
IN
A

U
G

U
RA

L
A

RT
IC

LE
M

A
TH

EM
A

TI
CS

Bootstrapping variables in algebraic circuits
Manindra Agrawala,1, Sumanta Ghosha,1, and Nitin Saxenaa,1

aDepartment of Computer Science & Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2015.

Contributed by Manindra Agrawal, March 12, 2019 (sent for review January 31, 2019; reviewed by Mrinal Kumar and Srikanth Srinivasan)

We show that for the blackbox polynomial identity testing (PIT)
problem it suffices to study circuits that depend only on the
first extremely few variables. One needs only to consider size-s
degree-s circuits that depend on the first log◦c s variables (where
c is a constant and composes a logarithm with itself c times).
Thus, the hitting-set generator (hsg) manifests a bootstrapping
behavior—a partial hsg against very few variables can be effi-
ciently grown to a complete hsg. A Boolean analog, or a pseu-
dorandom generator property of this type, is unheard of. Our
idea is to use the partial hsg and its annihilator polynomial to
efficiently bootstrap the hsg exponentially w.r.t. variables. This is
repeated c times in an efficient way. Pushing the envelope further
we show that (i) a quadratic-time blackbox PIT for 6,913-variate
degree-s size-s polynomials will lead to a “near”-complete deran-
domization of PIT and (ii) a blackbox PIT for n-variate degree-s
size-s circuits in snδ

time, for δ < 1/2, will lead to a near-complete
derandomization of PIT (in contrast, sn time is trivial). Our sec-
ond idea is to study depth-4 circuits that depend on constantly
many variables. We show that a polynomial-time computable,
O(s1.49)-degree hsg for trivariate depth-4 circuits bootstraps to
a quasipolynomial time hsg for general polydegree circuits and
implies a lower bound that is a bit stronger than that of Kabanets
and Impagliazzo [Kabanets V, Impagliazzo R (2003) Proceedings of
the Thirty-Fifth Annual ACM Symposium on Theory of Computing
STOC ’03].

hitting-set | depth-4 | derandomization | identity testing | lower bound

The polynomial identity testing (PIT) problem is to decide
whether a multivariate polynomial is zero, where the input

is given as an algebraic circuit. An algebraic circuit over a field F
is a layered acyclic directed graph with one sink node called an
output node; source nodes are called input nodes and are labeled
by variables or field constants; noninput nodes are labeled by ×
(multiplication gate) and + (addition gate) in alternate layers.
Sometimes edges may be labeled by field constants. The com-
putation is defined in a natural way. The complexity parameters
of a circuit are (i) size, number of edges and vertices (includ-
ing the variables); (ii) depth, number of layers; and (iii) degree,
maximum degree among all polynomials computed at each node.
(The degree of the computed polynomial may be much smaller
than the degree of its circuit.)

The polynomial computed by a circuit may have, in the worst
case, an exponential number of monomials compared with its
size. So, by “expanding out” the polynomial from the input
circuit, we cannot solve the PIT problem in polynomial time.
However, evaluation of the polynomial at a point can be done,
in time polynomial in the circuit size, by assigning the values at
input nodes. This helps us to get a polynomial time random-
ized algorithm for PIT by evaluating the circuit at a random
point, since any nonzero polynomial evaluated at a random point
gives a nonzero value with high probability (1–3). However,
finding a deterministic polynomial time algorithm for PIT is a
long-standing open question in algebraic complexity theory. It
naturally appears in the algebraic-geometry approaches to the
P 6=NP question, e.g., refs. 4–8. The famous algebraic analog is
the VP6=VNP question (9). The PIT problem has applications
both in proving circuit lower bounds (10–12) and in algorithm

design (13–16). For more details on PIT, see the surveys (17–19)
or review articles (20, 21).

PIT algorithms are of two kinds: (i) whitebox, use the internal
structure of the circuit; and (ii) blackbox, evaluation of the circuit
is allowed only at points in a “small” extension K⊇F. Blackbox
PIT for a set of polynomials P ⊂K [x] is equivalent to efficiently
finding points H⊂Kn , called a hitting set, such that for any
nonzero P ∈P , the set H contains a point at which P 6= 0. For
us a more functional approach would be convenient. We think
in terms of an n-tuple of univariates f(y) = (f1(y), . . . , fn(y)), in
K[y], whose set of evaluations contains an H. Such an f(y) can
be efficiently obtained from a given H (using interpolation) and
vice versa. Clearly, ifH is a hitting set forP , then P(f(y)) 6= 0, for
any nonzero P ∈P . This tuple of univariates is called a hitting-
set generator (hsg) and its degree is maxi∈[n] deg(fi), which
is ≤ |H|.

Our Work
We study the phenomenon of bootstrapping: converting an hsg
for size-s degree-s n-variate circuits to an hsg for size-s degree-
s L(n)-variate circuits with L(n)>n . In the Boolean settings,
this phenomenon is well understood. The analog of an hsg is a
pseudorandom generator (prg) that stretches a seed by several
bits or the s extender that stretches n by a single bit. In ref. 22,
sections 2 and 3 it is shown that an extender for size-s (log s)-
variate Boolean circuits can be converted to an optimal prg for
size-s circuits with L(n) = 2n . No further “reduction” in number
of variables is possible since the size of an (ε log s)-variate circuit
can be reduced to <s if ε<1.

The situation is less clear in algebraic settings. On one hand,
n-variate polynomials requiring circuits of size s exist for every n
and s (due to the fact that polynomials can have arbitrarily large
degrees unlike Boolean settings where every function is multilin-
ear). On the other hand, bootstrapping from O(log s) variables
to s variables is not studied explicitly in the literature.

Significance

Zero testing [or polynomial identity testing (PIT)] for circuits
is a computational algebra problem with numerous practi-
cal applications and a beautiful theory (e.g., primality testing
and graph matching are solved using PIT). It strongly relates
to showing that there are explicit/natural polynomials that
require exponentially large circuits. The latter is also called the
algebraic version of the P6=NP question (or VP 6=?VNP) and lies
in the intersection of mathematics and computing. This work
provides a plausible route to it if we can design a polynomial-
time computable, but small enough, hitting set for trivariate
depth-4 circuits [merely ΣΠΣ ∧ (3)].

Author contributions: M.A., S.G., and N.S. designed research, performed research,
contributed new reagents/analytic tools, and wrote the paper.y

Reviewers: M.K., University of Toronto; and S.S., Indian Institute of Technology Bombay. y

The authors declare no conflict of interest.y

Published under the PNAS license.y
1 To whom correspondence may be addressed. Email: manindra@cse.iitk.ac.in, sumghosh@
cse.iitk.ac.in, or nitin@cse.iitk.ac.in.y

www.pnas.org/cgi/doi/10.1073/pnas.1901272116 PNAS Latest Articles | 1 of 12

https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:manindra@cse.iitk.ac.in
mailto:sumghosh@cse.iitk.ac.in
mailto:sumghosh@cse.iitk.ac.in
mailto:nitin@cse.iitk.ac.in
https://www.pnas.org/cgi/doi/10.1073/pnas.1901272116
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1901272116&domain=pdf&date_stamp=2019-04-11

We close this gap in knowledge by showing that an hsg
for a size-s degree-s (log◦c s)-variate circuit can be effi-
ciently converted to an hsg for a size-s degree-s s-variate
circuit, where log◦c s := log · · · (c times) · · · log s . Furthermore,
at the cost of making the final hsg slightly superpoly-
nomial =sexp ◦ exp(O(log? s)), we show that bootstrapping can be
done from even a constant number of variables! Our results can
also be viewed as a powerful amplification of derandomization:
a “slight” derandomization (=sn

δ

time hsg for size-s degree-
s n-variate circuits, for a constant δ < 1/2 and all s) implies
“nearly” complete derandomization (=sexp ◦ exp(O(log? s)) time
hsg for size-s degree-s s-variate circuits). The required sn

δ

-time
PIT is quite close to the trivial sn -time PIT.

We prove an additional result for shallow circuits: Poly(s)-
time computable and O(sn/2/ log2 s) degree hsg for size-
s n-variate depth-4 circuits (for some constant n ≥ 3) implies
quasipolynomial time blackbox PIT for size-s degree-s s-variate
circuits (and strong exponential lower bounds). See Theorems
1–4 for more formal statements.

We see our results as a positive development, since they reduce
PIT to cases that are special in an unprecedented way. Such
special-case PIT algorithms are waiting to be discovered.

Existing deterministic algorithms solving PIT for restricted
classes have been developed by leveraging insight into their
weaknesses. For example, deterministic PIT algorithms are
known for subclasses of depth-3 circuits (23–25), subclasses of
depth-4 circuits (26–32), read-once algebraic branching pro-
grams (ROABP) and related models (33–39), and certain sym-
bolic determinants (40–43), as well as noncommutative mod-
els (44–46). An equally large number of special models have
been used to prove lower bounds, for example the ongoing
online survey of Saptharishi (47). Also, blackbox PIT relates
to conjectures that bar certain algebraic circuit lower-bound
methods (48).

Our Notation
[n] refers to {1, 2, . . . ,n}. Logarithms are w.r.t. base 2. Iterated
logarithm log? s is the least number of iterated applications of
log that gives a result ≤1. When we say that a circuit is of size s
(resp. depth ∆ or degree d) we use the parameters as an upper
bound.

Field. To appreciate the most important aspects of this work
keep in mind the “practical” fields F=Q or Fq . Interestingly,
our main theorems (Theorems 1–4) hold for any field. However,
the other theorems require the field characteristic to be zero or
large. Common examples are complex C, reals R, algebraic num-
bers Q, local fields Qp or their extensions, or finite fields Fq of
characteristic p> degree of the input.

Finally, one can generalize our work to the field K =F(ε) with
ε→ 0 in a certain way. This leads to approximative complex-
ity size of polynomials in F[x] (ref. 49, definition 3.1). Efficient
hitting sets w.r.t. size are equivalent to an explicit system of
parameters (esop) of the invariant ring of a related variety
∆[det(X), s] with a given group action (ref. 4, theorem 4.9). Our
work (Theorem 4) implies that to prove the existence of such a
(quasi-)esop it suffices to study the esop w.r.t. X that depend on
“constantly few” variables (see the reduction of the derandom-
ized Noether normalization problem NNL to blackbox PIT in
ref. 4, section 4.3).

A basic algebraic algorithm used in our results is circuit factor-
ing that relies on field properties. A classic result is ref. 50 that
constructs small circuits for factors that have multiplicity coprime
to the characteristic (see refs. 51 and 52 for recent factoring
results and the related rich background).

hsg. Let P be a set of n-variate polynomials. We call an n-tuple
of univariates f(y) = (f1(y), . . . , fn(y)) a (t , d)-hsg for P if (i) for
any nonzero P ∈P , P(f(y)) 6= 0, and (ii) f has time-complexity t
and the degree of each fi is less than d . By t-time hsg or t-time
hitting set or t-time blackbox PIT, we always mean a (t , t)-hsg.

The computational problem of designing and verifying an hsg
for a size-s circuits family is in PSPACE; however, that for a
size-s circuits family is in EXPSPACE [recently brought down
to PSPACE (53, 54)]. The major open question is to bring this
complexity down to P; this is christened the “GCT Chasm” in
ref. 4, section 11 and has since become a fundamental diffi-
culty common to geometry and complexity theories. It means
that we have to discover algebraic properties that are specific
to only those polynomials that have small circuit representation.
We investigate such properties closely in this work.

Variables. A polynomial P computed by a size-s algebraic circuit
C can have at most {x1, . . . , xs} variables. For k < s , if we say
that C depends only on the first k variables, then it is meant that
the computed polynomial P ∈F[x1, x2, . . . , xk].

