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Abstract
For a polynomial f , we study the sum of squares representation (SOS), i.e. f =

∑
i∈[s] cif

2
i , where

ci are field elements and the fi’s are polynomials. The size of the representation is the number of
monomials that appear across the fi’s. Its minimum is the support-sum S(f) of f .

For simplicity of exposition, we consider univariate f . A trivial lower bound for the support-
sum of, a full-support univariate polynomial, f of degree d is S(f) ≥ d0.5. We show that the
existence of an explicit polynomial f with support-sum just slightly larger than the trivial bound,
that is, S(f) ≥ d0.5+ε(d), for a sub-constant function ε(d) > ω(

√
log log d/ log d), implies that

VP 6= VNP. The latter is a major open problem in algebraic complexity. A further consequence is
that blackbox-PIT is in SUBEXP. Note that a random polynomial fulfills the condition, as there we
have S(f) = Θ(d).

We also consider the sum-of-cubes representation (SOC) of polynomials. In a similar way, we
show that here, an explicit hard polynomial even implies that blackbox-PIT is in P.
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1 Introduction

The sum-of-squares representation (SOS) is one of the most fundamental in number theory
and algebra. Lagrange’s four-squares theorem inspired generations of mathematicians [27].
Hilbert’s 17th problem asks whether a multivariate polynomial, that takes only non-negative
values over the reals, can be represented as an SOS of rational functions [26]. In engineering,
SOS has found many applications in approximation, optimization and control theory, see
[28, 18, 19, 4]. In this work, we show a connection to central complexity questions.

Consider the following basic problem on the size of SOS-representations.
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23:2 Largish SOS Implies Circuit Hardness

I Open Problem. Exhibit an explicit univariate polynomial f(x) ∈ C[x] of degree d such
that any SOS-representation f(x) =

∑
i fi(x)2 requires

∑
i sparsity(fi) > ω(

√
d).

Before delving into the meaning of explicitness, note that Ω(
√
d) is a trivial lower bound,

for a polynomial of degree d, with full support (by counting monomials). Moreover, for most
polynomials f , a larger lower bound of Ω(d) holds, by a dimension argument. In other words,
we ask for an explicit polynomial f(x) that has a merely largish

∑∧2∑∧
-formula. We show

that one can bootstrap the seemingly weak hardness condition for SOS to general circuits
(see Theorem 6) and to the infamous determinant vs. permanent question (see Corollary 14).

1.1 Algebraic circuits and univariate polynomials
Valiant defined the algebraic complexity classes VP and VNP based on algebraic circuits (for
definitions see Section 2). They are considered as the algebraic analog of boolean classes
P and NP. Separating VP from VNP is a long-standing open problem. One of the popular
ways has been via depth-reduction results [3, 14, 10, 36]. It seems that showing strong lower
bounds require a deeper understanding of the algebraic-combinatorial structure of circuits,
which may be easier to unfold for more analytic models that appear in wider mathematics.

It is known that most of the polynomials of degree d are hard, i.e. they require Ω(d) size
circuits; for a self-contained proof, see [7, Theorem 4.2] 1. In fact, for pi being the i-th prime,∑d
i=0
√
pi x

i and
∑d
i=0 22i

xi, both require circuits of size Ω (d/ log d), see [6, Cor.9.4] & [35].
Such polynomials can be converted to an exponentially hard multilinear polynomial fn(x).
Unfortunately, this strong lower bound is insufficient to separate VP and VNP because the
polynomial family is non-explicit– so fn may not be in VNP. For details, see [11, 5].

Thus, the explicitness of the family plays a major role in its usefulness in algebraic
complexity.

I Definition 1 (Explicit functions). Let (fd)d be a polynomial family, where fd(x) is of degree d.
The family is explicit, if its coefficient-function is computable in time poly log(d) and each
coefficient can be at most poly(d)-bits long. The coefficient-function gets input (j, i, d) and
outputs the j-th bit of the coefficient of xi in fd.

Alternative versions of explicitness define the coefficient-function to be computable in
#P/poly or in the counting hierarchy CH, which would be good enough for our purpose (see
Theorem 13).

An explicit candidate for the hard family is the Pochhammer-Wilkinson polynomial,
fd(x) :=

∏d
i=1(x− i). Other explicit families, but not hard, are (x+ 1)d and the Chebyshev

polynomial (that writes cos dθ as a function of cos θ) [22]. These three are quite relevant to
this work.

The interplay between proving lower bounds and derandomization is one of the central
themes in complexity theory [24]. Blackbox Polynomial Identity Testing (PIT) asks for an
algorithm to test the zeroness of a given algebraic circuit via mere query access. It is still an
open question to design an efficient deterministic PIT algorithm. A circuit of size s can have
exp(s) many monomials. However, since a non-zero polynomial evaluated at a random point
is non-zero with high probability (by the Polynomial Identity Lemma [25, 8, 41, 33]), one
gets a randomized poly-time algorithm for PIT. For PIT refer [31, 32, 34, 23, 39].

1 The size-bound in the previous such proofs usually counted only the number of nodes in the circuit,
achieving square-root in the bound; we use the number of nodes and edges here.
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One important direction, from hardness to derandomization, is to design deterministic PIT
algorithms for small circuits assuming access to explicit hard polynomials [24, 13]. Most of the
constructions use the concept of hitting-set generator (HSG), see Definition 33. Very recent
work discovered that PIT is amenable to the phenomenon of bootstrapping (w.r.t. variables)
[2, 17]. Finally, Guo et al. [9] showed: ample circuit-hardness of constant-variate polynomials
(including univariate) implies blackbox-PIT in P.

1.2 Sum-of-squares model (SOS)
We want to relate variants of SOS to PIT and circuit lower bounds. Towards that, we show
a connection between large SOS representation and hard polynomials; strong enough to
imply VP 6= VNP and subsequently PIT ∈ SUBEXP. This is mainly achieved by an SOS-
decomposition result for circuits via Algebraic Branching Programs (ABP) (for definition
see Section 2). It expresses any d-degree polynomial f(x) of circuit size s as sum of squares
of polynomials with degree at most d/2. We manage the top-fanin of SOS within a quasi-
polynomial blow-up. Finally, we apply a careful multi-linearization trick to convert the
hardness from the univariate SOS-model to general circuits.

I Definition 2 (SOS and support-sum size SR(f)). Let R be a ring. An n-variate polynomial
f(x) ∈ R[x] is represented as a (weighted) sum-of-squares (SOS), if

f =
s∑
i=1

cif
2
i , (1)

for some top-fanin s, where fi(x) ∈ R[x] and ci ∈ R.
The size of the representation of f in (1) is the support-sum, the sum of the support size

(or sparsity) of the polynomials fi. The support-sum size of f , denoted by SR(f), is defined
as the minimum support-sum of f .

I Remark 3. In real analysis, the SOS representation of a polynomial is defined without the
coefficients ci, that is, only for non-negative polynomials f . In these terms, what we define
in (1) is a weighted SOS. However, we will skip the term “weighted” in the following.

If we consider the expression in (1) as a
∑∧2∑∏

-formula, then the support-sum is the
number of

∏
-operations directly above the input level.

For any N -variate polynomial f of degree d. Let |f |0 denote the sparsity of f . For any
field R = F of characteristic 6= 2, we have

|f |1/20 ≤ SF(f) ≤ 2 |f |0 + 2 . (2)

The lower bound can be shown by counting monomials. The upper bound is because

f = (f + 1)2/4− (f − 1)2/4 . (3)

In particular, the SOS-model is complete for any field of characteristic 6= 2. It can be argued
by a geometric-dimension argument that for most N -variate (constant N ≥ 1) polynomials f
of degree d, we have SF(f(x)) = Θ(dN ), as for random f , |f |0 = Θ(dN ).

