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Abstract
The motivation for this work comes from two problems– test algebraic independence of arith-

metic circuits over a field of small characteristic, and generalize the structural property of algeb-
raic dependence used by (Kumar, Saraf CCC’16) to arbitrary fields.

It is known that in the case of zero, or large characteristic, using a classical criterion based
on the Jacobian, we get a randomized poly-time algorithm to test algebraic independence. Over
small characteristic, the Jacobian criterion fails and there is no subexponential time algorithm
known. This problem could well be conjectured to be in RP, but the current best algorithm
puts it in NP#P (Mittmann, Saxena, Scheiblechner Trans.AMS’14). Currently, even the case of
two bivariate circuits over F2 is open. We come up with a natural generalization of Jacobian
criterion, that works over all characteristic. The new criterion is efficient if the underlying
inseparable degree is promised to be a constant. This is a modest step towards the open question
of fast independence testing, over finite fields, posed in (Dvir, Gabizon, Wigderson FOCS’07).

In a set of linearly dependent polynomials, any polynomial can be written as a linear com-
bination of the polynomials forming a basis. The analogous property for algebraic dependence
is false, but a property approximately in that spirit is named as “functional dependence” in
(Kumar, Saraf CCC’16) and proved for zero or large characteristic. We show that functional
dependence holds for arbitrary fields, thereby answering the open questions in (Kumar, Saraf
CCC’16). Following them we use the functional dependence lemma to prove the first exponen-
tial lower bound for locally low algebraic rank circuits for arbitrary fields (a model that strongly
generalizes homogeneous depth-4 circuits). We also recover their quasipoly-time hitting-set for
such models, for fields of characteristic smaller than the ones known before.

Our results show that approximate functional dependence is indeed a more fundamental
concept than the Jacobian as it is field independent. We achieve the former by first picking a
“good” transcendence basis, then translating the circuits by new variables, and finally approxim-
ating them by truncating higher degree monomials. We give a tight analysis of the “degree” of
approximation needed in the criterion. To get the locally low algebraic rank circuit applications
we follow the known shifted partial derivative based methods.
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75:2 Algebraic independence

1 Introduction
Algebraic dependence is a fundamental concept in algebra that captures algebraic/polyno-
mial relationship of objects like numbers, polynomials, rational functions or power series,
over some field. Here we define algebraic dependence of polynomials, since in this work
we deal only with polynomials. Polynomials f1, . . . , fm ∈ F[x1, . . . , xn] are called algebraic-
ally dependent over field k if and only if there exists a nonzero polynomial A(y1, . . . , ym) ∈
F[y1, . . . , ym] such that A(f1, . . . , fm) = 0 and such an A is called an annihilating polyno-
mial of f1, . . . , fm. If no such nonzero polynomial A exists, the given polynomials are called
algebraically independent over k.

For example, f1 = (x+y)2 and f2 = (x+y)3 are algebraically dependent over any field, as
y3

1−y2
2 is an annihilating polynomial. Polynomials x+y and xp+yp are dependent over Fp,

but independent over Q. Monomials x1, . . . , xn are examples of algebraically independent
polynomials over any field.

Algebraic dependence can be viewed as a generalization of linear dependence as the
former captures algebraic relationships of any degree, whereas the latter captures linear re-
lationships. Algebraic dependence shares a few combinatorial properties (known as matroid
properties [38]) with linear dependence. For example, if a set of polynomials are algebraic-
ally independent then any subset of them are algebraically independent. The transcendence
degree (trdeg or algRank) of a set of polynomials is defined as the maximal number of al-
gebraically independent polynomials and it is well defined thanks to the matroid properties.
The concepts of rank and basis in linear algebra have analogs here as transcendence degree
and transcendence basis respectively.

The concept of algebraic independence is useful in several areas of mathematics: field the-
ory, commutative algebra, algebraic geometry, invariant theory, theory of algebraic matroids.
It has found interesting applications in computer science as well. For example, [35] used
algebraic dependence in analysis of program invariants of arithmetic straight line programs.
To prove lower bounds on the formula size of determinant, [25] also used transcendence de-
gree as a tool. [10, 12] constructed explicit deterministic randomness extractors for sources
which are polynomial maps over finite fields. [11] gives a cryptography application, using
algebraic characterization of entropy of low degree polynomials. [6, 2, 34] used it for design-
ing faster deterministic hitting-sets for some interesting cases of the polynomial identity
testing problem (PIT) and proving circuit lower bounds. [8] used algebraic independence of
polynomials to show the hardness of a parameterized counting problem.

An example relevant to computer science is to compute the “entropy” of a given poly-
nomial map φ : (x1, . . . , xn) 7→ (f1, . . . , fn) in the space Fnq , where q is a power of p = 2
(more, generally, p grows as a polynomial in the input size). This turns out to be a question
of computing the transcendence degree of the polynomials f1, . . . , fn [10]. For constant p,
there are no good methods known. Our work improves the state of the art in this regime.

To discuss the complexity of algebraic independence testing, we have to specify the rep-
resentation of input polynomials. An arithmetic circuit is a directed acyclic graph consisting
of addition (+) and multiplication (×) gates as nodes, takes variables x1, . . . , xn and field
constants as input (leaves), and outputs a polynomial f(x1, . . . , xn). This is a succinct
representation of multivariate polynomials, as polynomials of high degree (or having many
monomials) can be represented by small circuits.

Perron [39, 40] gave a bound on the degree of the minimal annihilating polynomial,
proving that it is bounded by the product of the degrees of the input polynomials. This
bound was subsequently slightly improved in [26, 6]. Perron’s bound gives us the brute-
force approach. It reduces the problem of computing annihilating polynomial to solving
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an exponential sized system of linear equations and this can be done in PSPACE. Thus,
PSPACE is the “trivial” complexity upper bound for algebraic independence testing, over
any field.

The degree bound on the minimal annihilating polynomial happens to be tight. We can
give examples of n quadratic polynomials, such that the degree of their minimal annihilating
polynomial is 2n [26]. There is a hardness result known [26], that shows that computing
even the constant term of the annihilating polynomial is NP-hard, and that annihilating
polynomial is not of polynomial size in general, unless the polynomial hierarchy collapses.

It turns out that the decision version, i.e. checking if the polynomials are algebraically
independent, is much more efficient over zero or large characteristic, even when the poly-
nomials are succinctly represented as circuits. The key idea is a classical result, known as
the Jacobian criterion [23, 6]. It says that if the characteristic of the field is zero, or large
enough (compared to the product of degrees of the given polynomials), then the transcend-
ence degree equals the linear rank of the Jacobian matrix of the polynomials. This leads
to a simple randomized poly-time algorithm for checking algebraic independence, as we can
get the circuits of the partial derivatives efficiently [5] and then use random evaluations
to compute the rank of the Jacobian matrix. This final step of randomized evaluation is
possible due to the Schwartz-Zippel-DeMillo-Lipton lemma [44, 9, 49].

One direction of the Jacobian criterion (if the polynomials are algebraically dependent,
then their Jacobian matrix is not full rank) holds true for any characteristic. But the
converse fails if the characteristic is small compared to the product of the degrees of input
polynomials. For example, xp is algebraically independent of Fp, yet its derivative vanishes.
We remark here that if two algebraically independent polynomials over characteristic p have
zero Jacobian, then it does not mean that one of them is a p power. Consider, for example,
{xp−1y, xyp−1} over Fp for prime p > 2.

There are infinitely many input instances (set of polynomials), where the Jacobian cri-
terion fails, i.e. Jacobian vanishes even though the given polynomials are independent. Those
instances can be characterized by the notion of inseparable extension, that appears in Galois
theory, and is formally defined in Sec.2.1. For example, the field extension Fp(x)/Fp(xp) has
inseparable degree p as that many conjugates of p

√
xp in the splitting field are equal. This is

a hard algebraic situation with no good geometric interpretation. Such behavior is absent
over zero characteristic fields. So, positive characteristic requires inventing new concepts.

Naturally, we would like to come up with an efficient (randomized poly-time) algorithm
over small characteristic. Though the failure of Jacobian criterion over small characteristic
is known for long [15, 18], owing to the interest in algebraic independence from computer
science perspective, several recent papers [10, 26, 6] posed the complexity status of this
problem (whether it is in RP) as an open question. One curious aspect is that this problem
is one of the rare ones in computer science where the gap between the known time complexity
(EXP) and the conjectured one (RP) is that stark!

Talking about the two degrees. Let us consider a case where Jacobian criterion fails and
certifying independence gets tricky. Let m1m2 be coprime to p, and f1 = xpm1

1 , f2 = xm2
2 .

It is easy to deduce that the degree of the extension Fp(x1, x2)/Fp(f1, f2) is pm1m2. In fact,
the degree of the annihilating polynomial of {x1, f1, f2} (resp. {x2, f1, f2}) is pm1 (resp.m2).
However, the inseparable degree of the extension is only p, as the former annihilating poly-
nomial (i.e. ypm1

1 − y2) is a polynomial in yp1 but not in yp
2

1 . Thus, there are cases when
the inseparable degree can be much smaller, even O(1), compared to the extension degree.
Notice that, in general, the inseparable degree is a p-power that divides the extension degree,
which in turn is upper bounded by

∏
i deg(fi) (by Perron’s bound)– usually an exponen-
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75:4 Algebraic independence

tially large parameter. The methods developed in this work only depend on the underlying
inseparable degree, thus, our algorithm is expected to be much better than brute-force (in
many cases).

