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ABSTRACT
In this work we relate the deterministic complexity of factor-
ing polynomials (over finite fields) to certain combinatorial
objects, we call m-schemes, that are generalizations of per-
mutation groups. We design a new generalization of the
known conditional deterministic subexponential time poly-
nomial factoring algorithm to get an underlying m-scheme.
We then demonstrate how progress in understanding m-
schemes relate to improvements in the deterministic com-
plexity of factoring polynomials, assuming the Generalized
Riemann Hypothesis (GRH).

In particular, we give the first deterministic polynomial
time algorithm (assuming GRH) to find a nontrivial factor
of a polynomial of prime degree n where (n−1) is a constant-
smooth number. We use a structural theorem about associ-
ation schemes on a prime number of points, which Hanaki
and Uno (2006) proved by representation theory methods.

Categories and Subject Descriptors
F.1.3 [Complexity Measures and Classes]: Derandom-
ization; G.2.1 [Discrete Mathematics]: Combinatorics;
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms

General Terms
Algorithms, Theory

Keywords
GRH, Polynomial Factoring, Representation Theory

1. INTRODUCTION
We consider the classical problem of finding a nontrivial

factor of a given polynomial over a finite field. This prob-
lem has various randomized polynomial time algorithms –
Berlekamp [3], Rabin [19], Cantor and Zassenhaus [8], von
zur Gathen and Shoup [27], Kaltofen and Shoup [15] – but
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its deterministic complexity is a longstanding open prob-
lem. It bears upon the general derandomization question in
Computational Complexity theory, i.e. whether BPP=P?

In this paper we study the deterministic complexity of fac-
toring assuming the Generalized Riemann Hypothesis (GRH).
The assumption of GRH in this paper is needed only to find
primitive r-th nonresidues in a finite field Fq which are in
turn used to find a root x (if it exists in Fq) of “special”
polynomials: xr − a over Fq (see [1]).

Assuming GRH, there are many deterministic factoring al-
gorithms known but all of them are super-polynomial time
except on special instances: Rónyai [22] showed under GRH
that any polynomial f(x) ∈ Z[x] can be factored modulo p
deterministically in time polynomial in the Galois group of
f , except for finitely many primes p. Rónyai’s result gener-
alizes previous results by Huang [14], Evdokimov [10] and
Adleman, Manders and Miller [1]. Bach, von zur Gathen
and Lenstra [2] showed that polynomials over finite fields of
characteristic p can be factored in deterministic polynomial
time if φk(p) is smooth for some integer k, where φk(x) is
the k-th cyclotomic polynomial. This result generalizes the
previous works of Rónyai [21], Mignotte and Schnorr [16],
von zur Gathen [26], Camion [7] and Moenck [18].

The line of research, in which this paper makes progress,
was started by Rónyai [20]. There it was shown how to
use GRH to find a nontrivial factor of a polynomial f(x),
where the degree n of f(x) has a small prime factor, in de-
terministic polynomial time. The basic idea of [20], in the

case when n is even, was to go to a ring extension A(2) :=
Fq[x1, x2]/(f(x1), f2(x1, x2)) ofA(1) := Fq[x1]/(f(x1)), where

f2(x1, x2) := f(x2)
x2−x1

, and then use the symmetry of A(2) to

decompose A(2) under GRH. A decomposition of A(2) gives
us a nontrivial factor of f(x) since n is even. [20] showed
that this basic idea can be extended to the case when a prime
r|n but then the deterministic algorithm finds a nontrivial
factor of f(x) in time poly(log q, nr). The nr dependence
appears in the complexity estimate because this is roughly
the dimension of the algebras, like:

Fq[x1, . . . , xr]/(f(x1), . . . , fr(x1, . . . , xr)) (1)

in which the algorithm does computation. Naively, it would
seem that this algorithm will take time poly(log q, nn) in the
worst case (for example when n is a prime). But Evdokimov
[11] showed that the special properties of the intermediate al-
gebras that appear in Rónyai’s algorithm can be exploited so
that it is enough to work with algebras like (1) with a signif-
icantly smaller r ≤ log n, thus, polynomial factoring can be
done deterministically in time poly(log q, nlog n) under GRH.



This line of approach has since been investigated, in an at-
tempt to remove GRH or improve the time complexity, lead-
ing to several algebraic-combinatorial conjectures and quite
special case solutions (see [9, 12, 23]). Our method in this
paper encompasses these known methods and ends up relat-
ing the complexity of polynomial factoring to “purely” com-
binatorial objects (called schemes) that are central to the
research area of algebraic combinatorics. It is easy to verify
that the methods of [20, 11, 9, 12, 23] arrange the underlying
roots of the polynomial in a combinatorial object that sat-
isfies some of the defining properties of schemes. Then [20,
11, 9] use the combinatorial properties of this object while
[12, 23] also use the conjectured field-theoretic properties to
factor the polynomial. This paper generalizes the former
line of attack by formalizing a combinatorial object and a
purely combinatorial conjecture, both of which seem natu-
rally connected with polynomial factoring. We see this as an
exciting bridge between the well studied areas of polynomial
factoring and algebraic combinatorics.

We extend Evdokimov’s algorithm by working in a more
general framework of tensor powers (in Section 3) and this
leads to the analysis of a more general underlying combina-
torial structure (in Section 4) that we call an m-scheme. An
m-scheme on n points is, roughly speaking, a partition P of
the set [n]m, where [n] denotes the set {1, . . . , n}:

[n]m = ∪P∈PP

that satisfies certain “natural” properties (defined in Section
2). The fundamental nature of m-schemes can be gauged
from the fact that there is an abundance of their exam-
ples in algebraic combinatorics, for example, strongly reg-
ular graphs, coherent configurations, association schemes,
cellular algebras, orbits of groups, and superschemes. Be-
low we elaborate a bit on some of these and in Section 2.4
we compare our m-schemes with known similar abstractions.

