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Let Θ be a symmetric d-linear form on a vector space V of dimension n over a field
K. Its center, Cent(V, Θ), is the analog of the space of symmetric matrices for a bilinear
form. If d > 2, the center is a commutative subalgebra of EndK(V ). It was conjectured
in [4] that the center has dimension at most n and a proof was given for n ≤ 5. We
construct counter examples to this conjecture. We give an infinite family of cubic forms
{(Vr, Θr)}r≥3 such that for any ǫ ∈ (0, 1) there exists r0(ǫ) having the property:

for all r ≥ r0(ǫ), dimKCent(Vr, Θr) > (1 + ǫ) · dimKVr

1. Preliminaries

We first collect the definitions related to d-linear forms following [4]. Suppose V is a
vector space over a field K. A symmetric 2-linear form Θ : V ×V → K has a geometrical
interpretation as an inner product on V . The 2-linear form Θ induces a quadratic form
φ : V → K defined by: φ(v) = Θ(v, v) and conversely a quadratic form φ induces a
2-linear form: 2Θ(u, v) = φ(u + v) − φ(u) − φ(v) when char K 6= 2. These concepts can
be generalized to higher dimensions d.

Definition 1.1. A d-linear space over K is a pair (V, Θ) where V is a finite dimensional
K-vector space and Θ : V × · · · × V → K is a symmetric d-linear form. That is, Θ is
K-linear in each of its slots and it is invariant under all permutations of the slots.

When char K = 0 or char K > d, these d-linear spaces are in one-one correspondence
to d-homogeneous polynomials in K[x1, . . . , xn] where n := dimKV . This can be seen by
fixing a K-basis e1, . . . , en of V and defining φ(v) := Θ(v, . . . , v) where v = x1e1 + . . . +
xnen, then φ is a d-homogeneous polynomial in K[x1, . . . , xn].

Two d-linear spaces (V, Θ), (V ′, Θ′) are isomorphic if there is an invertible linear map
t : V → V ′ such that Θ′(tv1, . . . , tvd) = Θ(v1, . . . , vd) for every v1, . . . , vd ∈ V .

A notion of decomposability of d-linear spaces can be defined as follows:

Definition 1.2. The orthogonal sum (V1, Θ1) ⊥ (V2, Θ2) of two spaces is the d-linear
space on V1 ⊕ V2 with form Θ1 ⊥ Θ2 defined as:

(Θ1 ⊥ Θ2)(u1 + v1, . . . , ud + vd) := Θ1(u1, . . . , ud) + Θ2(v1, . . . , vd)
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where, ui ∈ V1 and vi ∈ V2. A d-linear space (V, Θ) is decomposable if (V, Θ) ∼= (V1, Θ1) ⊥
(V2, Θ2) for some nonzero spaces (V1, Θ1), (V2, Θ2).

On the level of homogeneous polynomials the sum Θ1 ⊥ Θ2 corresponds to (φ1 ⊥
φ2)(X1, X2) = φ1(X1) + φ2(X2) where X1, X2 are disjoint set of variables.

A d-homogeneous polynomial φ whose number of variables cannot be reduced by a
linear change of variables corresponds to a regular d-linear space (V, Θ).

Definition 1.3. (V, Θ) is said to be regular if Θ(v, V, . . . , V ) = 0 implies v = 0. The
expression Θ(v, V, . . . , V ) = 0 is a shorthand for: ∀v2, . . . , vd ∈ V, Θ(v, v2, . . . , vd) = 0.

The notion of symmetric matrices for bilinear forms generalizes to the center for higher
dimensional forms.

Definition 1.4. The center Cent(V, Θ) of a d-linear space (V, Θ) is defined as:

{t ∈ EndK(V ) | Θ(tv1, v2, . . . , vd) = Θ(v1, tv2, v3, . . . , vd) for all v1, . . . , vd ∈ V }.

The following properties of the center were first proved in [2]:

Lemma 1.5. Suppose (V, Θ) is a regular d-linear space where d ≥ 3.

(1) Cent(V, Θ) is a commutative K-subalgebra of EndKV .

(2) (V, Θ) is indecomposable if and only if Cent(V, Θ) is local.

The following property of the center (see page 1277 of [3]) is useful in computing the
structure. We provide the proof for the sake of completeness.

Lemma 1.6. Let (V, Θ) be a d-linear space and let n := dimKV . Then

Cent(V, Θ) ∼=
{

M ∈ Kn×n|(JM)T = JM
}

where J =
(

∂2f

∂xi∂xj

)

is the Hessian matrix of the d-homogeneous polynomial f(x1, . . . , xn)

corresponding to (V, Θ).