A criterion that works for all characteristic for a natural problem like testing algebraic
independence would be mathematically interesting. Computational implications of an effi-
cient Jacobian like criterion would include a possible generalization (to small characteristic)
of PIT or lower bound results [2], and algebraic extractors or entropy concepts [10].
Work done in case of finite fields. [37] gave a criterion that works over all fields, which
they namedWitt-Jacobian criterion. One key idea of the Witt-Jacobian criterion is to lift the
input polynomials from characteristic p ≥ 2 to a field of p-adics, which is zero characteristic.
Witt-Jacobian polynomial can be seen as a scaled up p-adic lift of Jacobian polynomial and
the criterion involves checking certain monomials (degeneracy testing; which looks hard)
rather than zero testing. The main object underlying the proof is the de Rham-Witt pro-
complex; a tool from modern algebraic-geometry (an excellent survey is [21]).

Witt-Jacobian criterion improved the complexity of independence testing problem, over
positive characteristic, from PSPACE to NP#P. In the hierarchy of complexity classes,
NP#P is far above RP; thus there is a huge gap between what we have and what we want.

Partial derivative (defined as formal operators on polynomials), that played a key role
in Jacobian criterion, behaves strangely over positive characteristic. Though it satisfies the
usual rules of derivatives like linearity, product rule and chain rule, one important difference
here is the fact that a non-constant polynomial can have a zero derivative. Another difference
is that the higher derivatives of order k ≥ p are zero for all polynomials over characteristic
p. Hasse-Schmidt derivatives are variants of usual derivatives, that were originally defined
by [20], and independently by [47], to tackle this problem. In computer science literature,
Hasse derivatives were used recently in coding theory (see [13] and the references therein),
and PIT or lower bounds via generalized versions of shifted partial derivatives [17, 16].
Background on PIT and circuit lower bounds. The problems of derandomization
of PIT and proving lower bounds, for explicit family of polynomials, are two fundamental
questions in complexity theory. The question of PIT asks to test whether the polynomial
computed by an arithmetic circuit is identically zero. This question can be studied in two
settings. In the whitebox setting we are allowed to see inside the circuit, whereas in the
blackbox setting we can only evaluate the circuit at some field points. The problem of
blackbox PIT is equivalent to the problem of designing hitting-sets efficiently. Hitting-set
is defined as follows. Let C be a class of polynomials in N variables over a field F. Then,
a set H ⊆ FN is called a hitting-set for the class C, if for every nonzero polynomial C ∈ C,
there exists an x ∈ H such that C(x) 6= 0. PIT has a randomized poly-time algorithm,
thanks to Schwartz-Zippel-DeMillo-Lipton lemma [44, 49, 9]. Derandomization of PIT is an
outstanding open question in complexity theory with several implications, including proving
arithmetic circuit lower bounds (refer to [4] & the survey [45]).

In the world of arithmetic complexity, we have strong structural results like depth re-
ductions [19, 4]. These results show that strong enough lower bound, or PIT, results for
homogeneous depth-4 (or general depth-3) circuits would give us exponential lower bounds
and quasipoly-time derandomized PIT for general circuits (up to VP). Recent years have
seen a fast growth in papers giving lower bound and PIT results for several special cases
of small depth arithmetic circuits [42, 43]. Although there are strong (almost exponential,
[33, 27]) lower bounds for homogeneous depth-4 circuits, the best known lower bounds for
non-homogeneous depth-4 circuits are only superlinear (see [41] & the references therein).
Circuits with locally low algebraic rank. Kumar & Saraf [34] defined a locally low
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algebraic rank circuit of degree n in N variables over F, denoted ΣΓ(k)ΣΠd, as: C =∑
i∈[T ] Γi(Qi1, . . . , Qit), where Qij is a sparse polynomial (all monomials are given expli-

citly) of degree at most d, algRank of {Qij | j ∈ [t]} is at most k, and Γi is an arbitrary
t-variate polynomial, for i ∈ [T ].

The size of C comprises N,n, T and the maximum sparsity of Qij ’s. Note that k ≤ N ,
and we will be interested in the cases when kd is somewhat restricted.

Interestingly, ΣΓ(n)ΣΠ subsumes homogeneous depth-4 circuits computing a degree n
polynomial, as for homogeneous circuits k ≤ t ≤ n and Γi is merely the product gate. Since
this class includes non-homogeneous circuits as well (where t can be arbitrarily larger than
k, n), it can be seen as a significant generalization of homogeneous depth-4.

This model subsumes certain other interesting models that were studied by [17, 2, 6] in
the context of lower bounds and PIT. Invariably, their methods need to assume that F has
characteristic zero or exponentially large (since partial derivatives are involved). Our goal
in this paper is to overcome such restrictions.

1.1 Our contribution and relation with previous works
Broadly, in this paper, we prove two main technical theorems, one about the algebraically
dependent polynomials and the other about algebraically independent polynomials. We ap-
ply these two theorems to obtain an algebraic independence testing algorithm, an arithmetic
circuit lower bound over arbitrary field and a PIT algorithm (over fields of characteristic
larger than the individual-degree of the polynomial). We now describe each of the results.
Algebraic dependence to approximate functional dependence. We show that over
arbitrary fields, algebraic dependence of polynomials f1, . . . , fm imply the existence of a
transcendence basis such that all the polynomials f1, . . . , fm can be obtained (upto a random
shift and a truncation) as a polynomial function of the basis elements (Thm.10). Essentially,
to obtain the desired polynomial, say fk, we truncate a polynomial function in the elements
of the basis upto the degree of fk. This generalizes the functional dependence result of [34,
Lem.3.1] which asserted the same over fields of zero (or large) characteristic.

We use a proof approach which is different from [34] to achieve the more general res-
ults. In the case of fields of zero characteristic, the subtle strength that this functional
dependence property possesses is that any transcendence basis serves the purpose, which
in general is false over positive characteristic. Our result explains this subtlety using the
concept of separating transcendence basis from Galois theory (Sec.2.1). With this, a simple
algebraic manipulation on the annihilating polynomial, and subspace of polynomial products
(Lem.12), yields a functional dependence up to any desired degree of approximation. (This
is a bit simpler than the approach of [34, Lem.2.4] where they approximate the roots of any
multivariate polynomial using [14, Lem.3.1]. Such methods also appear in classical analysis
under Implicit Function Theorems, see [31].)

Eg. {x1, x2, x1x
2
2} are algebraically dependent over F2. Pick random field elements a1, a2.

The shifted polynomials are {x1 + a1, x2 + a2, (x1 + a1)(x2
2 + a2

2)}. Clearly, (x2 + a2) is not
a function of the other two modulo the ideal 〈x〉2. However, (x1 + a1) is trivially a function
of the other two, namely, (x1 + a1) ≡ a−2

2 · (x1 + a1)(x2
2 + a2

2) mod 〈x〉2.
Algebraically independent polynomials - Criterion. The above example shows that
over fields of positive characteristic, an approximate functional dependence may exist even
in the case of algebraically independent polynomials. We overcome this issue and show
that the independence can be captured by truncating the polynomial function in the basis
elements upto a precise parameter, i.e. if we choose the truncation point to be greater
than that parameter, then algebraically independent polynomials cannot exhibit functional
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dependence (Thm.13). This parameter is actually the inseparable degree of an appropriate
field extension, which is a well studied concept in Galois theory (Sec.2.1).

Continuing the above example– {x1, x1x
2
2} are algebraically independent over F2. Pick

random field elements a1, a2. The shifted polynomials are {x1 + a1, (x1 + a1)(x2
2 + a2

2)}. It
can be verified that neither is a polynomial function of the other modulo the ideal 〈x〉3.
This becomes a certificate of algebraic independence. (Note that the inseparable degree of
F2(x1, x2)/F2(x1, x1x

2
2) is 2.)

When the inseparable degree is 1 (which means a separable extension), then looking at the
truncation upto the linear term of shifted basis elements would suffice. So, our result implies
that separable extension is precisely the case when the Jacobian works (an exposition can
be found in the full version). For higher inseparable degree t, our result can be reinterpreted
as giving a Jacobian like result: algebraically independent polynomials have F(z)-linearly
independent higher differentials (Sec.2.2), modulo a carefully chosen subspace Ut (Rmk.11).
This follows by considering the Taylor series, around a “generic” point z, whence, the func-
tional independence of polynomials shifted by z, implies the linear independence of shifted
polynomials modulo Ut. As shifted polynomials contain all the Hasse-Schmidt higher de-
rivatives (wrt x and evaluated at the point z), we deduce their F(z)-linear independence
modulo Ut.

Again, a key technical lemma used in finishing the proof is Lem.12 (subspace reduction),
which concerns the ideal theoretic properties of the subspace Ut. Basically, it helps us prove
that if {h1, . . . , hn} are polynomials with their degree(≤ t)-part having algebraically inde-
pendent leading monomials, and gn functionally depends on {g1, . . . , gn−1} (with truncation
beyond t), then some hi is functionally independent of {g1, . . . , gn}.
Application 1: Testing algebraic independence. An easy consequence of Thm.10 and
Thm.13 is that we get a randomized poly-time algorithm for testing algebraic independence
of polynomials over finite fields (say, Fq of characteristic p) in the cases when the inseparable
degree is constant. Since the latter is a p-power (Sec.2.1), our algorithm is interesting when
p is a constant. (Whenever required, we can assume wlog that the input is n circuits in n
variables over an algebraically closed field; see full version for simple proofs.)

I Theorem 1 (Independence testing). For circuits f ∈ Fq[x], we have a randomized poly(s,(
t+n
n

)
)-time algebraic independence testing algorithm, where the inseparable degree of the

field extension Fq(x)/Fq(f) is t (assuming f algebraically independent) & input size is s.

This covers a lot of interesting cases as the inseparable degree can be quite small even
in case of polynomials with exponential degree. As a simple example, take two bivariate
circuits of exponential degree over F2. Suppose they are independent and their Jacobian is
nonzero. Now if we square any one of these two, then Jacobian would fail as the inseparable
degree becomes 2. Previously known algorithms cannot deal with even such a simple case,
whereas we easily handle the case by trying our test with t = 2. In general, the inseparable
degree is upper bounded by Perron’s degree bound (product of degrees of given polynomials,
[40]), so in the worst-case our algorithm is exponential-time. (Witt-Jacobian criterion [37]
is exponential-time in all cases.) We illustrate the overall idea, and its comparison with
Jacobian criterion, in the figure in the conclusion (Sec.4).