We want to explore how SF(fd) behaves w.r.t. d, for explicit families (fd)d, that is, the
coefficient-function of the family is computable in time poly(log d). We call a polynomial
family SOS-hard, if its support-sum is just slightly larger than the trivial lower bound
from (2).

ITCS 2021
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I Definition 4 (SOS-hardness). For constant N ≥ 1, an explicit N-variate polynomial
family (fd(x))d is SOS-hard, if SF(fd) = Ω(dN(0.5+ε)), where ε := ε(d) = ω

(√
log log d

log d

)
is a

sub-constant function.

I Remark 5.
1. For our purpose we could relax the explicitness condition such that the j-th bit of

coefxi(fd) is computable in poly(21/ε) time. This makes the family barely explicit w.r.t. d.
In fact, #P/poly w.r.t. 21/ε works too. Eg. fd =

∑
i∈[d] 2i2xi is an easy candidate for

N = 1.
2. Ω(dN(0.5+ε)), instead of Ω(dN ), which is the expected bound for most fd, is a much weaker

requirement. In fact, the trivial lower bound is S(fd) ≥ Ω(dN/2). Thus, we demand
just a tiny improvement over the trivial bound, namely, by a factor of dNε = do(1). For
example, (log d)

√
log d is such a function that works in dε.

1.3 Our results for SOS
Algebraic circuits are quite well-structured, for eg. , there is a famous depth-O(log d) reduction
result [38, 34, 29]. Its proof methods implicitly establish (see Lemma 28) that an n-variate,
degree d polynomial f(x), computed by a circuit of size s, can be rewritten as

f(x) =
O(sd2)∑
i=1

cifi(x)2 , (4)

for ci ∈ F and fi ∈ F[x], where each fi has circuit size at most O(sd2) and deg(fi) ≤ 2d/3,
for all i. Moreover, with a larger, quasi-polynomial blowup in the top-fanin, we bring down
the degree really to d/2 (via Algebraic Branching Programs (ABP)); for the details, see
Section 3.1.

I Main Lemma (SOS Decomposition). Let F be a field of characteristic 6= 2. Let f(x) be
an n-variate polynomial over F of degree d, computed by a circuit of size s. Then there
exist fi ∈ F[x] and ci ∈ F such that f(x) =

∑s′

i=1 cifi(x)2, for s′ ≤ (sd)O(log d) and
deg(fi) ≤ dd/2e, for all i ∈ [s′].

The leitmotif of this paper is the interplay between SOS-hardness and derandomization/
hardness questions in algebraic complexity. Could a barely explicit and mildly hard polynomial
in the SOS-model settle the VP vs. VNP question? We evince a positive answer.

I Theorem 6 (Circuit hardness). If there exists an SOS-hard family, then VP 6= VNP.

I Remark 7.
1. Our proof-method from constant-N -variate SOS-hardness to VP 6= VNP is essentially the

same as the one for N = 1 (eg. replace d by dN ). So, for simplicity of exposition, from
now on we will focus on univariate SOS-hardness.

2. In the non-commutative setting, lower bound on sum-of-squares (of multivariates) implies
that Permanent is hard [12]. Our theorem can be seen as its natural analog in the
commutative setting; where potential cancellations could give smaller representations.

3. Another simple candidate for SOS-hardness is fd = (x+1)d (though, by repeated squaring,
it has circuit size Θ(log d)). However, its coefficients are not poly log(d)-time explicit.
Nevertheless, from its CH-explicitness, and GRH, the theorem does hold.
Similarly, for the polynomial family, fd(x) =

∏
i∈[d](x− i) and fd(x) =

∑
0≤i≤d x

i/i!, and
Chebyshev polynomials.
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4. In the theorem and Equation (1), we could restrict the degrees of fi to be O(d ε log d) =
d ·o(log d) and the top-fanin s = do(ε) = do(1). (Also, Corollary 14 works with analogously
weaker ε.) This might help in constructing polynomials with a weaker SOS-hardness
notion. See Section 3.2 for more details.

5. A stronger SOS-hardness notion with constant ε, gives an exponential separation between
VP and VNP. This proof has many technical differences; refer to Theorem 32 for the
details.

Hardness of general circuits often leads to nontrivial derandomization [24, 13, 2, 9]. Our
methods in Theorem 6 consequently put blackbox-PIT in SUBEXP [13, Thm. 7.7]. In fact, if
ε is a constant, then it puts blackbox-PIT ∈ QP (Quasi-polynomial-time) (Theorem 32).

1.4 Sum-of-cubes model (SOC)
We show that a strong lower bound in the sum-of-cubes model leads to a complete deran-
domization of blackbox-PIT. We say that an n-variate polynomial f(x) ∈ R[x] over a ring R
is computed as a sum-of-cubes (SOC), if

f =
s∑
i=1

cif
3
i , (5)

for some top-fanin s, where fi(x) ∈ R[x] and ci ∈ R.

I Definition 8 (Support-union size UR(f, s)). The size of the representation of f in (5) is
the size of the support-union, namely the number of distinct monomials in the representa-
tion,

∣∣⋃s
i=1 supp(fi)

∣∣, where support supp(fi) denotes the set of monomials with a nonzero
coefficient in the polynomial fi(x). The support-union size of f with respect to s, denoted
UR(f, s), is defined as the minimum support-union size when f is written as in (5).

If we consider the expression in (5) as a
∑∧3∑∏

-circuit, then the support-union size
is the number of

∏
-operations directly above the input level (unlike

∑∧2∑∏
-formula in

Definition (2)).
The two measures– support-union and support-sum –are largely incomparable, since U(·)

has the extra argument s. Still one can show: SF(f) ≥ mins (UF(f, 4s)− 1) (Lemma 26).
For any polynomial f of sparsity |f |0, we have

|f |1/30 ≤ UF(f, s) ≤ |f |0 + 1, (6)

where the upper bound is for s ≥ 3 and for fields R = F of characteristic 6= 2, 3. The lower
bound can be shown by counting monomials. The upper bound is because

f = (f + 2)3/24 + (f − 2)3/24− f3/12 . (7)

Hence, the SOC-model is complete for any field of characteristic 6= 2, 3.
For simplicity, fix #variables N = 1. Here are two more examples (that we know of) for

the trade-off between s and the measure UF(f, s), for any f .

I Example 9.
1. For small s = Θ(d1/2), we have UF(f, s) = O(d1/2) (Corollary 23).
2. For large s = Ω(d2/3), we have UF(f, s) = Θ(d1/3) (Theorem 24).
However, it is unclear whether, over F = Q, for a very small fanin s, support-union = o(d)
exists. This trade-off between the measure U and the top-fanin s in the above examples,
motivated us to define hardness in the SOC-model as follows.

ITCS 2021
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I Definition 10 (SOC-hardness). A poly(d)-time explicit univariate polynomial family (fd)d
is SOC-hard, if there exists a positive constant ε′ < 1/2 such that UF

(
fd, d

ε′
)

= Ω(d).

1.5 Our results for SOC
Though technically incomparable, the SOC-hardness feels stronger than SOS-hardness (for
N = 1); indeed it can be used to prove a connection like Theorem 6. Now, we show an even
stronger consequence – a complete derandomization of blackbox-PIT.

I Theorem 11 (Derandomization). If there is an SOC-hard family, then blackbox-PIT ∈ P.

I Remark 12.
1. Older results too lead to various conditional derandomizations. E.g. multi-variate hard

polynomials lead to blackbox-PIT ∈ QP (quasipoly-time) [13, 2]. Recently, [9] showed
that the circuit hardness of a constant-variate polynomial family yields blackbox-PIT
∈ P (Theorem 34). Our hardness assumption is merely in the SOC-model. In fact, SOC
is the first restricted model where hardness implies complete derandomization.

