightly better than the trivial; this cannot

be done, not even guessed, using the old methods.

Finally, we want to change the viewpoint and see blackbox PIT

for depth-3 circuits through the lens of fixed parameter tractability
(fpt). This is discussed in Section 5.1. Bootstrapping of variables

from log-variate width-2 ABP is done in Section 5.2.

1.2 Proof Idea and Our Techniques
Proof Idea of Theorem 1. We have to prove two results; one

related to PIT and the other one related to lower bound. The latter

will follow from Theorem 0, so we only describe the proof idea of

PIT part. Suppose that for all s,d,i ∈ N, Ps,d,i is the set of degree-d
polynomials computed by size-s circuits that depend only on the

first fi (sd ) variables, where fi (s ) is intended to beω (log
◦i s ). For all

0 ≤ i ≤ c + 1, fi (s ) := (log◦i s )2. Using reverse induction, we show

that for 0 ≤ i ≤ c + 1, we have a poly(sd ) time hsg for Ps,d,i . First,

we design a poly(sd ) time hsg for Ps,d,c+1 using the hypothesis

mentioned in the theorem. Next, for all i ∈ [c + 1], we use the

poly(s ′d ′) time hsg of Ps ′,d ′,i to design a poly(sd ) time hitting-set

of Ps,d,i−1.

Our induction step can be broken into three smaller steps.

1) Hsg of Ps ′,d ′,i to hard polynomial family: For all s ∈ N, let Ts,i be
the s-degree polynomials computed by size-s circuit that depends
only on the first 2c1 ⌈log

◦i s⌉ variables, where c1 is some constant.

Using poly(s ′d ′) hsg of Ps ′,d ′,i , we can design a poly(s ) time hsg

for Ts,i . Applying Lemma 5, we consider an annihilator, of the hsg,

and get a family of hard polynomials which satisfies the properties

mentioned in Lemma 12 (that we need in the next step).

2) Hard polynomial to variable reduction map: Lemma 12 designs

an efficient variable reduction map using a hard polynomial family

with certain properties. Thus, we perform a variable reduction on

the polynomials in Ps,d,i−1; significantly reducing variables from

fi−1 to fi .
3) The map to poly(sd ) time hsg for Ps,d,i−1: The above variable re-
duction converts every nonzero polynomial inPs,d,i−1 to a nonzero

one in Ps ′,d ′,i , where s
′,d ′ = poly(sd ). Thus, on applying the poly-

nomial time hsg for Ps ′,d ′,i , we get a polynomial time hsg for

Ps,d,i−1.

The crucial technical step is provided by Lemma 12, which is a

strict generalization of Lemma 9. As mentioned earlier, the latter

itself is a revised version of [38, Thm.7.7] as it can handle hard non-
multilinear polynomials. It designs an efficient variable reduction

using an exponentially hard but E-computable polynomial family.

If we have a poly(s ) time hsg for Ts,1, then using Lemma 5, one

can get such a polynomial family (as in the proof of Theorem 0

but now the hard polynomial will be non-multilinear). In Step 1

above, we are working with poly(s ) time hsg for Ts,i , where i > 1.

In such an extremely low variate regime, Lemma 5 cannot give us a

polynomial family with constant individual degree. So, we cannot

use Lemma 9 ideas if we desire polynomial time computation.

There are several technical challenges faced in choosing param-

eters that should lead to a contradiction in the proof. Since the

individual degree of the hard polynomial depends on the time-

complexity se of the hsg of Ts,i , the factor circuits will have a

blown up size after using Kaltofen factoring. Care is needed to

counterbalance the size of the Nisan-Wigderson (NW) design and

the hardness of the polynomial family with the circuit complexity

of the factors. The more sophisticated statement of Lemma 12 takes

care of all those issues. Why is this lemma invoked multiple times?

The answer lies in the way Kaltofen factoring yields a contradiction:

using the fact that the third-parameter (i.e. set-intersection size) in

the NW design is much smaller than the second-parameter (i.e. set

size). This gives a smaller factor of the composite circuit after fixing

certain variables. So, we need to apply NW design for each expo-

nential stretch of variables; we do not know how to directly get a

hyper-exponential stretch and save on time.

Proof Idea of Theorem 2. Theorem 1 assumes an se -time hsg,

where e is a constant, for log◦c s-variate degree-s size-s polynomials.

On the other hand, Theorem 2 assumes an se -time hsg for n-variate

degree-s size-s polynomials, where n := ⌈max{192e2 log(128e2)1/ϵ ,

(64e2)1/ϵ }⌉ and 1 > ϵ ≥ (3 + 6 log(128e2))/(128e2) are constants.
In both the cases, our hypotheses demand improved hsgs over the

trivial ones (namely, s log
◦c s

and sn time respectively). This is the

common strength of both the hypotheses which is exploited in the

proofs.

Broadly, the proof of Theorem 2 is similar to the previous one.

However, in Theorem 2we desire, for a given e , to find theminimum

number of constant variables for which we can reach the conclusion.
This imposes more technical challenges and in many steps of the

proof we have to work with much finer parameters. For example,

our calculation suggests that for e = 2, the number of variables that

we need is n = 6913 (or, for e = 3, n = 17574 suffices).

Like Theorem 1, in each inductive step, we stretch the number of

variables exponentially. However, here we finally stretchn variables

to s variables, wheren is a constant. So, we need around log⋆ s steps,

which is non-constant wrt s . We show that if we have an s f i -time

hsg, in the i-th induction step, then in the next step we get an

s f i+1 -time hsg, where fi+1 := 16f 2i . So, after log
⋆ s steps, we get an

hsg of our desired complexity (=slightly super-polynomial).

Like Lemma 12, here Lemma 18 combines all the crucial tools

needed in the inductive step of Theorem 2. Our key ingredients
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here are again Nisan-Wigderson design and Kaltofen’s factoring.

However, we use them in a more optimized way. It will help us to

improve the constants that underlie. This theorem and the next are

very sensitive to these technicalities.

Thus, we show that a significant improvement of blackbox PIT

within the polynomial-time domain itself (from sn to se ) would
near-completely solve PIT for VP. This reminds us of other fa-

mous algebraic problems in computing where improvements in the

time-exponent have been widely studied (& still open)— integer

multiplication [25] and matrix multiplication [49].

Proof Idea of Theorem 3. Suppose we have, for constant δ < 1/2,

an sn
δ
-time hsg for size-s degree-s circuits that depend only on

the first n variables. Then, there exists an ϵ ∈ [2δ ,1) and a large

enough constant e such that: there is an se -time hsg for size-s

degree-s circuits that depend only on the first n := ⌈(64e2)1/ϵ ⌉ ≥

192e2 log(128e2)1/ϵ variables. Note that e ≥ (n − 1)ϵ/2/8 > nδ can

be easily ensured, thus, se -time is more than sn
δ
-time. Now we

simply invoke Theorem 2.

In fact, this proof needs the hypothesis only for: infinitely many

n and large enough s .

Proof Idea of Theorem 4. We argue using two intermediate mod-

els. For all s ∈ N, let Ps be the set of polynomials computed by

size-s Σ ∧a ΣΠ circuits, a(s ) is an arbitrarily slow growing func-

tion, that depend only on the first n variables. Let Ts be the set of

polynomials computed by size-s ΣΠΣ∧ circuits that depend only

on the first n variables.

To prove Theorem 4, first we show that (poly(s ),O (sn/2/ log2 s ))-
hsg for Ps resp. Ts gives an efficient variable reduction and Con-

jecture 1 (see Theorems 20 resp. 22). This variable reduction con-

verts a d-degree nonzero polynomial computed by a size-s circuit
to a O (log(sd ))-variate poly(sd )-degree nonzero polynomial. For

O (log(sd ))-variate and poly(sd )-degree polynomials, we have a

(sd )O (log(sd ))
time hitting-set. This completes the proof of PIT part.

Next, we give the proof sketch of the variable reduction part.

First, we discuss the variable reduction part assuming Ps has

O (sn/2/ log2 s )-degree hsg. We do it via an intermediatemultilinear
model. For all s ∈ N, let P ′s be the set of

n
2
log s degree multilinear

polynomials computed by size-s Σ∧a ΣΠ circuits, that depend only

on the first n log s variables. Next we describe how to get a hard

polynomial family from an (poly(s ),O (sn/ log2 s ))-hsg of P ′s .

