
Quasi-polynomial Hitting-set for Set-depth-∆ Formulas

Manindra Agrawal
Indian Institute of Technology

Kanpur, India
manindra@iitk.ac.in

Chandan Saha
Indian Institute of Science

Bangalore, India
chandan@csa.iisc.ernet.in

Nitin Saxena
Hausdorff Center for Maths

Bonn, Germany
ns@hcm.uni-bonn.de

ABSTRACT
We call a depth-4 formula C set-depth-4 if there exists a
(unknown) partition X1t · · ·tXd of the variable indices [n]

that the top product layer respects, i.e. C(x) =
∑k
i=1

∏d
j=1

fi,j(xXj), where fi,j is a sparse polynomial in F[xXj]. Ex-
tending this definition to any depth - we call a depth-∆ for-
mula C (consisting of alternating layers of Σ and Π gates,
with a Σ-gate on top) a set-depth-∆ formula if every Π-
layer in C respects a (unknown) partition on the variables;
if ∆ is even then the product gates of the bottom-most
Π-layer are allowed to compute arbitrary monomials. In
this work, we give a hitting-set generator for set-depth-∆
formulas (over any field) with running time polynomial in
exp((∆2 log s)∆−1), where s is the size bound on the in-
put set-depth-∆ formula. In other words, we give a quasi-
polynomial time blackbox polynomial identity test for such
constant-depth formulas. Previously, the very special case
of ∆ = 3 (also known as set-multilinear depth-3 circuits)
had no known sub-exponential time hitting-set generator.
This was declared as an open problem by Shpilka & Yehu-
dayoff (FnT-TCS 2010); the model being first studied by
Nisan & Wigderson (FOCS 1995) and recently by Forbes &
Shpilka (STOC 2012 & ECCC TR12-115). Our work set-
tles this question, not only for depth-3 but, up to depth
ε log s/ log log s, for a fixed constant ε < 1. The technique
is to investigate depth-∆ formulas via depth-(∆− 1) formu-
las over a Hadamard algebra, after applying a ‘shift’ on the
variables. We propose a new algebraic conjecture about the
low-support rank-concentration in the latter formulas, and
manage to prove it in the case of set-depth-∆ formulas.

Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numeric Algorithms and Problems—Computations on
polynomials; I.1.2 [Symbolic and Algebraic Manipula-
tion]: Algorithms—Algebraic Algorithms

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’13, June 1-4, 2013, Palo Alto, California, USA.
Copyright 2013 ACM 978-1-4503-2029-0/13/06 ...$15.00.

General Terms
Theory, Algorithms

Keywords
identity testing, hitting-set, set-multilinear formula, Hadamard
algebra, low-support rank concentration

1. INTRODUCTION
Polynomial identity testing (PIT) - the algorithmic ques-

tion of examining if an arithmetic circuit computes an iden-
tically zero polynomial - has received some attention in the
recent times, primarily due to its close connection to circuit
lower bounds. It is now known that a complete (blackbox)
derandomization of PIT for depth-4 formulas, via a particu-
lar kind of pseudorandom generator, implies VP 6= VNP [2]
(an algebraic analogue of the much coveted goal: P 6= NP).
It is also known that VP 6= VNP must necessarily be shown
before proving P 6= NP [28, 26]. Blackbox identity testing
(or, the problem of designing hitting-set generators), being a
promising approach to proving lower bounds, naturally calls
for a closer examination. Moreover, a line of work [29, 4, 14,
11] has established that a complete blackbox derandomiza-
tion of depth-3 PIT implies a quasi-polynomial time black-
box PIT algorithm for general low degree circuits. Towards
this, some progress has been made in the form of polynomial
time hitting-set generators for the following formulas:

• depth-2 (cf. [6]),
• depth-3 bounded top fanin [3, 23],
• bounded depth, constant-occur [3],
• (quasi-poly hitting-set for) multilinear constant-read

formulas [5], read-once oblivious ABPs [9],

among some others (cf. [22, 25]). The hope is, by study-
ing these special but interesting models we might develop
a deeper understanding of the nature of hitting-sets and
thereby get a clue as to what techniques can be lifted to
solve PIT in general (i.e. for depth-3 formulas). One such
potentially effective technique is the study of partial deriva-
tives of formulas.

Despite the apparent difference between the approaches of
[3] and [5], at a finer level they share a common ingredient
- the use of partial derivatives. The partial derivative based
method was introduced in the seminal paper by Nisan and
Wigderson [16] for proving circuit lower bounds, and since
then it has been successfully applied (with more sophistica-
tions) to prove various interesting results on lower bounds,
identity testing and reconstruction of circuits [3, 5, 10, 12]
(cf. [25, 7] for more).

Partial derivatives & shifting: From a geometric view-
point, partial derivatives shift the variables by ‘some’ amount
- for e.g., if f(x1, x2, . . . , xn) is a multilinear polynomial then
its partial derivative with respect to x1 is f(x1+1, x2, . . . , xn)−
f(x1, . . . , xn). Out of curiosity, one might ask what happens
if we shift the polynomial by arbitrary field constants? If we
shift a monomial f(x) = x1x2 . . . xn by c = (c1, . . . , cn) ∈
Fn, ci 6= 0, we get the polynomial f(x+ c) = (x1 + c1)(x2 +
c2) . . . (xn + cn). Something interesting has happened here:
The polynomial f(x + c) has many low-support monomials.
By a low-support monomial, we mean that the number of
variables involved in the monomial is less than a predefined
small quantity, say `.

Is it possible that shifting has a similar effect on a more
general polynomial f(x), i.e. f(x+c) has low-support mono-
mials with nonzero coefficients, if f 6= 0? Surely, this is true
if c is chosen randomly from Fn [24, 30]. But, f is not just
any arbitrary polynomial, it is a polynomial computed by a
formula (say, a depth-3 formula). This makes it an interest-
ing proposition to investigate the following derandomization
question: If f 6= 0 be a polynomial computed by a formula, is
it possible to efficiently compute a small collection of points
T ⊂ Fn, such that there exists a c ∈ T for which f(x + c)
has a low-support monomial with nonzero coefficient?

If the answer to the above question is yes, then it is fairly
straightforward to do an efficient blackbox identity test on
f : For the right choice of c ∈ T , g(x) = f(x + c) 6= 0 has a
low-support monomial. To witness that g(x) 6= 0, it suffices
to keep a set of ` variables intact and set the remaining n−`
variables to zero in g; running over all possible choices of `
variables whom we choose to keep intact, we can witness the
fact that g 6= 0. Since ` is presumably small, g(x) restricted
to ` variables is a sparse polynomial which can be efficiently
tested for nonzeroness in a blackbox fashion [6].

Indeed, the above intuition is true for the class of set-
depth-∆ formulas (defined in §1.1) - an interesting class
capturing many other previously studied models (see §1.1),
including set-multilinear depth-3 circuits.

Set-multilinear depth-3 circuits: A circuit C =
∑k
i=1∏d

j=1 fi,j(xXj) is called a set-multilinear depth-3 circuit if

X1 t . . . t Xd is a partition of the variable indices [n] and
fi,j(xXj) is a linear polynomial in the variables xXj i.e.
the set of variables corresponding to the partition Xj . The
set-multilinear depth-3 model, first defined by [16], kicked
off a flurry of activity. Though innocent-looking, it has
led researchers to various arithmetic inventions – the par-
tial derivative method for circuit lower bounds [16], non-
commutative whitebox PIT [18], the relationship between
tensor-rank and super-polynomial circuit lower bounds [17],
hitting-set for tensors, low-rank recovery of matrices, rank-
metric codes [8], and reconstruction (or learnability) of cir-
cuits [13]. Although, an exponential lower bound for set-
multilinear depth-3 circuits is known [16], the closely asso-
ciated problem of efficient blackbox identity testing on this
model remained an open question, until this work.

Hitting-set for set-depth-∆ formulas - A whitebox de-
terministic polynomial time identity test for set-depth-∆ fol-
lows from the noncommutative PIT results [18]. We are in-
terested in blackbox PIT and hence, we cannot see inside
C and the underlying partitions of [n]. The only informa-
tion we have is the circuit-size bound, s. To our knowledge,
there was no sub-exponential time hitting-set known for the

set-depth-∆ model. Our work improves this situation to
quasi-polynomial for any underlying field (refer Theorem 1).
We remark that even the very special case of set-multilinear
depth-3 circuits had no sub-exponential hitting-set known
[25, Problem 27]; closest being the recent result of [8] where
they give a quasi-polynomial hitting-set for tensors, i.e. the
knowledge of the sets X1, . . . , Xd is required.

Furthermore, set-depth-4 covers other well studied models
- diagonal circuits [21] & semi-diagonal circuits [20] - that
had whitebox identity tests but no blackbox sub-exponential
PIT were known. For these (and set-multilinear depth-3),

our hitting-set has time complexity sO(log s), although, for

general set-depth-4 it requires sO(log2 s).
Depth-3 formulas being the ultimate frontier for PIT (and

lower bounds) [4, 11], one might wonder about the utility
of our result on hitting-set for set-depth-∆ formulas be-
yond ∆ = 3. It turns out that there is an interesting con-
nection: We show that a quasi-polynomial hitting-set gen-
erator for set-depth-6 formulas implies a quasi-polynomial
hitting-set generator for depth-3 formulas of the form C =∑k
i=1

∏d
j=1 fi,j(xXj)ei,j , where X1 t . . .tXd defines a par-

tition on [n] and fi,j are linear polynomials. Since arbi-
trary powers ei,j ≥ 0 are allowed, the above depth-3 model
is stronger than set-multilinear depth-3 formulas (as there
is no restriction of multilinearity). This appears to be a
step forward towards derandomizing general depth-3 PIT
and provides us with a good motivation to understand the
strength of our approach against depth-3 formulas.