2. For Theorem 11, we could restrict the degrees of fi, to be O(d). See Section 3.3,
Remark 3.3.

1.6 Basic arguments
There have been a series of works that connect the hardness in restricted univariate
(resp. constant-variate) models to VP vs. VNP and the PIT problem. This work is more
about remodeling the major questions in the simplest format possible. We show how to
transfer the hardness of a (univariate) polynomial family in the SOS, resp. SOC-model, to a
hard (multivariate) polynomial family in the circuit-model. To do so, we adapt the existing
powerful techniques to our setting. Intuitively, one would expect that the analytic nature
of SOS and SOC (over R or C) makes it easier to prove hardness in these models than for
general circuits. In any case, we show that this would suffice to solve central questions in
algebraic complexity.

The gap between the SOS-model and general circuits is mainly bridged by a decomposition
lemma (Main Lemma) which emerges via ABPs. Frontiers based depth-reduction [38]
implicitly shows that any polynomial f(x) of degree d, computed by a homogeneous circuit of
size s, can be decomposed as f(x) =

∑s
i=1 fi1·fi2, where deg(fij) ≤ 2d/3 and size(fij) ≤ O(s);

for a proof see Lemma 28. However, such proof strategies can never give intermediate
polynomials of degree exactly d/2, simply because degree ≈ d/2 polynomial may not even exist
in the computation tree, and thus, frontiers at appropriate layers do not really help. However,
in the case of homogeneous ABPs, the intermediate degrees increase gradually, as the labels are
linear forms. In particular, a layer of vertices computing degree exactly d/2 exists. By cutting
the ABP, say, of width w, at the d/2-th layer, we get f = (f1, . . . , fw)T · (f ′1, . . . , f ′w) =∑w
i=1 fi ·f ′i . This directly gives an SOS-form of top-fanin at most 2w. The conversion from a

homogeneous circuit to a homogeneous ABP is pretty straight-forward in the literature. Use
log-depth-reduction [38] and induct on the depth to conclude that sO(log d)-size ABP exists.
Finally, homogenize the ABP with a polynomial blowup in size. (See [16, Lem.15] or [29].)

Proof idea of Theorem 6. The main idea in Theorem 6 is to lift the hardness of f = fd
in the SOS-model to a multivariate polynomial, which we prove to be super-polynomially
hard in the general circuit model (implying 6∈ VP) and explicit (implying ∈ VNP). Usually,
to convert a univariate polynomial to multivariate, (inverse) Kronecker type substitution
is used; here we do not use the Kronecker due to a technical barrier and the reason will
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be addressed in the next paragraph. Instead, we use a multilinear map φ that sends xi to
φ(xi) :=

∏
j∈[n], `∈[0...k−1] yj,`, where ` · kj−1 contributes to the basek(i)-representation in

the j-th position; n and k are both functions of d to be fixed. Consider, by linear extension,
φ(f) =: Pn,k. By construction Pn,k is a kn variate n degree multilinear polynomial. With
appropriate parameter fixing, we show that size(Pn,k) = (kn)ω(1). The proof goes via
contradiction. If the size is smaller, then using Main Lemma, we get Pn,k as sum of
do(ε)-many Q2

i ’s; where the intermediate polynomial Qi (kn-variate) has degree at most
n/2. Thus, a naive upper bound on the support-sum (after proper parameter fixing) is
do(ε) ·

(
kn+n/2
n/2

)
< do(ε) · d1/2+ε/2 = o(d1/2+ε), a contradiction to the SOS-hardness!

Here we remark that Kronecker type substitution does not give the desired result. It
basically maps a monomial xe to xe, where e := base(n+1)(e) for some n; then n is the
individual-degree in the image, and (n+ 1)k ≥ d+ 1 > nk. However, this map converts f to
be a k-variate, individual-degree n polynomial family and the naive binomial upper-bound
on the number of terms would be

(
k+kn/2

k

)
> (n+ 1)k > d; which is useless. (Here we use

kn/2 as the degree of Pn,k is kn while the degree of the intermediate polynomial halves.)
Thus, the multi-linearization trick, along with the SOS decomposition lemma via ABPs, are
indispensable in our proof.

Proof idea of Theorem 11. The proof of Theorem 11 works very differently than that
of Theorem 6. As its goal is to devise an amply hard polynomial with a constant number
of variables only; it limits our tricks quite a bit.2 It uses (inverse) Kronecker map to
construct Pn,k from f = fd, a constant-k-variate, individual-degree n polynomial. We show
this polynomial to be s = nΩ(1) hard. Recall that an explicit constant-variate circuit-hard
polynomial can be used as an efficient hitting-set generator; showing blackbox-PIT ∈ P [9].
The hardness result organically comes from a SOC decomposition lemma (Lemma 16); using
a “constant-boosting” of frontier-based Lemma 28 and a “greedy clustering”. Basically, we
show that any homogeneous polynomial P (x) of degree d, computed by a homogeneous
circuit of size s′, can be written as P (x) =

∑poly(s′)
i=1 ci · Qi(x)3, where deg(Qi) ≤ 4d/11.3

Applying this to each homogeneous part of Pn,k, and then Kronecker substitution would
show (with proper parameter fixing) that UF(f) ≤ |

⋃poly(s,n)
i=1 supp(Qi)| ≤

(
k+4kn/11

k

)
< c · d,

for any positive constant c. We use Eqn.(8) to bound the binomial and reach a contradiction.
The constant 4/11 is nothing special; any constant in (1/3, 1/e) would work.

Here, we remark that [9] works for constant k. Thus, any naive upper bound on the
support-union size (under the optimal decomposition) would give

(
k+kn/3

k

)
= Θ(d). Hence,

the strongest demand of Ω(d) is required.

2 Preliminaries

Basic notation. We work with F = Q,Qp, or their fixed extensions. Our results hold also
for large characteristic (required for Thm. 11 using [9], and Thm 13 & Lemma 19).

Let [n] = {1, . . . , n}. For i ∈ N and b ≥ 2, we denote by baseb(i) the unique k-tuple
(i1, . . . , ik) such that i =:

∑k
j=1 ij · bj−1.

2 Eg. the failure analysis above with
(

k+kn/2
k

)
is also partly the reason why SOS can’t give complete PIT.

3 We cannot use such a decomposition lemma using ABPs, as the super-polynomial blowup in the fanin,
owing to the larger degree (≈ d1/k), would fail to prove the desired circuit-hardness of the resulting
polynomial family.

ITCS 2021
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For binomial coefficients, we use an easy bound based on the ek-series [40], for 1 ≤ k ≤ n,

(n
k

)k
≤
(
n

k

)
≤
(en
k

)k
. (8)

Polynomials. For p ∈ F[x], where x = (x1, . . . , xm), for some m ≥ 1, the support of p,
denoted by supp(p), is the set of nonzero monomials in p. Sparsity or support size of p is
|p|0 := |supp(p)|. By coef(p) we denote the coefficient vector of p (in some fixed order).

For an exponent vector e = (e1, . . . , ek), we use xe to denote the monomial xe1
1 . . . xek

k .

Algebraic circuits. An algebraic circuit over a field F is a layered directed acyclic graph
that uses field operations {+,×} and computes a polynomial. It can be thought of as an
algebraic analog of boolean circuits. The leaf nodes are labeled with the input variables
x1, . . . , xn and constants from F. Other nodes are labeled as addition and multiplication
gates. The root node outputs the polynomial computed by the circuit.

Complexity parameters of a circuit are: 1) the size, i.e. number of edges and nodes, 2)
the depth, i.e. number of layers, 3) the fan-in, i.e. maximum number of inputs to a node,
(resp. the fan-out, i.e. maximum number of outputs of a node).

When the graph is in fact a tree, i.e., the fan-out is 1, we call the circuit an algebraic
formula.

For a polynomial f , the size of the smallest circuit computing f is denoted by size(f), it
is the algebraic circuit complexity of f . By C(n,D, s), we denote the set of circuits C that
compute n-variate polynomials of degree D such that size(C) ≤ s.