An interesting by-product of the algorithm is that it computes the inseparable degree,
of the given independent polynomials, in the same time.
Application 2: Lower bound for locally low algebraic rank circuits. Using the
functional dependence result, we give an explicit family of polynomials in VNP of degree
n in N variables, where N = nO(1) such that any ΣΓ(n)ΣΠ circuit computing it has size
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NΩ(
√
n). We obtain this lower bound over arbitrary fields. This generalizes the lower bound

of [34, Thm.1.4] which itself was a strong generalization of the shifted partials based ho-
mogeneous depth-4 lower bounds [27] and Jacobian based lower bounds [2] (all over zero or
large characteristic). Since our functional dependence generalizes the key technical ingredi-
ent of [34] to arbitrary fields, we are able to get the same lower bound (for the same model
and hard polynomial family) over arbitrary fields. Formally,

I Theorem 2. Let F be any field. There exists a family {Pn} of polynomials in VNP, such
that Pn is a polynomial of degree n in N = nO(1) variables with 0, 1 coefficients, and for any
ΣΓ(k)ΣΠ circuit C, if k ≤ n and if C computes Pn over F, then Size(C) ≥ NΩ(

√
n).

Remark: As remarked by [34], the above model is challenging even for k = 2 (& was open
before us for small characteristic fields). Also, the proof goes through for any k = nO(1), as
long as one picks N as an appropriately large polynomial in n.

The proof of this theorem closely follows [34], and is sketched in the full version.
Application 3: Hitting-set for ΣΓ(k)ΣΠd circuits. We show that for any size-s cir-
cuit C ∈ ΣΓ(k)ΣΠd, where k, d = polylog(s), over fields of characteristic p > individual-
degree(C), there exists a quasipoly(s)-time hitting-set.

I Theorem 3. Let F be any field of characteristic p. There exists an exp(logO(1) s)-time
constructible hitting-set H ⊆ FN for size-s circuit C ∈ ΣΓ(k)ΣΠd with kd = logO(1) s,
assuming p > individual-degree(C) or p = 0.

Again, the proof follows [34]. For PIT, algebraic rank based models have already been
considered by [6, 2, 34]. Our result generalizes some of these results to smaller positive
characteristic (only requiring p > individual-degree(C)). The previous results required p >
dk, which is super-polynomial in the above regime. Our inability to remove this restriction
lies in the nature of shifted partials [17, Lem.4.13]. Eg. the dimension of shifted partials of
a p-power monomial xp

e1

1 · · ·xpenn is not that large over Fp.

2 Preliminaries: Jacobi, Galois and Hasse-Schmidt
We define the central object related to the testing of algebraic independence is the Jacobian.

I Definition 4 (Jacobian). The Jacobian of polynomials f = {f1, · · · , fm} in F[x1, · · · , xn]
is the matrix Jx(f) = (∂xjfi)m×n, where ∂xjfi := ∂fi/∂xj .

We state the classical Jacobian criterion [23, 6].

I Lemma 5 (Jacobian criterion). Let f ⊂ F[x] be a finite set of polynomials of degree at most
d, and trdegF f ≤ r. If char(F) = 0, or char(F) > dr, then trdegF f = rankF(x)Jx(f).

Previously, we saw some examples of polynomials over fields of smaller characteristic
where the Jacobian fails. Here is another nontrivial example: f = {x2

1x2 + x3
1, x1x

2
2 + x1x

5
2}

in F3[x1, x2] is a set of algebraically independent polynomials, but rankF3(x)Jx(f) = 1, and
hence the criterion fails.

2.1 Inseparability & separating transcendence basis
For this section, let E ⊇ F be fields. Failure of the Jacobian criterion can be explained using
the fundamental concept of inseparability from Galois theory [22].

I Definition 6. An f ∈ F[x] is separable if it has no multiple roots in its splitting field.

MFCS 2016



75:8 Algebraic independence

It is easy to prove that– For an irreducible f , separability is implied by the non-zeroness of
∂xf . Thus, if char(F) = 0, then any irreducible polynomial is separable. It further implies
that if char(F) = p > 0 then, an irreducible f is separable if and only if f /∈ F[xp]. We
have this notion of separability in case of field extensions as well. An algebraic extension
E/F is said to be separable if every element α ∈ E has a minimal polynomial over F that is
separable.

For polynomials f1, . . . , fm ∈ F[x1, . . . , xn], we deal with the extension F(x1, . . . , xn)/
F(f1, . . . , fm). This extension is algebraic iff trdeg(f)= n (by Lem.19, every xj depends on
f). In which case, the extension F(x)/F(f) is separable iff the minimal polynomial of xj over
F(f) is separable, for all j ∈ [n]. The latter, clearly, is the case when char(F) = 0. When
char(F) = p > 0, the extension is inseparable if there exists j ∈ [n], such that the minimal
polynomial of xj over F(f) lives in F(f)[yp]. Thus for every xj , we have an mj such that
xp

mj

j has a separable minimal polynomial over F(f).
The inseparable degree of the extension F(x)/F(f) is defined as the minimum pm such

that the minimal polynomial of xp
m

j over F(f) is separable, for all j ∈ [n]. We also associate
this inseparable degree with the set f .

In the case when f are algebraically dependent, we would like to use a “good” transcend-
ence basis. This is captured by:

I Definition 7 (Separating transcendence basis). A field extension E/F is called separably
generated if there exists an algebraically independent set (i.e. transcendence basis) S =
{f1, . . . , fr} ⊂ E such that E/F(S) is algebraic and separable.

S is called a separating transcendence basis of E/F.

It is a classical result that such bases exist for fields that we are interested in.

I Theorem 8. Consider a finite set of polynomials f ⊂ F[x]. If F is a finite field (resp. an
algebraically closed field) then there exists a separating transcendence basis, of F(f)/F, in f .

In case F is a zero characteristic field then every transcendence basis of f is a separating
one of the extension F(f)/F.

Proof. It is clear that if F has characteristic zero then there is no possibility of inseparability.
Let F be a finite (resp. algebraically closed) field. [30, Thm.7.20] shows that the extension

F(f)/F is separably generated. Furthermore, [30, Thm.7.18] shows that f contains a subset
that is a separating transcendence basis of the extension. J

Examples. Extension F3(x3)/F3 has {x3} as a separating transcendence basis. Consider
the two transcendence bases of the extension F3(x2, x3)/F3 – {x3} and {x2}. The latter is
a separating transcendence basis, but the former is not.

2.2 Taylor expansion at z, higher derivatives & differentials
We consider the application of shift (or translation) to our polynomials. We view this as
writing the Taylor expansion of a polynomial f(x) at a “generic” point z [16, Sec.C.1]. A
second view is that of computing the Hasse-Schmidt higher derivatives of f at the point z
[17, 13]. A third view is seeing the shifted polynomial as a Hasse-Schmidt differential [48].
We collect these equivalent viewpoints in a single definition.

I Definition 9 (Formal shift). We see f(x + z) as a polynomial in R := Fp(z)[x] where the
variables x1, . . . , xn are shifted respectively by the function field elements z1, . . . , zn.

Now the coefficient of m := x`1
1 · · ·x`nn in the Taylor-series expansion of f(x + z) can be

written as 1
`1!···`n!

∂(`1+···+`n)f

∂x
`1
1 ···∂x

`n
n

(z).
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This is called the Hasse-Schmidt derivative of f wrt m evaluated at the point z. It can
be denoted, by some abuse of notation, as ∂mf(x)|z.

Finally, we can see the formal shift as a Hasse-Schmidt differential, namely, f(x + z) =∑
mm · ∂mf(x)|z (sum over all monomials m in x).

Example. We have ∂2x2/∂x2 = 0 over F2, but ∂2x2/2!∂x2 = 1. Thus, Hasse-Schmidt
derivatives offer a natural solution to this vanishing problem.

This connection between the shifts and Hasse-Schmidt higher derivatives/ differentials
is what motivated us to search for the right framework to study algebraic independence.

Now the Jacobian criterion is given in terms of the first order derivatives of the poly-
nomials and the failure of Jacobian essentially exposes the inability of first order derivative
in capturing independence. Intuitively, it seems that going to higher derivatives may help.
The above connection points out that perhaps we need to look at higher degree terms (wrt
x) of f(x + z) to get an algebraic independence criterion in cases where Jacobian fails.
Eventually, we will see that the intuition is indeed true.
Operator H. For notational convenience, we define the non-constant part of f(x + z) up
to degree≤ t wrt x, as Htf := f≤t(x + z)− f(z).

This is easier to work with when we do manipulations modulo the ideal 〈x〉t+1
R .

3 Main structure theorems

We use the following standard notation in the paper:
1. F is an arbitrary field. F is its algebraic closure.
2. Fq is a finite field of size q and characteristic p ≥ 2.
3. Let R ⊇ S be a commutative ring extension over a field F, let v1, . . . , vm ∈ R and r ≥ 1.

Then 〈v1, . . . , vm〉rS is simply the set of all S-linear combinations of products vi1 · · · vir
(ij ’s in [m]). It is both an S-module and an F-vector space. (It is an ideal when R = S.)

4. For a polynomial h ∈ F[x], h≤d extracts out the degree≤ d part of h and returns it as
an element in F[x] again.

5. For a polynomial h ∈ F[x], h[≤d] extracts out the degree≤ d part of h and returns it as
a d+ 1 tuple, where for i ∈ [0 . . . d], i-th entry of the tuple contains h=i which is defined
as the homogeneous component of h of degree i.