Few more words on our approach: The F-linear space of
polynomials spanned by shifting f by arbitrary points in Fn
is identical to the space spanned by the partial derivatives
of f when char(F) = 0 (if char(F) = p > 0, the shifted poly-
nomials space might strictly subsume the partial derivatives
space, e.g. f(x) = xp). The partial derivative based meth-
ods are relatively better studied in the literature. But, we
choose to work with the shifted polynomials space because
of the following reasons: (1) Shifting by points in Fn can be
done even if f is presented as a blackbox, (2) we do not know
how to work out the present proofs using partial derivatives,
(3) if char(F) > 0, all the nontrivial partial derivatives might
vanish identically giving little information about f , whereas
shifted polynomials always retain the ‘identity’ of f . For
these, we work with shifted polynomials (see also [27]).

In fact, we shift the circuit by formal variables and exam-
ine how it changes by considering a transfer matrix T . The
transfer matrix originates from the study of a formula with
field coefficients via a ‘simpler’ one having Hadamard algebra
coefficients. This makes the transfer process more amenable
to a study using matrices and linear algebra; proving prop-
erties that are vaguely reminiscent of the case of top-fanin
k = 1. The technicality lies in proving the invertibility of
the transfer matrix, which is an exponential-sized matrix.

The use of Hadamard algebra is implicit in the whitebox
PIT of [18] and the study of PIT over commutative alge-
bras of [19]. The novelty of the present approach lies in
understanding the effect of shift by viewing it through the
lens of Hadamard algebra which reveals an interesting phe-
nomenon, we call low-support rank concentration.

1.1 The results (stated formally)
Set-depth & set-height formulas - Let C be an arithmetic

formula over a field F in n variables x, consisting of alter-
nating layers of addition (Σ) and multiplication (Π) gates,

with a Σ-gate on top. The number of layers of Π-gates in C
is called the product-depth (or simply height) of C and will
be denoted by H. Naturally, the depth of C - which is the
number of layers of gates in C - is either ∆ = 2H or 2H+ 1.
Counting the Π-layers from the top, we label these layers by
numbers in the range [H] and will be referring to a layer as
the h-th Π-layer in C, for h ∈ [H].

We say that C is a set-depth-∆ formula if for every h-th
Π-layer in C, there exists a partition Xh,1 t · · · t Xh,dh of
variable indices [n] that the product gates of the h-th Π-
layer respect. In other words, for every h ∈ [H] the i-th
product gate in the h-th Π-layer computes a polynomial of
the form

∏dh
j=1 fi,j(xXh,j), where each fi,j(xXh,j) is a set-

depth-(∆− 2h) formula of height H − h on the variable set
xXh,j . If ∆ = 2H then the product gates of theH-th Π-layer
are allowed to compute arbitrary monomials, i.e. here the H-
th Π-layer need not respect any partition of the variables.

We will also refer to C as a set-height-H formula 1. Size
of C, denoted by s or |C|, is the number of gates (including
the input gates) in C.

Theorem 1 (Main). There is a hitting-set generator
for set-height-H formulas, of size s, that runs in time poly-
nomial in exp((2H2 log s)H+1), over any field F.

Remarks - For blackbox PIT of set-multilinear depth-3 for-
mulas this gives a quasi-polynomial time complexity of sO(log s).
For constants H > 1 the formula may not be multilinear,
though the hitting-set remains quasi-polynomial. The time
complexity remains sub-exponential up toH = ε log s/ log log s,
for a fixed constant ε < 1 .

An interesting model that is not set-depth-∆ but still The-
orem 1 could be applied is - semi-diagonal formula. The
reason being the duality transformation [21, 20] that helps
us view it as a set-depth-4 formula. We recall - a depth-
4 (ΣΠΣΠ) formula C is semi-diagonal if, for all i, its i-
th (top) product-gate computes a polynomial of the form

mi ·
∏b
j=1 f

ei,j
i,j , where mi is a monomial, fi,j is a sum of

univariate polynomials, and b is a constant. Another in-
teresting application of Theorem 1 is blackbox PIT for set-
depth-3 formulas with powers.

Corollary 2 (Semi-diag. depth-4). There is a hitting-
set generator for semi-diagonal depth-4 formulas, of size s,
that runs in time sO(log s).

Corollary 3 (Set-depth-3 with powers). Consider

a depth-3 C =
∑k
i=1

∏d
j=1 fi,j(xXj)ei,j , where fi,j is a lin-

ear polynomial in F[xXj], ei,j ∈ N, and X1 t · · · tXd parti-
tions [n]. There is a hitting-set generator for such formulas,

of size s, that runs in time sO(log2 s). The result continues
to hold even if fi,j is a sum of univariates.

Remarks - (1) In a recent independent work, Forbes & Sh-
pilka [9] gave a quasi-polynomial time hitting-set generator
for read-once oblivious ABPs, when the order of the vari-
ables is known. This implies a quasi-polynomial hitting-set
for set-depth formulas (of arbitrary depth) with the knowl-
edge of the partition of the variables. So, although [9] han-
dles a more general model, the a priori knowledge of the
partition prevents their algorithm from being truly blackbox.

1we note that a multilinear set-depth-formula is a pure cir-
cuit (as defined by [16])

Another contribution of [9] is an extension of Saxena’s [21]
duality trick to fields of small characteristic - we use duality
in the proofs, of Corollaries 2 & 3, for blackbox PIT of semi-
diagonal and diagonal circuits. (2) Recently, Mulmuley [15]
has shown an interesting connection between blackbox PIT
of diagonal circuits (generally, symbolic trace), derandom-
ization of Noether’s Normalization Lemma and the general-
ized Riemann Hypothesis; coining the phrase GCT Chasm.
We refer the reader to [9] for a more detailed discussion on
this and a comparison between their and our work. Our
techniques (eg. ‘rank concentration’) suggest that the GCT
chasm may be bridgeable in PIT due to the special nature
of polynomials, arising from circuits, that is not exploited
by the existing general algebraic-geometry notions.

1.2 Organization
We develop some terminologies and notations in §2, which

would be useful later. §3 proves the first structural property
- a small shift ensures low-block-support rank-concentration
in a product of polynomials, that have disjoint variables and
only low-weight monomials. Starting with this as a base
case, §4 proves the second structural property - a small shift
ensures low-support rank-concentration in set-depth-∆ for-
mulas (thus, achieving the presence of a low-support mono-
mial). Finally, the proofs of our main results (or hitting-sets)
are completed in §5.

2. THE BASICS
2.1 Polynomials

Let N := Z>0 and [n] := {1, . . . , n}. Let R be a commuta-
tive ring. In the motivating cases R will be a field F, which
we implicitly assume to be large enough, as the required
field extensions are constructible in deterministic polyno-
mial time [1]. Further, as in blackbox PIT we are allowed
to evaluate the circuit over any ‘small’ field extension.

Not always will we use bold notation for a vector, hope-
fully the context will avoid the confusion. For a vector
e ∈ Zn, define |e| :=

∑
i ei. Let the support be S(e) :=

{i | ei 6= 0} and the weight s(e) be its size. For an exponent
vector e ∈ Nn and a polynomial f ∈ R[x], Coef(e)(f) de-
notes the coefficient of xe in f . Define the support of f as
S(f) := {e ∈ Nn |Coef(e)(f) 6= 0} and the sparsity s(f) be
its size. The monomial-weight of f is µ(f) := maxe∈S(f) s(e).
Further, define the cone of f as S(f) := {e′ ∈ Nn | ∃e ∈
S(f), e′ 6 e}, where the inequality is coordinate-wise, and
its size as s(f). For a sparse polynomial f , s(f) is small
but s(f) is usually exponentially large. For u, v, a ∈ Nn
define v! :=

∏
i∈[n] vi!,

(
v
u

)
:=
∏
i∈[n]

(
vi
ui

)
= v!

u!·(v−u)!
, and

av−u :=
∏
i∈[n] a

vi−ui
i . We follow the convention: For all

a < b ∈ N,
(
a
b

)
= 0 and

(
a
0

)
= 1.

2.2 Hadamard algebras
For a commutative ring R and κ ∈ N, define the Hadamard

algebra Hκ(R) := (Rκ,+, ?), on the free R-module Rκ, by
defining: u ? v := (ui · vi)i∈[κ], where · is the multiplica-
tion in R. The polynomial ring over Hκ(R) is Hκ(R)[x],
which inherits the operations + and ?. There is an obvious
isomorphism between the algebras Hκ(R)[x] and Hκ(R[x]).
Low-support coefficient-space - For any polynomial f over a
Hadamard algebra Hκ(R), where R is a field, and ` ∈ N>0,
define V`(f) := spR{Coef(e)(f) | e ∈ Nn, s(e) < `} ⊆ Hκ(R)

(read spR as R-span). We call f `-concentrated over Hκ(R)
if V`(f) = spR{Coef(e)(f) | e ∈ Nn}.

2.3 Proof idea (for set multilinear depth-3)
Let C(x) =

∑k
i=1

∏d
j=1 fi,j(xXj), where fi,j is a linear

polynomial in F[xXj], be a set-depth-3 formula. Consider a
ΠΣ formula

D(x) := f1(xX1) ? · · · ? fd(xXd) over Hk(F),

where the i-th coordinate of fj(xXj) is fi,j(xXj). Note,
C(x) is (1, 1, . . . , 1) ·D(x), where · is the usual matrix prod-
uct. For a subspace V ⊆ Fk and polynomials D1, D2 ∈
Hk(F)[x], we say D1 ≡ D2 (mod V) if each coefficient of
D1 − D2 is in V . Somewhat wishfully, we would like the
following low-support rank-concentration property to hold:

Conjecture 4 (Wishful!). If ` > log |C| then D(x) ≡
0 (mod V`(D)).