The number of
n
2
log s degree multilinear monomials overm :=

n log s variables is
( m
m/2

)
≥ 2

m/
√
2m = sn/

√
2m, which is greater

than O (sn/ log2 s ) ·m (for large enough s). So, we get anm-variate

and (m/2)-degree multilinear homogeneous polynomial (annihila-

tor) qm < P
′
s and computable in poly(s ) time. The linear algebra is

similar to Lemma 5; only difference being that Lemma 5 does not

ensure qm multilinear. However, the parameters of P ′s ensure the

latter. Since qm ism-variate (m/2)-degree multilinear polynomial

and is not in P ′s , qm is not computed by size-s Σ ∧a ΣΠ circuits.

Using depth reduction of [7], one can also ensure thatqm has circuit

complexity > s ≥ 2
Ω(m)

. This in turn gives the variable reduction

using Lemma 9.

Now we show that an efficient O (s ′n/2/ log2 s ′)-degree hsg of

Ps ′ gives an efficient O (sn/ log2 s )-degree hsg for P ′s , where s
and s ′ are polynomially related. In P ′s , divide the n log s variables

into n blocks with each block of length log s . Now take fresh vari-

ables y1, . . . ,yn , one for each block, and apply Kronecker map

(xu ( j )+i 7→ y2
i

j , i ∈ [log s]) within the j-th block {xu ( j )+i |i ∈ [log s]}.

Since polynomials in P ′s are multilinear, the above map preserves

nonzeroness. This converts a nonzero polynomial inP ′s to a nonzero

polynomial in Ps ′ , where s
′ = O (s2). Now use theO (s ′n/2/ log2 s ′)-

degree hsg of Ps ′ to get one for P ′s . For details see the proof of

Theorem 20.

Second, we discuss the variable reduction part assuming an

efficient O (sn/2/ log2 s )-degree hsg of Ts . Proof idea is similar to

the previous one; only difference is in the intermediate model. Here

we consider the following model: for all s ∈ N, let T ′s be the set

of multilinear polynomials computed by size-s ΣΠΣ circuits that

depend only on the first n log s variables. Again, we show that an

efficient O (s ′n/2/ log2 s ′)-degree hsg of Ts ′ gives an O (sn/ log2 s )-
degree hsg for T ′s , which in turn gives the variable reduction as

above coupled with [30]. For details see Theorems 21 & 22.

2 BRUSHING-UP RELEVANT TECHNIQUES
In this section we will revisit the techniques that have appeared in

some form in [1, 7, 30, 35, 37, 56].

From a hitting-set generator f (y) of a set of polynomials P, we

get an explicit polynomial outside P simply by looking at an annihi-

lating polynomial of f (y). Previously, this approach was discussed

in [35, Theorem 4.5] and [1, Theorem 51]. In the next lemma, we

prove a revised version. Later, it will be used to get hard polynomial

from hitting-set generator.

Lemma 5 (hsg to hardness). Let f (y) = ( f1 (y), . . . , fn (y)) be a
(t ,d )-hsg for a set of n-variate polynomial P. Then, there exists an n-
variate polynomial д(x) that is not in P, is computable in poly(tdn)-
time, has individual degree less than δ := ⌈d3/n⌉, and is homogeneous
of degree (δ − 1)n/2.

Proof. A natural candidate for д(x) is any annihilating polyno-

mial of the n polynomials f (y) = ( f1 (y), . . . , fn (y)), since for every
nonzero h ∈ P, h(f ) is nonzero. Define δ ≥ 2 as the smallest integer

such that δn/3 > d . Consider д(x) as a n-variate polynomial with

individual degree less than δ and homogeneous of degree (δ −1)n/2.
Then, д(x) can be written as:

д(x) =
∑

|e |=(δ −1)n/2 , 0≤ei <δ

cexe (1)

where, ce’s are unknown to us. Note that the number of summands

is at least (δ/2)n/2 ·
( n
n/2

)
> δn/2 (for n ≥ 4). The former estimate

can be obtained by picking a subset S ∈
(
[n]
n/2

)
and considering

all monomials in xS of individual-degree < δ/2. For every such

monomial in xS we can pick a (complementary) monomial x
[n]\S

with exponents from {δ/2, . . . ,δ − 1} such that the product of these

two monomials has degree exactly (δ − 1)n/2.
We can fix all the ce’s to zero except the ones corresponding to an

index-set I of size δ0 := dn(δ −1)/2+2 < δn/3n(δ −1)/2+2 ≤ δn/2.
This way we have exactly δ0 unknown ce’s. To be an annihilating

polynomial of f (y), we need д(f ) = 0. By comparing the coefficients

of the monomials in y, both sides of Equation 1, we get a linear

system in the unknowns.
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Suppose that δ1 is the degree of y in д(f ). Then, д(f ) can be

written as д(f ) =
∑δ1
i=0 pi · y

i
, where pi ’s are linear polynomials in

ce’s. The constraint д(f ) = 0 gives us a system of linear equations

with the number of unknowns δ0 and the number of equations δ1+1.
The value of δ1 can be at most d ·n · (δ − 1)/2, which means that the

number of unknowns δ0 is greater than the number of equations

δ1. So, our system of homogeneous linear equations always has a
nontrivial solution, which gives us a nonzero д as promised.

Computing f (y) takes t time and a solution of the linear equa-

tions can be computed in poly(tdn)-time. So, д(x) can be computed

in poly(tdn)-time. □

Corollary 6 (E-computable). In the proof of Lemma 5, if td =
2
O (n) then the polynomial family дn := д, indexed by the variables,
is E-computable.

Proof. The linear system that we got can be solved in poly(tdn)-
time. As it is homogeneous we can even get an integral solution

in the same time-complexity. Thus, assuming td = 2
O (n)

, the time-

complexity of computing coefxe (д) is poly(tdn)=poly(2
n
) and д is

multi-δ -ic (∵ δ = ⌈d3/n⌉ = O (1)). In other words, if we consider

the polynomials дn := д, indexed by the variables, then the family

{дn }n is E-computable. □

Towards a converse of the above lemma, a crucial ingredient is

the Nisan-Wigderson design [56]. To describe it simply, the design

stretches a seed from ℓ tom ≥ 2

d
10 as follows,

Definition 7. Let ℓ > n > d . A family of subsetsD = {I1, . . . , Im }
on [ℓ] is called an (ℓ,n,d )-design, if |Ii | = n and for all i , j ∈ [m],
|Ii ∩ I j | ≤ d .

Lemma 8 (Nisan-Wigderson design, Chap.16 [8]). There exists
an algorithm which takes (ℓ,n,d ) and a base set S of size ℓ > 10n2/d

as input, and outputs an (ℓ,n,d )-design D having ≥ 2
d/10 subsets,

in time 2O (ℓ) . (Lemma 14 improves this.)

Our next lemma is a revised version of the counterpositive of [38,

Lemma 7.6]. If we have an exponentially hard but E-computable

polynomial family, then we can efficiently reduce the variables

from n toO (log(sd )), for n-variate d-degree polynomials computed

by size-s circuits, preserving nonzeroness. For proof, see the full

version linked on the first page.

Lemma 9 (Hardness to variable reduction). For some con-
stant δ , let {qm }m≥1 be a multi-δ -ic polynomial family computable
in δO (m) time, but it has no δ o(m)-size algebraic circuit.

Then, for n-variate d-degree polynomials computed by size-s cir-
cuits we have a δO (log(sd ))-time variable-reducing polynomial map,
from n to O (log(sd )), that preserves nonzeroness. Furthermore, after
variable reduction, the degree of the new polynomial is poly(sd ).

Next lemma shows that the existence of an exponentially hard

but E-computable polynomial family has an interesting complexity

consequence. It is based on Valiant’s criterion.

Lemma 10 (Valiant class separation). If we have a polyno-
mial family { fn }n≥1 that is E-computable, but has algebraic circuit
complexity 2

Ω(n) , then either E⊈#P/poly or VNP has polynomials of
algebraic circuit complexity 2

Ω(n) .