• a regular graph on n vertices is an example of a 2-scheme
on n points,

• a strongly regular graph (see [6]) on n vertices is an ex-
ample of a 3-scheme on n points,

• an association scheme (see [6, 30]) gives rise to a 3-scheme
and vice-versa. See Section 2.2 for these kind of examples.

• n-schemes on n points always arise from permutation groups.
See Section 2.3 for constructing them from groups and [25]
for the converse. This important example suggests that m-
schemes can be considered as a generalization of finite per-
mutation groups. See [17] for some practical implementa-
tions of group schemes.

• curiously enough, m-schemes on n points also appear when
the (m− 1)-dimensional Weisfeiler-Lehman method for the
graph isomorphism problem is applied to a graph on n ver-
tices, see [5].

Such a large variety of examples makes a classification at-
tempt for m-schemes quite infeasible. But the m-schemes
that appear in our polynomial factoring algorithm possess
a special structure and we believe that their properties can
be exploited to get a deterministic and efficient polynomial
factoring algorithm (under GRH). We demonstrate that this
belief in fact works in several cases (in Sections 4.1, 5 and
6). In particular, we challenge the algebraic combinatorial-
ists with the following conjecture (see Section 4):

Schemes Conjecture: There exists a constant m ≥ 4

such that every homogeneous, antisymmetric m-scheme con-
tains a matching.

It is a standard result that to solve polynomial factor-
ing it is enough to factor polynomials that split completely
over prime fields (see Berlekamp [3, 4] and Zassenhaus [29]).
Thus, we will assume in this paper that the input polynomial
f(x) of degree n has n distinct roots in Fp for some prime
p. Our algorithm for factoring f(x) constructs an r-scheme
on the n roots while working in the algebra of Equation (1),
over a suitable Fq ⊇ Fp. We give several results in this work
showing how to utilise the properties of these underlying r-
schemes to efficiently find a nontrivial factor of f(x). The
most striking of our results makes use of a recent structural
theorem of association schemes on a prime number of points,
which in turn was proven using representation theory of as-
sociation schemes (see [13]):

Main Theorem: If n > 2 is prime, r is the largest prime
factor of (n− 1) and f(x) is a degree n polynomial over Fp

then we can find a nontrivial factor of f(x) deterministically
in time poly(log p, nr) under GRH.

The paper is organized as follows. We formally define
m-schemes in Section 2 and exhibit two important exam-
ples. In Section 3 we introduce our framework of the tensor
powers A⊗m of the algebra A := Fp[x]/(f(x)) and present
our algorithm that constructs an underlying m-scheme, on
the n roots of f(x), while working in A⊗m. In Section 4
we identify properties of this m-scheme that help in polyno-
mial factoring and show that the schemes conjecture if true
would make our algorithm deterministic polynomial time
under GRH. We also prove the conjecture in the important
example of m-schemes arising from permutation groups. In
Section 5 we complete the proof of our Main Theorem. In
Section 6 we show that the levels r (as in Equation (1)) in
Evdokimov’s algorithm can be reduced to log n

1.5
using prop-

erties of m-schemes. In Section 7 we introduce a concept
of primitivity in m-schemes, inspired from the connectivity
of graphs, and give some hints how it could improve the
factoring algorithm.

2. INTRODUCING M-SCHEMES
In this section we define special partitions of the set [n]m

that we call m-schemes on n points. These combinatorial
objects are closely related to superschemes which were first
defined in [25].

2.1 Basic Definitions
We will denote {1, . . . , n} by [n].

Let V = {v1, . . . , vn} be a set of n distinct elements.
For 1 ≤ s ≤ n, define the set of s-tuples:
V (s) := {(vi1 , . . . , vis) ∈ V s | vi1 , . . . , vis are s distinct
elements of V }.
Projections: If s > 1 then we define s projections,

πs
1, . . ., πs

s : V (s) → V (s−1) as:
πs

i : (v1, . . . , vi−1, vi, vi+1, . . . , vs) 7→ (v1, . . . , vi−1, vi+1, . . . , vs).

Permutations: The symmetric group on s elements
Symms acts on V (s) in a natural way by permuting the
coordinates of the s-tuples. To be more accurate, the action
is the following: for σ ∈ Symms,
(v1, . . . , vi, . . . , vs)σ := (v1σ , . . . , viσ , . . . , vsσ ).

m-collection: For 1 ≤ m ≤ n, an m-collection on V is
a set Π of partitions P1,P2, . . . ,Pm of V (1), V (2), . . ., V (m)

respectively.



Colors: For 1 ≤ s ≤ m, we denote by ≡Ps the equiv-
alence relation on V (s) corresponding to the partition Ps.
We call the equivalence classes of the relation ≡Ps colors at
level s.

We define below some natural properties of collections
that are relevant to us. Let Π = {P1,P2, . . . , Pm} be an
m-collection on V .

P1 (Compatibility): We say that Π is compatible at
level 1 < s ≤ m, if ū, v̄ ∈ P ∈ Ps implies that for every
1 ≤ i ≤ s there exists Q ∈ Ps−1 such that πs

i (ū), πs
i (v̄) ∈ Q.

In other words, if two tuples (at level s) have the same
color then for every projection the projected tuples (at level
s− 1) have the same color as well. It follows that for a class
P ∈ Ps, the sets πs

i (P ) := {πs
i (v̄)|v̄ ∈ P}, for all i ∈ [s], are

colors in Ps−1.

