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Abstract—We study the problem of identity testing for depth-

3 circuits of top fanin k and degree d. We give a new
structure theorem for such identities. A direct apphcatlon of
£O (k)
our theorem improves the known deterministic d -time
black-box identity test over rationals (Kayal & Saraf, FOCS
2009) to one that takesd®**)-time. Our structure theorem
essentially says that the number of independent variablesia
real depth-3 identity is very small. This theorem affirmatively
settles the strong rank conjecture posed by Dvir & Shpilka
(STOC 2005).

We devise a powerful algebraic framework and develop tools
to study depth-3 identities. We use these tools to show that
any depth-3 identity contains a much smaller nucleus identity
that contains most of the “complexity” of the main identity.
The special properties of this nucleus allow us to get almost
optimal rank bounds for depth-3 identities.
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A depth3 circuit C over a field F is of the form
C(x1,- - ,2n) ZleTi, where T; (a multiplication
term) is a product of at most! linear polynomials with
coefficients inF. We are especially interested in the case
F = Q. In this section, we will just assume this unless
explicity mentioned otherwise. The size of the circuit
C can be expressed in three parameters: the number
of variablesn, the degreed, and thetop fanin (or the
number of terms)k. Such a circuit is referred to as a
YIIX(k,d,n) circuit. PIT algorithms for deptl3- circuits
were first studied by Dvir & Shpilka [DS06]. There
have been many recent results in this area by Kayal &
Saxena [KS07] (in the non-black-box setting), Karnin &
Shpilka [KS08], Saxena & Seshadhri [SS09], and Kayal &
Saraf [KS09b]. Our main result is a better black-box tester
for XIIX circuits overQ. We get a running time ofd*’,
an exponential improvement (ik) over the previous best
of nd" [KS09b]. Table | details the time complexities of
previous algorithms. These time complexities are actually

Polynomial identity testing (PIT) ranks as one of the mostbounds on the total number of bit operations. Also, the
important open problems in the intersection of algebra andunning times are technically polynomial in the stated sme
computer science. We are provided an arithmetic circuit tha

computes a polynomial(x1, zo, - - - , z,,) over a fieldF, and
we wish to test ifp is identically zero (in other words, i

Theorem 1:Consider circuits overQ. There exists a
deterministic black-box algorithm for PIT oBIIX(k,d, n)

is the zero polynomial). In the black-box setting, we do notcircuits, whose time complexity is pqpydkz)_
have access to the circuit. We are only allowed to evaluate

the polynomial at various domain points. The main goal is
to devise adeterministic(preferably black-box) polynomial

Table I: Depth3 Black-box PIT algorithms ove®

time algorithm for PIT. Heintz & Schnorr [HS80], Kabanets Paper T'mezcomplex'ty
& Impagliazzo [KI04] and Agrawal [Agr05], [Agr06] have [KS08] nd@: log" = d)
shown connections between deterministic algorithms for [SSO9]  nd™ loud
identity testing and circuit lower bounds, emphasizing the [KS09b]  nd*™)
importance of this problem. For a detailed exposition, see This paper nd*”

surveys [Sax09], [AS09].

Even for the special case of degheircuits, this ques- This is the first result that gives a time complexity both
tion is still open. This may seem quite depressing. It is.polynomial ind and singly-exponential it for Q. This is
Nonetheless, there exist concrete results that justifin botnot too far from the beston-black-boxalgorithm for 211X
our ignorance and the acceptance of results on dg@iF  circuits, which runs in pol§hd®) time [KS07]. This result
in major publishing venues. Agrawal and Vinay [AV08] closes the gap (almost) between black-box and non-black-
showed that an efficient black-box identity test for depth-box algorithms.

4 essentially leads to subexponential lower bounds. All these results go visank bounds for deptB-identities



introduced by Dvir & Shpilka [DS06]. This is a very inter- about deptl identities over any field. Every such identity
esting quantity associated with these circuits, and rgughlcontains anucleus identityexpressed on few variables. This
speaking, bounds the maximum number of “free variables’hucleus, in some sense, captures all the complexity of the
that can be present in a deghdentity. If a X1I1X(k, d, n) original identity, and has some very special properties. A
circuit has rankr, then there exists a linear transformation better understanding of this nucleus may lead us to the goal
that converts this to an equivale®IIX(k,d,r) circuit.  of a truly polynomial time algorithm.