Proof. Say, for a constant δ ≥ 1, we have an E-computable

multi-δ -ic polynomial family { fn }n≥1 with algebraic circuit com-

plexity 2
Ω(n)

. Clearly, the coefficients in fn have bitsize 2
O (n)

. By

using a simple transformation, given in [42, Lem.3.9], we get a mul-

tilinear polynomial family {hn }n≥1, that is E-computable and has

algebraic complexity 2
Ω(n)

, such that its coefficients are {0,1}.

Assume E⊆#P/poly. Since each coefficient of hn is 0 or 1 that

is computable in E, we deduce that the coefficient-function of hn
is in #P/poly. Thus, by [11, Prop.2.20], {hn }n≥1 is in VNP and has

algebraic circuit complexity 2
Ω(n)

. □

Next lemma converts a monomial into a sum of powers. It is

called Fischer’s trick in [30]. It requires char F = 0 or large.

Lemma 11 (Fischer’s trick [18]). Over a field F of char(F) =
0 or > r , any expression of the form д =

∑
i∈[k]

∏
j∈[r ] дi j with

deg(дi j ) ≤ δ , can be rewritten as д =
∑
i∈[k ′] ciд

r
i where k ′ := k2r ,

deg(дi ) ≤ δ and ci ∈ F. In fact, each дi is a linear combination of
{дi ′ j |j} for some i ′.

3 MANY-FOLD COMPOSITION OF NW
DESIGN– PROOF OF THEOREM 1

Lemma 9 gave an efficient variable reduction from an exponentially

hard but E-computable polynomial family. However, while boot-

strapping in Theorem 1, we work with a case where number of

variables can be as low as log
◦c s compared to s , size of the circuit.

In this extremely low variate regime, we have to deal with hard

polynomial family of non-constant individual degree. There are

also technical challenges faced in choosing parameters that should

lead to a contradiction in the proof. So, we cannot use Lemma 9

directly. In Lemma 12, we take care of those issues. Overall proof

strategy will be again to use Nisan-Wigderson combinatorial design

and Kaltofen’s algebraic circuit factoring algorithm. This is done

repeatedly in Theorem 1.

Lemma 12 (Tiny variable reduction). Let c3 ≥ 1 be the expo-
nent in Kaltofen’s factoring algorithm [11, Thm.2.21]. For a constant
e ≥ 1 define, c0 := ⌈9

√
e + 3⌉c3, c1 := ⌈30e + 10

√
e + 1⌉c3 and

c2 := 1 + c2
1
. Let ε be a tiny function say ε (s ) := 2⌈log◦k s⌉ for k ≥ 1.

Suppose we have a family {qm,s | s ∈ N, m = c1ε (s )} of multi-δm,s -
icm-variate polynomials that can be computed in sO (1) time, but has
no size-s algebraic circuit, where δm,s := ⌈s

3e/m⌉.
Then, there is a poly(sd)-time variable reduction map, reducing

n ≤ 2
ε ((sd )c0 ) to c2ε ((sd )c0 ) and preserving nonzeroness, for degree-d

n-variate polynomials computed by size-s circuits. Furthermore, after
variable reduction, the degree of the new polynomial will be poly(sd ).

Proof. Let s ′ := sd . Let P be the set of degree-d polynomi-

als computed by size-s circuits that depend only on the first n-
variables. We intend to stretch c2ε (s

′c0 ) variables to n. Define
m′ := c1ε ((sd )

c0 ). Note that q := qm′,s ′c0 has no algebraic circuit

of size s ′c0 . Its individual-degree is ≤ δ := ⌈s ′3ec0/m
′

⌉ = s ′o(1) .
LetD = {S1, . . . ,Sn } be a (c2ε (s

′c0 ),m′,10ε (s ′c0 ))-design on the

variable set Z = {z1, . . ., zc2ε (s ′c0 ) }. Constants c2 > c1 > 10 will

ensure the existence of the design by Lemma 8. Our hitting-set

generator for P is defined as: for all i ∈ [n], xi 7→ q(Si ) =: pi with
Si as variables. Then, we show that for any nonzero polynomial

P (x) ∈ P, P (p1, . . . ,pn ) is also nonzero.
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For the sake of contradiction, assume that P (p1, . . . ,pn ) is zero.
Since P (x) is nonzero, we can find the smallest j ∈ [n] such that

P (p1, . . . ,p j−1,x j , . . . ,xn ) =: P1 is nonzero, but P1
���x j=p j is zero.

Thus, (x j − p j ) divides P1. Let a be a constant assignment on all

the variables in P1, except x j and the variables S j in p j , with the

property: P1 at a is nonzero. Since P1 is nonzero, we can find such

an assignment [64]. Now our new polynomial P2 on the variables S j
and x j is of the form P2 (S j ,x j ) = P (p′

1
, . . . ,p′j−1,x j ,a j+1, . . . ,an ),

where for each i ∈ [j − 1], p′i is the polynomial on the variables

Si ∩ S j , and ai ’s are field constants decided by our assignment a.
By the design, for each i ∈ [j − 1], |Si ∩ S j | ≤ 10ε (s ′c0 ). Since p′i
are polynomials on variables Si ∩ S j of individual degree≤ δ , each

p′i has a circuit (of trivial form ΣΠ) of size at mostm′δ · δ10ε (s
′c
0 )

=m′δ · δ10m
′/c1

.

Thus, we have a circuit for P2 of size at most s1 := s + nm′δ ·
δ10m

′/c1
, and degree of the computed polynomial is at most d1 :=

dm′δ . Since (x j −p j ) divides P2, we can invoke Kaltofen’s factoriza-

tion algorithm [39] (see [11, Theorem 2.21] for the algebraic circuit

complexity of factors) and get an algebraic circuit for p j of size
(s1d1)

c3
, which is

≤ (snm′δ · δ10m
′/c1 · dm′δ )c3

=

(
s ′nm′2δ

2+
10m′
c
1

)c3
< (s ′2+o(1) · δ10m

′/c1 )c3 < s ′(3+ 30ec0/c1 )c3 .

This exponent

=

(
3

⌈(9
√
e + 3)⌉

+

30e

⌈30e + 10

√
e + 1⌉

)
c0

≤

(
1

(3
√
e + 1)

+

3

√
e

3

√
e +
√
1 + 1/e

)
c0 < c0.

So, p j = q(S j ) has circuit of size smaller than s ′c0 , which contra-

dicts the hardness of q. Thus, C (p1, . . . ,pn ) is nonzero.
The time for computing (p1, . . . ,pn ) depends on: (1) computing

the design (i.e. poly(2
m′

)-time), and (2) computing q (i.e. poly(sd)-

time). Thus, the variable reduction map is computable in δO (m′) =

poly(sd)-time. After variable reduction, the degree of the new poly-

nomial is < nd · deg(q) = poly(sd ). □

Remark. In the case of a finite field F = Fr t of prime characteristic

r , we have to be careful while invoking Kaltofen’s factoring. As,

the latter outputs a small circuit for pr
t ′

j where r t
′

is the highest

power dividing the multiplicity of x j −p j in P2. However, when we

raise the output by r t−t
′

we get a circuit that is small and agrees

with p j on F-points. This is used, like in [38, Rmk.7.5], to redefine

algebraic complexity of q over Fr t suitably and the above lemma

works.

Proof of Theorem 1. Consider the following two statements.

S1: we have a poly(s )-time hsg for size-s degree-s circuits that

depend only on the first ⌈log◦c s⌉ variables, and S2: we have a

poly(s )-time hsg for degree-s polynomials computed by size-s cir-
cuits that depend only on the first ⌈log◦c s⌉ variables. S1 is our

given hypothesis. However, in this proof, we work with S2 which

is stronger than S1, as in the former case circuits may have degree

larger than s . So we first argue that they are equivalent up to poly-

nomial overhead. S2 trivially implies S1. For the other direction, we
invoke (the proof of) the ‘log-depth reduction’ result for arithmetic

circuits. For any size-s circuit C computing a degree-s polynomial,

we have an se0 -size s-degree circuitC ′ computing the same polyno-

mial, for some constant e0 (see [59, Thm.5.15]). Now apply S1 for

se0 -size s-degree and get poly(s )-hsg for C . Next, we focus on de-

signing poly(sd )-hsg for degree-d polynomials computed by size-s
circuits, using our stronger hypothesis S2.