If true then the coefficient of xe in D is in the F-span of
those coefficients that correspond to low support, and hence
we easily get a blackbox PIT algorithm for set-depth-3 for-
mulas running in time poly(nlog |C|). But, Conjecture 4 is
false, eg. D = x1 · · ·xn. It is here where ‘shifting’ is useful.
The goal in this paper is to prove that after trying out a ‘few’
shifts of the variables, D satisfies something like Conjecture
4. Looking ahead, we conjecture (without proof) that the
phenomena continue to hold in general depth-3 formulas.

At this point, the reader may read §3 (by skipping §2.4),
which is sufficient to understand the set-depth-3 case. If the
reader chooses to do so then please assume κ = k, fi’s are
linear polynomials (i.e. δ = 1), and D is a ΠΣ formula over
Hk(F) in §3. §2.4 and §4 are additionally required to handle
set-depth-4 and beyond.

2.4 Set-height over Hadamard algebra
Just as we have defined set-height formulas over a field F

- meaning, the underlying constants come from F, we can
also define set-height formula in a natural way over any
Hadamard algebra Hκ(R). The reason we can extend the
definition to arbitrary Hκ(R) is that the defining property
of set-height formulas is the existence of a partition of vari-
ables for every Π-layer (irrespective of where the constants
of the formula come from). Size of a formula C over Hκ(R)
is defined as κ times the number of gates in C.

Let C be a set-height-H formula (over F) of depth ∆ - we
will count depth of C from the top, i.e. the top Σ-gate is
at depth 1. If ∆ is even (resp. odd) then the gates of the
bottom-most Σ-layer compute sparse polynomials (resp. lin-
ear polynomials) in the variables. Let k be the maximum
among the fanin of the Σ-gates of C (barring the gates of
the bottom-most Σ-layer), and d the maximum among the
fanin of the Π-gates in C.
Uniform fanin of Σ and Π-gates - With k and d as above,
we can assume that the fanin of every Σ-gate in C (barring
the gates of the bottom-most Σ-layer) is k, and fanin of
every Π-gate is d. This is achieved by introducing ‘dummy’
gates: The ‘dummy’ Σ-gates introduced as children of a Π-
gate compute the field constant 1, and the ‘dummy’ Π-gates
introduced as children of a Σ-gate also compute 1 except
that some of the field constants on the wires are set to zeroes.
This process keeps C a set-height-H formula but might blow
up the size from s to s∆, although it does not change k and
d (the way we have defined them). Of course, formula C is
not modified physically as it is presented as a blackbox. The

point is, even in the blackbox setting we can treat C as a
set-height-H formula with uniform fanin of Σ and Π-gates.
We will call this uniform fanin of the Σ and Π-gates as the
Σ-fanin and Π-fanin, respectively. The definition of Σ-fanin
excludes the gates of the bottom-most Σ-layer - they are
handled next.
Fanin bound on bottom-most Σ-gates - If ∆ is even, denote
the set of monomials computed by the H-th Π-layer by M ;
if ∆ is odd then M := x ∪ {1}. The fanin of every gate of
the bottom-most Σ-layer is bounded by λ := |M | + 1, the
sparsity parameter.

Henceforth, we assume uniform Σ and Π-fanin of C (k
and d respectively), keeping in mind that the fanin of every
gate of the bottom-most Σ-layer is bounded by λ. k, d and
λ are bounded by s. Denote this class of formulas over F by
C0(k, d, λ,x).

Recursive structure of set-height formulas over Hadamard
algebras - Let Ch(k, d, λ,x) be the class of set-height-(H−h)
formulas, of depth (∆− 2h), in the variables x with Σ-fanin
k, Π-fanin d and sparsity parameter λ, over the Hadamard
algebra Rh := Hkh(F). (Eg., to begin with h = 0 and the
input formula C ∈ C0(k, d, λ,x).) Assume that k, d and λ
are less than s, which is the size of the input formula C. Let
Ch be a formula in Ch(k, d, λ,x).

Ch(x) =
∑
i∈[k]

ci ·
∏
j∈[d]

fi,j(xXj), (1)

ci ∈ Rh, fi,j(xXj) is a set-height-(H − h − 1) formula
over Rh on the variables xXj , and X1 t · · · t Xd is the
partition of [n] that the first Π-layer of Ch(x) respects.
Let Rh+1 := Hk(Rh) = Hkh+1(F). Define fj(xXj) :=

(f1,j(xXj), . . . , fk,j(xXj))T ∈ Rh+1[xXj]. Let

Dh(x) := f1(xX1) ? · · · ? fd(xXd) =
∏
j∈[d]

fj(xXj)

over Rh+1, where ? denotes the Hadamard product in the
algebra Rh+1 (extended naturally to the polynomial ring
over Rh+1). Evidently,

Ch(x) = (c1, . . . , ck) ·Dh(x) = cT ·Dh(x), (2)
where · is the product for matrices over Rh[x]. We intend
to understand the nature of the circuit Ch(x) by study-
ing the properties of the circuit Dh(x) - it is here that
the recursive structure reveals itself as in Lemma 5. Let
Ph(h′) := {Xh′,1, . . . , Xh′,d} be the partition of [n] that the
h′-th Π-layer of Ch respects. (Recall, when the depth of Ch
is even, the bottom-most Π-layer need not respect any par-
tition - this attribute would always remain implicit in our
discussions.) Define the partition Ph(h′, Xj) := {Xh′,1 ∩
Xj , . . . , Xh′,d∩Xj} (ignore the empty sets), for every j ∈ [d].
Ph(h′, Xj) is the partition induced on Xj by the h′ layer.

Lemma 5. For every j ∈ [d], fj(xXj) is a set-height-(H−
h− 1) formula in Rh+1[xXj] with Σ-fanin k, Π-fanin d and
sparsity parameter λ, i.e. fj(xXj) ∈ Ch+1(k, d, λ,xXj), such
that every h′-th Π-layer of fj(xXj) respects the partition
Ph(h′ + 1, Xj). (Proof in Appendix A)

2.5 Matrices
A matrix M with coefficients in ring R, and the rows

(resp. columns) indexed by I (resp. J) is denoted as: M ∈
(I × J → R). When R is an integral domain, we denote
the rank by rkRM . We call a matrix M ∈ (I × J → R),
|I| = |J | − 1, strongly full if for all u ∈ J , MI,J\{u} is
invertible. For two matrices M1,M2 and a R-module V ,
we write M1 ≡ M2 (mod V) to mean that each column of

M1 −M2 is in V . For a matrix M ∈ Rκ×a and an element
v ∈ Hκ(R), v ? M is the matrix obtained after taking the
Hadamard product of each column with v. For two matrices
M1 ∈ (I × J1 → R),M2 ∈ (I × J2 → R) the Hadamard-
tensor matrix M1 ~M2 ∈ (I × (J1 × J2) → R) is defined
as: Its (j1, j2)-th column is (M1)I,j1 ? (M2)I,j2 .

3. LOW-BLOCK-SUPPORT RK.-CONC.
For i ∈ [`], let fi ∈ Hκ(F)[xXi] be a polynomial of degree

at most δ, where Xi’s are disjoint subsets of [n]. Define µ :=
maxi{µ(fi)}. The sparsity parameter λ := maxi{s(fi)} of

the fi’s is bounded by (δ+n+µ)O(µ). Let ` := 2 dlog2 κe+1.
Consider the depth-3 (ΠΣΠ) formula over Hκ(F),

D := f1(xX1) ? · · · ? f`(xX`) in Hκ(F)[x].
We shift it by formal variables t to get D(x+ t) = f1(xX1 +
tX1)?· · ·?f`(xX` +tX`) in Hκ(F[t])[x]. Wlog we can assume
that, ∀i ∈ [`], fi(t) is a unit in Hκ(F(t)). This is because
not being a unit only means that the vector fi ∈ F(t)κ has
a zero coordinate, say at place j ∈ [κ]. Then the j-th coor-
dinate of D(t) is zero, and we can forget this position alto-
gether; project the setting to the simpler algebra Hκ−1(F).
We normalize fi to f ′i(x) := fi(t)

−1 ? fi(x + t). Define
D′(x) := f ′1(xX1) ? · · · ? f ′`(xX`) in Hκ(F(t))[x].

D(x+ t) = D(t) ? D′(x). (3)
Any exponent e ∈ Nn, possibly appearing in D′, can be
written uniquely as e =

∑
i∈[`] ei, where ei ∈ S(fi), because

fi’s are on disjoint set of variables. We will frequently use
this identification. We define the block-support of e, bS(e) :=
{i ∈ [`] | ei 6= 0}, and let the block-weight bs(e) be its size.
Define a relevant vector space, for l ∈ N>0,

Vl(D′) := spF(t)

{
Coef(e)(D′) | e ∈ Nn, bs(e) < l

}
.

Ordering & Kronecker-based map - We define a term order-
ing on the monomials te, e ∈ Nn, and their inverses. For a

w ∈ Nn we denote the ordering as te �w te
′
, or equivalently

1/te
′
�w 1/te, if

∑
i∈[n] wiei 6

∑
i∈[n] wie

′
i.

For reasons of efficiency, useful later but skippable for now,

we assume: ≺w keeps the monomials
{∏

i∈[`] t
ei | ∀i ∈ [`] ,

ei ∈ S(fi)} distinct. If we fix such a w ∈ N>0 (note: it

could be found in time λO(`) [6]), the Kronecker-like homo-
morphism τ : ti 7→ ywi (∀i ∈ [n]) will obviously also map
the aforementioned monomials to distinct univariate ones.

We would like to prove something like Conjecture 4 for
D(x+ t). It suffices to focus on D′(x) as its coefficients are
all scaled-up by the same nonzero ‘constant’ D(t). The rest
of the section is devoted to proving the following theorem.