In complexity classes, we specify an upper bound on these parameters. Valiant’s class VP
contains the families of n-variate polynomials of degree poly(n) over F, computed by circuits
of poly(n)-size. The class VNP can be seen as a non-deterministic analog of the class VP. A
family of n-variate polynomials (fn)n over F is in VNP if there exists a family of polynomials
(gn)n in VP such that for every x = (x1, . . . , xn) one can write fn(x) =

∑
w∈{0,1}t(n) gn(x, w),

for some polynomial t(n) which is called the witness size. It is straightforward to see that
VP ⊆ VNP and conjectured to be different (Valiant’s Hypothesis [37]). For more details see
[20, 34, 6]. Unless specified particularly, we consider the field F = Q (resp. a finite field with
large characteristic).

Valiant [37] showed a sufficient condition for a polynomial family (fn(x))n to be in VNP.
We use a slightly modified version of the criterion and formulate it only for multi-linear
polynomials. For a proof see Appendix D.

I Theorem 13 (Valiant’s VNP criterion, [37]). Let fn(x) =
∑
e∈{0,1}n cn(e)xe be a polynomial

family such that the coefficients cn(e) have length ≤ 2n in binary. Let cn,j(e) be the j-th bit
of cn(e). Then

cn,j(e) ∈ #P/poly =⇒ fn ∈ VNP.

Algebraic branching programs (ABP). An algebraic branching program (ABP) in variables
x over a field F is a directed acyclic graph with a starting vertex s with in-degree zero, an
end vertex t with out-degree zero. The edge between any two vertices is labeled by affine
form a1x1 + . . .+ anxn + c ∈ F[x], where ai, c ∈ F.

The weight of a path in an ABP is the product of labels of the edges in the path. The
polynomial computed at a vertex v is the sum of weights of all paths from the starting vertex
s to v. The polynomial computed by the ABP is the polynomial computed at the end vertex t.
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The polynomial computed by an ABP can be written as a matrix product UT (
∏
iMi)V ,

where U, V ∈ Fw×1 andMi ∈ F[x]w×w with entries being affine linear forms. The parameter w
is called the width of the ABP. The class VBP contains the families of polynomials computed
by ABPs of size poly(n). This implies that the degree is poly(n) too.

An ABP is a very restricted circuit, but still being able to compute determinants [21].
We say that the ABP is homogeneous, if the polynomial computed at every vertex is a

homogeneous polynomial. It is known that for an ABP S of size s computing a homogeneous
polynomial f , there is an equivalent homogeneous ABP A′ of size poly(s), where each edge-
label is a linear form a1x1 + · · ·+ anxn. Moreover, when f has degree D, then A′ has D + 1
layers and each vertex in the i-th layer computes a homogeneous polynomial of degree = i

(see [16, Lem.15] or [29]).
Here, we also remark that each homogeneous part of a degree d polynomial f(x), computed

by s-size circuit, can also be computed by a homogeneous circuit of size O(sd2); see [34, 29].

3 Proof of the main results

3.1 SOS decomposition of circuits: Proof of Main Lemma
Proof of Main Lemma. Let C be a circuit of size s computing f(x). W.l.o.g., f(x) is a
homogeneous polynomial (as later we will apply to every homogeneous component of f).
Using the log-depth reduction of [38], there is a homogeneous circuit C ′ of depth log d and
size poly(s) that computes F .

Now we convert the circuit C ′ to a layered ABP A as follows: first, convert the circuit
C ′ to a formula F . By induction on the depth of the circuit one can show that F has size
sO(log d). Secondly, we convert F to an ABP A. It is well known that for any formula of size
t, there exists an ABP of size at most t+ 1, computing the same polynomial, for details see
[30, Lemma 2.14]. Thus, the ABP A computing f has size at most sO(log d).

Further, we homogenize the ABP A as explained at the end of the preliminary section.
Let A′ be the homogenized ABP computing f . Its size is s′ := poly(sO(log d)) = sO(log d).

Finally, cut ABP A′ in half, at the dd/2e-th layer, to get: f = (f1, . . . , fs′)T ·
(f ′1, . . . , f ′s′) =

∑s′

i=1 fi · f ′i , where, degree of each fi, f
′
i is at most dd/2e. This can

be easily rewritten as SOS by Equation (3). The top-fanin of SOS is at most 2s′.
For a non-homogeneous polynomial f(x), we can apply the above for each homogeneous

part of f(x). It is well known that each homogeneous part can be computed by a homogeneous
circuit of size O(sd2). Thus, for non-homogeneous polynomials, s can be replaced by O(sd2);
hence the top-fanin of SOS is (sd2)O(log d) = (sd)O(log d). J

3.2 SOS-hardness to VP 6= VNP: Proof of Theorem 6
Proof of Theorem 6. We will construct an explicit (multivariate) polynomial family, using
SOS-hard univariate fd, which is not in VP, but is in VNP. This would imply that VP 6= VNP.

Construction. We will construct (Pn,k)k from fd, where Pn,k is a multilinear degree-n and
kn-variate polynomial, for n = n(d) and k = k(d)4. We will specify k and n in the course of
the proof. The basic relation between d, n and k is that kn ≥ d+ 1 > (k − 1)n. Introduce
kn many new variables yj,`, where 1 ≤ j ≤ n and 0 ≤ ` ≤ k − 1. Let φn,k be the map,

φn,k : xi 7→
n∏
j=1

yj,ij ,where i =:
n∑
j=1

ij · kj−1, 0 ≤ ij ≤ k − 1 .

4 In this section think of n as a tiny function of k. Thus indexing the family over k suffices.
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Note: for i ∈ [0, d], φn,k maps xi uniquely to a multilinear monomial of degree n. By linear
extension, define φn,k(fd) =: Pn,k. By construction, Pn,k is n-degree, kn-variate multilinear
polynomial. Let ψn,k be the homomorphism that maps any n-degree multilinear monomial,
defined on variables yj,`, such that yj,` 7→ x`·k

j−1 . Observe that, ψn,k ◦ φn,k(f) = f , for any
degree ≤ d polynomial f ∈ F[x].

SOS-hardness =⇒ hardness of Pn,k. Assume that family (fd) is SOS-hard with
parameter ε. We will show that size(Pn,k) ≥ dµ(d) = (kn)ω(1) for some function µ depending
on ε(d). We have ε > ω(

√
log log d/ log d) and w.l.o.g. ε < (log log d/ log d)1/3, for large d

(Note: Proving for a small ε suffices; also 1/3 is nothing special, any constant < 1/2 in the
exponent works.).

Suppose, size(Pn,k) ≤ dµ, for some µ(d). Then, from Main Lemma, we know that
∃Qi’s such that Pn,k =

∑s
i=1 ci · Q2

i , where s ≤ (dµ · n)c logn, for some constant c, with
deg(Qi) ≤ dn/2e. Note: fd = ψn,k ◦ φn,k(fd) =

∑s
i=1 ci · ψn,k(Qi)2 . As ψn,k cannot

increase the sparsity, |ψn,k(Qi)|0 ≤ |Qi|0 ≤
(
kn+dn/2e
dn/2e

)
, 5 for each i ∈ [s]. Thus, by

definition SF(fd) ≤ s ·
(
kn+dn/2e
dn/2e

)
. The idea is to fix parameters so that S(fd) < o(d1/2+ε).

We will fix µ such that
1. s ≤ dδ1 for some function δ1,
2.
(
kn+dn/2e
dn/2e

)
≤ dδ2 for some function δ2,

3. dδ1+δ2 < o(d1/2+ε),
4. dµ > (kn)ω(1).
Note: from conditions 1-3, if size(Pn,k) ≤ dµ then S(fd) < o(d1/2+ε), contradicting the
SOS-hardness. Thus, condition 4 would give super-polynomial hardness result.