Suppose that for all s,d,i ∈ N, Ps,d,i is the set of degree-d
polynomials computed by size-s circuits that depend only on the

first fi (sd ) variables, where fi (s ) := (log◦i s )2. We prove that for all

0 ≤ i ≤ c + 1, we have a polynomial time hitting set for Ps,d,i . We

will use reverse induction on i . Define function εi (s ) := 2⌈log◦i s⌉.

Base case– Poly(sd )-hsg for Ps,d,c+1: Let t := max{s,d }. Then the set
of polynomials Ps,d,c+1 is a subset of Pt,t,c+1. For all s ∈ N, let Ts
be the set of degree-s polynomials computed by s-size circuits that
depend only on the first ⌈log◦c s⌉ variables. Using the hypothesis
S2, we have a poly(s ) time hsg for Ts . Since fc+1 (t ) ≤ ⌈log

◦c t⌉ for
large t , Pt,t,c+1 is a subset of Tt . So Pt,t,c+1 also has a poly(t )-time

hsg. This gives a poly(sd )-time hsg for Ps,d,c+1.

Induction step– From poly(s ′d ′)-hsg of Ps ′,d ′,i to poly(sd )-hsg of
Ps,d,i−1: We divide this step into three smaller steps, for i ∈ [c +1].

1) Hsg of Ps ′,d ′,i to hard polynomial family: For some constant

e , we have ((s ′d ′)e/2, (s ′d ′)e/2)-hsg for Ps ′,d ′,i . Let for all s,i ∈ N,
Ts,i be the set of degree-s polynomials computed by size-s circuits
that depend only on the first c1εi (s ) variables, where c1 is a constant
as defined in Lemma 12 using the e . Note thatm := c1εi (s ) is smaller

than fi (s
2) for large enough s . So, polynomial time hsg for Ps ′,d ′,i

gives a (se ,se )-hsg for Ts,i . Then using Lemma 5, we get an m-

variate polynomial qm,s such that 1) individual degree is less than
δm,s = ⌈s

3e/m⌉, 2) qm,s < Ts,i , and 3) computable in sO (1)
-time.

Suppose qm,s has a circuit C of size less than s . Since the degree
(m ·δm,s ) is also less than s , the polynomial qm,s is in Ts,i , which is

a contradiction. So using (se ,se )-hsg for Ts,i , for all s ∈ N, we get
a polynomial family {qm,s | s ∈ N, m = c1εi (s )} of multi-δm,s -ic

that can be computed in sO (1)
time, but has no size-s algebraic

circuit.

2) Hard polynomial to variable reductionmap:Note that fi−1 (sd ) ≤
2
ε i ((sd )c0 )

, where c0 is a constant defined in Lemma 12 using the e .
Using the lemma (for ε = εi ), any nonzero polynomial P ∈ Ps,d,i−1
can be converted, in poly(sd )-time, to another poly(sd )-degree
nonzero polynomial P ′ computed by poly(sd )-size circuit which
depends only on the first c2εi ((sd )

c0 ) variables.
3) The map to poly(sd ) time hsg for Ps,d,i−1: Since, in P ′, the

number of variables c2εi ((sd )
c0 ) is less than fi (sd ), using poly-time

hsg of Ps ′,d ′,i we get a poly-time hsg for P ∈ Ps,d,i−1.

Repetition– After applying the induction step c + 1 times, we have

a poly(sd )-time hsg for Ps,d,0. In other words, we have a poly(sd )-
time hsg for size-s degree-d circuits.

Nowwe show that Conjecture 1 holds.We just obtained a poly(s )-
time hsg for Ts,1. Let m = ⌈log s⌉. Then applying Lemma 5, we

get a family of polynomials {qm }m≥1 such that 1) it is multi-δ -ic,

for some constant δ , and 2) computable in δO (m)
-time, but has
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no δ o(m)
-size algebraic circuit. Now, applying Lemma 10, we get

Conjecture 1. □

Remark. In the case of a finite field F = Fr t of prime characteristic

r , we have to redefine the hardness of the polynomial qm,s in Step

(1) of the induction step above. As remarked before, we can define

Ts,i to be the set of polynomials f (x1, . . . ,xc1ε i (s ) ), such that for

some e , f r
e
agrees on all F-points with some nonzero degree-s

polynomial computed by a size-s circuit. It can be seen that an hsg

for Ts,i gives a hard qm,s (via the annihilator approach of Lemma

5) that can be used in Step (2).

Next, we relax the hypothesis of Theorem 1 by allowing a subex-

ponential time hitting-set. In the following discussion, we use a

constant e0. It is the exponent of ‘log-depth reduction’ algorithm

([59, Thm.5.15]), i.e. for every size-s circuit computing a degree-d
n-variate polynomial, we also have an (sdn)e0 -size d-degree circuit
computing the same polynomial. We recall the following standard

definition.

Subexp. A function f (s ) is in subexp if f (s ) = exp(so(1) ). Eg. 2
√
s <

subexp, but exp(2
√
log s ) ∈ subexp. One can recall the standard

complexity class, SUBEXP := ∩ϵ>0DTIME(exp(nϵ )). Basically,
these are decision problems whose time-complexity is a subexp

function.

Theorem 13 (Subexp bootstrap). Let f be a function in subexp.
Suppose that we have a poly( f (s )) time blackbox PIT for size-s degree-
s circuits that depend only on the first 10⌈log f (s )⌉ variables. Then,
we have blackbox PIT for size-s degree-d circuits in subexponential,
exp((sd )o(1) ), time. Furthermore, either E ⊈ #P/poly or VNP,VP.

Remark. As an fpt-algorithm the hypothesis requires a blackbox

PIT, for size-s degree-s n-variate circuits, of time complexity poten-

tially as large as exp(so(1) +O (n)).
For proof, see the full version linked on the first page.

4 BOOTSTRAP CONSTANT-VARIATE PIT–
PROOF OF THEOREMS 2 & 3

The overall strategy is similar to the last section. However, the

details would now change drastically.

First, we describe an optimized version of the Nisan-Wigderson

(NW) design, where the parameters are different from that in

Lemma 8. Later, it will help us improve the constants.

Lemma 14 (NW design). There exists an algorithm which takes
(ℓ,n,d ), with ℓ ≥ 100 andd ≥ 13, and a base set S of size ℓ := ⌈4n2/d⌉
as input, and outputs an (ℓ,n,d )-design D having ≥ 2

d/4 subsets, in
time O ((4ℓ/n)n ).

For the proof, see the full version linked on the first page. Ex-
ponent vs Variables. In this section, to describe the complexity

parameters of the circuits and the hsg, we use two families of

functions { fi }i≥0 (“exponent of time”) and {mi }i≥0 (“number of

variables”). They are defined as follows: f0 ≥ 2 andm0 ≥ 1024 are

constants and for all i ≥ 1,

fi := 16f 2i−1 andmi := 2
m i−1/(64f 2i−1 ) .

Our strategy is to use an NW (mi ,
m i
8f i
, m i
16f 2i

)-design to stretchmi

variables tomi+1. We want to show thatmi grows much faster in

contrast to fi . In particular, we needmi to be a tetration in i (i.e. iter-
ated exponentiation), while fi is “merely” a double-exponentiation

in i . Seeing this needs some effort and we will do this in the next

two propositions.

From now on we will assume that ϵ is a constant fraction satisfy-

ing 1 > ϵ ≥ (3+6 log(128f 2i ))/(128f
2

i ), for i = 0. Since fi increases

with i , the fraction (3 + 6 log(128f 2i ))/(128f
2

i ) decreases. Thus, the
constant ϵ remains larger than the latter, for all i ≥ 0. Now, we

describe some properties about these two sequences of numbers.

For proofs, see the full version linked on the first page.

Proposition 15. If, for some i ≥ 0,mi ≥ 192f 2i ·
1

ϵ log(128f 2i ),
then the same relation holds betweenmi+1 and fi+1.

Proposition 16 (mi is a tetration). Let m0 ≥ max{(8f0)
2

ϵ ,

192f 2
0
· 1ϵ log(128f 2

0
)}. Then for all i ≥ 0: 1)mi+1 ≥ 2

m1−ϵ
i and 2)

mi+1 ≥ 2mi > 3456f 2i .