Theorem 6 (Low block-support suffices). D′(x) ≡
0 (mod V`(D′)). Further, it remains true under the map τ .

3.1 Shift-&-normalizing D

We investigate the effect of shift-&-normalizing on fi. Write,
for i ∈ [`], fi(xXi) =:

∑
vi∈S(fi)

zi,vix
vi . (Note: vi ∈ Nn and

we will denote its j-th coordinate by vi,j ∈ N.) This yields,
after shift-&-normalize

f ′i(x) := fi(x+ t)/fi(t) =:
∑

ui∈S(fi)

z′i,ui
xui

∈ Hκ(F(tXi))[xXi]. The last step defines

z′i,ui
= Coef(ui)(f

′
i) = fi(t)

−1 ?
∑

vi∈S(fi)

zi,vi

(
vi
ui

)
tvi−ui

(4)
for all exponent vectors ui ∈ S(f ′i) ⊆ S(f ′i) = S(fi). The
constant coefficient of f ′i , z

′
i,0 = 1.

3.2 Transfer equation of a polynomial
Let f be one of the polynomials f1, . . . , f` over Hκ(F).

Let S := S(f) and S := S(f). For v ∈ S define zv :=
Coef(v)(f), and z′v := Coef(v)(f ′). Since f is a unit, obvi-
ously, S 6= ∅ and S 6= ∅. Let Z ∈ ([κ]×S → F) be such that:
Its v-th column is the vector zv. Note that exactly s(f)
of these columns are nonzero. Let Z′ ∈ ([κ] × S → F(t))
be such that: Its u-th column is the vector z′u. For any
C ⊆ S(f) we define a diagonal matrix NC ∈ (C × C → F[t])
as: Its u-th diagonal element is tu. Let the transfer matrix
(of ΣΠ formulas) T ∈ (S×S → F) be such that: Its (v, u)-th
entry is

(
v
u

)
. We are ready to state the transfer equation.

Lemma 7 (Transfer equation - primal). Z′ =
f(t)−1 ? ZNSTN

−1
S . (Proof in Appendix B)

Denote Z′[κ],C by Z′C, for any C ⊆ S. Note that the transfer

matrix captures a transformation, from Z to Z′, which is
clearly invertible. Thus, T is an invertible matrix. Define
T ′ := (TS,S)−1 ∈ (S × S → F) and S∗ := S \ {0}. If S∗ = ∅
then it only means that f ∈ Hκ(F), and is invertible. Such
an f could be dropped from D right in the beginning. From
now on we assume S∗ 6= ∅. Recall, z′0 = 1.

Lemma 8 (Transfer equation - mod). We have
f(t)−1 ? Z ≡ Z′S∗NS∗T

′
S∗,SN

−1
S (mod z′0). Further, T ′S∗,S

is strongly full. (Proof in Appendix B)

3.3 Transfer eqn. of D: Hadamard tensoring
For two subsets B1, B2 ⊂ Nn, define B1 + B2 := {b1 +

b2 | b1 ∈ B1, b2 ∈ B2}, where the sum is coordinate-wise.
For i ∈ [`], let Si := S(fi) and S∗i := Si \ {0}. Define
S :=

∑
i∈[`] Si and S ′ :=

∑
i∈[`] S

∗
i . There is a natural

identification between S ′ and ×i∈[`]S∗i . For i ∈ [`], define
Zi ∈ ([κ]×Si → F) such that: Its ui-th column is the vector
zi,ui := Coef(ui)(fi). Let Z ∈ ([κ] × S → F) such that:
Its u-th column is the vector zu := Coef(u)(D). Note that
Z = ~i∈[`]Zi. For i ∈ [`], define Z′i ∈ ([κ] × S∗i → F) such
that: Its vi-th column is the vector z′i,vi := Coef(vi)(f

′
i).

(Z′i has fewer columns than Zi.) Let Z′ ∈ ([κ] × S ′ → F)
such that: Its v-th column is the vector z′i,v := Coef(v)(D′).
Note that Z′ = ~i∈[`]Z

′
i. For any C ⊆ S, define a diagonal

matrix NC ∈ (C × C → F[t]) as: Its u-th diagonal element is
tu. For i ∈ [`], define T ′i := T ′S∗i ,Si

. Let the transfer matrix

(of ΠΣΠ formulas) T ′ ∈ (S ′ × S → F) be ⊗i∈[`]T
′
i .

Lemma 9 (Transfer equation depth-3). D(t)−1?Z
≡ Z′NS′T

′N−1
S (mod V`(D′)). (Pf. in Appendix B)

3.4 To select columns of T ′
Recall that T ′ has rows (resp. columns) indexed by S ′

(resp. S) and has entries in F. LetM be some κ > 0 columns
that we intend to remove from T ′; we call them marked and
the others S \M are unmarked.

Theorem 10 (Invertible minor). There exist unmar-
ked columns C ⊆ S, |C| = |S ′|, s.t. |T ′S′,C | 6= 0. (App. B)

3.5 T ′ on the nullspace of Z: Finishing Thm. 6
Recall that the columns of Z are indexed by S. Think

of these ordered by the weight vector w, as discussed in the
beginning of this section. Pick a basis M, size at most
κ, of the column vectors of Z by starting from the largest
column. Formally, M gives the unique (once ≺ is fixed)
basis such that for each u-th, u ∈ S \M, column of Z there
exist columns u1, . . . , ur ∈ M spanning the u-th column,

and u ≺ ur ≺ · · · ≺ u1. We think of the columns M of
T ′ marked, and invoke Theorem 10 to get the C (S. We
define an A ∈ (S × C → F): If a is the v-th column of A
then Z · a = 0 expresses the F-linear dependence of zv on
{zv′ | v′ ∈M, v ≺ v′}; in particular, the least row where a is
nonzero is the v-th, the entry being 1.

Lemma 11 (T ′ on nullspace of Z). |T ′N−1
S A| 6= 0.

Further, the leading nonzero inverse-monomial in the deter-
minant has the coefficient |T ′S′,C |. (Proof in Appendix B)

Proof of Theorem 6. From the transfer equation, Lemma
9, recall D(t)−1 ? Z ≡ Z′NS′T

′N−1
S (mod V`(D′)). Right-

multiplying by A, we get

0 = D(t)−1 ? (ZA) ≡ Z′NS′T ′N−1
S A (mod V`(D′)). (5)

Since T ′N−1
S A is invertible from Lemma 11 and NS′ is ob-

viously invertible, we get Z′ ≡ 0 (mod V`(D′)). (Here we
do use that the matrices are over F(t) and that V`(D′) is an
F(t)-vector space.) This implies the first part of Theorem 6,
as Z′ collected exactly those coefficients of D′ that we a pri-
ori did not know in V`(D′). The second part of the theorem
follows as: (1) τ keeps D(t) a unit, and (2) τ corresponds to
the correct term ordering �w. These two properties allow
the above proof also work after applying τ .

4. LOW-SUPPORT RK.-CONCENTRATION
We will prove that a set-height-H formula, after a ‘small’

shift, begins to have ‘low’-support rank-concentration. The
proof is by induction on the height of the formulas over
Hadamard algebras. ForH > h ∈ N, let th := {tH−1, . . . , th+1,
th} be a set of formal variables and F(th) be the function
field. These th-variables are different from the variables
x involved in the formula C. Let R′h := Hkh(F(th)) be
a Hadamard algebra over F(th); kh = dimF(th)R′h. Fur-
ther, R′h+1[th] denotes the (univariate) polynomial ring over
R′h+1, and R′h+1(th) is the corresponding ring of fractions.
(R′h+1(th) is basically Hkh+1(F(th)).)

Low-support shift for Ch(k, d, λ,x) - Let τh be a map from
F[x] to F(th)[x] defined as,

τh : xi 7→ xi + αH−1,i t
aH−1,i

H−1 + · · ·+ αh,i t
ah,i

h ,

for xi ∈ x, aH−1,i, . . . , ah,i ∈ Z+ and αH−1,i, . . . , αh,i ∈ F.
(τh fixes F, i.e. τh(c) = c for c ∈ F.) In short, we write
τh : x 7→ x+αh t

ah
h . For `h ∈ N, the map τh is called an `h-

support shift for the class of formulas Ch(k, d, λ,x) if for ev-
ery formula Ch ∈ Ch(k, d, λ,x), the polynomial τh(Ch(x)) =
Ch(x+αh t

ah
h) is `h-concentrated over R′h.

Fix `h as - If ∆ is even then for H > h ≥ 0:

`h := (2HdH log2 ke)
H−h−1 · 2 dH log2(kλ)e+ 1;

if ∆ is odd then forH ≥ h ≥ 0, `h := (2HdH log2 ke)H−h+1.

The above setting satisfies `h = (`h+1 − 1)H(` − 1) + 1,
where ` := 2dH log2 ke + 1, for every H − 1 > h ≥ 0 (and
also for h = H−1 when ∆ is odd). Recall Eqn. 2 that says -
for each h ∈ {0, . . . , H−1} and Ch, there exists c ∈ Hk(Rh)
such that Ch = cT ·Dh. We prove the following theorem.

Theorem 12 (Low support suffices). We can con-
struct τ0 such that τ0 ◦D0 is `0-concentrated over R′1[t0], in
time polynomial in (d+ n+ `0)`0 , where n := |x|.

Proof strategy ahead - The idea is to construct the map τh by
applying induction on height H−h of the class Ch(k, d, λ,x).
By Eqn. 2, Ch(x) = cT · (f1(xX1) ? · · · ? fd(xXd)). From
Lemma 5, fj(xXj) ∈ Ch+1(k, d, λ,xXj). By definition, τh+1 :

xi 7→ xi + αH−1,i t
aH−1,i

H−1 + · · · + αh+1,i t
ah+1,i

h+1 is an `h+1-
support shift for Ch+1(k, d, λ,xXj) for every 1 ≤ j ≤ d. Here
we use induction on height H − h: We will build the map
τh from the inductive knowledge of τh+1. We will show that
it is possible to efficiently compute ah,1, . . . , ah,n ∈ Z+ and
αh,1, . . . , αh,n ∈ F such that τh : xi 7→ τh+1(xi) + αh,i t

ah,i

h

is an `h-support shift for Ch(k, d, λ,x).

