On the centers of higher degree forms

Nitin Saxena^{a*}

^aDepartment of Computer Science, IIT Kanpur, India nitinsa@cse.iitk.ac.in

Let Θ be a symmetric *d*-linear form on a vector space *V* of dimension *n* over a field *K*. Its center, Cent(*V*, Θ), is the analog of the space of symmetric matrices for a bilinear form. If d > 2, the center is a commutative subalgebra of End_{*K*}(*V*). It was conjectured in [4] that the center has dimension at most *n* and a proof was given for $n \leq 5$. We construct counter examples to this conjecture. We give an infinite family of *cubic* forms $\{(V_r, \Theta_r)\}_{r\geq 3}$ such that for any $\epsilon \in (0, 1)$ there exists $r_0(\epsilon)$ having the property:

for all $r \ge r_0(\epsilon)$, $\dim_K \operatorname{Cent}(V_r, \Theta_r) > (1 + \epsilon) \cdot \dim_K V_r$

1. Preliminaries

We first collect the definitions related to *d*-linear forms following [4]. Suppose V is a vector space over a field K. A symmetric 2-linear form $\Theta: V \times V \to K$ has a geometrical interpretation as an inner product on V. The 2-linear form Θ induces a quadratic form $\phi: V \to K$ defined by: $\phi(v) = \Theta(v, v)$ and conversely a quadratic form ϕ induces a 2-linear form: $2\Theta(u, v) = \phi(u + v) - \phi(u) - \phi(v)$ when char $K \neq 2$. These concepts can be generalized to higher dimensions *d*.

Definition 1.1. A *d*-linear space over K is a pair (V, Θ) where V is a finite dimensional K-vector space and $\Theta : V \times \cdots \times V \to K$ is a symmetric *d*-linear form. That is, Θ is K-linear in each of its slots and it is invariant under all permutations of the slots.

When char K = 0 or char K > d, these *d*-linear spaces are in one-one correspondence to *d*-homogeneous polynomials in $K[x_1, \ldots, x_n]$ where $n := \dim_K V$. This can be seen by fixing a *K*-basis e_1, \ldots, e_n of *V* and defining $\phi(v) := \Theta(v, \ldots, v)$ where $v = x_1e_1 + \ldots + x_ne_n$, then ϕ is a *d*-homogeneous polynomial in $K[x_1, \ldots, x_n]$.

Two d-linear spaces (V, Θ) , (V', Θ') are *isomorphic* if there is an invertible linear map $t: V \to V'$ such that $\Theta'(tv_1, \ldots, tv_d) = \Theta(v_1, \ldots, v_d)$ for every $v_1, \ldots, v_d \in V$.

A notion of *decomposability* of *d*-linear spaces can be defined as follows:

Definition 1.2. The orthogonal sum $(V_1, \Theta_1) \perp (V_2, \Theta_2)$ of two spaces is the *d*-linear space on $V_1 \oplus V_2$ with form $\Theta_1 \perp \Theta_2$ defined as:

 $(\Theta_1 \perp \Theta_2)(u_1 + v_1, \dots, u_d + v_d) := \Theta_1(u_1, \dots, u_d) + \Theta_2(v_1, \dots, v_d)$

^{*}This work was done while the author was visiting School of Computing, National University of Singapore.

where, $u_i \in V_1$ and $v_i \in V_2$. A *d*-linear space (V, Θ) is *decomposable* if $(V, \Theta) \cong (V_1, \Theta_1) \perp (V_2, \Theta_2)$ for some *nonzero* spaces $(V_1, \Theta_1), (V_2, \Theta_2)$.

On the level of homogeneous polynomials the sum $\Theta_1 \perp \Theta_2$ corresponds to $(\phi_1 \perp \phi_2)(X_1, X_2) = \phi_1(X_1) + \phi_2(X_2)$ where X_1, X_2 are disjoint set of variables.

A *d*-homogeneous polynomial ϕ whose number of variables cannot be reduced by a linear change of variables corresponds to a *regular d*-linear space (V, Θ) .