P2 (Regularity): We say that Π is regular at level
1 < s ≤ m, if ū, v̄ ∈ Q ∈ Ps−1 implies that for every
1 ≤ i ≤ s and for every P ∈ Ps,
#{ū′ ∈ P | πs

i (ū′) = ū} = #{v̄′ ∈ P | πs
i (v̄′) = v̄}

Fibers: We call the tuples in P ∩ (πs
i )−1(ū) as πs

i -
fibers of ū in P . So regularity, in other words, means that
the cardinalities of the fibers above a tuple depend only on
the color of the tuple.

Subdegree: The above two properties motivate the
definition of the subdegree of a color P over a color Q as
#P
#Q

assuming that πs
i (P ) = Q for some i and that Π is

regular at level s.

P3 (Invariance): We say that Π is invariant at level
1 < s ≤ m, if for every P ∈ Ps and σ ∈ Symms we have:
P σ := {v̄σ|v̄ ∈ P} ∈ Ps.

In other words, the partitions P1, . . . ,Pm are invariant
under the action of the corresponding symmetric group.

P4 (Homogeneity): We say that Π is homogeneous if
|P1| = 1.

P5 (Antisymmetry): We say that Π is antisymmetric
at level s if for every P ∈ Ps and 1 6= σ ∈ Symms, we have
P σ 6= P .

P6 (Symmetry): We say that Π is symmetric at level
s if for every P ∈ Ps and σ ∈ Symms, we have P σ = P .

An m-collection is called compatible, regular, invariant,
symmetric, or antisymmetric if it is at every level 1 < s ≤ m,
compatible, regular, invariant, symmetric, or antisymmetric
respectively.

m-scheme: An m-collection is called an m-scheme if it
is compatible, regular and invariant.

We should remark that the m-schemes that appear in our
factoring algorithm are homogeneous and antisymmetric as
well. As a warmup to these definitions we prove below an
easy nonexistence result for schemes.

Lemma 1. Let r > 1 be a divisor of n. Then for m ≥ r
there does not exist a homogeneous and antisymmetric m-
scheme on n points.

Proof. For any m ≥ r clearly every m-scheme contains
an r-scheme. Thus, we will prove the statement for m = r.
Suppose Π = {P1,P2, . . . , Pr} is an r-scheme on points [n].
By definition Pr partitions n(n − 1) · · · (n − r + 1) tuples

of V (r) into, say, tr colors. By antisymmetricity every such
color P has r! associated colors, namely {P σ|σ ∈ Symmr}.
Further, by homogeneity the size of every color at level r

is divisible by n. Thus by a simple counting of r-tuples we
deduce r!n|n(n−1) · · · (n−r+1), implying r!|(n−1) · · · (n−
r + 1). This contradicts r|n, thus Π cannot exist. 2

Let us now see some easily describable examples of m-
schemes that do exist.

2.2 Example: 3-schemes from Coherent Con-
figurations

Coherent configurations are standard combinatorial ob-
jects that have strongly regular graphs as examples (see [6]).
Recall that a coherent configuration is essentially a 2-scheme
{P1,P2} that also has a composition property:

Composition: For any Pi, Pj , Pk ∈ P2 and any (α, β) ∈
Pk the number: #{γ ∈ V | (α, γ) ∈ Pi and (γ, β) ∈ Pj} is
independent of which tuple (α, β) in Pk we chose.

In other words, the relations Pi and Pj can be “com-
posed” to get a bigger relation that is just a “linear combi-
nation” of the relations in P2.

Association Scheme: In the literature a homoge-
neous coherent configuration is usually called an association
scheme.

These standard coherent configurations turn out to be
similar to our notion of 3-schemes: From a coherent config-
uration {P1,P2} we can define a partition P3 on the triples
such that for any two triples (u1, u2, u3) and (v1, v2, v3) we
have:
(u1, u2, u3) ≡P3 (v1, v2, v3) if and only if (u1, u2) ≡P2 (v1, v2),
(u1, u3) ≡P2 (v1, v3), (u2, u3) ≡P2 (v2, v3).

It is easy to show that {P1,P2,P3} satisfies compati-
bility, regularity and invariance: it is a 3-scheme. Similarly:

Lemma 2. If Π = {P1,P2,P3} is a homogeneous 3-
scheme then {P1,P2} is an association scheme.

Proof. By the hypothesis we already have that {P1,P2}
is a homogeneous 2-scheme. Thus, we only need to show the
composition property. Let Pi, Pj , Pk ∈ P2 and let (α, β) ∈
Pk. Then there exists a subset S ⊆ P3 such that the set:
{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj} can be partitioned as:

tP∈S{γ ∈ V | (α, γ) ∈ Pi, (γ, β) ∈ Pj , (α, γ, β) ∈ P}
which by the compatibility of Π at level 3 is:

tP∈S{γ ∈ V | (α, γ, β) ∈ P}
again by the regularity of Π at level 3 the size of the above
sets is simply #P

#Pk
, which is independent of the choice of

(α, β). Thus, {P1,P2} has the composition property. 2

2.3 Example: Orbit Schemes
Permutation groups provide a host of examples (see [25]).

Let G ≤ SymmV be a permutation group. The orbits of
G on the s-tuples (1 ≤ s ≤ m ≤ n) give an m-scheme.
More formally, define the partition Ps as: for any two s-
tuples (u1, . . . , us) and (v1, . . . , vs) in V (s), (u1, . . . , us) ≡Ps

(v1, . . . , vs) iff ∃σ ∈ G, (σ(u1), . . . , σ(us)) = (v1, . . . , vs). It
is easy to see that these partitions naturally satisfy compat-
ibility, regularity and invariance properties and hence form
an m-scheme. We call m-schemes arising in this way orbit
m-schemes.