The proof of Theorem 12. The proof proceeds by induction
on height H − h of the class Ch(k, d, λ,x) (in other words,
reverse induction on h). The induction hypothesis is that
τh+1, an `h+1-support shift for the class Ch+1(k, d, λ,x), can
be constructed in time polynomial in (d + n + `h+1)`h+1 ,
where n := |x|. Overall this means, by varying h ∈ [0, ..., H−
1], we get a hitting-set of size polynomial in ΠH−1

h=0 (d + n+

`h)`h 6 (d+ n+ `0)
∑

h `h < (d+ n+ `0)2`0 . We discuss the
base case and the inductive step in separate detail. Keep in
mind that fj(xXj) ∈ Ch+1(k, d, λ,xXj).

4.1 Base case (h+ 1 > H − 1)
The base case is when H − h − 1 = 1 or 0, i.e. fj(xXj)’s

are sparse polynomials or linear polynomials over Rh+1, de-
pending on whether ∆ is even or odd, respectively. These
two base cases have varying level of difficulty. IfH−h−1 = 0
then `h+1 = `H = 2, hence taking τH as the identity map
suffices (since fj(xXj)’s are linear polynomials) as an `H -
support shift for the class CH(k, d, λ,x). If H − h − 1 = 1
then fj(xXj)’s are sparse polynomials. We first prove,

Lemma 13 (Sparse polynomial). Let f ∈ Hκ(F)[x]
be a polynomial with degree bound δ. Let `′ := 1 + min{
2 dlog2(κ · s(f))e , µ(f)}. We can construct a map σ : xi 7→
xi + tbi , in time polynomial in (δ+ n+ `′)`

′
, such that σ(f)

is `′-concentrated over Hκ(F(t)). (Proof in Appendix C)

Apply the lemma to the sparse polynomial fj(xXj), which
has the sparsity parameter λ. Define τh+1 = τH−1 : xi 7→
xi+t

bi
H−1 (in other words, aH−1,i := bi). This, by Lemma 13,

ensures that the concentration parameter is 2
⌈
log2(kH−1 · λ)

⌉
+

1 6 2 dH log2(kλ)e+ 1 = `H−1 = `h+1. Finally, τH−1 is an
`H−1-support shift for the class CH−1(k, d, λ,x), and it can
be constructed in time polynomial in (d+ n+ `H−1)`H−1 .

4.2 Induction (h+ 1 to h)
Let f̂j(xXj) := τh+1(fj(xXj)). Then,

D̂h(x) := τh+1(Dh(x)) = f̂1(xX1) ? · · · ? f̂d(xXd),

where every f̂j is `h+1-concentrated over R′h+1 (by induc-
tion hypothesis). Let t := {th,1, . . . , th,n} be a set of ‘fresh’
formal variables. (The t-variables would be eventually set

as univariates in a variable th.) As in Eqn. 3, D̂h(x+ t) =∏
j∈[d] f̂j(xXj + tXj) =

∏
j∈[d] f̂j(tXj) ? f̂ ′j(xXj) = D̂h(t) ?

D̂′h(x). We would like to show D̂′h(x) ≡ 0 (mod V`(D̂′h)),

where V`(D̂′h) := spF(th+1,t)
{Coef(e)(D̂′h) | e ∈ Nn, bs(e) <

`}, and ` = 2dH log2 ke + 1. As before (see ‘key argu-
ment’ in Lemma 13), it is sufficient to prove the typical

case, D̂′h,`(x) :=
∏
j∈[`] f̂

′
j(xXj) ≡ 0 (mod V`(D̂′h,`)). To-

wards this, define the truncated polynomials, ĝj(xXj) :=∑
e:s(e)<`h+1

Coef(e)(f̂j)x
e
Xj

and let the corresponding prod-

uct be Êh(x) :=
∏
j∈[d] ĝj(xXj). Sparsity of ĝj(xXj) over

R′h+1 is bounded by (dH−h−1 + n + `h+1)`h+1 =: λh. Let,

Êh(x + t) =
∏
j∈[d] ĝj(xXj + tXj) = Êh(t) ? Ê′h(x) and

Ê′h,`(x) :=
∏
j∈[`] ĝ

′
j(xXj). By Theorem 6, we can find

ah,1, . . . ah,n ∈ Z+ in time (dλh)O(`) = (d + n + `h)O(`h)

such that by setting th,i = αh,i t
ah,i

h (any αh,i ∈ F \ {0}
works), where th is a ‘fresh’ formal variable, we can ensure
that the following is satisfied:

Ê′h,`(x) ≡ 0 (mod V`(Ê′h,`)). (6)

The claim is, the same setting th,i = αh,i t
ah,i

h (with carefully

chosen αh,i’s) also ensures that D̂′h,`(x) ≡ 0 (mod V`(D̂′h,`)).
Consequently, D̂′h is (`− 1)(`h+1− 1) + 1 < `h concentrated
over R′h+1(th). We argue this next. Eqn. 6 implies

Êh,`(x+α t) =
∏
j∈[`]

ĝj(xXj +αXj tXj) (7)

= Êh,`(α t) ? Ê′h,`(x)

≡ 0 (mod V`(Êh,`(x+α t))),

where (reusing symbol) t := (t
ah,1

h , . . . , t
ah,n

h) and α :=

(αh,1, . . . , αh,n). Let, D̂h,`(x) :=
∏`
j=1 f̂j(xXj).Define, ẑj,uj :=

Coef(uj)(f̂j(xXj)) ∈ R′h+1; ẑ′j,uj
:= Coef(uj)(f̂j(xXj +

αXj tXj)) ∈ R′h+1[th]; z̃j,uj := Coef(uj)(ĝj(xXj)) ∈ R′h+1;
z̃′j,uj

:= Coef(uj)(ĝj(xXj +αXj tXj)) ∈ R′h+1[th]. Note that

z̃j,uj = ẑj,uj if uj ∈ S(ĝj). Let, B̂j := {uj : ẑj,uj is in the

F(th+1)-basis of the coefficients of f̂j} and B̃j := {uj : z̃j,uj

is in the F(th+1)-basis of the coefficients of ĝj} with respect
to some fixed basis that comprises coefficients of monomials

of as low support as possible. Note, B̂j = B̃j =: Bj , as f̂j
is `h+1-concentrated over R′h+1. The crucial observation is
- for any vj ∈ Bj , ẑ′j,vj gets a th-free contribution only from
the monomial xvj , thus, its basis representation looks like:
ẑ′j,vj = (1 + a(vj , vj)) · ẑj,vj +

∑
uj∈Bj\{vj} a(uj , vj) · ẑj,uj ,

where a’s are in F(th+1)[th] and th divides each a(·, vj).
Also, z̃′j,vj = (1+b(vj , vj))·ẑj,vj +

∑
uj∈Bj\{vj} b(uj , vj) · ẑj,uj ,

where b’s are in F(th+1)[th] and th divides each b(·, vj).
Now define the matrices Ẑj , Ẑ

′
j and Z̃′j as follows: Ẑj ∈

([kh+1] × Bj → F(th+1)) with uj-th column ẑj,uj ; Ẑ′j ∈
([kh+1] × Bj → F(th)) with uj-th column ẑ′j,uj

; and Z̃′j ∈
([kh+1]×Bj → F(th)) with uj-th column z̃′j,uj

.
From the above crucial observation,

Ẑ′j = Ẑj · M̂ ′ and Z̃′j = Ẑj · M̃ ′, (8)

where M̂ ′, M̃ ′ ∈ (Bj ×Bj → F(th+1)[th]) with rows indexed
by uj ∈ Bj and columns by vj ∈ Bj . The (uj , vj)-th entry

of M̂ ′ contains a(uj , vj) if uj 6= vj , otherwise 1 + a(uj , vj)

if uj = vj . Similarly, the (uj , vj)-th entry of M̃ ′ contains
b(uj , vj) if uj 6= vj , otherwise 1 + b(uj , vj) if uj = vj . Both

M̂ ′ and M̃ ′ are invertible over F(th+1)(th) as det(M̂ ′) ≡
det(M̃ ′) ≡ 1 (mod th). Therefore,

Ẑ′j = Z̃′j · (M̃ ′−1M̂ ′) and Z̃′j = Ẑ′j · (M̃ ′−1M̂ ′)−1. (9)

Observe that any coefficient of D̂h,`(x + α t) is an F(th)-

linear combination of the columns of ~j∈[`]Ẑj (by the defi-
nition of Bj), which by Eqn. 8 is an F(th)-linear combina-

tion of the columns of ~j∈[`]Ẑ
′
j - this in turn is an F(th)-

linear combination of the columns of ~j∈[`]Z̃
′
j (by Eqn. 9).