Multi-δ-ic. A polynomial family {fn(x1, . . . , xn)}n≥1 over a field
F is called multi-δ-ic, if the degree of each variable in fn is less
than δ. For, e.g., when δ= 2, {fn}n≥1 is multilinear.

E-Computable Polynomial Family. For constant δ, a multi-δ-ic
polynomial family {fn}n with integer coefficients is called E-
computable if there exists a 2O(n)-time algorithm that on input
e outputs the coefficient of xe in fn in binary; say the lead-
ing bit will denote the sign of the coefficient, with 0 imply-
ing a positive coefficient and 1 implying negative. This makes
coeff(·)(fn) a Boolean function ({0, 1}∗→{0, 1}∗) whose bits
are E-computable as well.

Our Motivation and Main Results
The prg is a well-studied object in Boolean circuit complexity
theory and cryptography (refs. 55 and 56, chap. 10). One of the
main motivations of studying the prg is to efficiently derandom-
ize all randomized algorithms. Indeed one can show that if we
have an optimal prg against BPP, then BPP=P. By optimal prg,
we mean a prg which stretches an n-length string to 2n length
and is computable in 2O(n) time. Interestingly, an optimal prg is
closely related to strong circuit lower bound. It is a celebrated
result that designing an optimal prg against P/poly is equivalent
to finding an E-computable Boolean function which has Boolean
circuit complexity 2Ω(n) (ref. 22, sections 2.5 and 3.1).

Naturally, an algebraic analog of the latter property would
be to identify an E-computable polynomial family which has
algebraic circuit complexity 2Ω(n). By Valiant’s criterion (ref.
57, proposition 2.20) if one replaces E by #P/poly, then we
are directly talking about a strong version of VNP 6= VP. As a
first challenge, we can pose the following reasonable complexity
conjecture.

Conjecture 1. There is an E-computable polynomial which has alge-
braic complexity 2Ω(n). Thus, either E *#P/poly or VNP has a
polynomial family of algebraic circuit complexity 2Ω(n).

In the world of algebraic circuits, the hsg is in direct analogy
with the prg. So one can naturally ask about the relation between
hsg and algebraic circuit lower bound. Heintz and Schnorr (ref.
10, theorem 4.5) introduced the concept of an efficient annihila-
tor of the hsg. They showed that if we can efficiently compute an
hsg for a set of polynomials P , then we can also efficiently com-
pute a polynomial (namely, annihilator) which does not belong
to P . This technique can be easily extended to get the fol-
lowing circuit lower-bound result. Like the Boolean world, our

2 of 12 | www.pnas.org/cgi/doi/10.1073/pnas.1901272116 Agrawal et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1901272116

IN
A

U
G

U
RA

L
A

RT
IC

LE
M

A
TH

EM
A

TI
CS

hard polynomial is also E-computable but has algebraic circuit
complexity 2Ω(n).

Theorem 0 (Connection). If we have poly(s)-time blackbox PIT for
size-s degree-s circuits Ps , then Conjecture 1 holds.

A weak converse of Theorem 0, i.e., hardness to hsg, is well
known due to ref. 58, theorem 7.7. We state a revised version of it
as Lemma 9. If we have an exponentially hard but E-computable
polynomial family, then by using Lemma 9 we can efficiently
reduce the number of variables in any circuit, from s to O(log s),
preserving the nonzeroness. Next, we apply a “trivial” hitting
set on the O(log s) variables, which gives a quasi-polynomial
time hsg for Ps (59). This suggests that the “hardness vs. ran-
domness” connection here is less satisfactory than the Boolean
world. Nonetheless, we wonder whether the conclusion in The-
orem 0 can be strengthened in a different way, so that we get
a perfect equivalence. In this work, we answer this question by
introducing the concept of partial hsg. Indeed, we give infinitely
many different-looking statements that are all equivalent to the
hypothesis in Theorem 0.

Partial hsg. For all s ∈N, let gs = (gs,1(y), . . . , gs,s(y)) be an hsg
of Ps . Suppose we can efficiently compute only the first “few”
polynomials of the hsg. Can we bootstrap it, i.e., recover the
whole hsg efficiently? Formally, we can describe this as fol-
lows. For any m ∈ [s − 1], the partial hsg gs,m is defined as
(gs,1, . . . , gs,m). The partial hsg gs,m can be seen as the hsg of
those polynomials in Ps which depend only on the first m vari-
ables. Suppose that for m� s , we can compute gs,m in poly(s)
time. Then, using this partial hsg, can we also design a complete
hsg for Ps in poly(s) time?

If m = s1/c for some c ∈N, then the answer is “yes” and it
follows from the definition. The set Ps can be thought of as a
subset of those polynomials in Psc which depend only on the first
s variables. So gsc ,s = (gsc ,1, . . . , gsc ,s) is an hsg for Ps . Clearly,
gsc ,s can be computed in poly(s) time. However, for m ≤ so(1),
we cannot use the same argument for the following reason. To
compute the hsg of Ps , we have to compute the partial hsg for
Psω(1) , which may not be computable in poly(s) time. Naively
speaking, there is no reason why a partial hsg gs,so(1) could be
bootstrapped efficiently to gs . The former is a property of the
polynomial ring F[x1, . . . , xso(1)] compared with that of the latter
“much larger” polynomial ring F[x1, . . . , xs]; so in the underlying
algebraic-geometry concepts a terrible blowup is warranted.

For any c ∈N, let log◦c be defined as c-times application of the
base-2 logarithm function (e.g., log◦3 s = log log log s). Some-
what surprisingly, we give a positive answer for m as small as
log◦c s , for any c ∈N. For smaller values of m (e.g., m = log? s),
we leave it as an open question.

Theorem 1 (Bootstrap hsg). Suppose, for some c ∈N, we have a
poly(s)-time blackbox PIT for size-s degree-s circuits that depend
only on the first dlog◦c se variables. Then, we have a poly(sd)-time
blackbox PIT for size-s degree-d circuits and Conjecture 1 holds.

Remark: In the Boolean world, there is no extender that can
stretch 0.99 log s bits and “fool” size-s circuits, because Boolean
functions on that many bits have circuit-size <s .

The bootstrapping idea brings forth pleasant surprises if
we are willing to content ourselves with a “slightly super”-
polynomial time blackbox PIT in the conclusion. Although we
do not get an equivalence result now, we do, however, weaken
the hypothesis very significantly.

Theorem 2. Suppose, for constants e ≥ 2 and 1>ε≥ (3 +
6 log(128e2))/(128e2), we have an O(se)-time blackbox PIT for
degree-s polynomials computed by size-s circuits that depend only
on the first n := dmax{192e2 log(128e2)1/ε, (64e2)1/ε}e vari-

ables. Then, we have an sexp ◦ exp(O(log? s))-time blackbox PIT for
size-s degree-s circuits and Conjecture 1 holds.

Remark: If we fix e = 2 and ε= 6,912/6,913, then the hypoth-
esis required is quadratic-time [i.e., O(s2)] blackbox PIT for
6,913-variate degree-s size-s polynomials.

In Theorem 2, the exponent e in the complexity of PIT is
a constant just below

√
n/8, where n is the (constant) num-

ber of variables. This can be achieved from a “poor”-quality
blackbox PIT algorithm (varying both s and n as independent
parameters):

Theorem 3. Suppose, for constant δ < 1/2, we have an sn
δ

-time
blackbox PIT for size-s degree-s circuits that depend only on the first
n variables. Then, we have an sexp ◦ exp(O(log? s))-time blackbox
PIT for size-s degree-s circuits and Conjecture 1 holds.

Note that in an n-variate degree-s polynomial, there are at
most 1 + sn monomials. So, the above hypothesis is unexpectedly
weak. Additionally, the lower-bound result that it will give is truly
exponential. Next, we show that bootstrapping can be done even
at shallow depths.

Theorem 4 (Depth-4 Tiny Variables). Suppose, for constant n ≥
3, we have a

(
poly(sn),O

(
sn/2

log2 s

))
-hsg for size-s depth-4 cir-

cuits that depend only on the first n variables. Then, we have a
quasi-poly(sd)-time blackbox PIT for size-s , degree-d circuits and
Conjecture 1 holds.

Remarks:

i) If we fix n = 3, then the hypothesis required is (poly(s),
O(s1.5/ log2 s))-hsg for trivariate size-s depth-4 circuits.
While

(
Õ(s3), (s + 1)3

)
-hsg is trivial to design.

ii) Depth-4 circuit is denoted as ΣΠΣΠ to specify the alternating
layers starting with the top addition gate. In older works it had
been fruitful to restrict one of the product layers to mere pow-
ering gates (24, 60). Indeed, we can prove stronger versions
of Theorem 4: for Σ∧ΣΠ (Theorem 19) resp. ΣΠΣ∧ (Theo-
rem 21) circuits in the hypothesis. But, these results (unlike
Theorems 1–4) require the field characteristic to be zero or
large.

iii) Our conclusion is as strong as those obtained via the well-
known “constant-depth reduction” results in refs. 60 and 61.
But our hypothesis needs an hsg only slightly better than
trivial.

Proof Idea and Our Techniques
Proof idea of Theorem 1: We have to prove two results, one

related to PIT and the other one related to the lower bound. The
latter will follow from Theorem 0, so we describe only the proof
idea of the PIT part. Suppose that for all s, d , i ∈N, Ps,d,i is
the set of degree-d polynomials computed by size-s circuits that
depend only on the first fi(sd) variables, where fi(s) is intended
to be ω(log◦i s). For all 0≤ i ≤ c + 1, fi(s) :=(log◦i s)2. Using
induction, we show that for 0≤ i ≤ c + 1, we have a poly(sd)-
time hsg for Ps,d,i . First, we design a poly(sd)-time hsg for
Ps,d,c+1 using the hypothesis mentioned in Theorem 1. Next, for
all i ∈ [c + 1], we use the poly(s ′d ′)-time hsg of Ps′,d′,i to design
a poly(sd)-time hitting set of Ps,d,i−1.

Our induction step can be broken into three smaller steps:

i) Hsg of Ps′,d′,i to hard polynomial family: For all s ∈N, let
Ts,i be the s-degree polynomials computed by the size-s cir-
cuit that depends only on the first 2c1dlog◦i se variables,
where c1 is some constant. Using the poly(s ′d ′) hsg of
Ps′,d′,i , we can design a poly(s)-time hsg for Ts,i . Applying
Lemma 5, we consider an annihilator, of the hsg, and get
a family of hard polynomials which satisfies the properties
mentioned in Lemma 12 (that we need in the next step).

Agrawal et al. PNAS Latest Articles | 3 of 12

ii) Hard polynomial to variable reduction map: Lemma 12
designs an efficient variable reduction map using a hard
polynomial family with certain properties. Thus, we per-
form a variable reduction on the polynomials in Ps,d,i−1,
significantly reducing variables from fi−1 to fi .

iii) The map to poly(sd)-time hsg for Ps,d,i−1: The above vari-
able reduction converts every nonzero polynomial inPs,d,i−1

to a nonzero one in Ps′,d′,i , where s ′, d ′= poly(sd). Thus,
on applying the polynomial-time hsg for Ps′,d′,i , we get a
polynomial-time hsg for Ps,d,i−1.

The crucial technical step is provided by Lemma 12, which is a
strict generalization of Lemma 9. As mentioned earlier, the latter
itself is a revised version of ref. 58, theorem 7.7 as it can handle
hard nonmultilinear polynomials. It designs an efficient variable
reduction using an exponentially hard but E-computable polyno-
mial family. If we have a poly(s)-time hsg for Ts,1, then using
Lemma 5, we can get such a polynomial family (as in the proof of
Theorem 0 but now the hard polynomial will be nonmultilinear).
In step i above, we are working with a poly(s)-time hsg for Ts,i ,
where i > 1. In such an extremely low-variate regime, Lemma
5 cannot give us a polynomial family with constant individual
degree. So, we cannot use Lemma 9 ideas if we desire polynomial
time computation.