(This linear transformation is very easy to determine.) The e

remarkable insight of [DS06] was that the rank fery A Definitions and results

SIIY(k, d,n) identity is very low. AnyXTIX(k, d, r)-circuit We recall that a deptB-circuit C over a fieldF is:
can be completely expanded out in p@ly") time. Hence, C(zy,...,2,) = Z§:1Ti, where T; is a product ofd;
low rank bounds for identities imply efficient non-blackxbo linear polynomiale/; ; overF. For the purposes of studying
PIT algorithms. identities we can assume, by homogenization, thas are

Karnin & Shpilka [KS08] showed how small rank bounds linear forms (i.e. linear polynomials with a zero constant
for identities imply efficientolack-boxPIT algorithms. This  coefficient) andvi, d; = d. It will be convenient to state our
opened the door for black-box algorithms for deptRdT.  results in terms of arbitrary fields.

Indeed, all known algorithms for this problem come as a Definition 2: [DS06]

consequence of their result. Rank bounds have also found
applications in learningtIIX circuits [Shp09], [KS09a].
Hence, the rank and file of researchers studying this problem
are interested in proving small rank bounds. As mentioned
earlier, we focus on the field®. Dvir & Shpilka [DS06]
initiated this line of work by showing that the rank of a _ _ S
simple, minimal SIS (k, d) identity is 20(k2)(10gd)k_2. n-d|me.nS|0n<'?\I vector oveF. The rank of the circulit,
There are basic constructions of rafik) identities over k(C), is dgflned as the rank of the set of all linear
Q [DS06]. Dvir & Shpilka [DS06] conjectured that the ~ [OrMSZi; viewed as vectors.

rank should be bounded by pok). This rank bound was The rank of a circuit can be interpreted as the minimum
improved to O(k*logd) by Saxena & Seshadhri [SS09]. humber of independent variables required to expesghe
Kayal & Saraf [KS09b] achieved a breakthrough by provingdefinition of simple and minimal circuits are used to remove
a rank bound independent df Their bound wag©(*). We  certain pathological cases. The rank question is: for alsimp
finally settle the Dvir-Shpilka conjecture and show a rankand minimalXII¥(k, d, ) identity over fieldF, what is the
bound of O(k?). maximal possible rank? A trivial upper bound on the rank

The advances of Kayal & Saraf were obtained throughfor any XIIX-circuit) is kd, since that is the total number
the use ofincidence geometry theoremiike the famous of linear forms involved inC'. A substantially smaller rank
Sylvester-Gallai theorem. This theorem states that for anpound thankd shows that identities do not have as many
set S of points in the Euclidean plane, not all collinear, “degrees of freedom” as general circuits.
there exists a line passing through exactly two points in Before we state our results, it will be helpful to explain
S. Generalizations of this to higher dimensions are calledSylvester-Gallai configuration®\ set of pointsS with the
Sylvester-Gallai theorem@ee survey [BM90]). This theo- property that every line through two points &f passes
rem and its generalizations have connections to rank boundbrough a third point inS is called a Sylvester-Gallai
for depth3 circuits. The result of [KS09b] gave an intricate configuration The famous Sylvester-Gallai theorem states
combinatorial construction that converts deptigentities to  that the only Sylvester-Gallai configuration &? is a set
sets of colored points in Euclidean space. This allowed thef collinear points. This basic theorem about point-line
use of Sylvester-Gallai theorems to bound the rank. incidences was extended to higher dimensions [Han65],

Our contribution comes through a nealgebraicframe- [BE67]. We define the notion ofSylvester-Gallai rank
work for studying deptts identities. This has many ben- bounds This is a clean and convenient way of expressing
efits. Firstly, it allows for a much more “efficient” use of these theorems.