By Eqn. 7, any F(th)-linear combination of the columns

of ~j∈[`]Z̃
′
j can be expressed as an F(th)-linear combina-

tion of those columns u of ~j∈[`]Z̃
′
j for which bs(u) < `,

which in turn can be expressed as an F(th)-linear combina-

tion of those columns u of ~j∈[`]Ẑ
′
j for which bs(u) < ` (by

Eqn. 9 again). In other words, we have shown the following:

D̂h,`(x+α t) ≡ 0 (mod V`(D̂h,`(x+α t))). This would im-

ply D̂′h,`(x) ≡ 0 (mod V`(D̂′h,`)), if we choose α so that the

map th,i 7→ αh,i t
ah,i

h ensures f̂j(αXj tXj)−1 is well-defined
in R′h+1(th). Such an α can be constructed, by Lemma 14,

in time polynomial in λh = (dH−h−1 +n+`h+1)`h+1 . There-
fore, τh : xi 7→ τh+1(xi)+αh,i t

ah,i

h is such that τh(Dh(x)) is

`h-concentrated over R′h+1[th]. Since Ch(x) = cT · Dh(x),
τh(Ch(x)) is `h-concentrated over R′h. This finishes the con-

struction of τh, given τh+1, in time (d+ n+ `h)O(`h).
Lemma 14 (Preserve invertibility). Let f ∈ Hκ(F)[x]

be a polynomial with degree bound δ. Assume that f is `′-
concentrated over Hκ(F), and that f−1 ∈ Hκ(F(x)). Then,
we can contruct an α ∈ Fn, in time polynomial in κ(δ+n+

`′)`
′
, such that f(α)−1 ∈ Hκ(F). (Proof in Appendix C.)

5. READING OFF THE HITTING-SET
5.1 Proof of Theorem 1

Suppose we are given a blackbox access to a set-height-H
nonzero formula C = C0 ∈ C0(k, d, λ,x) of size s. Using
Theorem 12 we can construct a map τ0 : F[x] 7→ F[t0][x]

such that D̂ := τ0 ◦ D0 is `0-concentrated over R′1[t0], in

time (d+ n+ `0)O(`0). Clearly, D̂ ∈ Hk(F[t0])[x] and C′ :=

τ0 ◦ C = cT · D̂. For X ⊆ [n] of size at most `0, define
σX : xj 7→ (xj if j ∈ X, else 0) for all j ∈ [n]. Clearly,

σX ◦C′ is only `0-variate, thus it has sparsity (dH +`0)O(`0).

By the assumption on D̂ we know that there exists such an
X for which σX ◦ C′ 6= 0. Using sparse PIT methods [6]
we can construct a hitting-set for C′, in time (dH + n +

`0)O(`0) = 2O(`0H log(s+`0)) = exp(O(`0H
2 log s)), which is

time polynomial in exp((2H2 log s)H+1).

5.2 Proof of Corollary 2
We are given a blackbox access to a semi-diagonal for-

mula C =
∑k
i=1 mi ·

∏b
j=1 f

ei,j
i,j of size s, where mi is a

monomial, fi,j is a sum of univariate polynomials, and b is
a constant. Using the duality trick (cf. [20], [9]), there exists

another representation of C as C′ :=
∑k′

i=1

∏n
j=1 gi,j(xj) of

size sO(b). Rewrite this, using the Hadamard algebra Hk′(F),
as C′ = cT ·D, where D = G1(x1)?· · ·?Gn(xn) ∈ Hk′(F)[x].
The monomial-weight of each Gj is bounded by 1. By Theo-

rem 6 (& Lemma 13) we can shift D, in time sO(log k′), such
that it becomes O(log k′)-concentrated. On top of the shift,

the sparse PIT gives a hitting-set in time sO(log s).

5.3 Proof of Corollary 3
Suppose we are given a blackbox access to the formula

C =
∑k
i=1

∏d
j=1 fi,j(xXj)ei,j , where fi,j is a sum of uni-

variate polynomials in F[xXj], ei,j ∈ N, and X1 t · · · t Xd
partitions [n]. Let the formula size be s. Using duality,
there exists another representation of fi,j(xXj)ei,j as Fi,j :=∑ki,j
p=1

∏
q∈Xj

gi,j,p,q(xq) of size sO(1). The monomial-weight

of each gi,j,p,q is bounded by 1. Overall, we can repre-

sent C as C′ :=
∑k
i=1

∏d
j=1 Fi,j , which is a set-depth-6

formula. The inductive proof of Theorem 12 on C′ will
have H = 3 inductive steps. In the base case (dealing with
sparse polynomials) we can use a better bound `′ = 2 in
Lemma 13, as µ(gi,j,p,q) 6 1. This leads us to an improve-
ment on Theorem 12 - we construct τ0 such that τ0 ◦ D0

is O(log2 s)-concentrated over R′1[t0], in time sO(log2 s). On
top of the shift, the sparse PIT gives a hitting-set for C in

time sO(log2 s).

6. CONCLUSION
We have identified a natural phenomena - low-support

rank-concentration - in constant-depth formulas, that is di-
rectly useful in their blackbox PIT. In this work, we gave a
proof for the interesting special case of set-depth-∆ formu-
las. More work is needed to prove such rank-concentration
in full generality, if true. Next, it would be interesting to
prove rank-concentration for multilinear depth-3 formulas.

Acknowledgements MA thanks Humboldt Forschungspreis,
and we all thank Max Planck Institute for Informatics for
its kind hospitality. CS and NS would also thank Hausdorff
Center for Mathematics for the generous support.

7. REFERENCES
[1] L. M. Adleman and H. W. Lenstra. Finding

irreducible polynomials over finite fields. In STOC,
pages 350–355, 1986.

[2] M. Agrawal. On the Arithmetic Complexity of Euler
Function. In CSR, pages 43–49, 2011.

[3] M. Agrawal, C. Saha, R. Saptharishi, and N. Saxena.
Jacobian hits circuits: Hitting-sets, lower bounds for
depth-D occur-k formulas & depth-3 transcendence
degree-k circuits. In STOC, pages 599–614, 2012.

[4] M. Agrawal and V. Vinay. Arithmetic circuits: A
chasm at depth four. In FOCS, pages 67–75, 2008.

[5] M. Anderson, D. van Melkebeek, and I. Volkovich.
Derandomizing polynomial identity testing for
multilinear constant-read formulae. In CCC, pages
273–282, 2011.

[6] M. Bläser, M. Hardt, R. J. Lipton, and N. K. Vishnoi.
Deterministically testing sparse polynomial identities
of unbounded degree. Inform. Process. Lett.,
109(3):187–192, 2009.

[7] X. Chen, N. Kayal, and A. Wigderson. Partial
Derivatives in Arithmetic Complexity and Beyond.
FnT-TCS, 6(1-2):1–138, 2011.

[8] M. Forbes and A. Shpilka. On identity testing of
tensors, low-rank recovery and compressed sensing. In
STOC, pages 163–172, 2012.

[9] M. Forbes and A. Shpilka. Quasipolynomial-time
Identity Testing of Non-Commutative & Read-Once
Oblivious ABP. ECCC, 2012.

[10] A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi.
Approaching the chasm at depth four. In CCC, 2013.

[11] A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi.
Arithmetic circuits: A chasm at depth three. ECCC,
2013.

[12] A. Gupta, N. Kayal, and Y. Qiao. Random Arithmetic
Formulas can be Reconstructed Efficiently. In CCC,
2013.

[13] A. Klivans and A. Shpilka. Learning restricted models
of arithmetic circuits. ToC, 2(1):185–206, 2006.

[14] P. Koiran. Arithmetic circuits: The chasm at depth
four gets wider. Theor. Comput. Sci., 448:56–65, 2012.

[15] K. Mulmuley. Geometric Complexity Theory V:
Equivalence between blackbox derandomization of
polynomial identity testing and derandomization of
Noether’s Normalization Lemma. In FOCS, 2012.

[16] N. Nisan and A. Wigderson. Lower bounds on
arithmetic circuits via partial derivatives. Comp.
Complex., 6(3):217–234, 1997.

[17] R. Raz. Tensor-rank and lower bounds for arithmetic
formulas. In STOC, pages 659–666, 2010.

[18] R. Raz and A. Shpilka. Deterministic PIT in
non-commutative models. Comp. Complex.,
14(1):1–19, 2005.

[19] C. Saha, R. Saptharishi, and N. Saxena. The power of
depth 2 circuits over algebras. In FSTTCS, pages
371–382, 2009.

[20] C. Saha, R. Saptharishi, and N. Saxena. A case of
depth-3 identity testing, sparse factorization and
duality. Comp. Complex., 2012.

[21] N. Saxena. Diagonal circuit identity testing and lower
bounds. In ICALP, pages 60–71, 2008.

[22] N. Saxena. Progress on polynomial identity testing.
Bulletin of EATCS, (99):49–79, 2009.

[23] N. Saxena and C. Seshadhri. Blackbox identity testing
for bounded top fanin depth-3 circuits: the field
doesn’t matter. In STOC, pages 431–440, 2011.

[24] J. T. Schwartz. Fast probabilistic algorithms for
verification of polynomial identities. JACM,
27(4):701–717, 1980.

[25] A. Shpilka and A. Yehudayoff. Arithmetic circuits: A
survey of recent results and open questions. FnT-TCS,
5(3–4):207–388, 2010.

[26] S. Skyum and L. G. Valiant. A Complexity Theory
Based on Boolean Algebra. J. ACM, 32(2):484–502,
1985.

[27] R. Smolensky. On Interpolation by Analytic Functions
with Special Properties and Some Weak Lower
Bounds on the Size of Circuits with Symmetric Gates.
In FOCS, pages 628–631, 1990.

[28] L. G. Valiant. Completeness classes in algebra. In
STOC, pages 249–261, 1979.

[29] L. G. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff.
Fast Parallel Computation of Polynomials Using Few
Processors. SIAM J. Comput., 12(4):641–644, 1983.

[30] R. Zippel. Probabilistic algorithms for sparse
polynomials. In EUROSAM, pages 216–226, 1979.