There are several technical challenges faced in choosing
parameters that should lead to a contradiction in the proof.
Since the individual degree of the hard polynomial depends on
the time-complexity se of the hsg of Ts,i , the factor circuits
will have a blown-up size after using Kaltofen factoring. Care
is needed to counterbalance the size of the Nisan–Wigderson
(NW) design and the hardness of the polynomial family with
the circuit complexity of the factors. The more sophisticated
statement of Lemma 12 takes care of all those issues. Why is
Lemma 12 invoked multiple times? The answer lies in the way
Kaltofen factoring yields a contradiction: using the fact that the
third parameter (i.e., set-intersection size) in the NW design is
much smaller than the second parameter (i.e., set size). This
gives a smaller factor of the composite circuit after fixing certain
variables. So, we need to apply the NW design for each expo-
nential stretch of variables; we do not know how to directly get a
hyperexponential stretch and save time.

Proof idea of Theorem 2: Theorem 1 assumes an se -time
hsg, where e is a constant, for log◦c s-variate degree-s size-
s polynomials. On the other hand, Theorem 2 assumes an
se -time hsg for n-variate degree-s size-s polynomials, where
n := dmax{192e2 log(128e2)1/ε, (64e2)1/ε}e and 1>ε≥ (3 +
6 log(128e2))/(128e2) are constants. In both the cases, our
hypotheses demand improved hsgs over the trivial ones (namely,
s log◦c s and sn time, respectively). This is the common strength
of both the hypotheses which is exploited in the proofs.

Broadly, the proof of Theorem 2 is similar to the previous one.
However, in Theorem 2 we desire, for a given e , to find the min-
imum number of constant variables for which we can reach the
conclusion. This imposes more technical challenges and in many
steps of the proof we have to work with much finer parameters.
For example, our calculation suggests that for e = 2, the number
of variables that we need is n = 6,913 (or, for e = 3, n = 17,574
suffices).

Like Theorem 1, in each inductive step, we stretch the num-
ber of variables exponentially. However, here we finally stretch
n variables to s variables, where n is a constant. So, we need
around log? s steps, which is nonconstant w.r.t. s . We show that
if we have an s fi -time hsg, in the i th induction step, then in the
next step we get an s fi+1 -time hsg, where fi+1 := 16f 2

i . So, after
log? s steps, we get an hsg of our desired complexity (equal to
slightly superpolynomial).

Like Lemma 12, here Lemma 17 combines all of the crucial
tools needed in the inductive step of Theorem 2. Our key ingre-

dients here are again Nisan–Wigderson design and Kaltofen’s
factoring. However, we use them in a more optimized way. It will
help us to improve the constants that underlie. Theorems 2 and 3
are very sensitive to these technicalities.

Thus, we show that a significant improvement of blackbox
PIT within the polynomial-time domain itself (from sn to se)
would near-completely solve PIT for VP. This reminds us of
other famous algebraic problems in computing where improve-
ments in the time exponent have been widely studied (and
are still open)—integer multiplication (62) and matrix multipli-
cation (63).

Proof idea of Theorem 3: Suppose we have, for constant δ <
1/2, an sn

δ

-time hsg for size-s degree-s circuits that depend
only on the first n variables. Then, there exists an ε∈ [2δ, 1)
and a large enough constant e such that there is an se -time
hsg for size-s degree-s circuits that depend only on the first
n := d(64e2)1/εe≥ 192e2 log(128e2)1/ε variables. Note that e ≥
(n − 1)ε/2/8>nδ can be easily ensured; thus, se time is more
than sn

δ

time. Now we simply invoke Theorem 2.
In fact, this proof needs the hypothesis only for infinitely many

n and large enough s .
Proof idea of Theorem 4: We argue using two intermediate

models. For all s ∈N, let Ps be the set of polynomials computed
by size-s Σ∧a ΣΠ circuits, where a(s) is an arbitrarily slow grow-
ing function, that depend only on the first n variables. Let Ts be
the set of polynomials computed by size-s ΣΠΣ∧ circuits that
depend only on the first n variables.

To prove Theorem 4, first we show that the (poly(s),

O(sn/2/ log2 s))-hsg for Ps resp. Ts gives an efficient vari-
able reduction and Conjecture 1 (Theorem 19 and resp. ref.
21). This variable reduction converts a d -degree nonzero poly-
nomial computed by a size-s circuit to a O(log(sd))-variate
poly(sd)-degree nonzero polynomial. For O(log(sd))-variate
and poly(sd)-degree polynomials, we have a (sd)O(log(sd))-time
hitting set. This completes the proof of the PIT part. Next, we
give the proof sketch of the variable reduction part.

First, we discuss the variable reduction part assuming the
O(sn/2/ log2 s)-degree hsg of Ps . We do it via an intermedi-
ate multilinear model. For all s ∈N, let P ′s be the set of n

2
log

s-degree multilinear polynomials computed by size-s Σ∧a ΣΠ
circuits that depend only on the first n log s variables. Next
we describe how to get a hard polynomial family from a
(poly(s),O(sn/ log2 s))-hsg of P ′s .

Since the number of n
2

log s-degree multilinear monomials
over m :=n log s variables is

(
m

m/2

)
≥ 2m/

√
2m = sn/

√
2m >

O(sn/ log2 s) ·m (for large enough s), we get an m-variate and
(m/2)-degree multilinear homogeneous polynomial (annihila-
tor) qm /∈P ′s and computable in poly(s) time. The linear algebra
is similar to Lemma 5, the only difference being that Lemma
5 does not ensure qm multilinear. However, the parameters of
P ′s ensure the latter. Since qm is m-variate (m/2)-degree mul-
tilinear polynomial and is not in P ′s , qm is not computed by
size-s Σ∧a ΣΠ circuits. Using the depth reduction of ref. 61, one
can also ensure that qm has circuit complexity > s ≥ 2Ω(m). This
in turn gives the variable reduction using Lemma 9.

Now we show that an efficient O(s ′n/2/ log2 s ′)-degree hsg of
Ps′ gives an efficient O(sn/ log2 s)-degree hsg for P ′s , where s
and s ′ are polynomially related. InP ′s , divide the n log s variables
into n blocks with each block of length log s . Now take fresh vari-
ables y1, . . . , yn , one for each block, and apply the Kronecker
map (xu(j)+i 7→ y2i

j , i ∈ [log s]) with the j th block defined as
{xu(j)+i | i ∈ [log s]} for an appropriate u(·). Since polynomials
inP ′s are multilinear, the above map preserves nonzeroness. This
converts a nonzero polynomial in P ′s to a nonzero polynomial
in Ps′ , where s ′=O(s2). Now use the O(s ′n/2/ log2 s ′)-degree

4 of 12 | www.pnas.org/cgi/doi/10.1073/pnas.1901272116 Agrawal et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1901272116

IN
A

U
G

U
RA

L
A

RT
IC

LE
M

A
TH

EM
A

TI
CS

hsg of Ps′ to get one for P ′s . For details see the proof of
Theorem 19.

Second, we discuss the variable reduction part assuming
an efficient O(sn/2/ log2 s)-degree hsg of Ts . The proof idea
is similar to the previous one; the only difference is in the
intermediate model. Here we consider the following model:
For all s ∈N, let T ′s be the set of multilinear polynomi-
als computed by size-s ΣΠΣ circuits that depend only on
the first n log s variables. Again, we show that an efficient
O(s ′n/2/ log2 s ′)-degree hsg of Ts′ gives an O(sn/ log2 s)-
degree hsg for T ′s , which in turn gives the variable reduction as
above coupled with that in ref. 60. For details see Theorems 20
and 21.

Brushing Up Relevant Techniques
In this section we revisit the techniques that have appeared in
some form in refs. 10–12, 22, 60, and 61.

From a hitting-set generator f(y) of a set of polynomials P ,
we get an explicit polynomial outside P simply by looking at an
annihilating polynomial of f(y). Previously, this approach was
discussed in ref. 10, theorem 4.5 and ref. 12, theorem 51. In
Lemma 5, we prove a revised version. Later, it is used to get a
hard polynomial from hitting-set generator.

Lemma 5 (Hitting Set to Hardness). Let f(y) = (f1(y), . . . , fn(y)) be
a (t , d)-hsg for a set of n-variate polynomial P . Then, there exists
an n-variate polynomial g(x) that is not in P , is computable in
poly(tdn)-time, has individual degree less than δ :=dd3/ne, and
is homogeneous of degree (δ− 1)n/2.

Corollary 6 (E-computable). In the proof of Lemma 5, if td = 2O(n),
then the polynomial family gn :=g , indexed by the variables, is E-
computable.

Toward a converse of Lemma 5, a crucial ingredient is the
Nisan–Wigderson design (22). To describe it simply, the design
stretches a seed from ` to m ≥ 2

d
10 as follows:

Definition 7: Let `>n > d . A family of subsets D= {I1, . . . ,
Im} on [`] is called an (`,n, d) design, if |Ii |=n and for all
i 6= j ∈ [m], |Ii ∩ Ij | ≤ d .

Lemma 8 (Nisan–Wigderson design, ref. 56, chap.16). There exists an
algorithm which takes (`,n, d) and a base set S of size `> 10n2/d

as input and outputs an (`,n, d)-design D having ≥ 2d/10 subsets,
in time 2O(`). (Lemma 13 improves this.)

Lemma 9 is a revised version of the counterpositive of ref. 58,
lemma 7.6. If we have an exponentially hard but E-computable
polynomial family, then we can efficiently reduce the vari-
ables from n to O(log(sd)), for n-variate d -degree polynomials
computed by size-s circuits, preserving nonzeroness.

Lemma 9 (Hardness to Variable Reduction). For some constant δ, let
{qm}m≥1 be a multi-δ-ic polynomial family computable in δO(m)

time, but it has no δo(m)-size algebraic circuit.
Then, for n-variate d -degree polynomials computed by size-s

circuits we have a δO(log(sd))-time variable-reducing polynomial
map, from n to O(log(sd)), that preserves nonzeroness. Further-
more, after variable reduction, the degree of the new polynomial is
poly(sd).

Lemma 10 shows that the existence of an exponentially
hard but E-computable polynomial family has an interesting
complexity consequence. It is based on Valiant’s criterion (9).

Lemma 10 (Valiant Class Separation). If we have an E-computable
polynomial family {fn}n≥1 of algebraic circuit complexity 2Ω(n),
then either E6⊆#P/poly or VNP has polynomials of algebraic circuit
complexity 2Ω(n).

Lemma 11 converts a monomial into a sum of powers. It is
called Fischer’s trick in ref. 60. It requires charF= 0 or large.

Lemma 11 [Fischer’s Trick (64)]. Over a field F of char(F) = 0 or >
r , any expression of the form g =

∑
i∈[k]

∏
j∈[r] gij with deg(gij)≤

δ can be rewritten as g =
∑

i∈[k′] cig
r
i where k ′ :=k2r , deg(gi)≤ δ,

and ci ∈F. In fact, each gi is a linear combination of {gi′j | j} for
some i ′.

Perfect Bootstrapping—Proof of Theorem 1 Lemma 9 gave an
efficient variable reduction from an exponentially hard but E-
computable polynomial family. However, while bootstrapping in
Theorem 1, we work with a case where the number of variables
can be as low as log◦c s compared with s , the size of the cir-
cuit. In this extremely low-variate regime, we have to deal with a
hard polynomial family of nonconstant individual degree. There
are also technical challenges faced in choosing parameters that
should lead to a contradiction in the proof. So, we cannot use
Lemma 9 directly. In Lemma 12, we take care of those issues.
Overall proof strategy is again to use Nisan–Wigderson combina-
torial design and Kaltofen’s algebraic circuit factoring algorithm.
This is done repeatedly in Theorem 1.