Sylvester-Gallai theorems to bound the rank. This leads

to nearly optimal rank bounds. Secondly, the connection Definition 3: Let S be a finite subset of therojective
between Sylvester-Gallai theorems and rank bounds is faspaceFP". Alternately, S is a set of non-zero vectors in
more transparent, at the loss of some color from the theF™*+! without multiples no two vectors inS are scalar
orems. Theorem 4 gives a simple formula that relates thenultiples of each other. Suppose, for every Bet S of k
depth3 rank to Sylvester-Gallai bounds. A nice byproductlinearly independent vectors, the linear span/otontains
of this connection is the improvement of rank bounds overat leastk + 1 vectors ofS. Then, the sefS is said to be
arbitrary fields. Thirdly, we get a deep structural theoremSG;-closed

« Simple Circuit: C is a simple circuit if there is no
nonzero linear form dividing all th&’s.

o Minimal Circuit: C is a minimal circuit if for every
proper subses C [k], Y ;.4 T; is nonzero.

« Rank of a circuit: The coefficients of¢; ; form an



The largest possible rank of an $@losed set of at most this, nothing was previously known. One of our auxiliary
m vectors inF™ (for anyn) is denoted by SEF, m). theorems, of independent interest, gives a high-dimeasion
The Sylvester-Gallai theorem states Higher dimensionaBylvester-Gallai bound for all fields. Applying the stronge
analogues [Han65], [BE67] can be interpreted to sayersion of Theorem 4, we get our rank bound.
SG;(R,m) < 2(k — 1). Our main theorem is a simple,
clean expression of how Sylvester-Gallai influences Theorem 7 (S¢for all fields): For any field F and
identities. We state this for general fields. k,m € N1, SG,(F,m) < 9klgm. (There is a construction
that shows that S@F,, m) = Q(k - log, m).)
Theorem 4 (From S(to Rank): Let |F| > d. The rank Let C be aXIIX(k,d) circuit, over an arbitrary field,
of a simple and minimaEIIX(k, d) identity overF is at  thatis simple, minimal and zero. Then(€K) < 3k*(lg 2d).
most2k? + k - SG,(F, d).
A direct application of theSG (R, m) bound yields an B. History
almost optimal rank bound for real depthidentities. For And now, for a brief history of PIT algorithms. The
completeness, we state the exact rank bound obtained. Wist randomized polynomial time PIT algorithm, which
have a slightly stronger version (Theorem 18) of the abovévas a black-box algorithm, was given (independently) by
theorem that gives better constants. Schwartz [Sch80] and Zippel [Zip79]. Randomized algo-
rithms that use less randomness were given by Chen &

Theorem 5 (Depth-Rank Bounds)Let C be a Kao [CKOO], Lewin & Vadhan [LV98], and Agrawal &

SIIX(k,d) circuit, over field R, that is simple, minimal Biswas [ABO3]. Klivans & Spielman [KS01] observed that
and zero. Then, 1lC) < 3k2. even for deptts circuits for bounded top fanin, deterministic

identity testing was open. Progress towards this was first

As discussed before, an application of this result tomade by the quasi-polynomial time algorithm of Dvir &
Lemma 4.10 of [KS08] gives a deterministic black-box Shpilka [DS06]. The problem was resolved by a polynomial
identity test for SITX(k, d,n) circuits overQ. Formally, time algorithm given by Kayal and Saxena [KS07], with a

we get the followinghitting set generatofor SIIY. circuits ~ funning time exponential in the top fanin. Both these al-
with real coefficients. gorithms were non-black-box. As for black-box algorithms,

the authors are quite sure that the reader has heard enough

Corollary 6 (Black-box PIT ovef)): There is a deter- h_isto_ry. Identity tests are known only for very special dept
ministic algorithm that takes as input a tripié, d,n) of  Circuits [AMO7], [Sax08], [SV09], [KMSV09]. Agrawal and
natural numbers and in time pc@iyd’“2), outputs a hitting Vinay [AV08] showed that an efficient black-box identity

setH ¢ Z" with the following properties: test for depth4 circuits will actuall)_/ give a quasi—polyno_n_ﬂal
black-box test, and subexponential lower bounds, for @scu

of all depthsthat computdow degreepolynomials. Thus,
understanding deptB-identities seems to be a natural first

1) Any XIIX(k, d, n) circuit C' overR computes the zero
polynomial iff Ya € H, C(a) = 0.