APPENDIX
A. PROOFS OF SECTION 2

A.1 Proof of Lemma 5
Proof. Recall that fj(xXj) = (f1,j(xXj), . . . , fk,j(xXj))T ,

where every fi,j(xXj) is a set-height-(H − h − 1) formula
over Rh. The proof is by induction on height (H − h − 1)
of fj(xXj). Base case (h + 1 > H − 1): The base case
is when H − h − 1 = 1 or 0, i.e. fi,j(xXj)’s are sparse
polynomials or linear polynomials depending on whether
∆ is even or odd, repectively. In this case, fj(xXj) is a
set-height-(H − h − 1) formula over Rh+1. Also, the spar-
sity parameter λ remains the same by its definition. Hence,
fj(xXj) ∈ Ch+1(k, d, λ,xXj). Inductive step (h+2 to h+1):
The formulas fi,j(xXj)’s appear as sub-formulas of Ch at
depth-3 (Eqn. 1). Therefore, the corresponding Π-layers of
f1,j(xXj), . . . , fk,j(xXj) respect the same partitions of xXj .
In particular, we can express every fi,j(xXj) as, fi,j(xXj) =∑k
p=1 bi,j,p ·

∏d
q=1 gi,j,p,q(xYj,q), where bi,j,p ∈ Rh, gi,j,p,q(xYj,q)

is a set-height-(H − h − 2) formula over Rh, and the first
Π-layer of all fi,j(xXj), for 1 ≤ i ≤ k, respect the same
partition Ph(2, Xj), i.e., Yj,q’s partition Xj as do X2,q ∩Xj .

(Note: With j fixed, X2,q∩Xj are the only relevant variable
indices.) Hence,

fj(xXj) =

k∑
p=1

bj,p ·
d∏
q=1

gj,p,q(xYj,q), (10)

where bj,p = (b1,j,p, · · · , bk,j,p)T ∈ Rh+1 and
gj,p,q(xYj,q) = (g1,j,p,q(xYj,q), . . . , gk,j,p,q(xYj,q))T ∈ Rh+1[xYj,q].
In order to apply induction, we make a comparison be-
tween fi,j(xXj) and gi,j,p,q(xYj,q) (and between fj(xXj) and
gj,p,q(xYj,q)). Just like fi,j(xXj) is a set-height-(H − h− 1)
formula overRh occurring as a sub-formula at depth-3 of the
formula Ch, gi,j,p,q(xYj,q) is a set-height-(H−h−2) formula
overRh occurring as a sub-formula at depth-5 of the formula
Ch. By induction, gj,p,q(xYj,q) is a set-height-(H − h − 2)
formula in Rh+1[xYj,q] with Σ-fanin k, Π-fanin d and spar-
sity parameter λ i.e., gj,p,q(xYj,q) ∈ Ch+2(k, d, λ,xYj,q), such
that every h′-th Π-layer of gj,p,q(xYj,q) respects the parti-
tion Ph(h′ + 2, Yj,q). Since gj,p,q(xYj,q) has only variables
xYj,q and Yj,q ⊆ Xj , we can say that every h′-th Π-layer of
gj,p,q(xYj,q) respects the partition Ph(h′+2, Xj). The h′-th
Π-layers of the gj,p,q(xYj,q)’s (for 1 ≤ q ≤ d) correspond to
the (h′ + 1)-th Π-layer of fj(xXj). Hence, by Eqn. 10, we
infer that every h′-th Π-layer of fj(xXj) respects the parti-
tion Ph(h′ + 1, Xj). Note that the Σ-fanin, Π-fanin and the
sparsity parameter remain k, d and λ, respectively.

B. PROOFS OF SECTION 3
B.1 Proof of Lemma 7

Proof. Consider a column u ∈ S of Z′; it is z′u. By
Eqn. 4, z′u = f(t)−1?

∑
v∈S zv

(
v
u

)
tv−u = f(t)−1?

∑
v∈S zv ·t

v ·(
v
u

)
· t−u = f(t)−1 ?Z · (u-th column of NSTN

−1
S). Running

over all u ∈ S gives us the result.

B.2 Proof of Lemma 8
Proof. Lemma 7 gives Z′S = f(t)−1 ? ZNSTS,SN

−1
S .

Rewrite it as, f(t)−1 ?Z = Z′SNST
′N−1
S . Going modulo the

subspace spF(t){z′0} kills the 0-th column of Z′S and yields,

f(t)−1 ? Z ≡ Z′S∗NS∗T
′
S∗,SN

−1
S (mod z′0). For the second

part we exploit the independence of T ′S∗,S from Z and the
Hadamard algebra. Formally, fix a large enough κ̃, say |S|,
and the Hadamard algebra Hκ̃(F). Let e ∈ S. Fix Z̃ as: Its
e-th column is 0 and the rest are linearly independent mod-
ulo 1 (note: 1 = z̃′0). For this ‘generic’ setting we still have

the equation, f̃(t)−1?Z̃ ≡ Z̃′S∗NS∗T ′S∗,SN−1
S (mod z̃′0). Im-

plying, f̃(t)−1?Z̃S\{e} ≡ Z̃′S∗NS∗T ′S∗,S\{e}N−1
S\{e} (mod z̃′0).

Since the LHS is a matrix of rank |S| − 1, deduce that
T ′S∗,S\{e} is invertible. That is, T ′S∗,S is strongly full.

B.3 Proof of Lemma 9
Proof. For i ∈ [`], we can apply Lemma 8 to fi and get,

fi(t)
−1 ? Zi ≡ Z′iNS∗i T

′
iN
−1
Si (mod 1) (11)

where the 1 is the unity, the all one vector, in Hκ(F). De-
note the ui-th column of the matrix on the RHS, of the
above congruence, by Ci,ui . Consider a column u ∈ S of
Z; it is zu. Now D(t)−1 ? zu =

∏
i∈[`] fi(t)

−1 ? zi,ui =∏
i∈[`] (αi + Ci,ui) , for some αi ∈ F(t) by Eqn. 11. Hence,

D(t)−1 ? zu ≡
∏
i∈[`] Ci,ui (mod V`(D′)), as the product of

` or less Ci,ui vanishes. Running over all u ∈ S gives us,

D(t)−1?Z ≡ ~i∈[`]

(
Z′iNS∗i T

′
iN
−1
Si

)
≡
(
~i∈[`]Z

′
i

)
·⊗i∈[`]

(
NS∗i

T ′iN
−1
Si

)
≡ Z′ ·NS′ · T ′ ·N−1

S (mod V`(D′)).

B.4 Proof of Theorem 10
Proof. We know that T ′ = ⊗i∈[`]T

′
i , where each T ′i ∈

(S∗i × Si → F) is strongly full (Lemma 8 for fi). Thus, we
can apply invertible row operations Ei ∈ (S∗i ×S∗i → F) such
that EiT

′
i has a |S∗i |-sized identity submatrix, and another

column that has only nonzero entries. Since, from now on,
we are not going to use the properties of the index sets S∗i ,Si,
we replace them by a more readable identification: Define,
for i ∈ [`], ni := |S∗i | > 0 and identify S∗i (resp. Si) with
Ui := [ni] (resp. Wi := [0..ni]). Let U := ×i∈[`]Ui and
W := ×i∈[`]Wi. Wlog we keep the following setting: For all
i ∈ [`], (T ′i)Ui,Ui = Ini [taking EiT

′
i to be our new T ′i], and

the column (T ′i)Ui,0 is zero free. Define an indicator function
(note: δ(·) equals 1, if the boolean condition is true, else 0)

ε : N>0 × N → {0, 1};
(u,w) 7→ δ ((w = 0) ∨ (w 6= 0 ∧ w = u)) .

Extend it to N`>0×N` by defining ε : (u,w) 7→
∏
r∈[`] ε(ur, wr).

Note that the (u,w)-th entry in T ′i is nonzero iff ε(u,w) = 1.
Thus, ε exactly indicates the non-zeroness in T ′i . Similarly,
by tensoring, the (u,w)-th entry in T ′ ∈ (U ×W → F) is
nonzero iff ε(u,w) = 1. Thus, ε exactly indicates the non-
zeroness in T ′. We will build C incrementally, starting with
C = ∅. During this build up we might apply row permuta-
tions R on T ′.

Consider a column u, u ∈ U ⊂W , of T ′. This column has
exactly one nonzero entry; appearing at the row indexed
by u ∈ U . Put all these unmarked columns u in C, and
collect the marked ones in M1. If M1 = ∅, we already
have |C| = |U | and we are done (infact, T ′U,C is identity). So
assume |M1| =: m1 ∈ [κ] and define m2 := κ−m1 < κ. Let
the other marked columns be M2 := M \M1; they lie in
W \ U and are m2 many. Consider the unmarked columns
in W \ U ; collect them in L := W \ (U ∪ M2). We will
now focus on the submatrix T ′M1,W\U =: T ′1. Note that its
column-indices are `-tuples with at least one zero.

Claim 15. There exists a row-permutation R1 ∈ Fm1×m1 ,
and m1 unmarked columns C1 ⊆ L such that: (R1T

′
1)M1,C1

is a lower-triangular m1 × m1 matrix with w-th (w ∈ C1)
diagonal entry being nonzero.

Proof of Claim 15. We will again build C1 incrementally,
starting from ∅. Recall that each row of T ′1 is indexed by an
`-tuple u in U . For i ∈ [`] we denote the i-th coordinate in
u by u(i), and for an I ⊆ [`], u(I) denotes the ordered set
{u(i)|i ∈ I}. For w ∈ W , define the support S(w) := {i ∈
[`] |w(i) 6= 0}. We want to permute the rows so that the
coordinates of the row-indices appear in a decreasing order
of frequency. Formally, pick R1 ∈ Fm1×m1 to reorder the
rows of T ′1 as M1 = (u1, . . . , um1) such that:

• The ordered list u1(1), . . . , um1(1) has repetitions only
in contiguous locations and the frequencies are non-
increasing. In equation terms: The list has some r
distinct elements α1, . . . , αr ∈ U1 with respective fre-
quencies i1 > · · · > ir (summing to m1), and they
appear as α1(i1 times), . . . , αr(ir times).