3.1 Functional dependence for algebraically dependent polynomials
A fact about linear independence is that if f1, . . . , fm ∈ F[x] are linearly dependent, it also
implies that every polynomial can be written as a linear combination of the polynomials
in the basis. The question is whether the same can be extended to algebraic dependence:
Does algebraic dependence imply that all the polynomials can be written as a function of
the polynomials in the transcendence basis? It was shown in [34, Lem.3.1] that it is indeed
true (approximately) over fields of zero (and large) characteristic.

We generalize the property using a different proof approach and show that algebraic
dependence implies functional dependence over arbitrary fields (to arbitrary degree of ap-
proximation t).

I Theorem 10 (Functional dependence over arbitrary fields). Let f = {f1, . . . , fm} ⊂ F[x1, . . .,
xn] be a set of polynomials, where F is any field, and t ∈ N. If trdeg of {f1, . . . , fm}
is k, then there exist algebraically independent {g1, . . . , gk} ⊂ f , such that for random
a ∈ Fn, there are polynomials hi ∈ F[Y1, . . . , Yk] satisfying, ∀i ∈ [m], f≤ti (x + a) =
h≤ti (g1(x + a), . . . , gk(x + a)).
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I Remark. Clearly, Fn is an infinite space. What we mean here by a random a is “random
point in any sufficiently large, but finite, subset of the space”. It will be clear from the proof
that it would suffice to sample from any set of size at most exponential in the input size.
We skip the detailed estimate as in this paper merely existence of a is needed.

We will use z as a formal variable (n-tuple) and can fix it later to a suitable constant
a. To prove the theorem, we consider the ring R := F(z)[x] and its ideal I0 := 〈x〉R. The
ideal collects the non-constant linear polynomials. Now, define the ideal It := It+1

0 and
the quotient algebra Qt := R/It, i.e. we are filtering out, or truncating, all the terms of
degree > t. Now Qt can also be seen as a finite

(
n+t
n

)
dimensional vector space over F(z)

whose basis is monomials in x of degree at most t. In our theorems and proofs, most of the
operations happen in this quotient ring Qt for increasing t’s.

In our analysis, we plan to use the shifting of the variables in the evaluated annihilating
polynomial of {fi, g1, . . . , gk}, and it is clear that on applying the shifts, we will end up having
terms of the form (Htfi)j0(Htg1)j1 · · · (Htgk)jk (recall that in Qt, f(x + z) = f(z)+Htf(x)
). Now, note that due to the filtration in Qt, some of these terms will be equivalent to terms
involving Hr with r < t. We consider an appropriate subspace Ut ⊂ Qt generated by such
“higher” products, which we formally define as: U1 := {0} and

Ut := 〈Ht−1fi,Ht−1g1, . . . ,Ht−1gk〉2F(z) + · · ·+ 〈H1fi,H1g1, . . . ,H1gk〉tF(z) , t ≥ 2.

I Remark 11. In Qt, observe that, this is the same subspace as 〈Htfi,Htg1, . . . ,Htgk〉2F(z) +
· · · +〈Htfi, Htg1, . . . ,Htgk〉tF(z)

Pf. of Thm.10. Consider the set f := {f1, . . . , fm} ⊂ F[x] with algebraic rank k. If we
work over F, then Thm.8 guarantees the existence of a separating transcendence basis
{g1, . . . , gk} ⊆ f . Let g0 := fi for a fixed i ∈ [m]. Now we consider the separable an-
nihilating polynomial A(y) =

∑
e` ae`ye` of the set g := {g0, g1, . . . , gk}, and ae` ’s are

in F (e` is a (k + 1)-tuple (ej` | j ∈ [0 . . . k])). Thus, A(g) =
∑

e` ae`
∏k
j=0 gj(x)ej` =

0. We now apply the formal shift x 7→ x + z to get A(g0(x + z), . . . , gk(x + z)) = 0,
i.e.

∑
e` ae`

∏
j gj(x + z)ej` = 0.

We now study this relation in the algebra Qt. By Taylor series expansion, we know that
f(x + z) ≡ f(z) +Htf(x) in Qt, so we get

∑
e` ae`

∏
j(gj(z) +Htgj)ej` ≡ 0. The binomial

expansion gives a compact expression:∑
e`

ae`

∑
0≤s≤e`

(e`
s
)
· (Htg)s · ge`−s ≡ 0 .

Note that the contribution by s = 0 terms sum up to
∑

e` ae`
∏k
j=0 gj(z)ej` which is zero.

This implies that an F(z)-linear combination of the products of the form (Htg0)s0 · · · (Htgk)sk ,∑
j sj ≥ 1, vanishes in Qt. Now the key step is to separate out the terms linear in Htgj and

switch the sums, to obtain

Htg0 · g0(z)−1

(∑
e`

ae` · e0`g
e0`
0 · · · gek`k

)
+
∑
j∈[k]

Htgj · gj(z)−1

(∑
e`

ae` · ej`g
e0`
0 · · · gek`k

)

+ (higher terms with
∑
j

sj ≥ 2) ≡ 0 . (1)

Further, we argue using the minimality and separability of A (in terms of the first variable)
that the “linear” term Htg0 in the vanishing sum above has a non-zero coefficient: as it
would either mean a lower degree annihilating polynomial A :=

∑
e` ae`e0`y

e0`−1
0 ·ye1`

1 · · · yek`k
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i.e. contradicting the minimality, or that all the e0`’s are divisible by p (when F has charac-
teristic p) which means that fi does not depend separably on {g1, . . . , gk}; which contradicts
the fact that {g1, . . . , gk} is a separating transcendence basis.

Thus, we get that Htg0 lives in the F(z)-linear span of Htg1, . . . ,Htgk modulo the sub-
space generated by the higher terms of the summation in Eqn.1. So, Htg0 lives in the
F(z)-linear span of Htg1 . . . ,Htgk modulo the subspace Ut (Rmk.11) in Qt.

We got Htfi ∈ 〈Htg1, . . . ,Htgk〉F(z) + Ut. Now, we are in a position to apply Lem.12,
which essentially says that ifHrfn depends on higher order terms (in the sense of Eqn.1) then
it can be “dropped” from the ideal manipulations. Thus, we get thatHtfi ∈ 〈Htg1, . . . ,Htgk〉F(z)
+〈Ht−1g1, . . . ,Ht−1gk〉2F(z) + · · ·+ 〈H1g1, . . ., H1gk〉tF(z). The latter (by Rmk.11) is exactly
〈Htg1, . . . ,Htgk〉F(z) + 〈Htg1, . . . ,Htgk〉2F(z) + · · ·+ 〈Htg1, . . . ,Htgk〉tF(z) .

This implies fi(x + z) ∈ 〈1, g1(x + z), . . . , gk(x + z)〉tF(z) in Qt , which yields the approx-
imate functional dependence around a generic point z.

Fixing z (avoiding some bad choices that make certain z-polynomials in the above proof
zero) to an element a ∈ Fn finishes the proof. J

We now formally state our subspace reduction lemma:

I Lemma 12 (Subspace reduction). Let F be any field, R := F(z)[x], Qr := R/〈x〉r+1 for
r ≥ 1, and f ⊂ F[x]. Define U1 = V1 = {0}, and for u ∈ 〈x〉R, r ≥ 2, define the subspaces
(in the quotient algebra Qr),

Ur := 〈Hr−1f1, . . . ,Hr−1fn〉2F(z) + · · ·+ 〈H1f1, . . . ,H1fn〉rF(z) ,

Vr := 〈Hr−1f1, . . . ,Hr−1fn−1, u〉2F(z) + · · ·+ 〈H1f1, . . . ,H1fn−1, u〉rF(z) .

If Htfn ∈ 〈Htf1, . . . ,Htfn−1, u〉F(z) + Ut, then Ut ⊆ Vt (for any t ∈ N).
Remark: If u = 0 then the lemma “reduces” the n polynomial generators, of the subspace
Ut, by one. Hence, the name “subspace reduction”. A simple inductive proof of the lemma
is given in the full version.

3.2 Algebraically independent polynomials: Criterion
Having proved the functional dependence for algebraically dependent polynomials, one nat-
urally asks whether a converse exists (for arbitrary fields? to what degree?). We will
characterize this completely.

It’s all about the inseparable degree- We show that if f is algebraically independent of
{g1, . . . , gk} then, under a random shift, f cannot be written as a function of {g1, . . . , gk}
when chosen to truncate at (or beyond) the inseparable degree of the extension Fq(x)/Fq(f, g1,
. . . , gk). Moreover, for each truncation at lower degrees we get functional dependence.

I Theorem 13 (Algebraic to functional independence). Let f ⊂ Fq[x] be algebraically inde-
pendent polynomials (wlog n-variate n polynomials) with inseparable degree pi. Then,

1. for all t ≥ pi, for random a ∈ Fnq , f≤tn (x + a) cannot be written as h≤t(f1(x + a), . . .,
fn−1(x + a)), for any h ∈ Fq[Y1, . . . , Yn−1].

2. for all 1 ≤ t < pi, ∃j ∈ [n], for random a ∈ Fnq , f
≤t
j (x + a) can be written as

h≤tjt (f1(x + a), . . . , fj−1(x + a), fj+1(x + a), . . . , fn(x + a)), for some hjt ∈ Fq[Y].

Remark. Our proof works for any field F (manipulate in F). In case of characteristic
p ≥ 2 we get the above statement and in characteristic zero use inseparable degree = 1.

Proof idea: By the hypothesis we have that each variable xp
i

j , j ∈ [n], algebraically
depends on f with a separable annihilating polynomial over Fq. Consider ring R := Fq(z)[x].
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The basic idea is to consider the minimal annihilating polynomial Aj of {xp
i

j , f} and form-
ally shift the relevant polynomials by z. From the proof of Thm.10 we get a functional
dependence of xp

i

j on f(x + z) up to any degree t.
Interestingly, when we take t < pi the monomial xp

i

j vanishes mod 〈x〉t+1. This means
that the above yields, in fact, a functional dependence among f(x + z).