Parameter fixing. Let µ := 1/
√

log d · log log d and δ1 := c′ · µ · logn for some c′ > c. Let
δ2 := 1/2 + ε/2. Fix k := d61/ε + 1e. This fixing of k together with kn ≥ d+ 1 > (k − 1)n
implies that n = Θ(ε · log d). We also assume n to be even for simplicity, to avoid the ceiling
function.

Bound on the binomial. Note that it is enough to have the following chain of inequalities:(
kn+ n/2
n/2

)
≤ (e+ 2ek)n/2 ≤ (6(k − 1))n/2 ≤ (k − 1)nδ2 ≤ dδ2 .

First inequality is by Eqn.(8); the second one is by the fact that 2e < 6, thus for large enough
k, it holds; and the last inequality follows by the assumption that d ≥ (k − 1)n. For the
third one, it suffices to ensure that (k − 1)δ2−1/2 ≥

√
6. This is where we used the fact that

δ2 − 1/2 = ε/2 > 0 and thus it is enough to fix k − 1 = d61/εe.

Bound on top-fanin s. Note that s ≤ (dµ · n)c logn from Main Lemma for some constant c.
We want dc′·µ·logn = dδ1 ≥ (dµ · n)c logn. It suffices to show that d(c′−c)·µ ≥ nc. It is fairly
straightforward to verify that with our parameters fixing of µ log d =

√
log d/ log log d, and

logn ≤ O(log log d), the above inequality holds for large enough d.

Checking dδ1+δ2 = o(d1/2+ε). Note: logn = O(log log d) and thus δ1 =
O(
√

log log d/ log d) = o(ε). Hence, δ1 + δ2 = o(ε) + 1/2 + ε/2 < 1/2 + ε; since dε →∞ as
d→∞, the conclusion follows.

5 Any n variate degree d polynomial can have sparsity at most
(

n+d
d

)
.
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Checking dµ = (kn)ω(1). Note that dµ = (kn)ω(1) ⇐⇒ µ = ω(1) · log(kn)/ log d ⇐⇒
µ · log d = ω(log(kn)). It is clear that, log(kn) = log k + logn ≤ O(1/ε) for large enough n
(or equivalently d), as logn = O(log log d) = o(1/ε) and log k = logd61/ε + 1e = O(1/ε).

Also, note that µ · log d =
√

log d/ log log d = ω(1/ε) = ω(log(kn)).
Finally, all the conditions 1-4 are met with the appropriate fixing of parameters as shown

above. Thus, we deduce size(Pn,k) ≥ dµ = (kn)ω(1), i.e. Pn,k requires super-polynomial size
circuit. Therefore, (Pn,k)k 6∈ VP.

Explicitness. We will show that Pn,k is explicit, i.e. (Pn,k)k ∈ VNP. By construction, Pn,k
is a kn variate, individual degree n multilinear polynomial, so we can write it as

Pn,k =
∑

e∈{0,1}kn

φ(e) · ye .

Here y denotes the kn variables yj,` where 1 ≤ j ≤ n and 0 ≤ ` ≤ k − 1 and e denotes the
exponent-vector. As each xe in supp(fd) maps to a monomial ye uniquely; given e, one
can easily compute e :=

∑n
j=1 ej · kj−1 and thus φ(e) = coefxe(fd). By the explicitness

hypothesis, any bit of φ(e) is computable in poly(log d) < poly(21/ε) = poly(kn) time. Using
Theorem 13, it is clear that (Pn,k)k ∈ VNP, by a wide margin.

So, (Pn,k)k ∈ VNP and SOS-hardness imply (Pn,k)k 6∈ VP. This proves Theorem 6. J

I Corollary 14 (Determinant vs Permanent). SOS-hardness weakened with ε > ω(1/
√

log d)
(a smaller ε than the original) already implies VBP 6= VNP.

Proof Sketch. The log-factor in the exponent is avoidable in the Main Lemma, if the initial
polynomial is already an ABP of size s (instead of a circuit). In the above proof, we
could then fix δ1 := c′µ. This would remove the extra “logn = log log d” factors from the
calculations. J

I Remark 15.
1. We showed an explicit super-polynomially hard family (Pn,k)k. The result of [13, The-

orem 7.7] then implies PIT ∈ SUBEXP.
2. If the given ε was a constant, say 0.001; then a very different parameters setting (k = O(1)

and n = O(log d)) gives a sub-exponential hard polynomial family (Pn,k)n of size >
2Ω(log d/ log log d). This happens because of the super-polynomial blowup in the size while
converting a circuit to an ABP in Main Lemma. However, a repeated boosting of [38]
type lemma (Lemma 31) gives a decomposition with intermediate polynomials having
degree close to d/2. Finally this gives a truly exponential hard family (Pk,n)n; for details
see Theorem 32. Thus, [13] gives PIT ∈ QP, when ε is a constant.
Here, we also remark that “halving” the degree with log d exponent in the top-fanin gives
better result than “close” to halving because finally the contribution of the exponent is
quite small in our application (and in fact absent in case of Corollary 14). However, for
constant ε, the scenario changes as mentioned above.

3. As deg(Qi) ≤ n/2, we have deg(ψn,k(Qi)) ≤ n/2 · (k − 1) · kn−1 < n.kn = O(nd) =
o(d log d). Here we used that kn/(k − 1)n < (1 + 1/(k − 1))n < e, for large d. Thus, it is
enough to consider the restricted-degree SOS representation and prove the conjecture.

4. One can further restrict (proof requirement-wise) the SOS top-fanin to a mere dδ1 =
exp(O(

√
log d · log log d)) which is extremely small compared to d (in fact, dδ1 = do(ε)).
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3.3 SOC-hardness to blackbox-PIT ∈ P: Proof of Theorem 11
Proof of Theorem 11. The idea is to convert the SOC-hard polynomial fd(x) to a constant-
k-variate individual-degree-n polynomial family (Pn,k)n which is “mildly” hard. Later,
using [9], we will conclude that blackbox-PIT ∈ P. The following lemma is the crucial
ingredient to connect general circuits to an SOC representation.

I Lemma 16 (SOC decomposition). Let F be a field of characteristic 6= 2, 3. Let f(x) ∈ F[x]
be an n-variate, degree-d polynomial, computed by a circuit of size s. Then there exist
polynomials fi ∈ F[x] and ci ∈ F such that f(x) =

∑s′

i=1 ci · f 3
i , for some top-fanin

s′ ≤ poly(s, d); achieving deg(fi) < 4d/11, for all i ∈ [s′].

Proof of Lemma 16. We will first show this for homogeneous polynomials, and then apply
it to each homogeneous part of a general f(x). Assume that, circuit of f(x) is homogeneous.
Lemma 28 establishes that f(x) can be decomposed as

∑s
i=1 f̃i1 · f̃i2, where f̃ij has circuits

of size O(s) and deg(f̃ij) ≤ 2d/3, with deg(f̃i1)+deg(f̃i2) = d.
Choose a constant m such that (2/3)m < 4/11 − 1/3 = 1/33 (m := 9 suffices). Apply

Lemma 28 m times, recursively on each successive circuit f̃ij . As m is constant, it is easy to
conclude that f(x) can be written as

f(x) =
poly(s)∑
i=1

gi,1 · gi,2 · . . . · gi,2m ,

where deg(gi,j) ≤ (2/3)m · d, and size(gij) = O(s). For each product gi,1 · . . . gi,2m , pick
a j1 ∈ [2m] such that d/3 ≤

∑j1
k=1 deg(gi,k) < 4d/11. As each deg(gi,k) is less than the

gap between upper and lower bounds, namely 4d/11 − d/3, such j1 exists. Note that∑2m

k=j1+1 deg(gi,k) > d − 4d/11 = 7d/11 > d/3. Choose a [2m] 3 j2 > j1 such that
d/3 ≤

∑j2
k=j1+1 deg(gi,k) < 4d/11; such j2 exists by a similar argument.