Lemma 12 (Tiny Variable Reduction). Let c3≥ 1 be the exponent in
Kaltofen’s factoring algorithm (ref. 57, theorem 2.21). For a con-
stant e ≥ 1 define c0 :=d9

√
e + 3ec3, c1 :=d30e + 10

√
e + 1ec3,

and c2 :=1 + c2
1 . Let ε be a tiny function, say ε(s) :=2dlog◦k se

for k ≥ 1. Suppose we have a family {qm,s | s ∈N, m = c1ε(s)} of
multi-δm,s -ic m-variate polynomials that can be computed in sO(1)

time, but has no size-s algebraic circuit, where δm,s :=ds3e/me.
Then, there is a poly(sd)-time variable reduction map, reduc-

ing n ≤ 2ε((sd)c0) to c2ε((sd)c0) and preserving nonzeroness, for
degree-d n-variate polynomials computed by size-s circuits. Fur-
thermore, after variable reduction, the degree of the new polynomial
will be poly(sd).

Proof: Let s ′ :=sd . Let P be the set of degree-d polynomi-
als computed by size-s circuits that depend only on the first
n-variables. We intend to stretch c2ε(s

′c0) variables to n . Define
m ′ := c1ε((sd)c0). Note that q :=qm′,s′c0 has no algebraic circuit
of size s ′c0 . Its individual degree is ≤ δ := ds ′3ec0/m

′
e= s ′o(1).

Let D= {S1, . . . ,Sn} be a (c2ε(s
′c0),m ′, 10ε(s ′c0)) design on

the variable set Z = {z1, . . ., zc2ε(s′c0)}. Constants c2 > c1 > 10
will ensure the existence of the design by Lemma 8. Our hitting-
set generator for P is defined as follows: For all i ∈ [n], xi 7→
q(Si) = : pi with Si as variables. Then, we show that for any
nonzero polynomial P(x)∈P , P(p1, . . . , pn) is also nonzero.

For the sake of contradiction, assume that P(p1, . . . , pn) is
zero. Since P(x) is nonzero, we can find the smallest j ∈ [n] such
that P(p1, . . . , pj−1, xj , . . . , xn)= :P1 is nonzero, but P1

∣∣
xj =pj

is zero. Thus, (xj − pj) divides P1. Let a be a constant assign-
ment on all of the variables in P1, except xj and the variables
Sj in pj , with the property that P1 at a is nonzero. Since
P1 is nonzero, we can find such an assignment (3). Now our
new polynomial P2 on the variables Sj and xj is of the form
P2(Sj , xj) = P(p′1, . . . , p′j−1, xj , aj+1, . . . , an), where for each
i ∈ [j − 1], p′i is the polynomial on the variables Si ∩Sj , and
the ais are field constants decided by our assignment a. By the
design, for each i ∈ [j − 1], |Si ∩Sj | ≤ 10ε(s ′c0). Since p′i are
polynomials on variables Si ∩Sj of individual degree≤δ, each p′i
has a circuit (of trivial form ΣΠ) of size at most m ′δ · δ10ε(s′c0) =

m ′δ · δ10m′/c1 .
Thus, we have a circuit for P2 of size at most s1 := s +nm ′δ ·

δ10m′/c1 , and degree of the computed polynomial is at most
d1 :=dm ′δ. Since (xj − pj) divides P2, we can invoke Kaltofen’s
factorization algorithm (50) (see ref. 57, theorem 2.21 for the

Agrawal et al. PNAS Latest Articles | 5 of 12

algebraic circuit complexity of factors) and get an algebraic
circuit for pj of size (s1d1)c3

≤ (snm ′δ · δ10m′/c1 · dm ′δ)c3 =

(
s ′nm ′2δ

2+ 10m′
c1

)c3
< (s ′2+o(1) · δ10m′/c1)c3 < s ′(3+ 30ec0/c1)c3 .

This exponent =
(

3
d(9
√

e+3)e + 30e
d30e+10

√
e+1e

)
c0 ≤(

1
(3
√

e+1)
+ 3

√
e

3
√
e+
√

1+1/e

)
c0 < c0. So, pj = q(Sj) has cir-

cuit of size smaller than s ′c0 , which contradicts the hardness of
q . Thus, C (p1, . . . , pn) is nonzero.

The time for computing (p1, . . . , pn) depends on (i) comput-
ing the design [i.e., poly(2m′) time] and (ii) computing q [i.e.,
poly(sd) time]. Thus, the variable reduction map is computable
in δO(m′)= poly(sd) time. After variable reduction, the degree
of the new polynomial is <nd · deg(q) = poly(sd). �

Remark: In the case of a finite field F=Fr t of prime char-
acteristic r , we have to be careful while invoking Kaltofen’s

factoring, as the latter outputs a small circuit for pr t
′

j where r t
′

is the highest power dividing the multiplicity of xj − pj in P2.
However, when we raise the output by r t−t′ , we get a circuit that
is small and agrees with pj on F points. This is used, as in ref.
58, remark 7.5, to redefine algebraic complexity of q over Fr t

suitably and Lemma 12 works.
Proof of Theorem 1: Consider the following two statements:

S1, we have a poly(s)-time hsg for size-s degree-s circuits that
depend only on the first dlog◦c se variables; and S2, we have a
poly(s)-time hsg for degree-s polynomials computed by size-s
circuits that depend only on the first dlog◦c se variables. S1 is
our given hypothesis. However, in this proof, we work with S2
which is stronger than S1, as in the former case circuits may have
degree larger than s . So we first argue that they are equivalent
up to polynomial overhead. S2 trivially implies S1. For the other
direction, we invoke (the proof of) the “log-depth reduction”
result for arithmetic circuits. For any size-s circuit C comput-
ing a degree-s polynomial, we have an se0 -size s-degree circuit
C ′ computing the same polynomial, for some constant e0 (ref.
47, theorem 5.15). Now apply S1 for se0 -size s degree and get
poly(s)-hsg for C . Next, we focus on designing poly(sd)-hsg
for degree-d polynomials computed by size-s circuits, using our
stronger hypothesis S2.

Suppose that for all s, d , i ∈N, Ps,d,i is the set of degree-
d polynomials computed by size-s circuits that depend only on
the first fi(sd) variables, where fi(s) :=(log◦i s)2. We prove that
for all 0≤ i ≤ c + 1, we have a polynomial-time hitting set for
Ps,d,i . We use reverse induction on i . Define function εi(s) :=
2dlog◦i se.
Base case—poly(sd)-hsg for Ps,d,c+1. Let t := max{s, d}. Then
Ps,d,c+1 is a subset of Pt,t,c+1. For all s ∈N, let Ts be the set
of degree-s polynomials computed by s-size circuits that depend
only on the first dlog◦c se variables. Using the hypothesis S2, we
have a poly(s)-time hsg for Ts . Since fc+1(t)≤dlog◦c te for large
t , Pt,t,c+1 is a subset of Tt . So Pt,t,c+1 also has a poly(t)-time
hsg. This gives a poly(sd)-time hsg for Ps,d,c+1.
Induction step—from poly(s′d′)-hsg of Ps′,d′ ,i to poly(sd)-hsg of
Ps,d,i−1. We divide this step into three smaller steps, for i ∈
[c + 1].

i) Hsg of Ps′,d′,i to hard polynomial family: For some constant
e , we have ((s ′d ′)e/2, (s ′d ′)e/2)-hsg for Ps′,d′,i . Let for all
s, i ∈N, Ts,i be the set of degree-s polynomials computed by
size-s circuits that depend only on the first c1εi(s) variables,
where c1 is a constant as defined in Lemma 12 using the e .
Note that m :=c1εi(s) is smaller than fi(s

2) for large enough
s . So, the polynomial-time hsg for Ps′,d′,i gives a (se , se)-hsg

for Ts,i . Then using Lemma 5, we get an m-variate poly-
nomial qm,s such that (i) the individual degree is less than
δm,s = ds3e/me, (ii) qm,s /∈Ts,i , and (iii) it is computable in
sO(1) time.
Suppose qm,s has a circuit C of size less than s . Since the
degree (m · δm,s) is also less than s , the polynomial qm,s is in
Ts,i , which is a contradiction. So using (se , se)-hsg for Ts,i ,
for all s ∈N, we get a polynomial family {qm,s | s ∈N, m =

c1εi(s)} of multi-δm,s -ic that can be computed in sO(1) time,
but has no size-s algebraic circuit.

ii) Hard polynomial to variable reduction map: Note that
fi−1(sd)≤ 2εi ((sd)c0), where c0 is a constant defined in
Lemma 12 using the e . Using Lemma 12 (for ε= εi),
any nonzero polynomial P ∈Ps,d,i−1 can be converted, in
poly(sd) time, to another poly(sd)-degree nonzero polyno-
mial P ′ computed by a poly(sd)-size circuit which depends
only on the first c2εi((sd)c0) variables.

iii) The map to poly(sd)-time hsg for Ps,d,i−1: Since, in P ′, the
number of variables c2εi((sd)c0) is less than fi(sd), using
the polytime hsg of Ps′,d′,i we get a polytime hsg for P ∈
Ps,d,i−1.

Repetition. After applying the induction step c + 1 times, we
have a poly(sd)-time hsg for Ps,d,0. In other words, we have a
poly(sd)-time hsg for size-s degree-d circuits.

Now we show that Conjecture 1 holds. We just obtained a
poly(s)-time hsg for Ts,1. Let m = dlog se. Then applying Lemma
5, we get a family of polynomials {qm}m≥1 such that (i) it
is multi-δ-ic, for some constant δ, and (ii) it is computable in
δO(m) time, but has no δo(m)-size algebraic circuit. Now, applying
Lemma 10, we get Conjecture 1. �

Remark: In the case of a finite field F=Fr t of prime charac-
teristic r , we have to redefine the hardness of the polynomial qm,s

in step i of the induction step above. As remarked before, we can
define Ts,i to be the set of polynomials f (x1, . . . , xc1εi (s)), such
that for some e , f r

e

agrees on all F points with some nonzero
degree-s polynomial computed by a size-s circuit. It can be seen
that an hsg for Ts,i gives a hard qm,s (via the annihilator approach
of Lemma 5) that can be used in step ii.

Bootstrapping Constant Variate—Proof of Theorems 2 and 3
The overall strategy is similar to that in the previous section.
However, the details would now change drastically. The technical
proofs of this section are in the full version of ref. 65.

First, we describe an optimized version of the NW design,
where the parameters are different from those in Lemma 8.
Later, it will help us improve the constants.

Lemma 13 (NW Design). There exists an algorithm which takes
(`,n, d), with `≥ 100 and d ≥ 13, and a base set S of size ` :=

d4n2/de as input, and outputs an (`,n, d)-designD having≥ 2d/4

subsets, in time O((4`/n)n).

Exponent vs. Variables. In this section, to describe the complexity
parameters of the circuits and the hsg, we use two families of
functions {fi}i≥0 (“exponent of time”) and {mi}i≥0 (“number
of variables”). They are defined as follows: f0≥ 2 and m0≥ 1024
are constants and for all i ≥ 1,

fi := 16f 2
i−1 and mi :=2mi−1/(64f 2i−1) .

Our strategy is to use an NW (mi ,
mi
8fi

, mi

16f 2i
) design to stretch mi

variables to mi+1. We want to show that mi grows much faster
in contrast to fi . In particular, we need mi to be a tetration in
i (i.e., iterated exponentiation), while fi is “merely” a double
exponentiation in i . Seeing this needs some effort and do this
in Propositions 14 and 15.