On the other hand, for t ≥ pi, we get a nontrivial functional dependence of xp
i

j on
f(x + z), for all j ∈ [n]. In this case, one can give an argument using monomial ordering
that there exists no functional dependence among f(x + z).

We can see that the classical Jacobian criterion as a special case of Theorems 10 and 13.
The detailed discussions and missing proofs are given in the full version.

4 Conclusion
We give a criterion for testing algebraic independence over positive characteristic, in the
spirit of Jacobian criterion, that works for any field. Its complexity is parameterized by the
inseparable degree bound. It is also strong enough to give the inseparable degree at the
same time. We give applications to locally low algebraic rank circuits in the cases that were
open before.

Jacobian Criterion Our Criterion
The approach: reduces algebraic independence reduces algebraic independence

to linear independence testing to linear independence testing
Related “approximate” shift : f(x) 7→ f(x + z) mod 〈x〉2F(z)[x] f(x) 7→ f(x + z) mod Ut

Vectors for F(z)-dependence: H1f mod U1 Htf mod Ut

Certifies alg.independence if: F(x)/F(f) is separable separable or inseparable F(x)/F(f)
Efficiency in char(F) = 0: randomized poly-time algorithm t = 1, (same as Jacobian criterion)
Efficiency in char(F) = p, fails randomized poly

(
n+pe

n

)
-time

inseparable degree ≤ pe: algorithm

The main open problem is to investigate whether we can improve the criterion to get a
randomized poly-time algorithm for circuits over a finite field. We mention a few special
cases based on different restrictions on input. None of these cases are (efficiently) solved by
presently known techniques.

the polynomials are supersparse, i.e. sparse polynomials with possibly exponential degree.
two bivariate circuits, with an exponentially large inseparable degree, over F2.
n quadratic polynomials over F2.

Our hitting-set result, for locally low algebraic rank circuits, still has a mild assumption on
the characteristic. Can this be eliminated?
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A Main structure theorems

A.1 Proof of Thm.10
This section proves several technical properties about the arithmetic modulo Ut. The most
important of these is:

Lemma 12 (restated). Let F be any field, R := F(z)[x], Qr := R/〈x〉r+1 for r ≥ 1,
and f ⊂ F[x]. Define U1 = V1 = {0}, and for u ∈ 〈x〉R, r ≥ 2, define the subspaces (in the
quotient algebra Qr),
Ur := 〈Hr−1f1, . . . ,Hr−1fn〉2F(z) + · · ·+ 〈H1f1, . . . ,H1fn〉rF(z) ,

Vr := 〈Hr−1f1, . . . ,Hr−1fn−1, u〉2F(z) + · · ·+ 〈H1f1, . . . ,H1fn−1, u〉rF(z) .

If Htfn ∈ 〈Htf1, . . . ,Htfn−1, u〉F(z) + Ut, then Ut ⊆ Vt (for any t ∈ N).
Proof. We prove the lemma using induction on t.

Base Case (t = 2): By definition, U2 = 〈H1f1, . . . ,H1fn〉2F(z). Now, from the hypothesis,
we have that, in Q1: 〈H1f1, . . . ,H1fn〉F(z) ⊆ 〈H1f1, . . . ,H1fn−1, u〉F(z) .

Apply the powering (Lem.15 with t = 1, i = 2) to get, in Q2, 〈H1f1, . . . ,H1fn〉2F(z)
⊆ 〈H1f1, . . . ,H1fn−1, u〉2F(z). So, U2 ⊆ V2 and the base case is true.

Induction Step: The induction hypothesis is that the lemma holds for all t < `. To prove
the lemma for t = `, we take Q` and its subspace U`, and consider its general summand
〈Hrf1, . . . ,Hrfn〉`+1−r

F(z) from the above sum of subspaces (r ∈ [` − 1]). We try to show
the containment of this summand in a desired subspace. Firstly, note that the dependence
hypothesis (with Lem.16) gives, in Qr,

〈Hrf1, . . . ,Hrfn〉F(z) ⊆ 〈Hrf1, . . . ,Hrfn−1, u〉F(z) + Ur .

By the induction hypothesis on Ur, r < `, we get, in Qr,

〈Hrf1, . . . ,Hrfn〉F(z) ⊆ 〈Hrf1, . . . ,Hrfn−1, u〉F(z) + · · ·+ 〈H1f1, . . . ,H1fn−1, u〉rF(z) .

Apply the powering (Lem.15, with t = r and i = `+ 1− r) to get, in Q`,

〈Hrf1, . . .Hrfn〉`+1−r
F(z) ⊆ 〈vq1

1 · · · vqrr | q1 + · · ·+ qr = `+ 1− r , qj ≥ 0,v〉F(z) (2)

where we consider all the possible vj ∈ 〈Hr−j+1f1, . . .Hr−j+1fn−1, u〉jF(z) for j ∈ [r].
Now observe that, for any f , H1f, . . . ,Hrf, u are all in 〈x〉R.

So, the least degree term (wrt variables x) of the above product vq1
1 · · · vqrr would have

degree at least s := q1 + 2q2 + · · ·+ rqr. In Q`, only the terms with degree ≤ ` survive.
This restricts s in the range: ` + 1 − r ≤ s ≤ ` and we only need to consider the

corresponding r + 1 subspaces 〈Hrf1, . . .Hrfn〉sF(z) in the RHS of Eqn.2. This allows us to
rewrite Eqn.2 as (recall Rmk.11),

〈Hrf1, . . .Hrfn〉`+1−r
F(z) ⊆ 〈Hrf1, . . . ,Hrfn−1, u〉`+1−r

Fp(z) + · · ·+ 〈H1f1, . . . ,H1fn−1, u〉`F(z) .

MFCS 2016



75:16 Algebraic independence

Hence, we now have the desired containment for a general summand of U`. Since in U`, r is
in the range [`− 1], we get that, in Q`,

U` ⊆ 〈H`−1f1, . . . ,H`−1fn−1, u〉2F(z) + · · ·+ 〈H1f1, . . . ,H1fn−1, u〉`F(z) .

This proves U` ⊆ V`, finishing the induction step. J

Now we easily generalize a structural property of ΣΓ(k)ΣΠd circuits [34, Lem.3.5], which
will be used in the lower bound and PIT applications later.

I Corollary 14 (Rewrite ΣΓ(k)ΣΠd). Let F be an arbitrary field. Let C =
∑T
i=1 Fi(Qi1, . . .,

Qit) be a ΣΓ(k)ΣΠd circuit in F[x1, . . . , xN ] of degree n, with Bi := {Qi1, . . . , Qik} be a
separating transcendence basis of {Qi1, . . . , Qit}, for all i ∈ [T ]. Then, for random a ∈ FN ,
there exist polynomials F ′i in variables at most k(d+ 1) over F such that

C(x + a) =
T∑
i=1

F ′i (Q
[≤d]
i1 (x + a), . . . , Q[≤d]

ik (x + a) ) .

Proof. This follows from our functional dependence result (Thm.10), and the univariate in-
terpolation trick from [34, Cor.3.4]: From the representation f(x + a) = h≤d(g1(x + a), . . .,
gk(x + a)) one can get an h′ and an absolute representation f(x + a) = h′(g[≤d]

1 (x + a), . . .,
g

[≤d]
k (x + a)), for d ≥ degree(f). Applying this idea on each Qij gives the desired result. J

We now prove a (standard) property of ideal powering in a filtration. Essentially, one
needs a “lower accuracy” a1, . . . , ai ∈ Qj to compute their product a1 · · · ai.

I Lemma 15 (Powers in filtration). Recall the algebras R := F(z)[x] and Qt, t ≥ 1. If, for
j ∈ [i], bj ∈ 〈x〉R and aj ≡ bj in Qt, then a1 · · · ai ≡ b1 · · · bi in Qt+i−1, for i ≥ 1.

Proof. The congruence aj ≡ bj in Qt implies that aj − bj is a polynomial αj(x) in It+1
0 .

We write it as aj = bj + αj(x), and take the product on both sides. This yields
∏
j aj =∏

j(bj + αj) which is contained in
∏
j bj + It+1

0 · Ii−1
0 , which is in

∏
j bj + Ii−1+t+1

0 [∵ I0 is
an ideal of R, and each bj is in I0]. In other words,

∏
j aj ∈

∏
j bj + Ii+t0 .

Hence,
∏
j aj ≡

∏
j bj in Qt+i−1. J

The following lemma implies that proving the linear independence for truncation t suf-
fices to prove it for every truncation above t. Moreover, it also implies that proving the
dependence for truncation t suffices to prove it for every truncation below t.

I Lemma 16 (Descent). If Htf1, . . . ,Htfn are F(z)-linearly dependent modulo Ut, then
Hrf1, . . ., Hrfn are F(z)-linearly dependent modulo Ur, for all r ∈ [t].

Proof. If we see the linear dependence of Htf1, . . . ,Htfn modulo Ut in the quotient ring Qr
instead (i.e. reduce modulo 〈x〉r+1

R ), then we get the dependence of Hrf1, . . . ,Hrfn modulo
Ur. This is true since Htf = Hrf+ (degree> r)-terms in x , and Qr filters out 〈x〉r+1

R . J

A.2 Proof of Thm.13

Theorem 13 (restated). Let f ⊂ Fq[x] be algebraically independent polynomials (wlog
n-variate n polynomials) with inseparable degree pi. Then,

1. for all t ≥ pi, for random a ∈ Fnq , f≤tn (x + a) cannot be written as h≤t(f1(x + a), . . .,
fn−1(x + a)), for any h ∈ Fq[Y1, . . . , Yn−1].
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2. for all 1 ≤ t < pi, ∃j ∈ [n], for random a ∈ Fnq , f
≤t
j (x + a) can be written as

h≤tjt (f1(x + a), . . . , fj−1(x + a), fj+1(x + a), . . . , fn(x + a)), for some hjt ∈ Fq[Y].