Define, fi1 := gi,1 · . . . · gi,j1 , fi2 := gi,j1+1 · . . . · gi,j2 , and fi3 := gi,j2+1 · . . . gi,2m .
By definition, deg(fi1), deg(fi2) ∈ [d/3, 4d/11]. As, deg(fi1) + deg(fi2) + deg(fi3) =∑
k∈[2m] deg(gi,k) = d =⇒ deg(fi3) ≤ d/3 < 4d/11. As each gi,j has a homogeneous

circuit of size O(s), so does fij . Hence, f(x) =
∑poly(s)
i=1 fi1 · fi2 · fi3. Use the identity

24 · a · b · c = (a+ b+ c)3 − (a− b+ c)3 − (a+ b− c)3 + (a− b− c)3 , (9)

to write each fi1 · fi2 · fi3 as sum of four cubes. Relabeling yields f(x) =
∑poly(s)
i=1 ci · f3

i . As
each fi is a linear combination of fjk’s, the degree does not change and the size is still O(s).

It is well known that each homogeneous part can be computed by a homogeneous circuit
of size O(sd2). Thus, for non-homogeneous polynomials, s can be replaced by O(sd2) and
the conclusion follows. J

Let k be a constant (to be fixed later) and x := (x1, . . . , xk). For all large enough n ∈ N,
define d := d(n) := (n+ 1)k − 1. Let Pn,k be a k-variate polynomial of individual degree at
most n such that after the Kronecker substitution, Pn,k(x, xn+1, . . . , x(n+1)k−1) := fd. It
is easy to construct Pn,k from a given d; just convert every xe ∈ supp(fd) to xe1

1 · . . . · x
ek

k ,
where e =:

∑k
i=1 ei · (n+ 1)i−1 and 0 ≤ ei ≤ n.

By the explicitness of fd, (Pn,k)n is a very explicit polynomial family; its coefficient-vector
coef(Pn,k) can be computed in poly(d) = poly(n) time.

Next, we will show the hardness of the polynomial family (Pn,k)n. The SOC-hardness
implies that there exists a constant δ such that U(fd, dε

′) ≥ δ · d, for all large enough d. Also,
let c be the constant such that s′ =: (sd)c in Lemma 16. Let µ := 2/(ε′/c− 1/k), and later
we will choose k > c/ε′.
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B Claim 17 (Hardness of Pn,k). size(Pn,k) > d1/µ, for all large enough n.

Assume to the contrary, that there exists an infinite subset J ⊂ N such that size(Pn,k) ≤
d1/µ, for all n ∈ J . We will show that family (fd) is not SOC-hard over an infinite subset
J ′ := {d : n ∈ J} ⊆ N, which is a contradiction.

Let C be a circuit of size ≤ d1/µ that computes Pn,k, for some n. Then, using Lemma 16,
we know that there exist Qi ∈ F[x], of degree at most 4 · deg(Pn,k)/11 ≤ 4kn/11, such that
Pn,k =

∑s0
i=1 ci · Q 3

i , where s0 ≤ (d1/µ · kn)c. Apply the Kronecker map xi 7→ x(n+1)i−1

on both sides yields fd =
∑s0
i=1 ci · Q̃3

i , where Q̃i := Qi(x, xn+1, . . . , x(n+1)k−1). Since
Kronecker substitution cannot increase the support size, |

⋃
i supp(Q̃i)| ≤ |

⋃
i supp(Qi)| ≤(

k+4kn/11
k

)
=: s1. Thus, UF(fd, s0) ≤ s1.

We want to show that s0 < dε
′ and s1 < δ · d, for all large enough n. Then, we have

UF(fd, dε
′) < δ · d, for all large d ∈ J ′ ⊂ N; which contradicts the SOC-hardness of fd.

Bound on s0. We have for large enough n (and thus d),

s0 ≤ (d1/µ · k · n)c < dc/µ · kc · dc/k = kc · dc/µ+c/k < dε
′
.

We used that d = (n+1)k−1 > nk for large n, and µ > 1/(ε′/c−1/k) ⇐⇒ 1/µ+1/k < ε′/c.
Bound on s1. By Eqn.(8), we have

s1 =
(
k + 4nk/11

k

)
≤ (e (1 + 4n/11))k < (10.9n/11)k < (10.9/11)k · d .

As 4e ≈ 10.873, we used that e(1 + 4n/11) < (10.9/11) · n and d > nk, for large n .
Therefore, it suffices to show that (10.9/11)k < δ. Choose k > log11/10.9(1/δ). It

suffices, from the above calculations, to pick k > max
(
c/ε′, log11/10.9(1/δ)

)
. This proves

Claim 17. J

From hardness to HSG. We show that from the hardness of Pn,k in Claim 17, we can
fulfil the assumption in Theorem 34: size(Pn,k) > s10k+2 deg(Pn,k)3, for some “growing”
function s = s(n). Recall that deg(Pn,k) ≤ kn. We define, s(n) := n1/(10k+3). Then we
have

s10k+2 (kn)3 = n(10k+2)/(10k+3) (kn)3 = k3 n4−(1/(10k+3)) < n4 , (10)

for large enough n. Additionally, assume that 4 ≤ k/µ. Recall the fact: nk < d for large n.
So, we can continue Eqn.(10) as

n4 ≤ nk/µ < d1/µ < size(Pn,k) . (11)

Equations (10) and (11) give the desired hardness of Pn,k. It remains to ensure the last
requirement of 4 ≤ k/µ. We show below that choosing k ≥ 9c/ε′ suffices:

µ = 2/(ε′/c− 1/k) ≤ 2/ (9/k − 1/k) = k/4 .

Hence our final choice for k is: k ≥ max(9c/ε′, log11/10.9(1/δ)).
Thus, Theorem 34 gives a poly(s)-time HSG for C(s, s, s). Hence, blackbox-PIT ∈ P. J

I Remark 18. Recall the proof notation. As the degree of Qi’s is < 4kn/11, the degree of Q̃i
is ≤ (n+ 1)k−1 · 4kn/11 < 4k/11 · (n+ 1)k = 4k/11 · (d+ 1) = O(d) (∵ k is a constant).
Thus, it suffices to study the representation of fd as sum-of-cubes Q̃3

i , where deg(Q̃i) ≤ O(d).

ITCS 2021



23:14 Largish SOS Implies Circuit Hardness

4 Conclusion

This work established that studying the univariate sum-of-squares representation (resp. cubes)
is fruitful. Proving a vanishingly better lower bound than the trivial one, suffices to both
derandomize and prove hardness in algebraic complexity.

Here are some immediate questions which require rigorous investigation.
1. Does existence of a SOS-hard family solve PIT completely? The current proof technique

fails to reduce from cubes to squares.
2. Prove existence of a SOS-hard family for the sum of constantly many squares.
3. Prove existence of a SOC-hard family for a “generic” polynomial f with rational coefficients

(Q). Does it fail when we move to complex coefficients (C)?
4. Can we optimize ε in the SOS-hardness condition (& Corollary 14)? In particular, does

proving an SOS lower-bound of
√
d · poly(log d), suffice to deduce a separation between

determinant and permanent (similarly VP and VNP)?
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A Sum of powers of small support-union

We give a way to represent any univariate polynomial as sum of r-th powers of polynomials.
Here we use the notion of sumset. In additive combinatorics, the sumset, also called the

Minkowski sum of two subsets A and B of an abelian group G is defined to be the set of all
sums of an element from A with an element from B,

A+B = { a+ b | a ∈ A, b ∈ B } .