Once we know that mi grows extremely rapidly, we want to

estimate the number of iterations before which it reaches s .

Proposition 17 (Iteration count). The least i , for whichmi ≥

s , is ≤ 3

1−ϵ log

(
3

1−ϵ

)
+ 2 log

⋆ s .

Now we describe the i-th step of bootstrapping.

Lemma 18 (Induction step). Let s be the input size parameter,
i ≥ 0,mi = so(1) andm′ := min{mi+1,s}. Suppose that we have an
s f i -time hsg formi -variate degree-s polynomials computed by size-
s circuits. Then, we have an s f i+1 -time hsg for m′-variate degree-s
polynomials computed by size-s circuits.

Proof. Although i might grow (extremely) slowly wrt s , it helps
to think of i and s as two independent parameters. Suppose that for

all s ∈ N, Ps,i is the set ofmi -variate degree-s polynomials com-

puted by size-s circuits, and Ps,i+1 is the set ofm
′
-variate degree-s

polynomials computed by size-s circuits. Our proof can be broken

into three main steps. First, using the hsg of Ps,i we construct a hard
polynomial family. Next, using that hard polynomial family we do

variable reduction on the polynomials inPs,i+1. This variable reduc-

tion is relatively “low”-cost and it reduces a nonzero polynomial in

Ps,i+1 to some nonzero polynomial in Ps9fi ,i , for sufficiently large

value of s . Finally, we apply the hsg of Ps9fi ,i to get the desired hsg
for Ps,i+1. The challenge is to analyze this; which we do now in

detail. Keep in mind the properties of the functionsmi , fi that we
proved before.

Hard Polynomial FamilyConstruction.We describe the con-

struction of a hard polynomial family from the hsg of Ps,i . Let

di (s ) := s f i and for all s ∈ N, let Ts be the set of
m i
8f i

-variate

degree-s polynomials computed by size-s circuits. The di (s )-time

hsg of Ps,i also gives an hsg for Ts with same time complexity. Like

Lemma 5, the annihilator of the hsg of Ts gives a polynomial qs
such that: 1) qs < Ts , 2) it is computable in d4i -time by linear algebra,

and 3) it is multi-δs -ic, where δs := 1+di (s )
8fi+1
mi = 1+s f i (8f i+1)/m i

.

Here, the main difference is that the individual degree bound δs
is smaller than what Lemma 5 ensures. It will help us reduce the

initial constants in our calculations. We give a brief sketch of how

we get an annihilator with this individual degree.
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The number of monomials on
m i
8f i

variables with individual de-

gree < δs is at least m := d
1+

1

8fi
i = s f i+

1

8 . After evaluating an

m i
8f i

-variate multi-δs -ic polynomial on the hsg of Ts , we get a uni-

variate polynomial of degree at most d :=
m i
8f i
·

di + d1+ 8fi+1
mi

i

 ≤
m i
8f i
· 2s

f i+
8f 2i +fi
mi . To make the linear algebra argument of Lemma 5

work, we needm > d . This holds asmi = s
o(1)

and as by Proposi-

tion 16 we havemi ≥ 1728f 2i .
Now we argue that qs has no circuit of size≤ s . For the sake of

contradiction, assume that qs has a circuit of size≤ s . The degree

of qs is at most
m i
8f i
· 2d

8fi+1
mi

i ≤
m i
8f i
· 2s

fi (8fi+1)
mi . Applyingmi = s

o(1)

andmi ≥ 1728f 2i , we get that qs has degree < s . This implies that

qs ∈ Ts , which is a contradiction. Thus, qs has no circuit of size≤ s .
So we have a multi-δs -ic polynomial family {qs | s ∈ N} such that,

1) qs is computable in d4i = s
4f i

time but has no circuit of size≤ s ,

2) it has individual degree δs = 1 + s f i (8f i+1)/m i
and number of

variables
m i
8f i

.

Variable Reduction Map. Now we convert every non-zero

polynomial in Ps,i+1 to a non-zero polynomial in Ps12fi ,i . Consider

a slightly larger size parameter s0 := s7. Let {S1, . . . ,Sm′ } be an

NW (mi ,
m i
8f i
, m i
16f 2i

)-design on the variable set {z1, . . . ,zm i }. The

growth properties ofmi , togetherwith Lemma 14, ensures that such

a design exists. Define for all j ∈ [m′],p j := qs0 (S j ). Next, we show
that for any non-zero P ∈ Ps,i+1, P (p1, . . . ,pm′ ) is also non-zero.

For the sake of contradiction, assume that P (p1, . . . ,pm′ ) is zero.
Since P (x) is nonzero, we can find the smallest j ∈ [m′] such that

P (p1, . . . ,p j−1,x j , . . . ,xm′ ) =: P1 is nonzero, but P1
���x j=p j is zero.

Thus, (x j −p j ) divides P1. Let a be a constant assignment on all the

variables in P1, except x j and the variables S j in p j , with the prop-

erty: P1 at a is nonzero. Since P1 is nonzero, we can find such an as-

signment [64]. Now our new polynomial P2, on the variables S j and
x j , is of the form P2 (S j ,x j ) := P (p′

1
, . . . ,p′j−1,x j ,a j+1, . . . ,am′ ),

where for each i ∈ [j − 1], p′i is the polynomial on the variables

Si ∩ S j , and ai ’s are field constants decided by our assignment a.
By the design, for each i ∈ [j − 1], |Si ∩ S j | ≤

m i
16f 2i

. Since pis are

polynomials on variables Si of individual degree≤ δs0 , each p
′
i has

a circuit (of trivial form ΣΠ) of size at most

mi

16f 2i
δs0 · δ

mi
16f 2i
s0 .

Thus, we have a circuit for P2 of size at most s1 and the degree of

P2 is at most d1, where

s1 := s +
m′miδs0
16f 2i

· δ

mi
16f 2i
s0 and d1 := s ·

miδs0
16f 2i

.

Since (x j − p j ) divides P2, we can invoke Kaltofen’s factorization

algorithm [39] (see [11, Thm.2.21] for the improved complexity of

factors) and get an algebraic circuit for p j of size s
′
0
:= s1Õ (d2

1
).

Now we prove that s ′
0
< s0, for large enough s . This implies that

qs0 has a circuit of size≤ s0 which contradicts the hardness of qs0 .

Recall that δs0 = 1 + s
f i (8f i+1)/m i
0

. Let us upper bound s ′
0
=

s1Õ (d2
1
) ≤

(
s +

m′mi

16f 2i
· δ

1+
mi
16f 2i

s0

)
· Õ

( smiδs0
16f 2i

)
2

≤
s3+o(1)δ2s0

f 2i
+

s3+o(1)δ
3+

mi
16f 2i

s0

f 4i

(
∵ mi = s

o(1) ,m′ ≤ s
)

≤ s3+o(1)s
2fi (8fi+1)

mi
0

+ s3+o(1)s

(
3+

mi
16f 2i

)
fi (8fi+1)

mi

0

≤ s3+o(1)s
14fi (8fi+1)

mi + s3+o(1)s

(
3+

mi
16f 2i

)
7fi (8fi+1)

mi

≤ s3+o(1)s
112f 2i +14fi

mi + s3+o(1)s
21fi (8fi+1)

mi
+
7(8fi+1)
16fi

≤ s3+o(1)s
112fi+14
1728fi + s3+o(1)s

21(8fi+1)
1728fi

+
7(8fi+1)
16fi

(
∵ mi > 1728f 2i

)
≤ s3+o(1)+

112

1728
+

7

1728 + s3+o(1)+
168

1728
+

21

3456
+
56

16
+

7

32 (∵ fi ≥ 2)

≤ s3.1+o(1) + s6.83+o(1)

< s7 = s0 .

This gives a contradiction for sufficiently large s . So P ′ := P (p1,
. . . ,pm′ ) is non-zero.

Using the Given Hsg. The above variable reduction converts

P to ami -variate degree-d
′
non-zero polynomial P ′ computable by

s ′-size circuit, where

d ′ :=
smi
8fi
· δs0 and s ′ := s +

m′miδs0
8fi

· δ
mi
8fi
s0 .