Definition 1.3. (V, Θ) is said to be *regular* if $\Theta(v, V, \dots, V) = 0$ implies v = 0. The expression $\Theta(v, V, \dots, V) = 0$ is a shorthand for: $\forall v_2, \dots, v_d \in V$, $\Theta(v, v_2, \dots, v_d) = 0$.

The notion of symmetric matrices for bilinear forms generalizes to the *center* for higher dimensional forms.

Definition 1.4. The center $Cent(V, \Theta)$ of a d-linear space (V, Θ) is defined as:

$$\{t \in \operatorname{End}_{K}(V) \mid \Theta(tv_{1}, v_{2}, \dots, v_{d}) = \Theta(v_{1}, tv_{2}, v_{3}, \dots, v_{d}) \text{ for all } v_{1}, \dots, v_{d} \in V\}$$

The following properties of the center were first proved in [2]:

Lemma 1.5. Suppose (V, Θ) is a regular d-linear space where $d \ge 3$.

- (1) $Cent(V, \Theta)$ is a commutative K-subalgebra of End_KV .
- (2) (V, Θ) is indecomposable if and only if $Cent(V, \Theta)$ is local.

The following property of the center (see page 1277 of [3]) is useful in computing the structure. We provide the proof for the sake of completeness.

Lemma 1.6. Let (V, Θ) be a d-linear space and let $n := \dim_K V$. Then

$$Cent(V,\Theta) \cong \left\{ M \in K^{n \times n} | (JM)^T = JM \right\}$$

where $J = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)$ is the Hessian matrix of the d-homogeneous polynomial $f(x_1, \ldots, x_n)$ corresponding to (V, Θ) .

Proof. Let us fix a K-basis $\{e_i\}_{1 \le i \le n}$ of V such that e_i is an $n \times 1$ vector having all zeros except a 1 at the *i*-th position. Suppose $t \in \text{Cent}(V, \Theta)$ then by definition for all $1 \le i, j \le n$:

$$\forall v_3, \dots, v_d \in V, \ \Theta(te_i, e_j, v_3, \dots, v_d) = \Theta(e_i, te_j, v_3, \dots, v_d)$$
(1)

Let M be a matrix whose *i*-th column is equal to te_i , for all $1 \le i \le n$. Thus, LHS of equation (1) is

$$\Theta\left(\left(\sum_{l=1}^{n} M_{li}e_l\right), e_j, v_3, \dots, v_d\right) = \sum_{l=1}^{n} M_{li}\Theta(e_l, e_j, v_3, \dots, v_d)$$

Now $\Theta(e_l, e_j, v_3, \ldots, v_d)$ is a (d-2)-linear form treating the first 2 arguments fixed and the last (d-2) taking values from V. It can be easily verified that this (d-2)-linear form corresponds to the (d-2)-homogeneous polynomial:

$$\frac{1}{d(d-1)} \cdot \frac{\partial^2 f}{\partial x_l \partial x_j}$$

Thus, the LHS of equation (1) corresponds to the following (d-2)-homogeneous polynomial:

$$\frac{1}{d(d-1)} \cdot \sum_{l=1}^{n} M_{li} \frac{\partial^2 f}{\partial x_l \partial x_j} = \frac{1}{d(d-1)} \cdot \sum_{l=1}^{n} M_{li} J_{jl} = \frac{1}{d(d-1)} \cdot (JM)_{ji}$$

Similarly, the RHS of equation (1) corresponds to $\frac{1}{d(d-1)} \cdot (JM)_{ij}$. Since equation (1) holds for all i, j we get $(JM)^T = JM$.

It was conjectured in [4] that if $d \geq 3$ and (V, Θ) is a regular *d*-linear space over the field K then $\dim_K \operatorname{Cent}(V, \Theta) \leq \dim_K V$. In this paper we construct an infinite family of *cubic* forms (*i.e.* for d = 3) which are exceptions to the conjecture. In these counter examples the lower bound on the fraction $\frac{\dim_K \operatorname{Cent}(V, \Theta)}{\dim_K V}$ can be made arbitrarily close to 2.