6 of 12 | www.pnas.org/cgi/doi/10.1073/pnas.1901272116 Agrawal et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1901272116

IN
A

U
G

U
RA

L
A

RT
IC

LE
M

A
TH

EM
A

TI
CS

From now on we assume that ε is a constant fraction satisfying
1>ε≥ (3 + 6 log(128f 2

i))/(128f 2
i), for i = 0. Since fi increases

with i , the fraction (3 + 6 log(128f 2
i))/(128f 2

i) decreases. Thus,
the constant ε remains larger than the latter, for all i ≥ 0.

Proposition 14. If, for some i ≥ 0, mi ≥ 192f 2
i · 1

ε
log(128f 2

i), then
the same relation holds between mi+1 and fi+1.

Proposition 15 (mi Is a Tetration). Suppose that m0≥max

{(8f0)
2
ε , 192f 2

0 · 1
ε

log(128f 2
0)}. Then for all i ≥ 0, (i) mi+1≥

2m1−ε
i and (ii) mi+1≥ 2mi > 3,456f 2

i .
Once we know that mi grows extremely rapidly, we want to

estimate the number of iterations before which it reaches s .

Proposition 16 (Iteration Count). The least i , for which mi ≥ s ,
is ≤ 3

1−ε log
(

3
1−ε

)
+ 2 log? s .

Now we describe the i th step of bootstrapping.

Lemma 17 (Induction Step). Let s be the input size parameter, i ≥ 0,
mi = so(1) and m ′ := min{mi+1, s}. Suppose that we have an s fi -
time hsg for mi -variate degree-s polynomials computed by size-s
circuits. Then, we have an s fi+1 -time hsg for m ′-variate degree-s
polynomials computed by size-s circuits.

Proof: Although i might grow (extremely) slowly w.r.t. s , it
helps to think of i and s as two independent parameters. Sup-
pose that for all s ∈N, Ps,i is the set of mi -variate degree-s
polynomials computed by size-s circuits, and Ps,i+1 is the set
of m ′-variate degree-s polynomials computed by size-s circuits.
Our proof can be broken into three main steps. First, using the
hsg of Ps,i we construct a hard polynomial family. Next, using
that hard polynomial family we do variable reduction on the poly-
nomials in Ps,i+1. This variable reduction is relatively “low” cost
and it reduces a nonzero polynomial in Ps,i+1 to some nonzero
polynomial inPs9fi ,i , for a sufficiently large value of s . Finally, we
apply the hsg ofPs9fi ,i to get the desired hsg forPs,i+1. The chal-
lenge is to analyze this, which we do now in detail. Keep in mind
the properties of the functions mi , fi that we proved before.

Hard Polynomial Family Construction. We describe the construc-
tion of a hard polynomial family from the hsg of Ps,i . Let
di(s) := s fi and for all s ∈N, let Ts be the set of mi

8fi
-variate

degree-s polynomials computed by size-s circuits. The di(s)-
time hsg of Ps,i also gives an hsg for Ts with the same time
complexity. Like Lemma 5, the annihilator of the hsg of Ts
gives a polynomial qs such that (i) qs /∈Ts , (ii) it is computable
in d4

i time by linear algebra, and (iii) it is multi-δs -ic, where

δs := 1 + di(s)
8fi+1
mi = 1 + s fi (8fi+1)/mi . Here, the main differ-

ence is that the individual degree-bound δs is smaller than what
Lemma 5 ensures. It will help us reduce the initial constants
in our calculations. We give a brief sketch of how we get an
annihilator with this individual degree.

The number of monomials on mi
8fi

variables with individ-

ual degree <δs is at least m :=d
1+ 1

8fi
i = s fi+

1
8 . After evalu-

ating an mi
8fi

-variate multi-δs -ic polynomial on the hsg of Ts ,
we get a univariate polynomial of degree at most d :=mi

8fi
·(

di + d
1+

8fi+1
mi

i

)
≤ mi

8fi
· 2s fi+

8f 2i +fi
mi . To make the linear algebra

argument of Lemma 5 work, we need m > d . This holds as
mi = so(1) and as in Proposition 15 we have mi ≥ 1,728f 2

i .
Now we argue that qs has no circuit of size ≤s . For the sake

of contradiction, assume that qs has a circuit of size ≤s . The

degree of qs is at most mi
8fi
· 2d

8fi+1
mi

i ≤ mi
8fi
· 2s

fi (8fi+1)
mi . Applying

mi = so(1) and mi ≥ 1,728f 2
i , we get that qs has degree <s . This

implies that qs ∈Ts , which is a contradiction. Thus, qs has no
circuit of size ≤s . So we have a multi-δs -ic polynomial fam-
ily {qs | s ∈N} such that (i) qs is computable in d4

i = s4fi time
but has no circuit of size ≤s and (ii) it has individual degree
δs = 1 + s fi (8fi+1)/mi and number of variables mi

8fi
.

Variable Reduction Map. Now we convert every nonzero polyno-
mial in Ps,i+1 to a nonzero polynomial in Ps12fi ,i . Consider a
slightly larger size parameter s0 :=s7. Let {S1, . . . ,Sm′} be an
NW (mi ,

mi
8fi

, mi

16f 2i
) design on the variable set {z1, . . . , zmi }. The

growth properties of mi , together with Lemma 13, ensure that
such a design exists. Define for all j ∈ [m ′], pj :=qs0(Sj). Next,
we show that for any nonzero P ∈Ps,i+1, P(p1, . . . , pm′) is also
nonzero.

For the sake of contradiction, assume that P(p1, . . . , pm′) is
zero. Since P(x) is nonzero, we can find the smallest j ∈ [m ′] such
that P(p1, . . . , pj−1, xj , . . . , xm′)= :P1 is nonzero, but P1

∣∣
xj =pj

is zero. Thus, (xj − pj) divides P1. Let a be a constant assign-
ment on all of the variables in P1, except xj and the variables
Sj in pj , with the property that P1 at a is nonzero. Since P1 is
nonzero, we can find such an assignment (3). Now our new poly-
nomial P2, on the variables Sj and xj , is of the form P2(Sj , xj) :=
P(p′1, . . . , p′j−1, xj , aj+1, . . . , am′), where for each i ∈ [j − 1], p′i
is the polynomial on the variables Si ∩Sj , and the ais are field
constants decided by our assignment a. By the design, for each
i ∈ [j − 1], |Si ∩Sj | ≤ mi

16f 2i
. Since pis are polynomials on vari-

ables Si of individual degree≤δs0 , each p′i has a circuit (of trivial
form ΣΠ) of size at most

mi

16f 2
i

δs0 · δ
mi

16f 2
i

s0 .

Thus, we have a circuit for P2 of size at most s1 and the degree
of P2 is at most d1, where

s1 := s +
m ′miδs0

16f 2
i

· δ
mi

16f 2
i

s0 and d1 := s · miδs0
16f 2

i

.

Since (xj − pj) divides P2, we can invoke Kaltofen’s factoriza-
tion algorithm (50) (see ref. 57, theorem 2.21 for the improved
complexity of factors) and get an algebraic circuit for pj of size
s ′0 := s1Õ(d2

1). Now we prove that s ′0 < s0, for large enough s .
This implies that qs0 has a circuit of size ≤s0 which contradicts
the hardness of qs0 .

Recall that δs0 = 1 + s
fi (8fi+1)/mi
0 , mi = so(1),m ′≤ s . Let us

upper bound s ′0=

s1Õ(d2
1) ≤

(
s +

m ′mi

16f 2
i

· δ
1+

mi
16f 2

i
s0

)
· Õ
(
smiδs0
16f 2

i

)2

≤
s3+o(1)δ2

s0

f 2
i

+
s3+o(1)δ

3+
mi

16f 2
i

s0

f 4
i

≤ s3+o(1)s
2fi (8fi+1)

mi
0 + s3+o(1)s

(
3+

mi
16f 2

i

)
fi (8fi+1)

mi

0

≤ s3+o(1)s
14fi (8fi+1)

mi + s3+o(1)s

(
3+

mi
16f 2

i

)
7fi (8fi+1)

mi

≤ s3+o(1)s
112f 2i +14fi

mi + s3+o(1)s
21fi (8fi+1)

mi
+

7(8fi+1)
16fi

≤ s3+o(1)s
112fi+14
1,728fi + s3+o(1)s

21(8fi+1)
1,728fi

+
7(8fi+1)

16fi(
∵mi > 1,728f 2

i

)
Agrawal et al. PNAS Latest Articles | 7 of 12

≤ s
3+o(1)+ 112

1,728
+ 7

1,728 + s
3+o(1)+ 168

1,728
+ 21

3,456
+ 56

16
+ 7

32

(∵ fi ≥ 2)

≤ s3.1+o(1) + s6.83+o(1) < s7 = s0 .

This gives a contradiction for sufficiently large s . So P ′ :=
P(p1, . . . , pm′) is nonzero.

Using the Given hsg. The above variable reduction converts P to
an mi -variate degree-d ′ nonzero polynomial P ′ computable by
an s ′-size circuit, where

d ′ :=
smi

8fi
· δs0 and s ′ := s +

m ′miδs0
8fi

· δ
mi
8fi
s0 .

Now we give an upper bound of s ′:

s ′ = s +
m ′miδs0

8fi
· δ

mi
8fi
s0

= s +
m ′mi

8fi
·

(
1 + s

fi (8fi+1)
mi

0

)(
mi
8fi

+1)

≤ s +
m ′mi

8fi
· (1 + s)

7fi (8fi+1)
mi

(
mi
8fi

+1)

≤ s + s
1+o(1)+7(fi+

1
8

)(1+
8fi
mi

)

< s + s
1+o(1)+7(fi+

1
8

)(1+ 8
3,456

)
(∵mi > 1,728f 2

i , fi ≥ 2)

< s9fi .

Since d ′, s ′< s9fi = : s1, P ′ is mi -variate degree-s1 polynomial
that is computable by a size-s1 circuit. So P ′ has an hsg of time
complexity s fi1 = s9f 2i .

Final Time Complexity. First, let us review our overall algorithm: It
takes (1s , 1i+1) as input and, in s fi+1 time, outputs an s9f 2i -time
hsg of Ps,i+1, under the assumption that for all t ≥ s , there is a
t fi -time hsg for Pt,i :

a) s0← s7.
b) By linear algebra, compute an annihilator qs0 (in dense rep-

resentation) of the given hsg of mi
8fi

-variate degree-s0 size-s0

polynomials.
c) Compute the NW design (by the greedy algorithm sketched in

Lemma 13) {S1, . . . ,Sm′} on the variable set {z1, . . . , zmi }.
d) Compute an mi -input and m ′-output circuit C (in the form

ΣΠ) on the variables {z1, . . . , zmi } such that for all j ∈ [m ′],
the j th output is pj = qs0(Sj).

e) Compute the hsg a = (a1, . . . , ami) of Ps9fi ,i . Then, the above
proof shows that an hsg for Ps,i+1 is C (a).

The total time complexity of the hsg for P has four
components:

i) Computing qs0 (step b): It takes (s fi0)4 = s7×fi×4 = s28fi ≤
s14f 2i .

ii) Nisan–Wigderson design from Lemma 13 (step c): It
takes time O (4mi/(mi/8fi))

mi/8fi = O(32fi)
mi/8fi . If mi >

64f 2
i log s , then we will run the i th induction step only

for (relabeled) mi := 64f 2
i log s , as the stretch obtained will

already be to 2mi/64f 2i = s variables. Note that at that point,
i would be nonconstant and hence fi > 4. In this regime,
(32fi)

mi/8fi = (32fi)
8fi log s = s8fi log(32fi) < s12f 2i .

iii) Computing C (step d): Essentially, compute m ′ copies of
qs0 (in dense representation). As seen before, the total time
complexity is s9fi .

iv) Computing the hsg of Ps9fi ,i and then computing the hsg of

Ps,i+1 by composition (step e): It takes s9f 2i + s9f 2i · s9fi <

s14f 2i time.
So, the total time is smaller than s16f 2i = s fi+1 and we have an

hsg for m ′-variate P . �
Proof of Theorem 2: In the hypothesis of the Theorem 2 state-

ment we are given constants e ≥ 2 and n ≥ 1,024. Let us define
the mi , fi polynomial family with the initialization f0 :=e and
m0 :=n . The idea is to simply use the induction step (Lemma
17) several times to boost m0 variables to an arbitrary amount.