Proof. Let us fix a K-basis {ei}1≤i≤n of V such that ei is an n × 1 vector having all
zeros except a 1 at the i-th position. Suppose t ∈ Cent(V, Θ) then by definition for all
1 ≤ i, j ≤ n:

∀v3, . . . , vd ∈ V, Θ(tei, ej, v3, . . . , vd) = Θ(ei, tej, v3, . . . , vd) (1)

Let M be a matrix whose i-th column is equal to tei, for all 1 ≤ i ≤ n. Thus, LHS of
equation (1) is

Θ

((

n
∑

l=1

Mliel

)

, ej, v3, . . . , vd

)

=
n
∑

l=1

MliΘ(el, ej, v3, . . . , vd)
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Now Θ(el, ej, v3, . . . , vd) is a (d − 2)-linear form treating the first 2 arguments fixed and
the last (d−2) taking values from V . It can be easily verified that this (d−2)-linear form
corresponds to the (d − 2)-homogeneous polynomial:

1

d(d − 1)
·

∂2f

∂xl∂xj

Thus, the LHS of equation (1) corresponds to the following (d− 2)-homogeneous polyno-
mial:

1

d(d − 1)
·

n
∑

l=1

Mli

∂2f

∂xl∂xj

=
1

d(d − 1)
·

n
∑

l=1

MliJjl =
1

d(d − 1)
· (JM)ji

Similarly, the RHS of equation (1) corresponds to 1
d(d−1)

·(JM)ij. Since equation (1) holds

for all i, j we get (JM)T = JM .

It was conjectured in [4] that if d ≥ 3 and (V, Θ) is a regular d-linear space over the
field K then dimKCent(V, Θ) ≤ dimKV . In this paper we construct an infinite family
of cubic forms (i.e. for d = 3) which are exceptions to the conjecture. In these counter

examples the lower bound on the fraction dimKCent(V,Θ)
dimKV

can be made arbitrarily close to 2.

2. The Counter Example

The following theorem summarizes the construction of the counter examples.

Theorem 2.1. Let r ≥ 3. Consider the cubic polynomial:

f(z, b) :=
∑

1≤i≤j≤r

zi,jbibj .

Let (V, Θ) be the 3-linear space corresponding to f over a field K with char(K) 6= 2, 3.
Then

(1) (V, Θ) is regular and indecomposable.

(2) n := dimKV = r + r(r+1)
2

and dimKCent(V, Θ) ≥ r2 + 1. Thus,

dimKCent(V, Θ)

dimKV
≥ 2 −

6r − 2

r2 + 3r
> 1 .

Proof. Let s := r(r+1)
2

. We will use lemma 1.6 to compute the structure of Cent(V, Θ). As

in the proof of lemma 1.6, let J =
(

∂2f

∂xi∂xj

)

be the Hessian matrix of f . Fix a K-basis of

V as ei = (an n×1 vector with i-th entry 1 and the rest zeros) and for any t ∈ EndK(V )
define a corresponding matrix M whose i-th column is tei for all 1 ≤ i ≤ n. Note that
the following relation holds: for any v ∈ V, tv = Mv. We will show that if t ∈ Cent(V, Θ)
then M is of a very special form:
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Claim 2.1.1. If t ∈ Cent(V, Θ) then for some c ∈ K, A ∈ Ks×r

M = cI +

(

0 A

0 0

)

.

Consequently, (V, Θ) is indecomposable and Cent(V, Θ) ∼= K ⊕N where N is a commu-
tative nil algebra in which product of any two elements vanish.

Proof of Claim 2.1.1. From the definition, t ∈ Cent(V, Θ) iff

Θ

(

M

(

z1,∗

b1,∗

)

,

(

z2,∗

b2,∗

)

,

(

z3,∗

b3,∗

))

= Θ

((

z1,∗

b1,∗

)

,M

(

z2,∗

b2,∗

)

,

(

z3,∗

b3,∗

))

(2)

where for all 1 ≤ i ≤ 3, zi,∗ represents the column vector (having s entries):

(

zi,1,1 zi,1,2 · · · zi,r−1,r zi,r,r

)T

and similarly bi,∗ represents the column vector (having r entries):

(

bi,1 · · · bi,r

)T

Remember that Θ is the natural 3-linear form obtained from f , so we intend to associate
the zi,j,k component to the zj,k variable of f and the bi,j component to the bj variable. In
equation form this yields:

Θ(v, v, v) = f(z, b) =
∑

1≤i≤j≤r

zi,jbibj

where v := z1,1e1 + z1,2e2 + . . . + zr−1,res−1 + zr,res + b1es+1 + . . . + bren .

Let us compare the coefficient of z3,i,i on both sides of equation (2) to get:

1

3
τ(b1,i)b2,i =

1

3
b1,iτ(b2,i) where τ(.) is the effect of M .