Now we give an upper bound of s ′:

s ′ = s +

m′miδs0
8fi

· δ
mi
8fi
s0

= s +

m′mi
8fi

·

1 + s fi (8fi+1)
mi

0


(
mi
8fi

+1)

≤ s +

m′mi
8fi

· (1 + s )
7fi (8fi+1)

mi
(
mi
8fi

+1)

≤ s + s
1+o(1)+7(f i+ 1

8
) (1+

8fi
mi

)

< s + s1+o(1)+7(f i+
1

8
) (1+ 8

3456
) (∵ mi > 1728f 2i , fi ≥ 2)

< s9f i .

Since d ′,s ′ < s9f i =: s1, P
′
ismi -variate degree-s1 polynomial

that is computable by size-s1 circuit. So P ′ has an hsg of time

complexity s
f i
1
= s9f

2

i .

Final Time Complexity. First, let us review our overall algo-

rithm: It takes (1s ,1i+1) as input, and in s f i+1 -time, outputs an

s9f
2

i -time hsg of Ps,i+1, under the assumption that for all t ≥ s ,

there is a t f i -time hsg for Pt,i .

a. s0 ← s7.
b. By linear algebra, compute an annihilator qs0 (in dense rep-

resentation) of the given hsg of
m i
8f i

-variate degree-s0 size-s0
polynomials.
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c. Compute NW design (by the greedy algorithm sketched in

Lemma 14) {S1, . . . ,Sm′ } on the variable set {z1, . . . ,zm i }.

d. Compute anmi -input andm
′
-output circuit C (in the form

ΣΠ) on the variables {z1, . . . ,zm i } such that: for all j ∈ [m′],
the j-th output is p j = qs0 (S j ).

e. Compute the hsg a = (a1, . . . ,am i ) of Ps9fi ,i . Then, the

above proof shows that an hsg for Ps,i+1 is C (a).
The total time complexity of hsg for P has four components:

(1) Computing qs0 (step b): It takes (s
f i
0
)4 = s7× f i ×4 = s28f i

≤ s14f
2

i .

(2) Nisan Wigderson design from Lemma 14 (step c): It takes

time O (4mi/(mi/8fi ))
m i /8f i = O (32fi )

m i /8f i
. Ifmi >

64f 2i log s then we will run the i-th induction step only for

(relabelled) mi := 64f 2i log s , as the stretch obtained will

already be to 2
m i /64f 2i = s variables. Note that at that point,

i would be non-constant and hence fi > 4. In this regime,

(32fi )
m i /8f i = (32fi )

8f i log s = s8f i log(32f i ) < s12f
2

i .

(3) Computing C (step d): Essentially, compute m′ copies of
qs0 (in dense representation). As seen before, the total time-

complexity is s9f i .
(4) Computing hsg of Ps9fi ,i . Then, computing hsg of Ps,i+1 by

composition (step e): It takes s9f
2

i + s9f
2

i · s9f i < s14f
2

i time.

So, the total time is smaller than s16f
2

i = s f i+1 and we have an hsg

form′-variate P . □

Proof of Theorem 2. In the hypothesis of the theorem state-

ment we are given constants e ≥ 2 and n ≥ 1024. Let us define the

mi , fi polynomial family with the initialization f0 := e andm0 := n.
The idea is to simply use the induction step (Lemma 18) several

times to boostm0 variables to an arbitrary amount.

Let P be a degree-s polynomial computed by size-s circuit. Then,
it can have at most s variables. Letk be the smallest integer such that

mk ≥ s (k is an extremely slow growing function in s as described

in Proposition 17). By Proposition 16, we have thatmk−1 ≤ so(1) .
For i ∈ N≥0 and large enough parameters t > t ′ > s , let Pt,i

denote the set of mi -variate degree-t polynomials computed by

size-t circuits. From the hypothesis, we have a t f0 -time hsg for Pt,0.

Now for each i < k , we apply Lemma 18, to get the t ′f i+1 -hsg for

Pt ′,i+1. After k such applications of Lemma 18, we get an s fk -time

hsg for s-variate degree-s polynomials computed by size-s circuits.

Note that fk = (16f0)
2
k
/16 = 2

O (2k ) = 2
2
O (log⋆ s )

. Thus, we

have an sexp ◦ exp(O (log⋆ s ))
-time blackbox PIT for VP circuits.

Since f0 < m0/2 one can see that the hypothesis of Theorem 4 is

easily satisfied. This gives us an E-computable polynomial family

{qm }m≥1 with hardness 2
Ω(m)

. □

Proof of Theorem 3. Suppose we have, for constant δ < 1/2,

an sn
δ
-time hsg for size-s degree-s circuits that depend only on

the first n variables. Wlog (using depth-reduction proofs), we can

assume that we have an sn
δ
-time hsg for degree-s polynomials

computed by size-s circuits that depend only on the first n variables.

Then, there exists an ϵ ∈ [2δ ,1) and a large enough constant e
such that: there is an se -time hsg for degree-s polynomials com-

puted by size-s circuits that depend only on the firstn := ⌈(64e2)1/ϵ ⌉

≥ 192e2 log(128e2)1/ϵ variables. Note that e ≥ (n − 1)ϵ/2/8 > nδ

can be easily ensured, thus, se -time is more than sn
δ
-time. Now

we simply invoke Theorem 2. □

Remark. 1) The NW (ℓ,n,d )-design that we are using, in the i-th
iteration (Lemma 18), has its respective parameters in the “ratio”

f 2i : fi : 1 (roughly). This seems to be the reason why we need

second-exponent δ slightly less than 1/2. We leave it as an open

question to improve this.

2) We can give a more refined analysis in the above proofs by

“decoupling” the time-complexity from the degree of the hsg. For ex-

ample, we can begin with a much weaker hypothesis— for constant

δ < 1/2 and an arbitrarily large function µ (·), an
(
s µ (n) ,sn

δ )
-hsg

for size-s degree-s circuits that depend only on the first n variables

—and still get the same conclusion as in Theorem 3. This will require

analysing the bit complexity (i.e. time) and the algebraic complexity

(i.e. degree of the hsg) separately in the proof of Lemma 18. We

skip the details for now.

5 SHALLOW DEPTHS, TINY VARIABLES–
PROOF OF THEOREM 4

Shallow circuits. Diagonal depth-4 circuits compute polynomi-

als of the form

∑
i∈[k] ci f

a i
i where fi ’s are sparse polynomials in

F[x1, . . . ,xn] of degree ≤ b, ai ≤ a and ci ’s in F. A standard no-

tation to denote this class is Σ ∧a ΣΠb (n). This is a special case

of the depth-4 ΣkΠaΣΠb (n) model that computes polynomials of

the form

∑
i∈[k]

∏
j∈[a] fi, j where fi, j ’s are sparse polynomials in

F[x1, . . . ,xn] of degree ≤ b. The superscripts k ,a,b on the gates

denote an upper bound on the respective fanin (whenever it needs

to be emphasized).

We denote ΣΠΣΠ1
circuits by ΣΠΣ and call them depth-3. We

also study a model quite close to it– ΣΠΣ∧b –we call it preprocessed
depth-3 because, in this work, this model will appear on simply

substituting univariate monomials in the variables of a depth-3

circuit. It degenerates to depth-3 again if b = 1.

We prove Theorem 4 in two different ways. First, by assuming an

efficient O (sn/2/ log2 s )-degree hsg for polynomials computed by

size-s Σ∧a ΣΠ circuits that depend only on the first n variables (a(s )
is an arbitrarily slow growing function), we get to the conclusion of

Theorem 4. Second, by assuming an efficientO (sn/2/ log2 s )-degree
hsg for polynomials computed by size-s ΣΠΣ∧ circuits that depend

only on the first n variables, we get to the conclusion of Theorem 4.

Both the models seem weaker than general depth-4 circuits. So one

would expect that solving PIT for these models would be easier.

Our proofs will go via a plethora of intermediate models. Theo-

rems 19 & 20 together give the proof of our first approach. Theorems

21 & 22 together give the proof of the second approach. One can no-

tice that in all these theorems we prove the existence of an efficient

variable reduction map for circuits that preserves nonzeroness. It

is stronger than proving quasipolynomial hsg for size-s degree-d
circuits. However, after the variable reduction, if we apply hsg of

the trivial PIT derandomization [64], we get an (sd )O (log(sd ))
time

hsg.