Let P be a degree-s polynomial computed by a size-s circuit.
Then, it can have at most s variables. Let k be the smallest inte-
ger such that mk ≥ s (k is an extremely slow-growing function in
s as described in Proposition 16). By Proposition 15, we have that
mk−1≤ so(1).

For i ∈N≥0 and large enough parameters t > t ′> s , let Pt,i

denote the set of mi -variate degree-t polynomials computed by
size-t circuits. From the hypothesis, we have a t f0 -time hsg for
Pt,0. Now for each i < k , we apply Lemma 17, to get the t ′fi+1 -
hsg for Pt′,i+1. After k such applications of Lemma 17, we get
an s fk -time hsg for s-variate degree-s polynomials computed by
size-s circuits.

Note that fk = (16f0)2k

/16 = 2O(2k) = 22O(log? s)

. Thus, we
have an sexp ◦ exp(O(log? s))-time blackbox PIT for VP circuits.

Since f0 <m0/2, one can see that the hypothesis of Theorem
4 is easily satisfied. This gives us an E-computable polynomial
family {qm}m≥1 with hardness 2Ω(m). �

Proof of Theorem 3: Suppose we have, for constant δ < 1/2,
an sn

δ

-time hsg for size-s degree-s circuits that depend only
on the first n variables. Without loss of generality (using depth-
reduction proofs), we can assume that we have an sn

δ

-time hsg
for degree-s polynomials computed by size-s circuits that depend
only on the first n variables.

Then, there exists an ε∈ [2δ, 1) and a large enough constant
e such that there is an se -time hsg for degree-s polynomi-
als computed by size-s circuits that depend only on the first
n := d(64e2)1/εe≥ 192e2 log(128e2)1/ε variables. Note that e ≥
(n − 1)ε/2/8>nδ can be easily ensured; thus, se time is more
than sn

δ

time. Now we simply invoke Theorem 2. �
Remarks:

i) The NW (`,n, d) design that we are using, in the i th itera-
tion (Lemma 17), has its respective parameters in the “ratio”
f 2
i : fi : 1 (roughly). This seems to be the reason why we need

second-exponent δ slightly less than 1/2. An optimal result
was provided recently by ref. 66.

ii) We can give a more refined analysis in the above proofs by
“decoupling” the time complexity from the degree of the hsg.
For example, we can begin with a much weaker hypothesis—
for constant δ < 1/2 and an arbitrarily large function µ(·), an(
sµ(n), sn

δ
)
-hsg for size-s degree-s circuits that depend only

on the first n variables—and still get the same conclusion as
in Theorem 3. This will require analyzing the bit complexity
(i.e., time) and the algebraic complexity (i.e., degree of the
hsg) separately in the proof of Lemma 17. We skip the details
for now.

Shallow Bootstrapping—Proof of Theorem 4
Shallow Circuits. Diagonal depth-4 circuits compute polynomi-
als of the form

∑
i∈[k] ci f

ai
i , where fis are sparse polynomials

in F[x1, . . . , xn] of degree ≤ b, ai ≤ a , and cis in F. A standard
notation to denote this class is Σ∧a ΣΠb(n). This is a special
case of the depth-4 ΣkΠaΣΠb(n) model that computes poly-
nomials of the form

∑
i∈[k]

∏
j∈[a] fi,j , where fi,j s are sparse

8 of 12 | www.pnas.org/cgi/doi/10.1073/pnas.1901272116 Agrawal et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1901272116

IN
A

U
G

U
RA

L
A

RT
IC

LE
M

A
TH

EM
A

TI
CS

polynomials in F[x1, . . . , xn] of degree ≤ b. The superscripts
k , a, b on the gates denote an upper bound on the respective
fan-in (whenever it needs to be emphasized).

We denote ΣΠΣΠ1 circuits by ΣΠΣ and call them depth-3.
We also study a model quite close to it—ΣΠΣ∧b—we call it pre-
processed depth-3 because, in this work, this model will appear
on simply substituting univariate monomials in the variables of a
depth-3 circuit. It degenerates to depth-3 again if b = 1.

We prove Theorem 4 in two different ways. First, by assuming
an efficient O(sn/2/ log2 s)-degree hsg for polynomials com-
puted by size-s Σ∧a ΣΠ circuits that depend only on the first n
variables [a(s) is an arbitrarily slow-growing function], we get to
the conclusion of Theorem 4. Second, by assuming an efficient
O(sn/2/ log2 s)-degree hsg for polynomials computed by size-
s ΣΠΣ∧ circuits that depend only on the first n variables, we
get to the conclusion of Theorem 4. Both models seem weaker
than general depth-4 circuits. So one would expect that solving
PIT for these models would be easier.

Our proofs will cover a plethora of models. Theorems 18 and
19 together give the proof of our first approach. Theorems 20 and
21 together give the proof of the second approach. One can note
that in all these theorems we prove the existence of an efficient
variable reduction map for circuits that preserves nonzeroness. It
is stronger than proving quasi-polynomial hsg for size-s degree-
d circuits. However, after the variable reduction, if we apply hsg
of the trivial PIT derandomization (3), we get an (sd)O(log(sd))-
time hsg.

Theorem 18 (Σ ∧a ΣΠ Computing Multilinear). Suppose that for
some constant n ≥ 2 and some arbitrarily slow-growing function
a(s), we have a

(
poly(s),O(sn/ log2 s)

)
-hsg for multilinear poly-

nomials computed by size-s Σ∧a ΣΠ circuits that depend only on
the first n log s variables.

Then, for N -variate d -degree size-s circuits, we have a poly(sd)-
time nonzeroness-preserving variable-reducing polynomial map
(N 7→O(log(sd))) and Conjecture 1 holds. Furthermore, after
variable reduction, the degree of the new polynomial will be
poly(sd).

Proof sketch: The proof is along the lines of ref. 61, theo-
rem 3.2.

For all s ∈N, let Ps be the set of multilinear polynomials com-
puted by size-s Σ∧a ΣΠ circuits that depend only on the first
n log s variables. First, using the O(sn/ log2 s)-degree hsg we
can construct a family of multilinear polynomials {qm}m which
is E-computable (Lemma 5) but not computable by 2o(m)-size
circuits (by “depth-4 chasm”).

Using this hard polynomial family we get both the variable
reduction and Conjecture 1. Invoking Lemma 9, in poly(sd)
time, we can convert a nonzero d -degree N -variate polyno-
mial computed by a size-s circuit to a nonzero O(log(sd))-
variate poly(sd)-degree polynomial. Conjecture 1 follows from
Lemma 10. �

Remarks:

i) Note that a
(
Õ(sn), sn

)
-hsg for multilinear n log s-variate

polynomials is trivial, as one can simply use {0, 1}n log s as
the hitting set.

ii) An efficient sn/ω(log s)-degree hsg in the hypothesis would
also suffice.

iii) Can we get a conclusion as strong as in Theorem 1? In the
proof above we get a variable reduction map to log-variate;
but this map when applied on a general circuit results in a
nonmultilinear polynomial. So, we cannot use the hsg pro-
vided in the hypothesis and have to do poly(s)-time PIT
on the log-variate Σ∧a ΣΠ circuit by some other means
(currently unknown).

Theorem 19 (Tiny Variate Σ ∧a ΣΠ). Suppose that for some con-
stant n ≥ 3 and some arbitrarily slow-growing function a , we have
a
(

poly(s),O(sn/2/ log2 s)
)
-hsg for size-s Σ∧a ΣΠ circuits that

depend only on the first n variables. Then, we get all of the
conclusions of Theorem 18.

Proof: For all s ∈N, let Ps be the set of multilinear poly-
nomials computed by size-s Σ∧a ΣΠ circuits that depend only
on the first n log s variables. For all s ∈N, let Ts be the set of
polynomials computed by size-s Σ∧a ΣΠ circuits that depend
only on the first n variables. By the hypothesis, we have an effi-
cient O(sn/2/ log2 s)-degree hsg for Ts . Next, we convert every
nonzero polynomial in Ps to a nonzero polynomial in TO(s2)

in poly(s) time. Now applying the given hsg for TO(s2), we
get an efficient O(sn/ log2 s)-degree hsg for Ps . Next invoking
Theorem 18, we get our conclusion.

We describe the reduction from Ps to TO(s2). Let P be a
nonzero polynomial in Ps . Let m :=n log s . Partition the vari-
able set {x1, . . . , xm} into n blocks Bj , j ∈ [n], each of size log s .
Let Bj := {xu(j)+1, xu(j)+2, . . . , xu(j)+log s}, for all j ∈ [n] and
u(j) := (j − 1) log s . Consider the variable-reducing “local Kro-
necker” map ϕ : xu(j)+i 7→ y2i

j . Note that ϕ(P)∈F[y1, . . . , yn],
and its individual degree is at most 2s . It is easy to see that
ϕ(P) 6= 0 (basically, use the fact that P computes a nonzero mul-
tilinear polynomial and ϕ keeps the multilinear monomials dis-
tinct). Finally,ϕ(P) becomes an n-variate Σ∧a ΣΠ circuit of size
at most s + s · 2log s =O(s2). Thus,

(
poly(s),O(sn/ log2 s)

)
-hsg

for TO(s2) gives a
(
poly(s),O(sn/ log2 s)

)
-hsg for P . �

In the next two lemmas, we describe our second approach to
prove Theorem 4.

Theorem 20 (Depth-3 Computing Multilinear). Suppose that for some
constant n ≥ 2, we have a

(
poly(s),O(sn/ log2 s)

)
-hsg for multi-

linear polynomials computed by size-s depth-3 circuits that depend
only on the first n log s variables. Then, we get all of the conclusions
of Theorem 18.

Proof: Proof is similar to proof of Theorem 18. The main dif-
ference is that there we are dealing with depth-4 circuits, but here
we have depth-3 circuits. So we need a “depth-3 reduction” result
(60) with a “depth-4 reduction” result (61). We sketch only the
main points here.

First, we construct a hard polynomial family from the
hsg. According to the hypothesis, for n log s-variate multi-
linear polynomials computed by size-s depth-3 circuits we
have an O(sn/ log2 s)-degree hsg. For all s ∈N, let Ps be
the set of n log s-variate multilinear polynomials computed
by size-s depth-3 circuits. Let m :=n log s . Let f(y) be the(
poly(s),O(sn/ log2 s)

)
-hsg of Ps . Now we consider the annihi-

lator of f(y) to get a hard polynomial. Let k be the number of m-
variate m/2-degree multilinear monomials. Then k =

(
m

m/2

)
≥

2m/
√

2m = sn/
√

2m > O(sn/ log2 s) ·m (for large enough s).
Thus, by linear algebra similar to Lemma 5, we get an m-variate
m/2-degree multilinear homogeneous annihilating polynomial
qm /∈Ps computable in poly(s) time. Importantly qm /∈Ps ; thus,
no depth-3 circuit of size < s = 2Θ(m) can compute it. Next we
show that it is also not computable by any 2o(m)-size algebraic
circuit.

For the sake of contradiction, assume that qm has a 2o(m)-size
circuit. Repeat the depth-reduction arguments, as in the proof of
Theorem 18, after flattening at some depth t =ω(1). Let a :=
5t and b :=m/2t+1. Here, we can also ensure a, b = o(m) =

o(log s), a =ω(1), and we have a 2o(m)-size shallow circuit for
qm of the form ΣΠaΣΠb .