2. The Counter Example

The following theorem summarizes the construction of the counter examples.

Theorem 2.1. Let $r \geq 3$. Consider the cubic polynomial:

$$f(\overline{z},\overline{b}) := \sum_{1 \le i \le j \le r} z_{i,j} b_i b_j$$
 .

Let (V, Θ) be the 3-linear space corresponding to f over a field K with $char(K) \neq 2, 3$. Then

(1) (V, Θ) is regular and indecomposable.

(2)
$$n := \dim_K V = r + \frac{r(r+1)}{2}$$
 and $\dim_K Cent(V, \Theta) \ge r^2 + 1$. Thus,
$$\frac{\dim_K Cent(V, \Theta)}{\dim_K V} \ge 2 - \frac{6r - 2}{r^2 + 3r} > 1$$
.

Proof. Let $s := \frac{r(r+1)}{2}$. We will use lemma 1.6 to compute the structure of $\operatorname{Cent}(V, \Theta)$. As in the proof of lemma 1.6, let $J = \left(\frac{\partial^2 f}{\partial x_i \partial x_j}\right)$ be the Hessian matrix of f. Fix a K-basis of V as $e_i = (\text{an } n \times 1 \text{ vector with } i\text{-th entry } 1 \text{ and the rest zeros})$ and for any $t \in \operatorname{End}_K(V)$ define a corresponding matrix M whose $i\text{-th column is } te_i$ for all $1 \leq i \leq n$. Note that the following relation holds: for any $v \in V$, tv = Mv. We will show that if $t \in \operatorname{Cent}(V, \Theta)$ then M is of a very special form: Claim 2.1.1. If $t \in Cent(V, \Theta)$ then for some $c \in K$, $A \in K^{s \times r}$

$$M = cI + \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix}$$

Consequently, (V, Θ) is indecomposable and $Cent(V, \Theta) \cong K \oplus \mathcal{N}$ where \mathcal{N} is a commutative nil algebra in which product of any two elements vanish.

Proof of Claim 2.1.1. From the definition, $t \in \text{Cent}(V, \Theta)$ iff

$$\Theta\left(M\begin{pmatrix}z_{1,*}\\b_{1,*}\end{pmatrix},\begin{pmatrix}z_{2,*}\\b_{2,*}\end{pmatrix},\begin{pmatrix}z_{3,*}\\b_{3,*}\end{pmatrix}\right) = \Theta\left(\begin{pmatrix}z_{1,*}\\b_{1,*}\end{pmatrix},M\begin{pmatrix}z_{2,*}\\b_{2,*}\end{pmatrix},\begin{pmatrix}z_{3,*}\\b_{3,*}\end{pmatrix}\right)$$
(2)

where for all $1 \le i \le 3$, $z_{i,*}$ represents the column vector (having s entries):

$$(z_{i,1,1} \ z_{i,1,2} \ \cdots \ z_{i,r-1,r} \ z_{i,r,r})^T$$

and similarly $b_{i,*}$ represents the column vector (having r entries):

$$\begin{pmatrix} b_{i,1} & \cdots & b_{i,r} \end{pmatrix}^T$$

Remember that Θ is the natural 3-linear form obtained from f, so we intend to associate the $z_{i,j,k}$ component to the $z_{j,k}$ variable of f and the $b_{i,j}$ component to the b_j variable. In equation form this yields:

$$\Theta(v, v, v) = f(\overline{z}, \overline{b}) = \sum_{1 \le i \le j \le r} z_{i,j} b_i b_j$$

where $v := z_{1,1}e_1 + z_{1,2}e_2 + \ldots + z_{r-1,r}e_{s-1} + z_{r,r}e_s + b_1e_{s+1} + \ldots + b_re_n$.