As this equation holds for all values of z1,∗, b1,∗, z2,∗, b2,∗ we obtain that τ(b1,i) = cib1,i

for some ci ∈ K. Now compare the coefficients of z3,i,j for i < j on both sides of equation
(2):

1

6
(τ(b1,i)b2,j + τ(b1,j)b2,i) =

1

6
(b1,iτ(b2,j) + b1,jτ(b2,i))

⇒ cib1,ib2,j + cjb1,jb2,i = cjb1,ib2,j + cib1,jb2,i .

This forces ci = cj and hence c1 = · · · = cr =: c ∈ K. Thus, the last r rows of (M − cI)
are zero.

Note that equation (2) holds if we substitute (M − cI) instead of M . We will keep
using τ(.) as the effect of (M − cI). Let us compare coefficients of b3,j on both sides of
this modified form of equation (2):

1

3
(τ(z1,j,j)b2,j + z2,j,jτ(b1,j)) +

1

6

r
∑

i=1

i6=j

(τ(z1,i,j)b2,i + z2,i,jτ(b1,i))
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=
1

3
(τ(z2,j,j)b1,j + z1,j,jτ(b2,j)) +

1

6

r
∑

i=1

i6=j

(τ(z2,i,j)b1,i + z1,i,jτ(b2,i)) .

This expression can be considerably simplified by observing that the last r rows of (M−cI)
are zero and hence τ(b∗,∗) = 0:

1

3
τ(z1,j,j)b2,j +

1

6

r
∑

i=1

i6=j

τ(z1,i,j)b2,i =
1

3
τ(z2,j,j)b1,j +

1

6

r
∑

i=1

i6=j

τ(z2,i,j)b1,i .

Again, as this equation holds for all values of z1,∗, b1,∗, z2,∗, b2,∗ we deduce that τ(z1,i,j)
is only a linear combination of b1,k’s and has no z1,∗. Thus,

(M − cI) =

(

0 A

0 0

)

n×n

where A ∈ Ks×r .

Since the product of any two such matrices is zero we immediately get the structure of
Cent(V, Θ) as claimed. Thus, Cent(V, Θ) is a local ring and by lemma 1.5 we also deduce
that Θ is an indecomposable cubic form. �

Now we are ready to estimate the dimension of Cent(V, Θ). By lemma 1.6:

•

(

0 A

0 0

)

∈ Cent(V, Θ) if and only if J ·

(

0 A

0 0

)

is a symmetric matrix.

• J in block form looks like

(

0 BT

Br×s Zr×r

)

.

⇒ J ·

(

0 A

0 0

)

=

(

0s×s 0s×r

0r×s Br×s · As×r

)

.

⇒

(

0 A

0 0

)

∈ Cent(V, Θ) iff Br×s · As×r is a symmetric matrix.

This gives us the following r(r−1)
2

constraints: for all 1 ≤ i < j ≤ r, (BA)ij = (BA)ji.
Since each nonzero entry of B is from the set {b1, . . . , br, 2b1, . . . , 2br} we deduce that each
constraint (BA)ij = (BA)ji gives at most r linear equations in elements of A. So we have

at most r(r−1)
2

· r linear equations in elements of A whereas the number of elements in A

is sr. Thus, dimension of the solution space for A is at least sr − r(r−1)
2

· r = r2. Hence,
dimKCent(V, Θ) ≥ r2 + 1.

The only thing left to prove is that (V, Θ) is regular.

Claim 2.1.2. (V, Θ) is a regular 3-linear space.

Proof of Claim 2.1.2. Following the notation of equation (2) suppose v1 ∈ V is given as:
(

z1,∗

b1,∗

)

. If z1,i,j 6= 0 then define v2 = (a column vector having all zeros except b2,i = 1)
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and v3 = (a column vector having all zeros except b3,j = 1). Since Θ is induced by f we
obtain:

Θ(v1, v2, v3) =
1

3
z1,i,j or

1

6
z1,i,j depending on whether i = j or not.

If b1,i 6= 0 then define v2 = (a column vector having all zeros except b2,i = 1) and
v3 = (a column vector having all zeros except z3,i,i = 1). Again we get:

Θ(v1, v2, v3) =
1

3
b1,i

Thus, for all nonzero v1 ∈ V one of the above two definitions will give v2, v3 ∈ V such
that Θ(v1, v2, v3) 6= 0. By definition this means that (V, Θ) is regular. �

This completes the description of the counter example.

Interestingly, cubic forms like f can capture the graph isomorphism problem. That is,
given two (finite) graphs G1, G2 we can effectively construct two cubic forms fG1

, fG2

such that:
G1

∼= G2 ⇐⇒ fG1

∼= fG2

For further details see sections 6 and 7 of [1].

Finally, we would like to pose the following question: Given a d-linear space (V, Θ) (where
d > 2)

is dimKCent(V, Θ) ≤ (d − 1) · dimKV ?
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