It is easy to see that the orbit scheme is homogeneous
if and only if G is transitive. Furthermore, assume that G is
transitive and for some integer 1 ≤ m < n, gcd(m!, |G|) = 1.
Then the corresponding orbit m-scheme is both homoge-
neous and antisymmetric. Our attention to this class of
examples has been drawn by D. Pasechnik.



At the moment, we are not aware of any other examples
of homogeneous antisymmetric m-schemes with m → ∞.
The homogeneous antisymmetric m-schemes are the ones
that arise in our factoring algorithm and we do believe that
their parameters satisfy more stringent conditions than the
general m-schemes. For a conjecture along these lines see
Section 4.1.

2.4 Difference between Various Notions of
Schemes

The term schemes arises in the mathematical literature in
many contexts. Our m-schemes should not be confused with
the notion of schemes in algebraic geometry. However, our
m-schemes are closely related to association schemes, super-
schemes (Smith [25]) and height t presuperschemes (Wojdy lo
[28]). Smith’s superschemes are m-schemes that also satisfy
a suitable higher dimensional generalization of the compo-
sition property. It is not difficult to see that a superscheme
on n points is just a n-scheme on n points. Wojdy lo’s height
t presuperscheme consists of the bottom t levels of a super-
scheme. In particular, a level 0 presuperscheme is just an
association scheme. It can be shown that a height t presu-
perscheme on n-points consists just of the first (t + 2) levels
of a (t + 3)-scheme on n points.

3. DECOMPOSITION OF TENSOR
POWERS OF ALGEBRAS

In this section we describe our polynomial factoring al-
gorithm and simultaneously show how m-schemes appear
in the algorithm. Recall that in the input we are given
a polynomial f(x) ∈ Fp of degree n having distinct roots
α1, . . . , αn in Fp. For any extension field k of Fp we have the
natural associated algebra A := k[X]/(f(X)). Note that A
is a completely split semisimple n-dimensional algebra over
the field k, i.e. A is isomorphic to kn the direct sum of n
copies of the one-dimensional k-algebra k. We interpret A
as the set of all functions,

V := {α1, . . . , αn} → k.

Algorithmically, we have A by structure constants with re-
spect to some basis b1, . . . , bn (for example, 1, X, . . . , Xn−1)
and the problem of factoring f(X) completely can be viewed
as finding an explicit isomorphism from A to kn.

How do the factors of f(X) appear in A? They
appear as zero divisors in A. Recall that a zero divisor
is a nonzero element z(X) ∈ A such that y(X)z(X) = 0
for some nonzero element y(X) ∈ A. This means that
f(X)|y(X) · z(X) which implies (by the nonzeroness of y
and z) gcd(f(X), z(X)) factors f(X) nontrivially. As gcd of
polynomials can be computed by the deterministic polyno-
mial time Euclidean algorithm, we infer that finding a zero
divisor in the factor algebra k[X]/(f(X)) is – up to polyno-
mial time deterministic reductions – equivalent to finding a
nontrivial divisor of f(X). Furthermore, computing an ex-
plicit isomorphism with kn is equivalent to factoring f(X)
completely.

How are the ideals of A related to the roots of
f(x)? Let I be an ideal of A. The support of I, Supp(I), is
defined as:

Supp(I) := V \ {v ∈ V | a(v) = 0 for every a ∈ I}

Conversely, for U ⊆ V , the ideal I(U) is defined as:

I(U) := {b ∈ A | b(u) = 0 for every u ∈ U}

and I⊥(U) is the annihilator of I(U):

I⊥(U) := {a ∈ A | ab = 0 for every b ∈ I(U)}.

It can be easily seen that Supp is an inclusion preserving
bijection from the ideals of A to the subsets of V with in-
verse map I⊥. In view of this correspondence, partial de-
compositions of A into sums of pairwise orthogonal ideals
correspond to partitions of the set V . Let us formulate the
above discussion in a lemma.

Lemma 3. If I1, . . . , It are pairwise orthogonal ideals of
A (i.e. IiIj = 0 for all i 6= j) such that A = I1 + · · · + It

then V = Supp(I1) t · · · t Supp(It).

We now move up to the tensor powers of A and there we
show a way of getting the partitions of V (m).

Functional interpretation of tensor powers: For
m ∈ [n], let A⊗m denote the mth tensor power of A. A⊗m is
also a completely split semisimple algebra; it is isomorphic
to knm

. We again interpret it as the algebra of functions
from V m to k.

Note that in this interpretation the rank one tensor el-
ement h1⊗· · ·⊗hm corresponds to a function V m → k that
maps (v1, . . . , vm) 7→ h1(v1) · · ·hm(vm) .

Essential part of tensor powers: We define the
essential part A(m) of A⊗m to be its (unique) ideal con-
sisting of the functions which vanish on all the m-tuples
(v1, . . . , vm) ∈ V m with vi = vj for some i 6= j.

Then A(m) can be interpreted as the algebra of func-
tions V (m) → k. We note below that a basis for A(m) can
be computed easily and then this is the algebra where our
factoring algorithm does computations.

Lemma 4. Given f(X), a polynomial of degree n having

n distinct roots in Fp, a basis for A(m) = (k[X]/(f(X)))(m)

over k ⊇ Fp can be computed by a deterministic algorithm
in time poly(log |k|, nm).