Proof. [t < pi part.] We first prove the dependence part of the theorem. We use the shifts
on the annihilating polynomial of the algebraically dependent set {xj , f} and then argue
about desired dependence by making use of the arguments used in the proof of Thm.10.

The descent principle (Lem.16) implies that we need to prove it only for t = pi − 1.
Algebraic independence of f asserts the existence of the minimal annihilating polynomial
Aj ∈ Fq[y0, y1, . . . , yn] for the polynomials {xj , f}, for all j ∈ [n] (because of Lem.19). Now
the inseparable degree of the extension Fq(x)/Fq(f) being pi implies that there exists a j
such that Aj lives in Fq[yp

i

0 , y1, . . . , yn] but not in Fq[yp
i+1

0 , y1, . . . , yn]. Let us fix that j.
Thus, we have Aj(xj , f) =

∑
e` αe` · (x

pi

j )e0`fe1`
1 · · · fen`n = 0, where αe` ∈ Fq.

Next we apply the shift and note that truncating Aj(xj , f) at degree ≤ pi − 1 is same
as looking at Aj(xj , f) in Qpi−1. In Qpi−1, the above equation gives us

∑
e` αe` · (z

pi

j )e0` ·
fe1`

1 (x + z) · · · fen`n (x + z) ≡ 0, since in Qpi−1, (xj + zj)p
i ≡ zp

i

j .
We can now repeat the arguments used in Eqn.1 (Sec.A.1) to get that for some j′,

f≤p
i−1

j′ (x + z) = h≤p
i−1

j′ (f1(x + z), . . . , fj′−1(x + z), fj′+1(x + z), . . . , fn(x + z)) for some
hj′ ∈ Fq[Y1, . . . , Yn−1] to finish the proof of the dependence part of the theorem.

[t ≥ pi part.] Next, we prove the independence part of the theorem which gives us
the independence testing criterion, and we do it by contradiction. The contrapositive
of Lem.16 implies that proving the theorem for t = pi suffices. For contradiction, as-
sume that (wlog) f≤pin (x + z) can be written as h≤pi(f1(x + z), . . . , fn−1(x + z)) for some
h ∈ Fq[Y1, . . . , Yn−1] which implies that the non-constant part of fn(x + z) Fq(z)-linearly
depends on the non-constant parts of f1(x + z), . . . , fn−1(x + z) modulo the subspace Upi .
Thus, Hpifn Fq(z)-linearly depends on Hpif1, . . . ,Hpifn−1 modulo the subspace Upi .

We are given that the inseparable degree of the field extension Fq(x)/Fq(f) is pi. This by
the definition of inseparable degree (Sec.2.1) implies that the minimal annihilating polyno-
mial Aj ∈ Fq[y0, . . . , yn] of {xp

i

j , f} is separable with respect to y0, for all j, i.e. the derivative
of Aj does not vanish with respect to y0.

Let us consider such an Aj =
∑

e` ae`ye` . We begin by applying the variable shift as
we did in the dependent case, and get that Aj((xj + zj)p

i

, f(x + z)) ≡ 0 in Qpi . Now
Taylor expansion allows us to write f(x + z) as f(z) +Hpif(x) in Qpi (i.e sum of constant
terms and non-constant terms of degree ≤ pi). Using this, we expand the congruence as∑

e` ae` · (z
pi

j + xp
i

j )e0` · (f1(z) +Hpif1)e1` · · · (fn(z) +Hpifn)en` ≡ 0.
Note that (zp

i

j + xp
i

j )e0` ≡ zp
ie0`
j + e0` · zp

i(e0`−1)
j xp

i

j . Using this, we further expand to,∑
e`

ae` ·
(
zp
ie0`
j + e0` · zp

i(e0`−1)
j xp

i

j

)
· (f1(z) +Hpif1)e1` · · · (fn(z) +Hpifn)en` ≡ 0.

Observe that xp
i

j · Hpif` ≡ 0 in Qpi , for ` ∈ [n]. Thus, the above equation reduces to∑
e`

ae` ·z
pie0`
j · (f1(z)+Hpif1)e1` · · · (fn(z)+Hpifn)en` + xp

i

j ·
∑
e`

ae`e0` ·zp
i(e0`−1)
j · fe` ≡ 0.

Thus, an Fq(z)-linear combination of xp
i

j and the products of the form (Hpif1)t1 · · · (Hpifn)tn
vanishes in Qpi .

By the separability of Aj at least one e0` is not a multiple of p. Now having shown that
there is at least one non-zero term in the sum

∑
e` ae`e0` · (zp

i

j )e0`−1 · fe` , we argue that the
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overall sum cannot be zero. This follows immediately from the minimality of Aj again since
the zero sum would imply the existence of an annihilating polynomial with degree less than
the degree of Aj . Thus, we get that xp

i

j lives in the subspace generated by the terms of the
form (Hpif1)t1 · · · (Hpifn)tn , with

∑
j tj ≥ 1. (Note that the x-free terms cancel out.)

We write the above subspace as 〈Hpif〉Fq(z) + 〈Hpif〉2Fq(z) + · · · + 〈Hpif〉p
i

Fq(z) which, by
Rmk.11, is the same as the subspace 〈Hpif〉Fq(z) +Upi =: U ′pi . Using the assumption of the
linear dependence ofHpif modulo Upi , and subspace reduction (Lem.12), we get that xp

i

j lives
in U ′pi = V ′pi := 〈Hpif1, . . . ,Hpifn−1〉Fq(z) + Vpi , where Vpi := 〈Hpif1, . . . ,Hpifn−1〉2Fq(z) +

· · ·+ 〈Hpif1, . . ., Hpifn−1〉p
i

Fq(z).

On repeating this for all the Aj ’s, we get that {xp
i

1 , . . . , x
pi

n } ⊆ V ′pi . This contradicts (the
impossible containment) Lem.17, and hence finishes the proof. (One can easily see that we
get functional independence for random fixing of z in the space Fnq .) J

We use the above notation and any field.

I Lemma 17 (Impossible containment). Let F be any field. Consider the subspace V ′t :=
〈Htf1, . . . ,Htfn−1〉F(z)+. . .+〈H1f1, . . . ,H1fn−1〉tF(z) of Qt, for t ≥ 1. Then, {xt1, . . . , xtn} 6⊆
V ′t.

Proof. Rmk.11 suggests that V ′t equals the subspace 〈Htf1, . . . ,Htfn−1〉F(z)+· · · +〈Htf1, . . .,
Htfn−1〉tF(z) in Qt.

Intuitively, these n ‘pure’ monomials xt1, . . . , xtn should not all appear in the subspace V ′t
as it has merely n−1 many “key” generators. However, assume for the sake of contradiction
that {xt1, . . . , xtn} ⊆ V ′t. We rewrite this in absolute terms (in R) as:

xti + αi ∈ 〈Htf1, . . . ,Htfn−1〉F(z) + · · ·+ 〈Htf1, . . . ,Htfn−1〉tF(z) ,

for some αi ∈ 〈x〉t+1
R , for all i ∈ [n]. This simply means xti +αi = Pi(Htf1, . . . ,Htfn−1), for

some polynomial Pi ∈ F(z)[Y1, . . . , Yn−1] of degree at most t, for i ∈ [n] . Notice that the
degree of αi (in x) is ≥ t+ 1. Thus, by choosing a graded lexicographic monomial ordering
(see [7, Pg.58]) in which lower degree terms lead, we get the leading monomials of the set
{xti + αi | i ∈ [n]} to be {xt1, . . . , xtn}.

Now, using the fact that the algebraic independence of leading monomials imply the al-
gebraic independence of the corresponding polynomials (Lem.18), we get that trdegF(z){xti+
αi |i ∈ [n]} = n. On the other hand, clearly, trdegF(z){Pi(Htf1, . . . ,Htfn−1)|i ∈ [n]} ≤ n−1.
This makes the containment impossible. J

I Remark. The proof works if we replace the n pure monomials by any polynomials whose
leading monomials are algebraically independent and appear in degree≤ t part (under some
strict monomial ordering in which lower degree terms lead).

We give the following for the sake of completeness.

I Lemma 18. [32, Prop.6.6.11] Let f1, . . . , fn ∈ F[x1, . . . , xn] be non-zero polynomials. If
under some (strict) monomial ordering σ, leading monomials of f1, . . . , fn are algebraically
independent over F, then f1, . . . , fn are algebraically independent over F.

Proof. Let us fix the monomial ordering σ, and let the leading monomials of f1, . . . , fn wrt
σ be LM(f1), . . . , LM(fn) respectively (they uniquely exist as σ is strict and total). By the
hypothesis the leading monomials are algebraically independent.

Recall that for h1, h2 ∈ F[x1, . . . , xn], the LM operator has the properties (eg. [29,
Sec.9.1]):
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LM(h1 · h2) = LM(h1) · LM(h2) ,
LM(h1 + h2) �σ max{LM(h1), LM(h2)} .

We use the above two properties to prove the lemma. Consider any nonzero polynomial
g ∈ F[y1, . . . , yn], and let m be the monomial in the support of g such that m(LM(f1), . . . ,
LM(fn)) is maximal with respect to σ. Hence, for any monomial m′ in the support of g,
and any monomial ki in the support of fi ,

m′(k1, . . . , kn) �σ m′(LM(f1), . . . , LM(fn)) �σ m(LM(f1), . . . , LM(fn)) .

In this case the last inequality cannot be equality, unless m′ = m. Otherwise, m′−m is the
annihilating polynomial of the leading monomials, contradicting the hypothesis.