Theorem 19 (Σ ∧a ΣΠ computing multilinear). Suppose that
for some constant n ≥ 2 and some arbitrarily slow growing function
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a(s ), we have a
(
poly(s ),O (sn/ log2 s )

)
-hsg for multilinear polyno-

mials computed by size-s Σ ∧a ΣΠ circuits that depend only on the
first n log s variables.

Then, for N -variate d-degree size-s circuits, we have a poly(sd)-
time nonzeroness preserving variable reducing polynomial map (N 7→
O (log(sd ))) and Conjecture 1 holds. Furthermore, after variable re-
duction, the degree of the new polynomial will be poly(sd ).

Proof sketch. The proof is along the lines of [7, Thm.3.2] and

is available in the full version linked on the first page.

For all s ∈ N, let Ps be the set of multilinear polynomials com-

puted by size-s Σ∧a ΣΠ circuits that depend only on the first n log s
variables. First, using theO (sn/ log2 s )-degree hsg we can construct
a family of multilinear polynomials {qm }m which is E-computable

(Lemma 5) but not computable by 2
o(m)

-size circuits (by ‘depth-4

chasm’).

Using this hard polynomial family we get both the variable re-

duction and Conclusion 1. Invoking Lemma 9, in poly(sd ) time, we

can convert a nonzero d-degree N -variate polynomial computed

by a size-s circuit to a nonzero O (log(sd ))-variate poly(sd )-degree
polynomial. Conjecture 1 follows from Lemma 10. □

Remark. 1) Note that a
(
Õ (sn ),sn

)
-hsg formultilinear n log s vari-

ate polynomials is trivial. As one can simply use {0,1}n log s
as the

hitting-set.

2) An efficient sn/ω (log s ) degree hsg in the hypothesis would

also suffice.

3) Can we get a conclusion as strong as in Theorem 1? In the

proof above we get a variable reduction map to log-variate; but this

map when applied on a general circuit results in a non-multilinear

polynomial. So, we cannot use the hsg provided in the hypothesis

and have to do poly(s)-time PIT on the log-variate Σ ∧a ΣΠ circuit

by some other means (currently unknown).

Theorem 20 (Tiny variate Σ ∧a ΣΠ). Suppose that for some
constant n ≥ 3 and some arbitrarily slow growing function a, we
have a

(
poly(s ),O (sn/2/ log2 s )

)
-hsg for size-s Σ∧a ΣΠ circuits that

depend only on the first n variables. Then, we get all the conclusions
of Theorem 19.

Proof. For all s ∈ N, let Ps be the set of multilinear polynomials

computed by size-s Σ ∧a ΣΠ circuits that depend only on the first

n log s variables. For all s ∈ N, let Ts be the set of polynomials

computed by size-s Σ ∧a ΣΠ circuits that depend only on the first

n variables. By the hypothesis, we have an efficientO (sn/2/ log2 s )-
degree hsg for Ts . Next, we convert every nonzero polynomial in

Ps to a nonzero polynomial in TO (s2 ) in poly(s ) time. Now applying

the given hsg for TO (s2 ) , we get an efficient O (sn/ log2 s )-degree
hsg for Ps . Next invoking Theorem 19, we get our conclusion.

We describe the reduction from Ps to TO (s2 ) . Let P be a nonzero

polynomial inPs . Letm := n log s . Partition the variable set {x1, . . . ,
xm } into n blocks B j , j ∈ [n], each of size log s . Let B j := {xu ( j )+1,
xu ( j )+2, . . . ,xu ( j )+log s }, for all j ∈ [n] and u (j ) := (j − 1) log s . Con-
sider the variable-reducing “local Kronecker” map φ : xu ( j )+i 7→

y2
i

j . Note that φ (P ) ∈ F[y1, . . . ,yn], and its individual-degree is

at most 2s . It is easy to see that φ (P ) , 0 (basically, use the fact

that P computes a nonzero multilinear polynomial and φ keeps

the multilinear monomials distinct). Finally, φ (P ) becomes an n-

variate Σ ∧a ΣΠ circuit of size at most s + s · 2log s = O (s2). Thus,(
poly(s ),O (sn/ log2 s )

)
-hsg for TO (s2 ) gives a

(
poly(s ),O ( sn

log
2 s

)
)
-

hsg for P . □

In next two lemmas, we describe our second approach to prove

Theorem 4.

Theorem 21 (Depth-3 computing multilinear). Suppose that
for some constant n ≥ 2, we have a

(
poly(s ),O (sn/ log2 s )

)
-hsg for

multilinear polynomials computed by size-s depth-3 circuits that de-
pend only on the first n log s variables. Then, we get all the conclusions
of Theorem 19.

Proof. Proof will be similar to proof of Theorem 19. Main dif-

ference is that there we were dealing with depth-4 circuits, but here

we have depth-3 circuits. So we need ‘depth-3-reduction’ result [30]

with ‘depth-4-reduction’ result [7]. We only sketch the main points

here.

First, we construct a hard polynomial family from the hsg. Ac-

cording to the hypothesis, for n log s-variate multilinear polynomi-

als computed by size-s depth-3 circuits we have an O (sn/ log2 s )-
degree hsg. For all s ∈ N, let Ps be the set of n log s-variate multi-

linear polynomials computed by size-s depth-3 circuits. Letm :=

n log s . Let f (y) be the
(
poly(s ),O (sn/ log2 s )

)
-hsg of Ps . Now we

consider the annihilator of f (y) to get a hard polynomial. Let k
be the number of m-variate m/2-degree multilinear monomials.

Then k =
( m
m/2

)
≥ 2

m/
√
2m = sn/

√
2m > O (sn/ log2 s ) ·m (for

large enough s). Thus, by linear algebra similar to Lemma 5, we get

an m-variate m/2-degree multilinear homogeneous annihilating

polynomial qm < Ps and computable in poly(s )-time. Importantly

qm < Ps , thus, no depth-3 circuit of size < s = 2
Θ(m)

can compute

it. Next we show that it is also not computable by any 2
o(m)

-size

algebraic circuit.

For the sake of contradiction, assume that qm has a 2
o(m)

-size

circuit. Repeat the depth-reduction arguments, as in the proof of

Theorem 19, after cutting at some depth t = ω (1). Let a := 5
t

and b := m/2t+1. Here, we can also ensure a,b = o(m) = o(log s ),

a = ω (1), and we have a 2
o(m)

-size shallow circuit for qm of the

form ΣΠaΣΠb
.

It was shown in [30] that any size-s ′ n-variate ΣΠaΣΠb
circuit

can be transformed to a poly(s ′2a+b )-size n-variate ΣΠΣb circuit.

Applying it here, we get a depth-3 circuit C ′, computing qm , of the

form ΣΠΣ and size 2
o(m) · 2a+b = 2

o(m)
. This gives a contradiction,

since no depth-3 circuit of size < s = 2
Θ(m)

can compute it.

Thus, we have an E-computable family of multilinear polyno-

mials {qm }m≥1 that has no circuit of size 2
o(m)

. Using this hard

polynomial family we get both the variable reduction and Conjec-

ture 1 as before. □

Theorem 22 (Tiny variate ΣΠΣ∧). Suppose that for some con-
stant n ≥ 3, we have a

(
poly(s ),O (sn/2/ log2 s )

)
-hsg for polynomials

computed by size-s ΣΠΣ∧ circuits that depend only on the first n vari-
ables. Then, we get all the conclusions of Theorem 19.

Proof. The proof is similar to that of Theorem 20 and available

in the full version linked on the first page for a proof. □
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Remark. Can we get a result like the above with depth-3 circuits in

the hypothesis? At this point it is not clear how to get to arbitrarily

tiny variate ΣΠΣ because: 1) the above trick of applying local-

Kronecker map, to reduce variables from n log s to n, increases the
circuit depth to 4. Moreover any such map has to be non-linear,
otherwise the resulting monomials are too few, and 2) in the tiny

variate regime we need degree ≥ Ω(s ) so that the hsg of the model

can be used to get a ‘hard’ polynomial. With such a high degree

we cannot apply [30] to transform depth-4 (say in Theorem 20) to

depth-3 in polynomial-time.