Proof. To see this consider embeddings µi, for all i ∈
[m], of A into A⊗m given as µi : a 7→ 1 ⊗ . . .⊗ 1 ⊗ a⊗ 1 ⊗
. . .⊗ 1 where a is in the i-th place. In the interpretation as
functions, µi(A) correspond to the functions on V m which
depend only on the ith element in the tuples. Observe that
the set, for 1 ≤ i < j ≤ m:

∆m
i,j = {b ∈ A⊗m | (µi(a)− µj(a))b = 0 for every a ∈ A}

is the ideal of A⊗m consisting of the functions which are
zero on every tuple (v1, . . . , vm) ∈ V m with vi 6= vj . Given
a basis for A, a basis for ∆m

i,j can be computed by solving a
system of linear equations in time polynomial in the dimen-
sion of A⊗m (over k) which is nm. Finally, notice that A(m)

is just the annihilator of
P

1≤i<j≤m ∆m
i,j and hence can be

computed in poly(nm) field operations. 2

Ideals of A(m) and roots of f(x): Like the case of m =

1, ideals and partial decompositions of A(m) into pairwise
orthogonal ideals correspond to subsets and partitions of the
set V (m) respectively.

If I is an ideal of A(m) then we again define the support
of I, Supp(I), as:

Supp(I) := V (m) \ {v̄ ∈ V (m) | a(v̄) = 0 for every a ∈ I}
and Lemma 3 generalizes to:



Lemma 5. For any s ≤ n, if Is,1, . . . , Is,ts are pairwise
orthogonal ideals of A(s) such that A(s) = Is,1 + · · · + Is,ts

then V (s) = Supp(Is,1) t · · · t Supp(Is,ts).

Now we will describe our polynomial factoring algorithm
that produces m-schemes.

Algorithm Description
Input: a degree n polynomial f(x) having n distinct roots
in Fp.

Given 1 < m ≤ n we can wlog assume that we also have
the smallest field extension k ⊇ Fp having s-th nonresidues
for all s ∈ [m] (computing k will take poly(log p, mm) time
under GRH).

Output: a nontrivial factor of f(x) or a homogeneous,
antisymmetric m-scheme on the n points, V := {α ∈ Fp|
f(α) = 0}.

Algorithm overview:

We define A(1) = A = k[x]/(f(x)) and compute A(s), for
all s ∈ [m], in time poly(log p, nm) (by Lemma 4).

Now observe that Autk(A(s)) contains Symms. To see
this, just note that there is an action of Symms on A⊗s as a
group of algebra automorphism, for σ ∈ Symms this action
is the linear extension of: (bi1⊗· · ·⊗bis)σ = bi1σ ⊗· · ·⊗bisσ .

This knowledge of explicit automorphisms of A(s) can
be exploited to efficiently decompose these algebras under
GRH (see Theorem 2.3 in [22]). Thus, for all 1 < s ≤ m we

can compute mutually orthogonal ts ≥ 2 ideals Is,i of A(s),
such that:

A(s) = Is,1 + . . . + Is,ts

By Lemma 5, the above decomposition induces partitions
Ps for all 1 < s ≤ m such that:

Ps : V (s) = Supp(Is,1) t · · · t Supp(Is,ts)

Thus, together with P1 := {V } we have an m-collection
Π := {P1, . . . ,Pm} on the set V .

Now we will show how to refine this m-collection to
an m-scheme using algebraic operations on the ideals Is,i of
A(s). To do that, we first need a tool to relate lower level
ideals Is−1,i to higher level ideals Is,i′ .

Algebra Embeddings A(s−1) → A(s): For every
1 < s ≤ m, we have s embeddings ιs

j : A⊗(s−1) → A⊗s send-
ing bi1 ⊗ · · · ⊗ bis−1 to bi1 ⊗ · · · ⊗ bij−1 ⊗ 1⊗ bij ⊗ · · · bis−1 .

Restricting to A(s−1) and multiplying the images of ιs
j by

the identity element of A(s), we obtain algebra embeddings
A(s−1) → A(s) denoted also by ιs

1, . . . , ι
s
s.

In the function interpretation, ιs
j(A(s−1)) is just the set

of functions in A(s) which do not depend on the jth coordi-
nate of tuples.

The algorithm is best explained by describing the five
kinds of refinement procedures that implicitly refine Π.

R1 (Compatibility): If for any 1 < s ≤ m, for any

pair of ideals Is−1,i and Is,i′ in the decomposition of A(s−1)

and A(s) respectively, and for any j ∈ {1, . . . , s}, the ideal
ιs
j(Is−1,i)Is,i′ is neither zero nor Is,i′ then we can efficiently

compute a subideal of Is,i′ , hence, refine Is,i′ and the m-
collection Π.

Note that R1 fails to refine Π only when it is a compatible
collection.

R2 (Regularity): If for any 1 < s ≤ m, for any pair

of ideals Is−1,i and Is,i′ in the decomposition of A(s−1) and

A(s) respectively, and for any j ∈ {1, . . . , s}, ιs
j(Is−1,i)Is,i′

is not a free module over ιs
j(Is−1,i) then by trying to find a

free basis, we can efficiently compute a zero divisor in Is−1,i,
hence, refine Is−1,i and the m-collection Π.

Note that R2 fails to refine Π only when it is a regular
collection.

Compatibility and regularity of Π create a natural con-
nection between the ideals of levels (s − 1) and s, for all
1 < s ≤ m. In the case when a pair of ideals Is−1,i and Is,i′

in the decomposition of A(s−1) and A(s) respectively, satis-
fies ιs

j(Is−1,i)Is,i′ = Is,i′ : Is,i′ is a free module over ιs
j(Is−1,i)

which in other words means that the elements in Is,i′ can be
viewed as univariate polynomials with coefficients in Is−1,i.
The rank of the free module Is,i′ over ιs

j(Is−1,i) can eas-
ily be seen to be equal to the subdegree of Supp(Is,i′) over
Supp(Is−1,i).

R3 (Invariance): If for some 1 < s ≤ m and some

σ ∈ Symms the decomposition of A(s) is not σ-invariant,
then we can find two ideals Is,i and Is,i′ such that Iσ

s,i∩ Is,i′

is neither zero nor Is,i′ , thus, we can efficiently refine Is,i′

and the m-collection Π.
Note that R3 fails to refine Π only when it is an invariant

collection.
R4 (Homogeneity): If the algebra A(1) = A is in a

(known) decomposed form then trivially we can find a non-
trivial factor of f(x) from that decomposition.