This proves that the monomialm(LM(f1), . . . , LM(fn)) cannot cancel with other monomi-
als in g(f(x)). This implies that there is no nonzero annihilating polynomial for f1, . . . , fn .

J

A.3 Technical lemmas
For completeness, we present standard results that entail that for our main Theorems
(Thm.10 and Thm.13) it suffices to study the case of n polynomials in n variables over
an algebraically closed field. The first lemma handles the case when the polynomials are
more than the number of variables.

I Lemma 19 (Extra polys). If m > n then any f1, . . . , fm ∈ F[x1, . . . , xn] are algebraically
dependent.

Proof. It is proved in [40, 18] and books on field theory [24]. J

The next lemma deals with the case when the variables are more than the number of
polynomials. We can use this lemma to project n variables to a random m dimensional
subspace (over a large enough field extension L of F) in our input polynomials. Thus, in
case n > m, we reduce to the case of m polynomials with m variables.

I Lemma 20 (Extra variables). Let f1, . . . , fm ∈ F[x1, . . . , xn] with m < n and the transcend-
ence degree of the set {f1. . . . , fm} be r. Then, there exists a linear map φ : L[x1, . . . , xn] 7→
L[y1, . . . , ym] such that trdegL{φ(f1), . . . , φ(fm)} is also r.

Proof. Roughly, the idea is to consider the annihilating polynomial AS of {xS , f}, and study
the action of a ‘random’ linear φ on it. For a proof refer to [6, Theorem 4]. J

For algebraic independence over a field, it suffices to work over the algebraic closure.

I Lemma 21 (Closed field). Consider polynomials f(x) over any field F. Their trdeg remains
invariant if we move from F to any algebraic extension.

Proof. Let B = {g1, . . . , gr} be a transcendence basis of f over F. Let us move to the
algebraic closure F. Clearly, any fi ∈ f continues to be algebraically dependent on B as the
original annihilating polynomial works.

Suppose polynomials in B become algebraically dependent over F. Then, by Perron’s
bound [40] we know that {ge | |e| ≤

∏
i deg(fi)} has to be F-linearly dependent. But

these polynomials are in F[x], so they must be F-linearly dependent, implying that B is
algebraically dependent over F. This contradiction proves the lemma. J
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A.4 Recovering the classics
As a corollary of Thm.10 and Thm.13, we get the classical Jacobian criterion for the separable
case (i.e. inseparable degree = p0 = 1 ).
I Corollary 22 (Jacobian rephrased). Let F be any field. Let f ⊂ F[x] be such that the field
extension F(x)/F(f) is separable, then the linear terms (in x) of f1(x + z), . . . , fn(x + z)
are F(z)-linearly dependent iff f1, . . . , fn are algebraically dependent.

The dependence part of Thm.13 helps us in characterizing the failure of the Jacobian.
I Corollary 23 (Jacobian fails for inseparable). For algebraically independent polynomials
f ⊂ F[x] such that the field extension F(x)/F(f) is inseparable, the linear terms (in x) of
f1(x + z), . . . , fn(x + z) are F(z)-linearly dependent.

Thus, Jacobian being zero implies that either the n-variate n polynomials are algebraic-
ally dependent, or they are independent but inseparable.

B Application 1: Algebraic indepedence testing algorithm

Theorem 1 (restated). For circuits f ∈ Fq[x] we have a randomized poly(s,
(
t+n
n

)
)-time

algebraic independence testing algorithm, where the inseparable degree of the field extension
Fq(x)/Fq(f) is t (assuming f algebraically independent) and s is the total input size.

Algorithm idea: The criterion (by Theorems 10 & 13) essentially involves testing
Htfn ≡ 0 modulo the subspace V ′t := 〈1,Htf1, . . . ,Htfn−1〉tFq(z) in Qt, where t is the insep-
arable degree of the field extension Fq(x)/Fq(f). (In fact, one needs to check whether Htfj
functionally depends on the remaining n− 1 polynomials, for all j ∈ [n].) Implementing the
criterion involves three main steps:
Step 1: Computing the arithmetic circuits for Htf1, . . . ,Htfn in Qt using the fact that
Htf = f(x + z)− f(z) in Qt.
Step 2: Computing the arithmetic circuits for the basis vectors generating the subspace V ′t
in Qt.
Step 3: Testing the nonzeroness of Htfn modulo the linear space V ′t given its basis vectors
as circuits, in Qt.

A subroutine that we use several times in our algorithm computes a basis of a given
subspace, over the field F(z), generated by given arithmetic circuits in F[z][x]. Let us call
this subroutine BASIS.

B.1 The subroutine BASIS
Suppose we are given m circuits a1, . . . , am ∈ Fq[z][x] and we want to compute a basis B of
the subspace generated by a1, . . . , am over Fq(z). Let d be a degree bound (wrt x, z), and s
a size bound, for these circuits.

We invoke the Alternant criterion as proven in [36, Lem.3.1.2]. It says that– If a1, . . . , am
are Fq(z)-linearly independent, then for “random” points αi, i ∈ [m], in Fnq , det(aj(αi)) 6=
0. For this to work we need q > 2dm. Note that such a field extension Fq/Fp can be
constructed in polylog(dm)-time by [1]. Once we have fixed the x variables we still have to
test det(aj(αi)) 6= 0. This we can do by, again, randomly fixing the z variables to a single
point in Fnq [44, 9, 49].

Moreover, to compute a basis B we merely have to find a column-basis of the matrix
(aj(αi))i,j . This can be done by basic linear algebra (using minors and random evaluations
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as above), in randomized poly(sm log d)-time. So BASIS runs in randomized poly-time in
the input size.

B.2 Computing the arithmetic circuits for Htf1, . . . ,Htfn

Recall that Htf = f(x + z)− f(z) in Qt. Since Htf is nothing but the non-constant part of
the shifted f , truncated at degree t, we can get the circuit for Htf by shifting the variables
of f(x) and using standard circuit reductions.

Given an arithmetic circuit for f(x), we easily get the circuit for f(x + z). Now to get
the terms with degree ≤ t wrt x, from the above circuit, use Strassen’s homogenization
technique [46, 45, Thm.2.2] which gives a homogeneous circuit of size O(t2s) computing the
homogeneous parts of Htf upto degree t.

B.3 Computing the basis vectors of V ′
t

Recall that V ′t is generated as 〈1,Htf1, . . . ,Htfn−1〉tF(z) , t ≥ 1, in Qt. Now, having com-
puted the circuits for Htfj in Qt, we compute the generators for V ′t iteratively.

We first compute the linear basis B1 of the set, of above computed circuits {1,Htf1, . . .,
Htfn−1}, using the subroutine BASIS.

Next, we multiply every element of the obtained basis to every element of the set
{1,Htf1, . . . ,Htfn−1} in Qt and compute the basis B2 of the corresponding set of products
obtained.

We repeat the procedure and multiply every element of B2 to every element of {1,Htf1, . . .,
Htfn−1} and compute the basis to obtain B3, and so on.

Clearly, the size of the intermediate basis Bi remains bounded by the dimension of Qt
which is

(
n+t
n

)
. Further, we only need to go up to i ≤ t.

Hence, we compute the final basis, using BASIS, in randomized poly(s,
(
n+t
n

)
)-time.

B.4 Testing nonzeroness modulo the subspace V ′
t

We now test nonzeroness of Htfn modulo V ′t. This is simply the question of computing the
dimension of the subspace spanned by {Htfn}∪Bt and the one by Bt, and checking whether
the difference is 1. Clearly, BASIS can be used to do this in randomized poly(s,

(
t+n
n

)
)-time.

Thus, we have a poly(s,
(
t+n
n

)
)-time randomized algorithm for testing algebraic inde-

pendence, where t upper bounds the inseparable degree of the field extension Fq(x)/Fq(f)
and s is the input size. This finishes the proof of Thm.1.

C Application 2: Exponential lower bounds

In this section, we prove

Theorem 2 (restated). Let F be any field. There exists a family {Pn} of polynomials
in VNP, such that Pn is a polynomial of degree n in N = nO(1) variables with 0, 1 coefficients,
and for any ΣΓ(k)ΣΠ circuit C, if k ≤ n and if C computes Pn over F, then Size(C) ≥
NΩ(

√
n).

We state the main lemmas following the notation of [34, Sec.4] and discuss proof ideas;
the details are the same as those in [34]. The main reason why their lower bound result
needed characteristic of the underlying field to be zero (or large enough) is due to the fact
that their key lemma (algebraic dependence to functional dependence) worked only for those
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characteristics. As we have generalized the key lemma to arbitrary fields, we are able to
generalize their lower bound results to arbitrary fields as well.

All the recent arithmetic circuit lower bound proofs follow a common recipe with the
following main steps. (Refer to the evolving survey [42].)

Coming up with a complexity measure on polynomials that is sub-additive.
Calculating an upper bound on the complexity measure of the family of circuits against
which we would like to prove the lower bound.
Calculating a lower bound on the complexity measure for the hard polynomial.
Set appropriate parameters and compare these bounds using binomial estimates.

Following [34] we adopt the same strategy here.

C.1 The complexity measure: dimension of projected shifted partial
derivatives space

The complexity measure used in [34] is dimension of projected shifted partial derivatives
of a polynomial. This measure was used in [27] to prove a strong lower bound against
homogeneous depth-4 circuits for zero or large characteristic. Later [33, 34] extended it to
other models.

For a polynomial P and a monomial γ, ∂P
∂γ is the partial derivative of P with respect

to γ. For a set of monomialsM, ∂M(P ) is the set of partial derivatives of P with respect
to monomials in M. Mult[P ] is the projection of P on the multilinear monomials in its
support.