The n-fold iterated sumset of A is nA = A+ · · · +A, where there are n summands.
We want a small support-union representation of a d-degree polynomial f as a sum of

r-th powers, where r is constant. We consider a small B such that rB covers {0, 1, . . . , d}.
Let t be the unique non-negative integer such that (t− 1)r < d+ 1 ≤ tr. Define the set B as

B = { ai tk | 0 ≤ ai ≤ t− 1, 0 ≤ k ≤ r − 1 } .

So |B| = rt = O(d1/r). Let k ∈ {0, 1, . . . , d}. The base-t representation of k is a sum of at
most r elements from B. Hence, {0, 1, . . . , d} ⊆ rB.

The largest element in B is m := (t − 1)tr−1. Note that for any ε > 0, we have
t < (1 + ε)(d+ 1)1/r, for all large enough d. Thus, for any constant c > 1 and large enough d,
we have m < c(d+ 1). Therefore, the largest element in rB is at most mr < cr(d+ 1) = O(d).

I Lemma 19. Let F be a field of characteristic 0 or large. For any f(x) ∈ F[x] of degree d,
there exist `i ∈ F[x] with supp(`i) ⊆ B and ci ∈ F, for i = 0, 1, . . . ,mr, such that f(x) =∑mr

i=0 ci `
r
i .
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Proof. Consider `i(zi, x) =
∑
j∈B zijx

j , for distinct indeterminates zij , for all i, j. Surely,
degx(`i) = m. There exists mr + 1 many degree-r polynomials Qj over |B| = rt many
variables, such that

`i(zi, x)r =
mr∑
j=0

Qj(zi)xj ∀i ∈ [mr] .

Note that from any monomial in Qj we could recover j uniquely. Denote the index set
S ⊆ [0,mr] such that Qj 6= 0, for all j ∈ S. We could conclude that Qj(zi) (j ∈ S) are
F-linearly independent. We would only focus on the Qj ’s for j ∈ S, now onwards. Note:
[0 . . . d] ⊆ S.

Suppose f(x) =:
∑d
i=0 fi x

i. Define f̃ ∈ F|S| and A ∈ F[z]|S|×|S| as

f̃ :=
(
f0 f1 · · · fd 0 · · · 0

)
, A :=


Qj1(z1) Qj2(z1) · · · Qjs(z1)
Qj1(z2) Qj2(z2) · · · Qjs

(z2)
...

... · · ·
...

Qj1(z|S|) Qj2(z|S|) · · · Qjs
(z|S|)

 .

We want to find c =
(
c1 c2 · · · c|S|

)
∈ F|S| and α = (αij)i,j such that

∑
j∈[|S|]

cj · `j(α, x)r =
d∑
i=0

fi x
i ⇐⇒ c ·A|z=α ·


...
xj

...


j∈S

= f̃ ·


...
xj

...


j∈S

.

The last expression holds ⇐⇒ c ·A|z=α = f̃ . As the zi’s are distinct variables, the first
column of A consists of different variables at each coordinate. Moreover, the first row of A
contains F-linearly independent Qj ’s. Thus, for random αij ∈ F, matrix A|z=α has full rank
over F. Fix such an α. This fixes c = f̃ · (A|z=α)−1.

From the above construction, it follows that f(x) =
∑
j∈[|S|] cj · `j(α, x)r. J

The number of distinct monomials across `j(α, x)’s is |B| = O(d1/r). While the top-fanin,
as seen before, is ≤ mr + 1 = Θ(d).
I Remark 20.
1. The above calculation does not give small support-sum representation of f , as the

top-fanin is already Ω(d).
2. The above representation crucially requires a field F. E.g. it does not exist for fd over

the ring Z.

B Further optimizing the top-fanin

In this section, we show a SOS- and SOC-representation for any polynomial f(x), wherein
both the top-fanin and the support-union size are small, namely O(

√
d). We assume that

characteristic of F is 6= 2 in case of SOS, and 6= 3, in case of SOC. The representations are
based on discussions with Agrawal [1].

B.1 Small SOS
By Lemma 19 for r = 2, any f(x) can be written as f(x) =

∑O(d)
i=1 ci f

2
i , with support-sum

|
⋃
i supp(fi)| = O(

√
d). We show that the top-fanin can be reduced to O(

√
d).
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I Theorem 21 (Small SOS-Representation). Any polynomial f ∈ F[x] of degree d has a
SOS-representation such that the top-fanin and the support-union are bounded by O(

√
d).

The key to prove Theorem 21 is the following lemma. It shows how to decrease the
top-fanin in a representation without increasing the support-union.

I Lemma 22. Let f ∈ F[x] be written as f =
∑s
i=1 ci fi,1fi,2, with support-union t =

|
⋃
i,j supp(fi,j)|. Then there exists a representation f =

∑t
i=1 c

′
i f
′
i,1f
′
i,2 with support-union ≤

t.

Let us first argue why Lemma 22 implies Theorem 21. We start from the representation
given by Lemma 19 mentioned above and apply Lemma 22. It follows that f can be re-written
as f(x) =

∑O(
√
d)

i=1 c′i fi,1 fi,2, where |
⋃
i,j supp(fij)| = O(

√
d). This can be turned into a

SOS-representation by fi,1 fi,2 = (fi,1 + fi,2)2/4− (fi,1 − fi,2)2/4. Note that the last step
does not change the support-union, and at most doubles the top-fanin. Thus, Theorem 21
follows.

Proof of Lemma 22. For the given representation of f , we assume w.o.l.g. that deg(fi,1) ≥
deg(fi,2) and that fi,1, fi,2 are monic, for i = 1, 2, . . . , s. Let S =

⋃
i,j supp(fi,j).

We construct the representation claimed in the lemma by ensuring the following properties:
1. For every xe ∈ S there is exactly one i such that deg(f ′i,1) = e.
2.
⋃
i,j supp(f ′i,j) ⊆ S.

Since we also maintain that deg(f ′i,1) ≥ deg(f ′i,2), it follows that the top-fanin is indeed
bounded by t = |S| as claimed.

We handle the monomials in S successively according to decreasing degree. Let xe ∈ S
be the monomial with the largest e that occurs more than once as the degree of a fi,1, say
deg(f1,1) = deg(f2,1) = e.

Define g1 = f2,1 − f1,1. Then we have f2,1 = f1,1 + g1 and deg(g1) < e. Moreover, the
support of g1 is contained in the support of f1,1 and f2,1 If deg(f2,2) = e, then we define
similarly g2 = f2,2 − f1,1. Then f2,2 = f1,1 + g2 and deg(g2) < e. Now we can write

c1f1,1f1,2 + c2f2,1f2,2 = c1f1,1f1,2 + c2(f1,1 + g1)(f1,1 + g2)
= f1,1 (c1f1,2 + c2f1,1 + c2g1 + c2g2) + c2g1g2

The second line is a new sum of two products, where only the first product has terms of
degree e, whereas in the second product, g1, g2 have smaller degree. Also, the support-union
set has not increased.

In case when deg(f2,2) < e, we can just work with f2,2 directly instead of f1,1 + g2, and
the above equations gets even simpler. J

B.2 Small SOC
We show two small SOC-representation with different parameters. First, we show a

√
d

SOC-representation that follows essentially from Theorem 21.

I Corollary 23 (
√
d SOC-representation). Any polynomial f ∈ F[x] of degree d has a SOC-

representation such that the top-fanin and the support-union are bounded by O(
√
d).

Proof. By Theorem 21 we can write f as f(x) =
∑O(

√
d)

i=1 ci f
2
i , with support-union O(

√
d).

Each f2
i can in turn be written as f2

i =
∑4
j=1 ci,j (fi+λi,j)3, for some constants ci,j , λi,j ∈ F,

as can be shown by interpolation. This gives the representation claimed in the theorem. J
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The second way to get a small SOC-representation uses Lemma 19 for r = 3: Any f(x)
can be written as f(x) =

∑O(d)
i=1 ci f

3
i , with support-sum |

⋃
i supp(fi)| = O(d1/3). We show

that the top-fanin can be reduced to O(d2/3).