Note that R4 fails to refine Π only when it is a homoge-
neous collection.

R5 (Antisymmetricity): If for some 1 < s ≤ m, for
some ideal Is,i and for some σ ∈ Symms \ {id}, Iσ

s,i = Is,i

then σ is an algebra automorphism of Is,i and hence we can
find its subideal efficiently under GRH by [22], thus, refine
Is,i and the m-collection Π.

Note that R5 fails to refine Π only when it is an antisym-
metric collection.

It can be easily seen that invariance and antisymmetricity
at level s together entail s! | ts.

To sum up the algorithm: we keep doing ideal operations
in the algebras A(s), s ∈ [m] (dictated by the procedures
R1 to R5) till either we get a nontrivial factor of f(x) or
the underlying m-collection Π becomes a homogeneous, an-
tisymmetric m-scheme on n points. It is routine to show
that the time taken by our algorithm is poly(log p, nm).

Remark 6. At this point we are able to reprove Rónyai’s
result [20]: under GRH, we can deterministically find a non-
trivial factor of a degree n polynomial over Fp in time poly(log
p, nr), where r is the smallest prime divisor of n. The proof
is to try constructing an r-scheme by our algorithm above
but by Lemma 1 there exist no homogeneous, antisymmetric
r-scheme on n points. This guarantees that our algorithm
will indeed find a nontrivial factor of f(x) in this case.

4. FROM M-SCHEMES TO FACTORING
We saw in the last section how to either find a nontriv-

ial factor of a given f(x) or construct an m-scheme on the
n roots of f(x). Our aim is to analyse the “bad case” of
the algorithm when we get no nontrivial factor but instead
we get an antisymmetric, homogeneous m-scheme. Can the
properties of these m-schemes be used to factor f(x)? In the
rest of the paper we will try to answer that question. But
we first need to identify certain special colors in our schemes
called matchings that help in factoring f(x). Along the way



we also reprove Evdokimov’s result [11] in our framework of
m-schemes.

Matchings: A color P ∈ Ps, for 1 < s ≤ m, in an
m-scheme {P1, . . . ,Pm} is called a matching if there exist
1 ≤ i < j ≤ s such that πs

i (P ) = πs
j (P ) and |πs

i (P )| = |P |.
We now show that if our m-scheme has a matching then

we can further refine the m-scheme efficiently.

Theorem 7. Given a degree n polynomial f(x) having n
distinct roots in Fp. Assuming GRH, we either nontrivially
factor f(x) or we construct a homogeneous, antisymmetric
m-scheme having no matchings, deterministically in time
poly(log p, nm).

Proof. We first apply the algorithm given in the last
section, say it yields a homogeneous and antisymmetric m-
scheme Π = {P1, . . . ,Pm} on the n roots V := {α ∈ Fp|
f(α) = 0}. For the sake of contradiction assume that a
color P ∈ Ps is a matching.

Following the notation of the above definition of match-
ings, it is obvious that both πs

i and πs
j are bijections, there-

fore the map πs
i (πs

j )−1 is a permutation of πs
j (P ). Further-

more, this permutation is nontrivial as P ⊆ V (s).
So in the corresponding orthogonal ideals decomposi-

tion of A(1), . . . ,A(m), both the maps ιs
i and ιs

j give isomor-
phisms Is−1,`′ → Is,`, where the ideals Is−1,`′ and Is,` cor-
respond to πs

j (P ) and P respectively. This means that the

map (ιs
i )−1ιs

j is a nontrivial automorphism of Is−1,`′ . It fol-
lows from [22] that, assuming GRH, we can obtain a proper
decomposition of Is−1,`′ and hence refine the m-scheme Π.

2

Now we apply the idea of Evdokimov [11] to prove that
antisymmetric m-schemes always have a matching if we pick
m = dlog2 ne.

Lemma 8. If the m-scheme Π := {P1, . . . ,Pm} on n
points is antisymmetric at the second level, |P1| < n and
m ≥ log2 n then there is a matching in {P1, . . . ,Pm}.

Proof. We will give an effective way of finding a match-
ing given such a Π. Choose P1 ∈ P1 with d1 := |P1| > 1.

It is clear that Q2 := P
(2)
1 is a disjoint union of some colors

in P2. Choose a smallest color P2 ∈ P2 with P2 ⊆ Q2. By
compatibility: π2

1(P2) = π2
2(P2) = P1. Also, by antisym-

metry we can infer that d2 := |P2|
|P1|

< d1/2. If d2 = 1 then

observe that P2 is a matching.
If d2 > 1 then we proceed in the following iterative way.

Suppose that, for some 2 < s < m, we have already chosen
colors P1 ∈ P1, . . . , Ps−1 ∈ Ps−1 with πi

i−1(Pi) = πi
i(Pi) =

Pi−1 and 1 < di := |Pi|
|Pi−1|

< di−1/2 for every 2 ≤ i ≤ s− 1.

Since ds−1 > 1, the set Qs := {v̄ ∈ V (s)|πs
s−1(v̄), πs

s(v̄) ∈
Ps−1} is nonempty. Let Ps be a smallest class from Ps with

Ps ⊆ Qs. Again antisymmetry implies that ds := |Ps|
|Ps−1|

< ds−1/2. If ds = 1 then Ps is clearly a matching. Oth-
erwise we proceed to the level (s + 1) and further halve
the subdegree. This procedure finds a matching in at most
log2 d1 ≤ log2 n rounds. 2

The above property of matchings together with Theorem
7 gives us that, under GRH, we can completely factor f(x)
deterministically in poly(log p, nlog n) time. This was first
proved by Evdokimov [11] by using a framework less gen-
eral than ours.