I Definition 24 ((M,m)-projected shifted partial derivatives [34]). For an N variate polyno-
mial P ∈ F[X1, . . . , XN ], set of monomialsM of degree r and a positive integer m ≥ 0, the
space of (M,m)-projected shifted partial derivatives of P is defined as

〈∂M(P )〉m := F− span
(

Mult
[∏
i∈S

Xi · g
]

: g ∈ ∂M(P ), S ∈
(

[N ]
m

))
.

The complexity measure we use is dimension of the projected shifted partial derivatives
space. Formally, φM,m(P ) := Dim(〈∂M(P )m〉) .

It is easy to check that the measure is subadditive.
The following lemma is used in the proof and it is easy to verify that it is valid for all

characteristic. It gives an upper bound on the measure of the homogeneous component of a
polynomial of low degree.

I Lemma 25. [34, Lem.4.3] Let P be a polynomial of degree at most d. Then for every
0 ≤ i ≤ d and for all choice of parameters m, r and a setM of monomials of degree r,

φM,m(P=i) ≤ φM,m(P ) .

C.2 Target polynomials for the lower bound
The target polynomial family (in VNP) is a variant of Nisan-Wigderson polynomials – Nisan-
Wigderson composed with linear forms. First, we give the definition of Nisan-Wigderson
family of polynomials, which was first introduced in [28].
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I Definition 26 (Nisan-Wigderson family of polynomials, [34] Defn.4.5). Let n, q, e be arbit-
rary parameters with q being a power of prime and n, e ≤ q. We have some identification
[n] ⊆ Fq. The Nisan-Wigderson polynomial with parameters n, q, e, denoted by NWq,n,e is
defined as

NWq,n,e(X) :=
∑

p(t)∈Fq [t]
deg(p)<e

X1,p(1) · · ·Xn,p(n) .

Note that it has arity equal to N = nq. Now we define the family of polynomials which
is hard for the circuit model we consider. This is in VNP (by Valiant’s criterion).

I Definition 27 (Nisan-Wigderson composed with linear forms, [34] Defn.4.6). Let δ ∈ (0, 1)
be an arbitrary constant, and let p = N−δ. Let γ = N/p. The polynomial NW ◦ Linq,n,e,p
is defined as

NW ◦ Linq,n,e,p = NWq,n.e

( γ∑
i=1

X1,1,i,

γ∑
i=1

X1,2,i, . . .

γ∑
i=1

Xn,q,i

)
.

This polynomial, of arity γN , behaves well under random restrictions on the variables.
Let V be the set of variables in the polynomial NW ◦ Lin. We define a distribution Dp over
the subsets of V as follows. Each variable in V is independently kept alive with a probability
p = N−δ.

We notice that [34, Lem.4.7] & [33, Sec.6] (lower bound on the dimension of projected
shifted partial derivatives of NW) holds for any field F (unlike [27]).

I Lemma 28 (NW lower bound, [34] Lem.4.7, [33] Sec.6). For every n and r = O(
√
n), there

exists parameters q, e, ε such that q = Ω(n2), N = qn and ε = Θ( logn√
n

) with qr ≥ (1+ε)2(n−r)

and qe−r = ( 2
1+ε )n−r · poly(q). For any n, q, e, r, ε satisfying the above constraints, for

m = N
2 (1− ε), over any field F, we have

φ(NWq,n,e) ≥
(

N

m+ n− r

)
· exp(−O(log2 n)) .

Using the above lemma it can be shown that, with high probability, the measure of
NW ◦ Lin remains high.

I Lemma 29 ([34] Lem.4.8). With probability 1− o(1) over V ← Dp , there exist variables
V ′ ⊆ V with N elements such that φ(NW ◦ Lin|V ′) ≥

(
N

m+n−r
)
· exp(−O(log2 n)).

The proof is given in [34] and, importantly, works for any field.

C.3 Measure upper bound for ΣΓ(k)ΣΠd

Observe that, by our functional dependence result (Thm.10), the relevant proof of [34,
Lem.4.9] immediately extends over arbitrary fields. (A technical point is that one uses F in
their arguments.)

I Lemma 30 (Measure upper bound, [34] Lem.4.9). Let m, r, s be parameters such that
m+rs ≤ N/2. Let M be any set of multilinear monomials of degree r. Let C be a ΣΓ(k)ΣΠd

circuit computing a homogeneous polynomial of degree n such that

C =
T∑
i=1

Ci(Qi1, Qi2, . . . , Qit)

MFCS 2016
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where for each i ∈ [T ], Ci is an arbitrary polynomial in t variables, for each (i, j) ∈ [T ]× [t],
Qij is a homogeneous polynomial in N variables and for each i ∈ [T ], the algebraic rank of
{Qij : j ∈ [t]} is at most k. Let Sij be the support of Qij and assume it to have monomials
of support≤ s. If ∣∣∣∣∣∣

⋃
i∈[T ],j∈[t]

Sij

∣∣∣∣∣∣ ≤ N
δs
2

then, with probability 1− o(1) over V ← Dp , for all subsets V ′ of V of size at most N ,

φ(C|V ′) ≤ T

(
k(n+ 1) + r

r

)(
N

m+ rs

)
.

The proof strategy is the same as [34]. The first step is using random restrictions to
simplify the circuit into a circuit with bounded bottom support. This step is not sensitive
to the characteristic or size of the underlying field.

The step crucial for us is their second step, where low algebraic rank is exploited in the
rewriting (Cor.14). Here, we invoke functional dependence (Thm.10) to get the same upper
bound.

The third step is to simply estimate the measure once t has been reduced to k(n + 1).
We note that this part is purely combinatorial and field independent.

C.4 Wrapping up
Finally, assume that NW ◦ Lin has a circuit C ∈ ΣΓ(k)ΣΠd. Consider the degree-n ho-
mogeneous part of the randomly shifted NW ◦ Lin polynomial (this gives back the original
polynomial).

The above analysis (with Cor.14 & Lem.25) entails that: with a positive probability,
there exists a subset V ′ of variables of size N so that simultaneously

φM,m(C|V ′) ≤ T

(
k(n+ 1) + r

r

)(
N

m+ rs

)
and

φM,m(NW ◦ Lin|V ′) ≥
(

N

m+ n− r

)
exp(− log2 n) .

As C computes NW ◦ Lin ,

T ≥
(

N
m+n−r

)
exp(− log2 n)(

k(n+1)+r
r

)(
N

m+rs
) .

Setting appropriate parameters as in [34, Pg.21], we would get

T = NΩ(
√
n) .

D Application 3: Quasipoly-time hitting-set

In this section, we prove

Theorem 3 (restated). Let F be any field of characteristic p. There exists an
exp(logO(1) s)-time constructible hitting-set H ⊆ FN for size-s circuit C ∈ ΣΓ(k)ΣΠd with
kd = logO(1) s, assuming p > individual-degree(C) or p = 0.
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We only sketch the proof ideas, along the lines of [34, Sec.5]. Their main trick is the
following. If we can prove that every nonzero polynomial P (of degree at most n and in N
variables) in the class ΣΓ(k)ΣΠd (of size s) has a monomial of low support (say, at most `)
then a hitting-set for the class can be easily constructed in poly(s(nN)`)-time (see [3]).

This trick was combined with the shifted partials measure by Forbes [17] for interesting
models, to get hitting-sets and also to solve circuit divisibility testing questions. Basically,
he showed that a circuit with a low measure also has a low support trailing monomial. [34,
Lem.5.2] proved the same for ΣΓ(k)ΣΠd circuits. Albeit their proof requires the characteristic
to be zero or super-polynomially large.

We extend [34, Lem.5.2] to fields of characteristic greater than the individual-degree of
the circuit. To prove this, [17, Lem.4.18] is used which related shifted partials measure to
the support of trailing monomial.

I Lemma 31 ([17] Lem.4.18, [34] Lem.5.3). Let F be a field with characteristic p. Let R(X)
be a polynomial in F[X] such that

R(X) =
T∑
i=1

Fi(Qi1, Qi2, . . . Qit)

and for each (i, j) ∈ [T ]×[t], the degree of Qij is at most d. Let α be the trailing monomial of
R. If p = 0 or p > individual-degree(α), then the support of α is at most 2e3d(lnT+t ln 2t+1)
(e is Euler’s constant).

Now, using our rewriting of ΣΓ(k)ΣΠd circuits (Cor.14), we can generalize [34, Lem.5.2].

I Lemma 32 (Trailing monomial has low support, [34] Lem.5.2). Let F be a field of charac-
teristic p. Let P be a homogeneous polynomial of degree ∆ in N variables such that P can
be represented as

P =
T∑
i=1

Ci(Qi1, Qi2, . . . , Qit)

such that the following are true.
For each i ∈ [T ], Ci is a polynomial in t variables.
For each i ∈ [T ] and j ∈ [t], Qij is a polynomial of degree at most d in N variables.
For each i ∈ [T ], the algebraic rank of the set of polynomials Qij : j ∈ [t] is at most k.
Let α be the trailing monomial of P . If p = 0 or p > individual-degree(α), then α has

support at most
2e3d · ( ln(T (∆ + 1)) + (d+ 1)k ln((d+ 1)k) + 1 ) .

Sketch of Proof. We want to show that

P =
T∑
i=1

Ci(Qi1, Qi2, . . . , Qit)

has a trailing monomial of low support.
The proof uses Cor.14, which we have shown for arbitrary fields (after a shift from FN ),

to reduce t to k(d+ 1). Now, invoke Lem.31, which requires a mildly large characteristic, to
deduce that the trailing monomial has low support.

The proof also uses the fact that degree-∆ homogeneous component of the shifted P (x)
is P itself, and applies Lemmas 25 & 30, to upper bound the circuit’s measure. J
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Note that a non-homogeneous P can be first made homogeneous, for PIT purposes, and
then apply the above.

Thus, if dk = polylog(s) then we get a quasipoly-time hitting-set for ΣΓ(k)ΣΠd circuits.
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