I Theorem 24 (d2/3 SOC-representation). Any polynomial f ∈ F[x] of degree d has a
SOC-representation with top-fanin O(d2/3) and support-union O(d1/3).

To prove Theorem 24, we show a reduction similar to Lemma 22 for sum of product-of-3.

I Lemma 25. If f =
∑s
i=1 ci fi,1fi,2fi,3 with support-union t, then f can be written as

f =
∑t2

i=1 c
′
i f
′
i,1f
′
i,2f
′
i,3 with support-union ≤ t.

Proof. We fix the support-union set S and the monomial ordering (as seen in Lemma 22).
Assume there are m > t2 many products, like fi,1fi,2fi,3. W.l.o.g. assume deg(f11) = ei.
Rearrange

∑
i∈[m] ci fi,1fi,2fi,3 =: f1,1 · P +R, so that P is a SOS and R is a SOC without

any occurrence of xei . Apply Lemma 22, on P , to reduce its top-fanin to t. Repeat this
procedure to SOC R.

Finally, the top-fanin gets upper-bounded by t · t = t2, J

Theorem 24 now follows by noting that any product-of-3 can be written as a sum of four
cubes, by Eqn.(9); and by Lemma 19 we have t = O(d1/3).

I Lemma 26. For any f ∈ F[x], we have SF(f) ≥ mins (UF(f, 4s)− 1).

Proof Sketch. Suppose f =
∑s
i=1 ci f

2
i . Write each f2

i as f2
i =

∑4
j=1 cij (fi + λij)3, for

distinct λij ∈ F. Thus, UF(f, 4s) ≤ (
∑s
i=1 |fi|0) + 1. Taking minimum over s gives the

desired inequality. J

I Corollary 27. For s = Ω(d2/3), we have UF(f, s) = Θ(d1/3).

C Sum of product-of-2 decomposition

The next lemma is can be proved by standard frontier decomposition in [29].

I Lemma 28 (Sum of product-of-2). Let f(x) be an n-variate, homogeneous, degree d

polynomial computed by a right-heavy homogeneous circuit Φ of size s. Then, there exist
polynomials fij ∈ F[x] s.t.

f(x) =
s∑
i=1

fi1 · fi2 , with the following properties: (12)

1. d/3 ≤ deg(fi1), deg(fi2) ≤ 2d/3, for all i ∈ [s],
2. deg(fi1) + deg(fi2) = d, for all i ∈ [s], and
3. each fij has a right-heavy homogeneous circuit of size at most s2 := O(s).

I Remark 29. For a non-homogeneous polynomial f(x), we can apply the above for each
homogeneous part of f(x). It is well known that each homogeneous part can be computed
by a homogeneous circuit of size O(sd2). Thus, for non-homogeneous polynomials, s can be
replaces by O(sd2) and the same conclusion follows.
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D Valiant’s Criterion for VNP: Details for Section 3.2

A useful sufficient condition for a polynomial family (fn(x))n to be in VNP is known, due to
Valiant [37].

I Theorem 30 (VNP criterion, [5]). Let fn(x) =
∑
e∈{0,1}n cn(e)xe be a polynomial family

such that the coefficients cn(e) have length ≤ n in binary. Then

cn(e) ∈ #P/poly =⇒ fn ∈ VNP.

One can further relax Theorem 30 such that the coefficients cn(e) can actually be 2n bits
long, see Theorem 13 (restated) below. The proof idea is very similar to [15, Lem. 3.2]. We
also use the fact that VNP is closed under substitution. That is, for a family of polynomials
(f(x,y)) ∈ VNP, it also holds that (f(x,y0)) ∈ VNP, for any value y0 ∈ Fn assigned to the
variables in y.

I Theorem 13 (restated). Let fn(x) =
∑
e∈{0,1}n cn(e)xe be a polynomial family such that

the coefficients cn(e) have length ≤ 2n in binary. Let cn,j(e) be the j-th bit of cn(e). Then

cn,j(e) ∈ #P/poly =⇒ fn ∈ VNP.

Proof of Theorem 13. For j ∈ {0, 1, . . . , 2n − 1} let bin(j) = (j1, . . . , jn) denote the n-bit
base-2 representation of j such that j =

∑n
i=1 ji 2i−1. Introduce new variables y = (y1, . . . , yn)

and define c̃n(e,y) =
∑2n−1
j=0 cn,j(e)ybin(j). Let y0 := (220

, . . . , 22n−1). Then we have
c̃n(e,y0) = cn(e). Finally, consider the 2n-variate auxiliary polynomial hn(x,y).

hn(x,y) =
∑

e∈{0,1}n

c̃n(e,y)xe =
∑

e∈{0,1}n

2n−1∑
j=0

cn,j(e)ybin(j) xe .

Then we have hn(x,y0) = fn(x). Since cn,j(e) can be computed in #P/poly, we have
(hn(x,y))n ∈ VNP. As VNP is closed under substitution, it follows that (fn(x))n ∈ VNP. J

E SOS-hardness with constant ε implies truly exponential separation
between VP and VNP

We use Lemma 28 repeatedly (constant many times) to bring the degree of the intermediate
polynomials “fractional”-close to d/2, namely d · (1/2 +O(1)). This would be crucially used
to establish the exponential separation between VP and VNP.

I Lemma 31 (Constant boosting VSBR). Let f(x) ∈ F[x] be a degree-d, n-variate polynomial
computed by homogeneous circuit of size s. Then, for any constant 1 < γ < 2, there exist
polynomials fij ∈ F[x] such that

f(x) =
poly(s)∑
i=1

fi1 · fi2 ,with the following properties (13)

1. each fij has a homogeneous circuit of size O(s),
2. deg(fij) < d/γ, for all i, j,
3. deg(fi1) + deg(fi2) = d, for all i.
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Proof sketch. Lemma 28 shows that f(x) can be decomposed as
∑s
i=1 f̃i1 · f̃i2 where f̃ij has

circuits of size O(s) and deg(f̃ij) ≤ 2d/3, with deg(f̃i1)+deg(f̃i2) = d. Let δ′ := 1/γ − 1/2.
Choose a constant m := dlog3/2(1/δ′)e so that (2/3)m < δ′. Apply the above product-
of-2 decomposition m times repeatedly on each product to conclude that f(x) can be
decomposed as f(x) =

∑poly(s)
i=1 gi1 · gi2 · . . . · gi2m ; where deg(gij) ≤ (2/3)m · d < d · δ′

and size(gij) = O(s). Cluster each product so that the degree of each is in [d/2, d/γ); the
choice of m ensures this. Hence, the conclusion follows. J

Using the above fine-grained decomposition, we can prove the exponential separation
between VP and VNP; the parameters change due to the different decomposition.

I Theorem 32 (Constant ε). If there exists a univariate family (fd(x))d that is SOS-hard
with some constant ε, then VNP is exponentially harder than VP (& blackbox-PIT ∈ QP).

F Hardness to derandomization: Details for Section 3.3

Very recently, Guo et al. in [9] showed utility of the hardness of constant variate polynomials
to derandomize PIT. To make this discussion formal, we start with the following definition.

I Definition 33 (Hitting-set generator (HSG)). A polynomial map G : Fk −→ Fn given
by G(z) = (g1(z), g2(z), . . . , gn(z)) is said to be a hitting-set generator (HSG) for a class
C ⊆ F[x1, x2, . . . , xn] of polynomials if for every nonzero f ∈ C, we have that f ◦ G =
f(g1, g2, . . . , gn) is nonzero.

I Theorem 34 ([9]). Let P ∈ F[x] be a k-variate polynomial of degree d such that coef(P )
can be computed in poly(d)-time. If size(P ) > s10k+2 · d3, then there is a poly(s)-time HSG
for C(s, s, s).
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