For instance, note that the proof of the above lemma
requires antisymmetry merely at level 2 of the m-scheme. In-
deed, if a compatible and regular m-collection {P1, . . . ,Pm}
is antisymmetric at level 2 then for every 1 < s ≤ m and ev-
ery s-element subset {v1, . . . , vs} ⊆ V we have (v1, . . . , vs−1,
vs) 6≡Ps (v1, . . . , vs, vs−1) (this can be seen by projecting to
the last two coordinates), and this is the only use of anti-
symmetry in the proof of Lemma 8.

4.1 A Conjecture about Matchings
We saw in Lemma 8 that using an m-scheme as large as

m = dlog2 ne is enough. But we conjecture that our m-
schemes are special enough to contain a matching even for
a (large enough) constant m. We support our conjecture by
showing that m = 4 works in the case of orbit schemes.

Conjecture 9. There exists a constant m ≥ 4 such that
every homogeneous, antisymmetric m-scheme contains a
matching.

It is clear by Theorem 7 that a proof of this conjecture
would result in a deterministic polynomial time algorithm
for factoring polynomials over finite fields (under GRH). In-
terestingly, we prove below the conjecture (with m = 4) in
the case of orbit schemes. Also, orbit schemes are the only
(infinite) family of 4-schemes we currently know that are
homogeneous and antisymmetric.

Proof of Conjecture 9 for orbit schemes: We will
infact show that every homogeneous, antisymmetric, orbit
4-scheme contains a matching. It is easy to see that the
2-scheme associated to a permutation group G is antisym-
metric if and only if |G| is odd. Assume that G is a nontrivial
permutation group of odd order on V = {1, . . . , n}. Let H
be a subgroup minimally containing the stabilizer G1 of G.
Let B = Orb(H, 1) be the orbit of 1 under the action of H.
Then H acts as a primitive permutation group on B. Also,
by [24], there is a base of size s ≤ 3 of H. This is a sub-
set {b1, . . . , bs} ⊆ B such that Hb1 ∩ · · · ∩Hbs = N , where
N is the kernel of the permutation representation of H on
B. We assume that this base is irredundant, in particular
K = Hb1 ∩ · · · ∩ Hbs−1 > N . Since Kbs = N < K there
exists bs+1 ∈ Orb(K, bs) \ {bs}.

In order to simplify notation, we assume b1 = 1, b2 =
2, . . . , bs+1 = s + 1. The first equality b1 = 1 can be en-
sured using the transitivity of H on B, while the others can
be achieved by renumbering V . From G1 < H we infer
that N = H1 ∩ · · · ∩ Ht = G1 ∩ · · · ∩ Gt holds for every
t ∈ {1, . . . , s + 1}. Let P be the G-orbit of (1, . . . , s + 1).
Since (1, . . . , s−1, s) and (1, . . . , s−1, s+1) are in the same
orbit, we have πs+1

s (P ) = πs+1
s+1(P ). Also, since the (1, . . . , s)

and (1, . . . , s, s + 1) both have stabilizer N , the size of the
orbits of both tuples coincide with |G : N |. These properties
imply that P is a matching.

5. FACTORING POLYNOMIALS OF
SMOOTH PRIME DEGREE

We saw in Section 3 how to obtain a homogeneous m-
scheme on n points from a given polynomial of degree n and
we also saw in Lemma 2 that a homogeneous 3-scheme is an
association scheme. Recently Hanaki and Uno [13] classified
the structure of association schemes, on a prime number
of points, using representation theory. Their result when
applied to our m-schemes gives a way to factor polynomials
when n is a constant-smooth prime number.



Proof of Main Theorem: Wlog we can assume that f(x)
has n distinct roots V := {α1, . . . , αn} in Fp. From Sec-
tion 3 we can again assume that we have constructed a
homogeneous antisymmetric (r + 1)-scheme on n points:
(P1, . . . ,Pr+1). Now from Lemma 2 we know that (P1,P2) is
an antisymmetric association scheme. From [13]: ∃d|(n−1),
∀P ∈ P2, #P = dn. If d = 1 then we have matchings in P2

and hence by the proof of Theorem 7 we can find a nontriv-
ial factor of f(x).

On the other hand, if d > 1 then the colors in (P2, . . . ,
Pr+1) can be used to define a homogeneous antisymmetric
r-scheme on d points as follows: pick some relation P0 ∈ P2

and define V ′ := {α ∈ V |(α1, α) ∈ P0}. Note that |V ′| = d.
Next define an r-collection Π′ := (P ′1, . . . ,P ′r) on V ′ where
for all i ∈ [r] and for each color P ∈ Pi+1 we put a color

P ′ ∈ P ′i such that P ′ := {v̄ ∈ V ′(i)|(α1, v̄) ∈ P}. It is rou-
tine to verify that Π′ is a homogeneous and antisymmetric
r-scheme on d points. As d has a prime divisor which is at
most r such a Π′ cannot exist by Lemma 1.

The time complexity follows routinely from our algo-
rithm overview. 2

6. A (SMALL) STEP TOWARDS SCHEMES
CONJECTURE

We saw in Lemma 8 that a homogeneous m-scheme on n
points that is antisymmetric at level 2 has a matching be-
low the dlog2 ne-th level. Recall from Section 3 that from
a polynomial we can construct an m-scheme that is anti-
symmetric at every level > 1 and not just at level 2. Are
we then guaranteed to get a matching at a level less than
log2 n? We conjecture that there should be a matching at a
much smaller level (4?) as intuitively antisymmetricity re-
duces the subdegrees of the colors, but we could currently
prove only a constant fraction of log2 n upper bound on the
number of levels. First we prove the lemma:

Lemma 10. Let Π = (P1, . . . ,P4) be a homogeneous, an-
tisymmetric 4-scheme on n > 8 points. Then there is a
color P ∈ P2 and its π3

3-fiber Q ∈ P3 such that π3
2(Q) =

π3
3(Q) = P and the subdegree of Q over P is less than n

8
.