2) M has at most poly:d"”) points. step towards the goal of PIT.
3) The total bit-length of each point inH is
poly(knlogd). Il. PROOFOUTLINE, IDEAS, AND ORGANIZATION

Our proof of the rank bound comprises of several new
1) Other fields: What about other fields? The rank ideas, both at the conceptual and the technical levels. In-
bounds of [DS06] and [SS09] hold for arbitrary fields, stead of giving proofs in this extended abstract, we will
whereas the rank bound of [KS09b] holds only fr  only provide the intuition and the overall argument. We
It has been observed that for finite fields, the rank ofrecommend the interested reader to see the full version
an XII¥ identity can be as large aQ(klogd) [KS07], of this paper [SS10]. The full proof of Theorem 4 is
[SS09]. Hence, theD(k®logd) bound proved by [SS09] extremely technical, requires many definitions, and ineolv
is almost optimal. As a small bonus, we give a slightmany algebraic arguments. Our attempt is to convey with
improvement upon this bound using our approach. Thisnain ideas without getting into too much formalism or
requires Sylvester-Gallai theorems over arbitrary fieldsmathematical details. We describe all the major milestones
an interesting question in itself. It was shown thatmany of which are interesting in their own right. Indeed,
SG(C,m) < 3 [EPS06], and certain lower bounds for it is the authors’ opinion that the reader has little to gain
locally decodable codes implied S@&, m) = O(logm).  from simply reading the detailed proofs without getting the
(Concretely, Corollary 2.9 of [DS06] can be used to proveessence of the ideas.
that SG(F,m) = O(logm). This is an extension of The intuition portion is divided into three subsections,
theorems in [GKSTO02] that prove this fdl,. ) Other than each dealing with a separate component of the final proof.



Each portion proves an interesting structural theorem. ThéConventionally, sff)) = {0}.)

three notions that are crucially used and developed arat ide [Matchings] Let U,V be lists of linear forms and be
Chinese remaindering, matchings and Sylvester-Gall& rana subspace of.(R). An I-matchingr betweenU,V is a
bounds. Related notions have appeared (in some form) ihijection = between listsU,V such that: for all¢ € U,
the works of Kayal & Saxena [KS07], Saxena & Seshadhrir(¢) € F*¢ + I.

[SS09] and Kayal & Saraf [KS09b] respectively, to prove When f,g are multiplication terms, anl/-matching
different kinds of results. The first two steps set up thebetween f,g would mean an I-matching between
algebraic framework and prove theorems that hold for allL(f), L(g).

fields. The third step is where the Sylvester-Gallai thearem

are brought in. ) ) ]
B. Step 1: Matching the Gates in an Identity

A. Notation and definitions We will show that all the multiplication terms of a

We will denote the sef{1,...,n} by [n]. We fix the  minimal IIX identity can be matched by a low rank space
base field to beF, so the circuits compute multivariate K, spanned by “few” linear forms it (R).
polynomials in thepolynomial ringR := Flxy, ..., x,]. We
useF* to denoteF \ {0}. Theorem 9 (Matching-Nucleusyet C = Ty + -+ - + T

A linear form is a linear polynomial inR with zero  be a XII%(k,d) circuit that is minimal and zero. Then
constant term. We will denote the set of all linear formsthere exists a linear subspaseof L(R) such that:
by L(R) := {3, aiz; | ai,...,a, € F}. Clearly, L(R) 1) rk(K) < k2.
is a vector (or linear) space ovérand that will be quite 2) Vi € [k], there is aK-matchingr; betweenT}, T;.
useful. Much of what we do shall deal witlulti-sets of
linear forms (sometimes polynomials iR), equivalence The idea of matchings within identities was first introduced
classes inside them, and various maps across thelist 8f  in [SS09], but nothing as powerful as this theorem has
linear forms is a multi-set of forms with an arbitrary order been proven. This theorem gives us a space of small rank,
associated with them. The actual ordering is unimportantindependent ofi, that contains most of the “complexity”
we will heavily use maps between lists, and the orderingof C. All forms in C outside K are just mirrored in the
allows us to define these maps unambiguously. The usuaiarious terms. This starts connecting the algebra of d&pth-

set operations between lists can be naturally defined. identities to a combinatorial structure. Indeed, the giegdh
Definition 8: We collect some important definitions from picture (explained in detail below) that this theorem
[SS09]: provides, really gives an intuitive grasp on these ideatiti