Proof of Theorem 4. Let a be an arbitrarily slow growing func-

tion. For all s ∈ N, let Ps be the set of polynomials computed by

size-s Σ∧a ΣΠ circuits that depend only on the first n variables. For

all s ∈ N, let Ts be the set of polynomials computed by size-s ΣΠΣ∧
circuits that depend only on the first n variables. We show that(
poly(s ),O (sn/2/ log2 s )

)
-hsg for Ps or Ts gives the conclusion of

Theorem 4.

Using the hsg for Ps , Theorem 20 gives an efficient variable

reduction and Conjecture 1.

Using the hsg for Ts , Theorem 22 gives an efficient variable

reduction and Conjecture 1.

After the variable reduction, if we apply hsg of the trivial PIT

derandomization [64], we get an (sd )O (log(sd ))
time hsg.

To see that the original statement could be proved for any field

F: Observe that ‘depth-4 reduction’ [7, Thm.3.2] works for any field.

Similarly, we get versions of Theorems 19 & 20 using ΣΠaΣΠ in

the respective hypothesis. Also, see the remarks after the proofs of

Lemma 12 and Theorem 1. □

5.1 Depth-3 Fpt-blackbox PIT
In this section, we show that we merely need an fpt-algorithm (wrt

parameters n,d) for polynomials computed by depth-3 circuits. In

fpt-algorithm, one provides input with multiple parameters, with

the intention that the running time will be polynomial in input

size but possibly exponential (or worse) in other parameters [14].

We show that to get the same conclusion as Theorem 4, we merely

need a fpt-blackbox PIT for depth-3 circuits computing multilinear
polynomials. These polynomials have three important complexity

parameters: 1) s , the size of the depth-3 circuit computing the

polynomial, 2)m, the number of variables, and 3) d , the degree of
the polynomial which is upper bounded bym. Here, circuit is the

input. So, the running time of the fpt-blackbox PIT must depend

polynomially on s . We considerm and d as the extra parameters of

the fpt-blackbox PIT. Next, we describe the desired dependence on

them.

Theorem 23 (Depth-3 tiny variables & degree). Suppose that
we have a poly(2m+d ,s)-time computable

(
2
m

+ 4
d
+ s2

)
/ log2 s

degree hsg form-variate, degree-d multilinear polynomials computed
by size-s depth-3 circuits.

Then, we get all the conclusions of Theorem 19.

Remark. 1) Since exponential dependence onm,d is allowed, one

can hope that designing such an hsg would be easier than the

numerous unsolved PIT cases that the community has attempted

till date.

2) Another width-2 ABP version is stated in Theorem 24 (with a

worse dependence onm).

3) The number of monomials is 2
m
. Thus, the hsg design chal-

lenge in the hypothesis of Theorem 23 is barely “above” triviality!

Proof. The proof strategy is identical to that of Theorem 21 and

is available in the full version linked on the first page. □

5.2 Log-variate Width-2 ABP or Depth-3 Circuit
A polynomial f ∈ F[x1, . . . ,xn] has a size-s width-2 algebraic
branching program (ABP) if it is the (1,1)-th entry in the product

of s 2 × 2 matrices (having entries in F ∪ {xi |i}).

Theorem 24 (Log-variate width-2 ABP). Suppose that for
some constant e ≥ 1, we have a

(
poly(s ),O (se )

)
-hsg for polynomi-

als (resp. 2e+1 log s-degree polynomials) computed by size-s width-2
upper-triangular ABP (resp. depth-3 circuit) that depend only on the
first log s variables. Then, we get all the conclusions of Theorem 19.

For proof, see the full version linked on the first page.

6 CONCLUSION
We discover the phenomenon of ‘efficient bootstrapping’ a partial

hitting-set generator to a complete one for poly-degree circuits. This

inspires a plethora of circuit models. In particular, we introduce the

tiny variable diagonal depth-4 (resp. tiny variants of depth-3, width-

2 ABP and preprocessed depth-3) model with the motivation that

its poly-time hitting-set would: (1) solve VP PIT (in quasipoly-time)

via a poly-time variable-reducing polynomial map (n 7→ log sd),
and (2) prove that either E⊈#P/poly or VNP has polynomials of

algebraic complexity 2
Ω(n)

.

Since now we could focus solely on the PIT of VP circuits that

depend only on the first sub-log (or even constant!) many variables,

we need to initiate a study of properties that are useful in that

regime. Furthermore, we only need to optimize the size of the

hitting-set (& not its time). This work throws up a host of tantalizing

models and poses several interesting questions:

• Could the bootstrapping property in Theorem 1 be improved

(say, to the function log
⋆ s)?

• Could the constant parameters in Theorems 2 & 3 be im-

proved? In particular, does so(n)-time blackbox PIT suffice

in the latter hypothesis?

• Could we show that the д in Corollary 6 is in VNP and not

merely E-computable? This would tie blackbox PIT tightly

with the question VNP,VP (& we can drop ‘E⊈# P/poly’).
This will require starting with a more structured hsg, so that

its annihilator д is a polynomial whose coefficient bits are

(#P/poly)-computable. Numerous examples of such polyno-

mials, arising from basic hitting-set designs, can be found in

[2, 43] and [41, Sec.4].

• Could we solve whitebox PIT for log
⋆ s variate (or degree)

models? Could it be bootstrapped?

• Could we prove nontrivial lower bounds against the tiny

variable (or degree) models?

• Could we solve PIT for n-variate degree-s size-s circuits in

sO (
√
n)
-time?

• Is there a poly(s )-time computable,O (s3)-size hitting-set for
6-variate size-s ΣΠΣ∧ polynomials?
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• An sexp(n)-time computable,O (sn/2)-size hitting-set for size-
s ΣΠΣ(n) ?
• Could we do blackbox PIT for tiny variable ROABP? For

instance, given oracleC =
∑
i∈[k]

∏
j∈[n] fi, j (x j ) of size≤ s ,

we want a poly(s,µ (n))-hsg, for some µ. It is known that

diagonal depth-3 blackbox PIT reduces to this problem if we

demand µ (n) ≤ 2
O (n)

[21].

Note that for n-variate size-s ROABPs, sO (log n)
-time hsg

is already known [3]. But, we can ask the following open

questions:

• Efficient blackbox PIT for size-s , log s-variate, individual-
degree-(log

⋆ s) ROABPs?
• Blackbox PIT for size-s , (log⋆ s ) log s-variate, multilinear

ROABPs?

• Blackbox PIT for size-s , (log⋆ s ) log s-variate, log s-degree,
diagonal depth-3 circuits? Recently, [20, Thm. 9] gives a poly-

nomial time blackbox PIT algorithm for log-variate depth-3

diagonal circuits.

A PROOFS FROM SECTION 1
Theorem 0 (restated). If we have poly(s )-time blackbox PIT for

size-s degree-s circuits, then Conjecture 1 holds.

Proof sketch. For all s ∈ N, letPs be the set of polynomials computed

by size-s degree-s circuits. Using basic linear algebra, we can con-

struct anm-variate multilinear annihilator qm , wherem = O (log s ),

for the hsg of Ps in 2
O (m)

-time. Thisqm cannot lie in Ps , otherwise

qm evaluated at hsg would be a nonzero polynomial (contradicting

the annihilation property). For details, see the proof of [1, Thm.51].

For the sake of contradiction, assume that it has a circuit of size so(1) .
Since the degree of qm isO (log s ), we can invoke the structural log-

depth reduction property (see [59, Thm.5.15]) and get a so(1)-size
O (log s )-degree circuit computing qm . Whence qm ∈ Ps , which is a
contradiction. So we have the polynomial family {qm }m≥1 such that

its coefficients are computable in 2
O (m)

-time (thus E-computable)

but the algebraic circuit complexity is > sΩ(1) = 2
Ω(m)

.

Wlog we assume qm to be a multilinear polynomial family with

0/1 coefficients; as, indexing a bit of a coefficient requires O (m)
bits and one can use the variable-increasing transformation from

the proof of [42, Lem.3.9]. Also, if the coefficient function of a

polynomial family is in #P/poly, then the polynomial family is in

VNP [11, Prop.2.20]. So, if we assume E ⊆ #P/poly, then {qm }m is

in VNP. Thus, either E ⊈ #P/poly or VNP has a polynomial family

{qm }m of algebraic circuit complexity 2
Ω(m)

. □
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