Proof. Clearly, P1 just has one color, i.e. [n]. If P2

has more than two colors then by antisymmetry it has at
least 4 colors and hence one of the colors P ∈ P2 will have
subdegree over [n] less than n

4
. Again by antisymmetry there

has to be a π3
3-fiber Q ∈ P3 of P having subdegree < n

8
and

π3
2(Q) = π3

3(Q) = P , thus we are done.
In the case when P2 has just two colors - P and its“flipped”

color P T - let us define:

Q1 := {x ∈ [n] | (1, x) ∈ P}

Q2 := {x ∈ [n] | (1, x) ∈ P T }

Then obviously Q1, Q2 are disjoint sets of size n1 := n−1
2

partitioning {2, . . . , n}. Clearly, the image of the colors in P3

restricting the first coordinate to 1 gives us an antisymmetric

partition Γ of the sets Q
(2)
1 , Q1 × Q2, Q2 × Q1 and Q

(2)
2 ;

which is an association scheme on Q
(2)
1 and Q

(2)
2 . By the

antisymmetricity of Π, the colors corresponding to Q2 ×Q1

are just the transpose (i.e. swap the two coordinates) of
those corresponding to Q1 × Q2. Each color in Γ can be
naturally viewed as a n1×n1 zero/one matrix. For example,

a color R corresponding to Q1 × Q2 can be represented as
a matrix whose rows are indexed by Q1 and whose columns
are indexed by Q2 such that: for all (i, j) ∈ Q1×Q2, Ri,j = 1
if (i, j) ∈ R and Ri,j = 0 if (i, j) 6∈ R. Interestingly, in the
matrix representation the composition property of Lemma
2 simply means that the linear combinations of the identity
matrix I and the colors in the partition of Q1 × Q1 (or
Q2 ×Q2) by Γ is a matrix algebra, say A1 (or A2).

If Q
(2)
1 (or Q

(2)
2 ) is partitioned by Γ into more than two

parts then by antisymmetry there will be ≥ 4 parts which
means that one of the parts will have subdegree < n

8
. This

gives us a required π3
3-fiber Q ∈ P3 of a P ∈ P2.

So we can assume that Q
(2)
1 and Q

(2)
2 are both partitioned

into exactly two parts. Say,

• R and RT are the two matrices representing the par-

tition of Q
(2)
1 by Γ.

• S and ST are the two matrices representing the parti-

tion of Q
(2)
2 by Γ.

Note that: R+RT = S +ST = J− I where I is the identity
matrix and J is the all one matrix of dimensions n1 × n1.

How do the partitions of Q1 × Q2 look like? Let U be a
matrix in the partition of Q1 × Q2 by Γ. If U = J (i.e. Γ
partitions Q1×Q2 in a trivial way) then by antisymmetricity
P3 has exactly 3! = 6 colors each of cardinality n · #U =
n·n2

1. But this is a contradiction as 6·n·n2
1 is not n(n−1)(n−

2). Thus, Γ partitions Q1 × Q2 into at least 2 colors. Now
since by antisymmetricity the number of colors in P3 has
to be a multiple of 6, we deduce that Γ partitions Q1 ×Q2

into at least 4 colors, say, {U1, . . . , U4}. By the composition
property of Γ, U1U

T
1 is in A1. In other words, there are

positive integers α, β such that:

U1U
T
1 = αI + β(R + RT )

= βJ + (α− β)I

Thus, if U1 is a singular matrix then U1U
T
1 = βJ implying

that U1 has equal rows. We can repeat the same argument
with UT

1 U1 (which is in A2) and deduce that U1 has equal
columns. Now a zero/one matrix U1 can have equal rows
and equal columns iff U1 = J . This contradiction implies
that U1 is an invertible matrix. But then:

{U1U
T
1 , U1U

T
2 , U1U

T
3 , U1U

T
4 }

is a set of 4 linearly independent matrices in A1 which con-
tradicts the fact that A1 is a matrix algebra of dimension

3. This contradiction implies that one of Q
(2)
1 or Q

(2)
2 is

partitioned into at least four parts.
Thus, in all the cases the lemma is true. 2

From the above lemma we see that at 2 levels higher we
get a suitable color with subdegree reduced to a fraction of
2−3. This immediately gives us the following constant-factor
improvement to Lemma 8.

Proposition 11. If the m-scheme Π := {P1, . . . ,Pm} on
n points is antisymmetric at the first three levels, |P1| < n
and m ≥ 2

3
log2 n then there is a matching in {P1, . . . ,Pm}.



7. PRIMITIVITY OF M-SCHEMES AND
FURTHER RESEARCH

A 2-scheme Π = (P1,P2) on n points can be viewed as
a complete directed colored graph on n vertices, where ver-
tices of one color correspond to a P ∈ P1 and the edges of
one color correspond to a Q ∈ P2. If an m-scheme is coming
from a polynomial f(x), over k, then we can try to relate
graph properties of the m-scheme to the algebraic properties
of the ideals defining the m-scheme. It turns out that such
m-schemes can be efficiently tested for one such property:
connectivity. One can introduce a related notion - primi-
tivity - which is actually an extension of the primitivity of
association schemes. The details had to be left out for the
lack of space. We feel that primitivity imposes strong con-
ditions on the parameters of an m-scheme but we do not
know how to exactly use primitivity or imprimitivity and
leave that for future research.
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