[Multiplication term, L(-) & M(-)] A multiplication  The proof of this involves some interesting generalization
term f is an expression iR given as (the product may have of the Chinese Remainder Theorem to some special ideals.
repeated’s), f := c-[[,cq ¢, wherec € F* and S is a list
of nonzero linear forms. Thist of linear forms inf, L(f), Definition 10 (mat-nucleus)tet C be a minimal
is just the listS of forms occurring in the product above. XIIX(k,d) identity. The linear subspacdd given by
For a listS of linear forms we define theultiplication term  Theorem 9 is calledgnat-nucleus of”.
of S, M(S), as[[,cgl orlif S =¢.

[Forms in a Circuit] We will represent a~IIX(k, d) The notion of mat-nucleus is easier to see in the represen-
circuit C' as a sum ofk multiplication terms of degred,  tation of the XII>(4,d) circuit C' = Ziem T; given in
C = Zle T;. The list of linear forms occurring inC' is  Figure 1a. The four bubbles refer to the four multiplication
L(C) = U;ep L(T3). Note thatL(C) is a list of size terms of C' and the points inside the bubbles refer to the
exactly kd. The rank of C, rk(C), is just the number of linear forms in the terms. The proof of Theorem 9 gives
linearly independent linear forms ib(C). (Remark: for the mat-nucleus as the space generated by the linear forms in the
purposes of this papéF;’s are given in circuit representation dotted box. The linear forms that are not in mat-nucleus lie
and thus the list(7;) is unambiguously defined from) “above” the mat-nucleus and are all (mat-nucleus)-matched

[Similar forms] For any two polynomialsf,g € R we i.e.V¢ € (L(Ty) \ mat-nucleuy there is a form similar td
call f similar to g if there exists: € F* such thatf = cg. We  modulo mat-nucleus in eaclL(7;)\ mat-nucleus Thus the
say f is similar tog modI, for some ideal of R, ifthereis  essence of Theorem 9 is: the mat-nucleus part of the terms
somec € F* such thatf = cg(mod I). Note that “similarity ~ of C' has low rankk?, while the part of the terms above
mod I” is an equivalence relation (reflexive, symmetric mat-nucleus all look “similar”.
and transitive) and partitions any list of polynomials into Proof Idea for Theorem 9The key insight in the con-
equivalence classes. struction of mat-nucleus is a reinterpretation of the non-

[Span sp(-)] For any S C L(R) we let sgS) C L(R)  black-box identity test of Kayal & Saxena [KS07] as a
be thelinear spanof the linear forms inS over the fieldF. structural result forXII¥ identities. Roughly speaking,



C. Step 2: Certificate for Linear Independence of Gates

Theorem 9 gives us a spade€, of rank < k2, that
matchesT; to each termT;. In particular, this means
that the list Lx(T;) := L(T;) N K has the same
cardinality d’ for eachi € [k]. In fact, if we look at the
corresponding multiplication termé&; := M (Lx(T;)),

i € [k], then they again form &II¥(k,d’) identity!
Precisely,C’ = Zie[k] o; K; for someg;’'s in F* is an
(@) Mat-nucleus identity. We would likeC’ to somehow mimic the structure
Ty 13 T3 Ty of C. Of courseC’ is simple but is it again minimal?
Unfortunately, it may not be. As we will see in Step 3, when

‘ C’ somewhat “mirrors” the structure af, then bounding
'E' the rank of the forms “outsideK becomes possible. Step

2 involves increasing the spadé (but not by too much)
that gives us &’ with the right behavior. Specifically, if
Ti,..., T arelinearly independenti.e. 7 3 € F*'\ {0} s.t.
Yic ] B;T; = 0), then so areK, ..., K. The following

(b) Paths can be seen as an important structural theorem of d&pth-

Figure 1 identities.

Theorem 11 (Nucleus)et C' =}, T; be a minimal

YIIX(k, d) identity and let{T;|: € Z} be a maximal set of
linearly independent termd K ¥’ := |Z| < k). Then there
exists a linear subspad€ of L(R) such that:

1) rk(K) < 2k2.

2) Vi € [k], there is aK-matchingr; betweenT, T;.

3) (DefineVi € 7, K; := M(Lk(T;)).) The terms

{K;|i € T} are linearly independent.