It was shown in ref. 60 that any size-s ′ n-variate ΣΠaΣΠb cir-
cuit can be transformed to a poly(s ′2a+b)-size n-variate ΣΠΣb

Agrawal et al. PNAS Latest Articles | 9 of 12

circuit. Applying it here, we get a depth-3 circuit C ′, computing
qm , of the form ΣΠΣ and size 2o(m) · 2a+b = 2o(m). This gives
a contradiction, since no depth-3 circuit of size < s = 2Θ(m) can
compute it.

Thus, we have an E-computable family of multilinear poly-
nomials {qm}m≥1 that has no circuit of size 2o(m). Using this
hard polynomial family we get both the variable reduction and
Conjecture 1 as before. �

Theorem 21 (Tiny Variate ΣΠΣ∧). Suppose that for some constant
n ≥ 3, we have a

(
poly(s),O(sn/2/ log2 s)

)
-hsg for polynomials

computed by size-s ΣΠΣ∧ circuits that depend only on the first n
variables. Then, we get all of the conclusions of Theorem 18.

Proof: The proof is similar to that of Theorem 19. For all
s ∈N, let Ps be the set of multilinear polynomials computed by
size-s depth-3 circuits that depend only on the first n log s vari-
ables. For all s ∈N, let Ts be the set of polynomials computed by
size-s ΣΠΣ∧ circuits that depend only on the first n variables.
According to the hypothesis, we have an O(sn/2/ log2 s)-degree
hsg for Ts . Next, we convert every nonzero polynomial in Ps

to a nonzero polynomial in TO(s2) in poly(s) time. Now apply-
ing O(sn/ log2 s)-degree hsg for TO(s2), we get an efficient
O(sn/ log2 s)-degree hsg for Ps . Next invoking Theorem 20, we
get our conclusion.

Now we describe the reduction from Ps to TO(s2). Let P be
a nonzero polynomial in Ps . Let m :=n log s . Partition the vari-
able set {x1, . . . , xm} into n blocks Bj , j ∈ [n], each of size log s .
Let Bj := {xu(j)+1, xu(j)+2, . . . , xu(j)+log s}, for all j ∈ [n ′] and
u(j) := (j − 1) log s . Consider the variable-reducing local Kro-
necker map ϕ : xu(j)+i 7→ y2i

j . Note that ϕ(P)∈F[y1, . . . , yn],
and its individual degree is at most 2s . It is easy to see that
ϕ(P) 6= 0 (basically, use the fact that P computes a nonzero
multilinear polynomial and ϕ keeps the multilinear monomials
distinct). Finally, ϕ(P) becomes an n-variate ΣΠΣ∧ circuit of
size at most s + s · 2log s =O(s2). Thus, using the O(sn/ log2 s)-
degree hsg for TO(s2), we get a

(
poly(s),O(sn/ log2 s)

)
-hsg

for P . �
Remark: Can we get a result like the above with depth-3 cir-

cuits in the hypothesis? At this point it is not clear how to
get to arbitrarily tiny variate ΣΠΣ because (i) the above trick
of applying the local Kronecker map, to reduce variables from
n log s to n , increases the circuit depth to 4 and moreover, any
such map has to be nonlinear, as otherwise the resulting mono-
mials are too few, and (ii) in the tiny variate regime we need
degree ≥Ω(s) so that the hsg of the model can be used to get a
“hard” polynomial. With such a high degree we cannot apply ref.
60 to transform depth-4 (say in Theorem 19) to depth-3 in poly-
nomial time.

Proof of Theorem 4: Let a be an arbitrarily slow-growing func-
tion. For all s ∈N, let Ps be the set of polynomials computed
by size-s Σ∧a ΣΠ circuits that depend only on the first n vari-
ables. For all s ∈N, let Ts be the set of polynomials computed by
size-s ΣΠΣ∧ circuits that depend only on the first n variables.
We show that

(
poly(s),O(sn/2/ log2 s)

)
-hsg for Ps or Ts gives

the conclusion of Theorem 4.
Using the hsg for Ps , Theorem 19 gives an efficient variable

reduction and Conjecture 1.
Using the hsg for Ts , Theorem 21 gives an efficient variable

reduction and Conjecture 1.
After the variable reduction, if we apply the hsg of the trivial

PIT derandomization (3), we get an (sd)O(log(sd))-time hsg.
To see that the original statement could be proved for any field

F, observe that depth-4 reduction (ref. 61, theorem 3.2) works for
any field. Similarly, we get versions of Theorems 18 and 19 using

ΣΠaΣΠ in the respective hypothesis. Also, see the remarks after
the proofs of Lemma 12 and Theorem 1. �

Log-Variate Width-2 Algebraic Branching Program or Depth-3 Circuit.
A polynomial f ∈F[x1, . . . , xn] has a size-s width-2 algebraic
branching program (ABP) if it is the (1, 1)th entry in the product
of s 2× 2 matrices (having entries in F∪{xi | i}).

Theorem 22 (Log-Variate Width-2 ABP). Suppose that for some
constant e ≥ 1, we have a (poly(s),O(se))-hsg for polynomials
(resp. 2e+1 log s-degree polynomials) computed by size-s width-
2 upper-triangular ABP (resp. depth-3 circuit) that depend only
on the first log s variables. Then, we get all of the conclusions of
Theorem 18.

Proof: In ref. 67, theorem 3 an efficient transformation was
given that rewrites a size-s depth-3 circuit, times a special
product of linear polynomials, as a poly(s)-size width-2 upper-
triangular ABP. Thus, an hsg for the latter model gives a similar
hsg for the former. So, from the hypothesis for some constant e ,
we have a (poly(s),O(se))-hsg for 2e+1 log s-degree polynomials
computed by size-s depth-3 circuits that depend only on the first
log s variables.

For all s ∈N, let Ps be the set of log s-variate, 2e+1 log s-
degree polynomials computed by size-s depth-3 circuits. Let
d := 2e+1 log s . Let f(y) be the (poly(s),O(se))-hsg of Ps . Now
we consider the annihilator of f(y) to get a hard polynomial.
Let k be the number of m := log s-variate d -degree monomi-
als. Then k =

(
m+d−1

m

)
> 2(e+1) log s = se+1. Since k >O(se) · d ,

we get an m-variate d -degree homogeneous annihilating polyno-
mial qm /∈Ps computable in sO(1) time. The analysis is similar to
Lemma 5. Importantly qm /∈Ps , and thus no depth-3 circuit of
size < s = 2Θ(m) can compute it.

From this point onward the proof of Theorem 20 is identical
and we are done. �

Conclusion
We discover the phenomenon of “efficient bootstrapping” of a
partial hitting-set generator to a complete one for polydegree
circuits. This inspires a plethora of circuit models. In particu-
lar, we introduce the tiny variable diagonal depth-4 (resp. tiny
variants of depth-3, width-2 ABP, and preprocessed depth-3)
model with the motivation that its polytime hitting-set would
(i) solve VP PIT (in quasipoly time) via a polytime variable-
reducing polynomial map (n 7→ log sd) and (ii) prove that either
E 6⊆#P/poly or VNP has polynomials of algebraic complexity
2Ω(n). Could the bootstrapping property in Theorem 1 be
improved (say, to the function log? s)? Could the constant
parameters in Theorems 2 and 3 be improved? In particu-
lar, does so(n)-time blackbox PIT suffice in the latter hypoth-
esis? The latter question has been resolved in ref. 66. Is
there efficient blackbox PIT for size-s , log s-variate, individual-
degree (log? s) ROABPs? Is there blackbox PIT for size-
s , (log? s) log s-variate, multilinear ROABPs? Is there black-
box PIT for size-s , (log? s) log s-variate, log s-degree, diagonal
depth-3 circuits? Recently, ref. 68, theorem 9 gave a polynomial-
time blackbox PIT algorithm for log-variate depth-3 diagonal
circuits.

ACKNOWLEDGMENTS. We thank Michael Forbes, Ramprasad Saptharishi,
Pranjal Dutta, Thomas Thierauf, and Nikhil Balaji for many useful discus-
sions. N.S. thanks the organizers of algebraic complexity workshops in
2014 (Max Planck Institute Saarbrücken and Tata Institute of Fundamental
Research Mumbai) that initiated the early discussions with Michael Forbes
related to log-variate diagonal depth-3 PIT. S.G. and N.S. thank the orga-
nizers and participants of the Institute of Mathematical Sciences Chennai
workshop in 2017 for discussing the preliminary results. We thank the
anonymous reviewers for giving numerous suggestions to improve an ear-
lier draft. S.G. thanks Google India for generously sponsoring the trip to
the conference. N.S. acknowledges the funding support from Department

10 of 12 | www.pnas.org/cgi/doi/10.1073/pnas.1901272116 Agrawal et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1901272116

IN
A

U
G

U
RA

L
A

RT
IC

LE
M

A
TH

EM
A

TI
CS

of Science & Technology (India) (Award DST/SJF/MSA-01/2013-14), and M.A.
thanks J. C. Bose Fellowship. This work was presented in Proceedings of

the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2018 (65).

1. Demillo RA, Lipton RJ (1978) A probabilistic remark on algebraic program testing. Inf
Process Lett 7:193–195.

2. Zippel R (1979) Probabilistic algorithms for sparse polynomials. Proceedings of the
International Symposium on Symbolic and Algebraic Computation EUROSAM ’79
ed Ng EW (Springer, New York), Vol 72, pp 216–226.

3. Schwartz JT (1980) Fast probabilistic algorithms for verification of polynomial
identities. J ACM 27:701–717.

4. Mulmuley K (2017) Geometric complexity theory V: Efficient algorithms for Noether
normalization. J Am Math Soc 30:225–309.

5. Grochow JA, Mulmuley KD, Qiao Y (2016) Boundaries of VP and VNP. 43rd Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2016),
Leibniz International Proceedings in Informatics (LIPIcs), eds Chatzigiannakis I,
Mitzenmacher M, Rabani Y, Sangiorgi D (Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany), Vol 55, pp 34.1–34.14.

6. Grochow JA (2015) Unifying known lower bounds via geometric complexity theory.
Comput Complexity 24:393–475.

7. Mulmuley KD (2012) Geometric complexity theory V: Equivalence between blackbox
derandomization of polynomial identity testing and derandomization of Noether’s
normalization lemma. 53rd Annual Symposium on Foundations of Computer Science
(FOCS) (IEEE, Piscataway, NJ), pp 629–638.

8. Mukhopadhyay P (2016) Depth-4 identity testing and Noether’s normalization
lemma. International Computer Science Symposium in Russia, eds Kulikov AS,
Woeginge GJ (Springer, New York), Vol 9691, pp 309–323.

9. Valiant LG (1979) Completeness classes in algebra. Proceedings of the 11h Annual
ACM Symposium on Theory of Computing, eds Fischer MJ, DeMillo RA, Lynch NA,
Burkhard WA, Aho AV (ACM, New York), pp 249–261.

10. Heintz J, Schnorr C-P (1980) Testing polynomials which are easy to compute (extended
abstract). Proceedings of the 12th Annual ACM Symposium on Theory of Computing,
eds Miller RE, Ginsburg S, Burkhard WA, Lipton RJ (ACM, New York), pp 262–272.

11. Kabanets V, Impagliazzo R (2003) Derandomizing polynomial identity tests means
proving circuit lower bounds. Proceedings of the Thirty-Fifth Annual ACM Symposium
on Theory of Computing STOC ’03, eds Larmore LL, Goemans MX (ACM, New York),
pp 355–364.

12. Agrawal M (2005) Proving lower bounds via pseudo-random generators. FSTTCS 2005:
Foundations of Software Technology and Theoretical Computer Science, 25th Inter-
national Conference December 15-18, eds Ramanujam R, Sen S (Springer, Berlin), Vol
3821, pp 92–105.