Let us compare the coefficient of $z_{3,i,i}$ on both sides of equation (2) to get:

$$\frac{1}{3}\tau(b_{1,i})b_{2,i} = \frac{1}{3}b_{1,i}\tau(b_{2,i})$$
 where $\tau(.)$ is the effect of M .

As this equation holds for all values of $z_{1,*}$, $b_{1,*}$, $z_{2,*}$, $b_{2,*}$ we obtain that $\tau(b_{1,i}) = c_i b_{1,i}$ for some $c_i \in K$. Now compare the coefficients of $z_{3,i,j}$ for i < j on both sides of equation (2):

$$\frac{1}{6}(\tau(b_{1,i})b_{2,j} + \tau(b_{1,j})b_{2,i}) = \frac{1}{6}(b_{1,i}\tau(b_{2,j}) + b_{1,j}\tau(b_{2,i}))$$
$$\Rightarrow c_i b_{1,i} b_{2,j} + c_j b_{1,j} b_{2,i} = c_j b_{1,i} b_{2,j} + c_i b_{1,j} b_{2,i} .$$

This forces $c_i = c_j$ and hence $c_1 = \cdots = c_r =: c \in K$. Thus, the last r rows of (M - cI) are zero.

Note that equation (2) holds if we substitute (M - cI) instead of M. We will keep using $\tau(.)$ as the effect of (M - cI). Let us compare coefficients of $b_{3,j}$ on both sides of this modified form of equation (2):

$$\frac{1}{3}(\tau(z_{1,j,j})b_{2,j} + z_{2,j,j}\tau(b_{1,j})) + \frac{1}{6}\sum_{\substack{i=1\\i\neq j}}^{r}(\tau(z_{1,i,j})b_{2,i} + z_{2,i,j}\tau(b_{1,i}))$$

Centers of higher degree forms

$$= \frac{1}{3}(\tau(z_{2,j,j})b_{1,j} + z_{1,j,j}\tau(b_{2,j})) + \frac{1}{6}\sum_{\substack{i=1\\i\neq j}}^{r}(\tau(z_{2,i,j})b_{1,i} + z_{1,i,j}\tau(b_{2,i})) + \frac{1}{6}\sum_{\substack{i=1\\i\neq j}}^{r}(\tau(z_{2,i})b_{1,i})$$

This expression can be considerably simplified by observing that the last r rows of (M-cI) are zero and hence $\tau(b_{*,*}) = 0$:

$$\frac{1}{3}\tau(z_{1,j,j})b_{2,j} + \frac{1}{6}\sum_{\substack{i=1\\i\neq j}}^{r}\tau(z_{1,i,j})b_{2,i} = \frac{1}{3}\tau(z_{2,j,j})b_{1,j} + \frac{1}{6}\sum_{\substack{i=1\\i\neq j}}^{r}\tau(z_{2,i,j})b_{1,i} \ .$$

Again, as this equation holds for all values of $z_{1,*}$, $b_{1,*}$, $z_{2,*}$, $b_{2,*}$ we deduce that $\tau(z_{1,i,j})$ is only a linear combination of $b_{1,k}$'s and has no $z_{1,*}$. Thus,

$$(M - cI) = \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix}_{n \times n}$$
 where $A \in K^{s \times r}$.

Since the product of any two such matrices is zero we immediately get the structure of $\operatorname{Cent}(V, \Theta)$ as claimed. Thus, $\operatorname{Cent}(V, \Theta)$ is a local ring and by lemma 1.5 we also deduce that Θ is an indecomposable cubic form.

Now we are ready to estimate the dimension of $Cent(V, \Theta)$. By lemma 1.6:

• $\begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} \in \operatorname{Cent}(V, \Theta)$ if and only if $J \cdot \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix}$ is a symmetric matrix.