• The ordered list (u1(1), u1(2)), . . . , (um1(1), um1(2)) has
repetitions only in contiguous locations and the fre-
quencies are non-increasing.

• The same as above holds for 3-tuples, 4-tuples,. . .,`-
tuples.

We describe an iterative process to build C1 one element
at a time. In the i-th iteration, i ∈ [m1], we will add an
unmarked, unpicked column wi ∈ L to C1. The process
maintains the invariant: (R1T

′
1)M1,C1 is lower-triangular.

Iteration i = 1 - The row u1 of T ′1 has exactly 2`−1 nonzero
columns. (Why? Zero-out at least one coordinate of u1.)
Since 2` − 1 > κ > |M2| we can pick a column w1 ∈ L such
that ε(u1, w1) 6= 0, thus (T ′1)u1,w1 6= 0. Add w1 to C1.

Iteration i > 2 - Consider the list u1, . . . , ui. We claim that
there are positions I ⊂ [`], |I| 6 dlg ie, such that ui(I) is
not contained in any of the previous sets in the list. The
proof is by binary-search in the list. Start with I = ∅.
Pick the least j1 ∈ [`] such that u1(j1), . . . , ui(j1) are not
all the same; add j1 to I. By the ordering on u’s the fre-
quency µ1 of ui(j1) is at most i/2. If it is one then we
stop with this I, otherwise we zoom-in on the ‘halved’ list
ui−µ1+1, . . . , ui. Again we pick the least j2 ∈ [j1 + 1, `] such
that ui−µ1+1(j2), . . . , ui(j2) are not all the same; add j2 to
I. This leads to a further halving of the list, and so on. Fi-
nally, we do have our positions I, |I| 6 dlg ie, such that ui(I)
appears for the first time in ui. Deduce that each column
w of T ′1, with I ⊆ S(w) ([`] and w(S(w)) = ui(S(w)),
has the first nonzero entry at the ui-th row. (Consider
ε(uj , w) = ε(uj(S(w)), w(S(w))) = ε(uj(S(w)), ui (S(w))).)
The number of such columns w, that are unmarked and un-
picked, is at least (2`−|I| − 1)−m2 − (i− 1) > 2`−|I| − κ >
2`−dlg ie − κ > 2`−dlg κe − κ = 2dlg κe+1 − κ > 0. So we
can pick such a column, say, wi ∈ L \ C1 and add to C1.
The square submatrix of T ′1 thus far, (R1T

′
1){u1,...,ui},C1 is

lower-triangular with a nonzero diagonal.

After the iteration i = m1 - The square matrix (R1T
′
1)M1,C1

is lower-triangular with a nonzero diagonal. 2

Since R1 permutes the rows of T ′1, its action can be lifted
to the rows of T ′; call this action R. Append C1 to the
current C (making its size |U |). Define M1 := U \M1 and
C1 := C \ C1. The square matrix (RT ′)U,C looks like,[

(RT ′)M1,C1 (RT ′)M1,C1
(RT ′)M1,C1 (RT ′)M1,C1

]
=

[
IM1,C1 (RT ′)M1,C1
0M1,C1 (R1T

′
1)M1,C1

]
.

Its determinant equals |(R1T
′
1)M1,C1 | 6= 0⇒ |T ′U,C| 6= 0.

B.5 Proof of Lemma 11
Proof. Let a be the v-th column of A. Let a′ ∈ F|M|

be the vector having the entries of a appearing at the rows
M. Consider (T ′N−1

S) · a. By the property of a we can
write, (T ′N−1

S)a = (T ′N−1
S)S′,v + (T ′N−1

S)S′,M ·a′ = T ′S′,v ·
t−v + (T ′N−1

S)S′,M · a′. Thus, the v-th column of A has
the leading monomial t−v which ‘contributes’ the vector
T ′S′,v. Going over the columns a, running v ∈ C, by the
column-linearity of determinant and the multiplicativity of
the inverse-monomial ordering, we deduce that the largest
possible (inverse-monomial) term in the expression |T ′N−1

S A|
is: |T ′S′,C | · t−

∑
v∈C v. This is nonzero, by the property of C,

thus it is indeed the leading term, i.e. |T ′N−1
S A| 6= 0.

C. PROOFS OF SECTION 4
C.1 Proof of Lemma 13

Proof. If 2 dlog2(κ · s(f))e > µ(f) then `′ = 1+µ(f). In
this case trivially, for any shift σ, σ(f) is `′-concentrated over
Hκ(F(t)). So, from now on we assume 2 dlog2(κ · s(f))e <
µ(f), thus `′ = 1+2 dlog2(κ · s(f))e. DefineR := Hs(f)(Hκ(F)).
Let f =:

∑
e∈S(f) zex

e. Define a column vector D ∈ (S(f)×
[1] → Hκ(F[x])) with e-th entry being zex

e; D can be seen
as a polynomial over R. Rewrite D as a product of univari-
ate polynomials over R as: D(x) = g1(x1) ? · · · ? gn(xn).
Clearly, each gi has degree, hence sparsity, bounded by δ,
and can be seen as an element in Hκ·s(f)(F)[xi].

For any X ⊆ [n] of size `′, define DX(x) :=
∏
i∈X gi(xi).

Recalling Theorem 6 we can construct a shift σ for DX ,
such that σ ◦ DX is `′-concentrated, in time polynomial in

(δ + n + `′)`
′
. Using induction on the number of variables,

it is easy to see that if σ ◦ DX is `′-concentrated (∀X ∈(
[n]
`′

)
) then so is σ ◦ D. The key argument is: Since the

constant coefficient in each g′i (i.e. shift-&-normalized gi) is
one, deduce that the coefficient of any term in D′ (i.e. shift-
&-normalized D) of block-weight 6 `′ is produced by the
product of some 6 `′ g′i’s, so this case is covered by some
X ∈

(
[n]
`′

)
. Also, deduce that the coefficient of any term in

D′ of block-weight > `′ can be inductively written down as
a linear combination of {Coef(e)(D′) | e ∈ Nn, s(e) < `′}.
Finally, σ ◦D inherits this concentration property from D′.

Recall f = 1T ·D, where 1 is the unity inR = Hs(f)(Hκ(F)).
Thus, from the `′-concentration of σ ◦ D (over R), we can
deduce the `′-concentration of σ◦f (over Hκ(F)). This com-
pletes the construction of σ.

C.2 Proof of Lemma 14
Proof. View f as a vector with κ coordinates; each entry

is in F[x] \ {0}. Call the i-th entry fi. Clearly, fi has
variables (resp. degree) at most n (resp. δ). Also, by the
concentration property there exists ei ∈ Nn, with s(ei) 6 `′,
such that Coef(ei)(fi) 6= 0. For X ⊆ [n] of size at most
`′, define σX : xj 7→ (xj if j ∈ X, else 0) for all j ∈ [n].
Clearly, σX ◦ fi is only `′ variate, thus it has sparsity (δ +

`′)O(`′). By the assumption on fi we know that Xi := S(ei)
is of size at most `′, and σXi ◦fi 6= 0. Using standard sparse
PIT methods [6], we can construct a hitting-set for σXi◦fi in

time (δ+ `′)O(`′). Varying over all subsets X ⊆ [n] of size at

most `′, we get a hitting-set for fi in time (δ+n+`′)O(`′). For
convenience, denote this hitting-set as a set of evaluation-
maps {σi,1, . . . , σi,r}; each map is from x to F and we write
σi,j ◦ fi to mean fi(σi,j(x)). Overall we are ensured the
existence of a j, for a given i, such that σi,j ◦ fi 6= 0. We
will now show how to combine all these into a single map.

Pick distinct κr elements β1,1, . . . , βκ,r ∈ F. Consider the
univariate polynomial g(u) :=

∏
i∈[κ],j∈[r](u − βi,j). Define

gi,j(u) := g(u)/(u−βi,j), for all i, j. Consider an evaluation
map from F[x] to F[u, v] - σ := v ·

∑
i∈[κ],j∈[r] gi,j(u) · σi,j .

We claim that, for all i ∈ [κ], σ ◦ fi 6= 0. To see this, note
that there is some j ∈ [r] for which σi,j ◦fi 6= 0. Further, let
f ′i be a homogeneous part of fi, say of degree δi, such that
σi,j◦f ′i 6= 0. Consider the partial evaluation (σ◦fi)(βi,j , v) =
fi(v ·gi,j(βi,j) ·σi,j(x)). Here the coefficient of the monomial
vδi is gi,j(βi,j)

δi · (σi,j ◦ f ′i) 6= 0. Consequently, σ ◦ fi 6= 0.
Thus, for all i ∈ [κ], σ◦fi is a nonzero bivariate polynomial

in F[u, v]. Since its degree remains bounded by δ ·κr, we can
again apply [6] to replace u, v by a hitting-set. Finally, we

hit an α ∈ Fn, in time polynomial in κ(δ + n + `′)`
′
, such

that for all i ∈ [κ], fi(α) 6= 0. This finishes the proof.

	Introduction
	The results (stated formally)
	Organization

	The basics
	Polynomials
	Hadamard algebras
	Proof idea (for set multilinear depth-3)
	Set-height over Hadamard algebra
	Matrices

	Low-block-support rk.-conc.
	Shift-&-normalizing D
	Transfer equation of a polynomial
	Transfer eqn. of D: Hadamard tensoring
	To select columns of T'
	T' on the nullspace of Z: Finishing Thm. 6

	Low-support rk.-concentration
	Base case (h+1H-1)
	Induction (h+1 to h)

	Reading off the hitting-set
	Proof of Theorem 1
	Proof of Corollary 2
	Proof of Corollary 3

	Conclusion
	References
	Proofs of Section 2
	Proof of Lemma 5

	Proofs of Section 3
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Theorem 10
	Proof of Lemma 11

	Proofs of Section 4
	Proof of Lemma 13
	Proof of Lemma 14