13. Mulmuley K, Vazirani UV, Vazirani VV (1987) Matching is as easy as matrix inversion.
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing
STOC ’87, ed Aho AA (ACM, New York), pp 345–3154.

14. Agrawal M, Kayal N, Saxena N (2004) PRIMES is in P. Ann Math 160:781–793.
15. Kopparty S, Saraf S, Shpilka A (2014) Equivalence of polynomial identity testing

and deterministic multivariate polynomial factorization. IEEE 29th Conference on
Computational Complexity CCC (IEEE, Piscataway, NJ), pp 169–180.

16. Dvir Z, de Oliveira RM, Shpilka A (2014) Testing equivalence of polynomials under
shifts. Proceedings of the 41st International Colloquium on Automata, Languages,
and Programming, Part I, Lecture Notes in Computer Science, eds Esparza J,
Fraigniaud P, Husfeldt T, Koutsoupias E (Springer, New York), Vol 8572, pp 417–428.

17. Saxena N (2009) Progress on polynomial identity testing. Bull EATCS 99:49–79.
18. Saxena N (2014) Progress on polynomial identity testing–II. Perspectives in Computa-

tional Complexity (Springer, New York), pp 131–146.
19. Shpilka A, Yehudayoff A (2010) Arithmetic circuits: A survey of recent results and

open questions. Found Trends Theor Comput Sci 5:207–388.
20. Wigderson A (2017) Low-depth arithmetic circuits: Technical perspective. Commun

ACM 60:91–92.
21. Mulmuley KD (2012) The GCT program toward the P vs. NP problem. Commun ACM

55:98–107.
22. Nisan N, Wigderson A (1994) Hardness vs randomness. J Comput Syst Sci 49:149–167.
23. Kayal N, Saxena N (2007) Polynomial identity testing for depth 3 circuits. Comput

Complexity 16:115–138.
24. Saxena N (2008) Diagonal circuit identity testing and lower bounds. ICALP, Lecture

Notes in Computer Science, eds Aceto L, Damgård I, Goldberg LA, Halldórsson MM,
Ingólfsdóttir A, Walukiewicz I (Springer, Berlin), Vol 5125, pp 60–71.

25. Saxena N, Seshadhri C (2012) Blackbox identity testing for bounded top-fanin depth-3
circuits: The field doesn’t matter. SIAM J Comput 41:1285–1298.

26. Agrawal M, Saha C, Saptharishi R, Saxena N (2012) Jacobian hits circuits: Hitting-
sets, lower bounds for depth-d occur-k formulas & depth-3 transcendence degree-k
circuits, eds Karloff HJ, Pitassi T (ACM, New York), pp 599–614.

27. Beecken M, Mittmann J, Saxena N (2013) Algebraic independence and blackbox
identity testing. Inf Comput 222:2–19.

28. Saha C, Saptharishi R, Saxena N (2013) A case of depth-3 identity testing, sparse
factorization and duality. Comput Complexity 22:39–69.

29. Forbes MA (2015) Deterministic divisibility testing via shifted partial derivatives.
2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), ed
Guruswami V (IEEE, Piscataway, NJ), pp 451–465.

30. Kumar M, Saraf S (2016) Arithmetic circuits with locally low algebraic rank.31st
Conference on Computational Complexity CCC, ed Raz R (Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany), Vol 50, pp 34:1–34:27.

31. Kumar M, Saraf S (2016) Sums of products of polynomials in few variables: Lower
bounds and polynomial identity testing. 31st Conference on Computational Com-

plexity CCC ed Raz R (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany), pp 35:1–35:29.

32. Pandey A, Saxena N, Amit S (2018) Algebraic independence over positive character-
istic: New criterion and applications to locally low algebraic rank circuits. Comput
Complex 27:617–670.

33. Forbes MA, Shpilka A (2012) On identity testing of tensors, low-rank recovery and
compressed sensing. Proceedings of the 44th Symposium on Theory of Computing
Conference, eds Karloff HJ, Pitassi T (ACM, New York), pp 163–172.

34. Agrawal M, Saha C, Saxena N (2013) Quasi-polynomial hitting-set for set-depth-∆
formulas. Symposium on Theory of Computing Conference STOC’13, eds Boneh D,
Roughgarden T, Feigenbaum J (ACM, New York), pp 321–330.

35. Forbes MA, Saptharishi R, Shpilka A (2014) Hitting sets for multilinear read-once alge-
braic branching programs, in any order. Symposium on Theory of Computing (STOC),
ed Shmoys DB (ACM, New York), pp 867–875.

36. Agrawal M, Gurjar R, Korwar A, Saxena N (2015) Hitting-sets for ROABP and sum of
set-multilinear circuits. SIAM J Comput 44:669–697.

37. Gurjar R, Korwar A, Saxena N, Thierauf T (2016) Deterministic identity testing for
sum of read-once oblivious arithmetic branching programs. Comput Complexity 26:
1–46.

38. Gurjar R, Korwar A, Saxena N (2017) Identity testing for constant-width, and any-
order, read-once oblivious arithmetic branching programs. Theor Comput 13:1–21.

39. Minahan D, Volkovich I (2017) Complete derandomization of identity testing
and reconstruction of read-once formulas. LIPIcs-Leibniz International Proceed-
ings in Informatics, CCC’17, ed O’Donnell R (Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany), Vol 79.

40. Fenner SA, Gurjar R, Thierauf T (2016) Bipartite perfect matching is in quasi-NC. Pro-
ceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC,
eds Wichs D, Mansour Y (ACM, Cambridge, MA), pp 754–763.

41. Gurjar R, Thierauf T (2017) Linear matroid intersection is in quasi-nc. Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing STOC, eds
Hatami H, McKenzie P, King V (ACM, New York), pp 821–830.

42. Svensson O, Tarnawski J (2017) The matching problem in general graphs is in quasi-
nc. 58th IEEE Annual Symposium on Foundations of Computer Science FOCS 2017,
ed Umans C (IEEE, Piscataway, NJ), pp 696–707.

43. Gurjar R, Thierauf T, Vishnoi NK (2018) Isolating a vertex via lattices: Polytopes
with totally unimodular faces. 45th International Colloquium on Automata, Lan-
guages, and Programming ICALP, eds Chatzigiannakis I, Kaklamanis C, Marx D,
Sannella D (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany),
pp 74:1–74:14.

44. Lagarde G, Malod G, Perifel S (2016) Non-commutative computations: Lower bounds
and polynomial identity testing. Electronic Colloquium on Computational Complexity
(ECCC), Vol 23, pp 1–72.

45. Garg A, Gurvits L, Oliveira R, Wigderson A (2016) A deterministic polynomial time
algorithm for non-commutative rational identity testing. IEEE 57th Annual Sympo-
sium on Foundations of Computer Science FOCS, ed Dinur I (IEEE, Piscataway, NJ), pp
109–117.

46. Lagarde G, Limaye N, Srinivasan S (2017) Lower bounds and PIT for non-commutative
arithmetic circuits with restricted parse trees. 42nd International Symposium on
Mathematical Foundations of Computer Science MFCS, eds Larsen KG, Bodlaender HL,
Raskin J-F (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany),
Vol 83, pp 41:1–41:14.

47. Saptharishi R (2016) A survey of lower bounds in arithmetic circuit complexity. Version
3. Available at https://github.com/dasarpmar/lowerbounds-survey/releases. Accessed
April 5, 2019.

48. Forbes MA, Shpilka A, Lee Volk B (2017) Succinct hitting sets and barriers to proving
algebraic circuits lower bounds. Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing, eds Hatami H, McKenzie P, King V (ACM, New York),
pp 653–664.

49. Bürgisser P (2001) The complexity of factors of multivariate polynomials. Proceedings
of the 42nd IEEE Symposium on Foundations of Computer Science (IEEE, Piscataway,
NJ).

50. Kaltofen E (1989) Factorization of polynomials given by straight-line programs.
Advances in Computing Research, Vol 5, pp 375–412.

51. Dutta P, Saxena N, Amit S (2018) Discovering the roots: Uniform closure results
for algebraic classes under factoring. Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing STOC 2018, eds Diakonikolas I, Kempe D,
Henzinge M (ACM, New York), pp 1152–1165.

52. Dwivedi A, Mittal R, Saxena N (2019) Counting basic-irreducible factors mod pk in
deterministic poly-time and p-adic applications. arXiv:1902.07785. Preprint, posted
February 20, 2019.

53. Guo Z, Saxena N, Amit S (2018) Algebraic dependencies and PSPACE algorithms
in approximative complexity. 33rd Computational Complexity Conference CCC, ed
Servedio RA (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany),
pp 10:1–10:21.

54. Forbes MA, Shpilka A (2018) A PSPACE construction of a hitting set for the closure of
small algebraic circuits. Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing STOC 2018, ed Servedio RA (Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany), 1180–1192.

55. Yao AC (1982) Theory and application of trapdoor functions. 23rd Annual Symposium
on Foundations of Computer Science (IEEE, Piscataway, NJ), pp 80–91.

Agrawal et al. PNAS Latest Articles | 11 of 12

https://github.com/dasarpmar/lowerbounds-survey/releases

56. Arora S, Barak B (2009) Computational Complexity: A Modern Approach (Cambridge
Univ Press, New York), 1st Ed.

57. Bürgisser P (2013) Completeness and Reduction in Algebraic Complexity Theory
(Springer Science & Business Media, Springer, Berlin), Vol 7.

58. Kabanets V, Russell I (2004) Derandomizing polynomial identity tests means proving
circuit lower bounds. Comput Complexity 13:1–46.

59. Clausen M, Dress A, Grabmeier J, Karpinski M (1991) On zero-testing and interpo-
lation of k-sparse multivariate polynomials over finite fields. Theor Computer Sci
84:151–164.

60. Gupta A, Kamath P, Kayal N, Saptharishi R (2013) Arithmetic circuits: A chasm at depth
three. 54th Annual IEEE Symposium on Foundations of Computer Science FOCS (IEEE,
Piscataway, NJ), pp 578–587.

61. Agrawal M, Vinay V (2008) Arithmetic circuits: A chasm at depth four. 49th Annual
IEEE Symposium on Foundations of Computer Science FOCS (IEEE, Piscataway, NJ), pp
67–75.

62. Martin F (2009) Faster integer multiplication. SIAM J Comput 39:979–1005.
63. Le Gall F (2014) Powers of tensors and fast matrix multiplication. Proceedings

of the 39th International Symposium on Symbolic and Algebraic Computation,

eds Nabeshima K, Nagasaka K, Winkler F, Szanto A (ACM, New York), pp 296–
303.

64. Fischer I (1994) Sums of like powers of multivariate linear forms. Math Mag 67:59–61.
65. Agrawal M, Ghosh S, Saxena N (2018) Bootstrapping variables in algebraic circuits.

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,
STOC 2018, eds Diakonikolas I, Kempe D, Henzinger M (ACM, New York), pp 1166–
1179.

66. Kumar M, Saptharishi R, Tengse A (2019) Near-optimal bootstrapping of hitting sets
for algebraic circuits. Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, ed Chan TM (SIAM, Philadelphia), pp 639–646.

67. Saha C, Saptharishi R, Saxena N (2009) The power of depth 2 circuits over
algebras. IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science FSTTCS, eds Kannan R, Kumar KN (Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany), pp 371–382.

68. Forbes MA, Ghosh S, Saxena N (2018) Towards blackbox identity testing of log-variate
circuits. 45th International Colloquium on Automata, Languages, and Program-
ming ICALP, eds Chatzigiannakis I, Kaklamanis C, Marx D, Sannella D (Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany), pp 54:1–54:16.

12 of 12 | www.pnas.org/cgi/doi/10.1073/pnas.1901272116 Agrawal et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1901272116