• J in block form looks like $\begin{pmatrix} 0 & B^T \\ B_{r \times s} & Z_{r \times r} \end{pmatrix}$.

$$\Rightarrow J \cdot \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0_{s \times s} & 0_{s \times r} \\ 0_{r \times s} & B_{r \times s} \cdot A_{s \times r} \end{pmatrix} .$$

$$\Rightarrow \begin{pmatrix} 0 & A \\ 0 & 0 \end{pmatrix} \in \operatorname{Cent}(V, \Theta) \text{ iff } B_{r \times s} \cdot A_{s \times r} \text{ is a symmetric matrix.}$$

This gives us the following $\frac{r(r-1)}{2}$ constraints: for all $1 \le i < j \le r$, $(BA)_{ij} = (BA)_{ji}$. Since each nonzero entry of B is from the set $\{b_1, \ldots, b_r, 2b_1, \ldots, 2b_r\}$ we deduce that each constraint $(BA)_{ij} = (BA)_{ji}$ gives at most r linear equations in elements of A. So we have at most $\frac{r(r-1)}{2} \cdot r$ linear equations in elements of A whereas the number of elements in A is sr. Thus, dimension of the solution space for A is at least $sr - \frac{r(r-1)}{2} \cdot r = r^2$. Hence, $\dim_K \operatorname{Cent}(V, \Theta) \ge r^2 + 1$.

The only thing left to prove is that (V, Θ) is regular.

Claim 2.1.2. (V, Θ) is a regular 3-linear space.

Proof of Claim 2.1.2. Following the notation of equation (2) suppose $v_1 \in V$ is given as: $\binom{z_{1,*}}{b_{1,*}}$. If $z_{1,i,j} \neq 0$ then define $v_2 =$ (a column vector having all zeros except $b_{2,i} = 1$)

and $v_3 = (a \text{ column vector having all zeros except } b_{3,j} = 1)$. Since Θ is induced by f we obtain:

$$\Theta(v_1, v_2, v_3) = \frac{1}{3} z_{1,i,j} \text{ or } \frac{1}{6} z_{1,i,j} \text{ depending on whether } i = j \text{ or not.}$$

If $b_{1,i} \neq 0$ then define $v_2 = (a \text{ column vector having all zeros except } b_{2,i} = 1)$ and $v_3 = (a \text{ column vector having all zeros except } z_{3,i,i} = 1)$. Again we get:

$$\Theta(v_1, v_2, v_3) = \frac{1}{3}b_{1,i}$$

Thus, for all nonzero $v_1 \in V$ one of the above two definitions will give $v_2, v_3 \in V$ such that $\Theta(v_1, v_2, v_3) \neq 0$. By definition this means that (V, Θ) is regular. \Box

This completes the description of the counter example.

Interestingly, cubic forms like f can capture the graph isomorphism problem. That is, given two (finite) graphs G_1 , G_2 we can effectively construct two cubic forms f_{G_1} , f_{G_2} such that:

$$G_1 \cong G_2 \iff f_{G_1} \cong f_{G_2}$$

For further details see sections 6 and 7 of [1].

Finally, we would like to pose the following question: Given a *d*-linear space (V, Θ) (where d > 2)

is
$$\dim_K \operatorname{Cent}(V, \Theta) \le (d-1) \cdot \dim_K V$$
?

Acknowledgement

I would like to thank Susanne Pumpluen for many useful email discussions and for reviewing a preliminary version of the paper.

REFERENCES

- M. Agrawal and N. Saxena, Automorphisms of Finite Rings and Applications to Complexity of Problems, Proceedings of Symposium of Theoretical Aspects of Computer Science, Lecture Notes in Computer Science (2005) 1-17.
- D. Harrison, A Grothendieck ring of higher degree forms, Journal of Algebra 35 (1975) 123-138.
- D. K. Harrison and B. Pareigis, Witt rings of higher degree forms, Communications in Algebra 16(6) (1988) 1275-1313.
- M. O'Ryan and D. B. Shapiro, Centers of higher degree forms, Linear Algebra Appl. 371 (2003) 301-314.
- 5. C. Rupprecht, Cohomological invariants for higher degree forms, PhD Thesis, Universität Regensburg (2003).