[KS07] showed thatC' = 0 iff for every path (v, vq, v3)
(wherewv; € L(T;)): Ty = 0(modwvy,ve,v3) or in ideal
terms, T, € (v1,v9,v3). (This is technicallyfalse but it
portrays the right idea.) Paths are depicted in Figure 1b.
Thus, it is enough to go through all thE paths to certify
the zeroness of’. This is why the time complexity of the
identity test of [KS07] is dominated byi*. Now if we Definition 12 (nucleus)Let C' be a minimal£IIX(k, d)
are given axIIx(4,d) identity C which is minimal then identity. The linear subspac&™ given by Theorem 11 is
we know thatT} + T, + T3 # 0. Thus, by applying the called thenucleus ofC. The subspac&” induces an identity
above interpretation of [KS07] td@} + 15 + T3 we will ~ C" = >, @i which we call thenucleus identity

get a path(vy,v2) such thatTs ¢ (vy,v2). SinceC = 0

this means thafls + 7, = 0(moduvy,vy) but Ty, Ty # The notion of the nucleus is easier to grasp wh&n
0(mod vy, va) (if Ty is in (vy, v2) then so will beT3). Thus, 1S & XIIX(k,d) identity that is strongly minimal i.e.
T3 = —Ty(moduvy, ;) is a nontrivial congruence and it 11,...,Tk—1 are linearly independent. Clearly, suctCais

immediately gives us duv1,v,)-matching betweerfs, 7. also minimal For such &, Theorem 11 _give§ a.nucleus
By repeating this argument with a different permutation of & such that the corresponding nucleus identity is strongly
the terms we could match different terms (by a differentminimal. The structure of' is very strongly represented by

ideal), and finally we expect to match all the terms (by theC’. As a bonus, we actually end up greatly simplifying the
union of the various ideals). polynomial-time PIT algorithm of Kayal & Saxena [KS07]

(although we will not discuss this point in detail in this

This argument has numerous technical problems, theaper).
most important one being that it does not really work.
But all issues can be taken care of by suitable algebraic Proof Idea for Theorem 11The first two properties in
generalizations. A major stumbling block is the presence othe theorem statement are already satisfied by mat-nucleus
repeatingforms. It could happen thamodv;), v2 occurs  of C. So we incrementally add linear forms to the space
in many terms, or in the same term with a higher powermat-nucleus till it satisfies property (3) and becomes the
The most important tool developed is an ideal version ofnucleus. The addition of linear forms is guided by the ideal
Chinese remaindering that forces us to consider not justersion of Chinese remaindering. For convenience assume
linear formsw,, vy, but multiplication termsvy, ve dividing 73,75, T3 to be linearly independent. Then, by homogeneity
T1, T, respectively. and equal degree, we have an equivalent ideal statement:



Ty ¢ (Th) andT5 ¢ (T1,T>). Even in this general setting  Definition 15 (NonK rank): Let K be a linear subspace
the path analogy (used in the last subsection) works and wef L(R). ThenL(R)/K is again a linear space (tlygiotient
essentially get linear forms; € L(Ty) and vy € L(T») spac@. Let S be a list of forms inL(R). Thenon-K rank
such thatTy ¢ (v1) andT5 ¢ (v1,v2). We now add these of S is defined to be rkS mod K) (i.e. the rank ofS when
formswvy, v, to the space mat-nucleus, and call the new spaceiewed as a subset di(R)/K).
K. It is expected that the ne¥,, K, K3 are now linearly Let C' be aXIIX(k,d) identity with nucleusK. The
independent. non-K rank of the non-nucleus pait (T;) is called the
Not surprisingly, the above argument has numerous techron-nucleus rank of;. Similarly, the nonX rank of the
nical problems. But it can be made to work by carefulnon-nucleus partLi (C) := ;e L (T3) is called the
applications of the ideal version of Chinese remaindering. non-nucleus rank of’.

D. Step 3: Invoking Sylvester-Gallai Theorems We give an example to explain the nén+ank. LetR =
[217 ttyZny Yty 7ym] SupposeK = qula e 7277,)

As explained in Section I-A, we rephrase the standarcgnds C L(R). We can take any elemeftin S and simply

Sylvester-Gallai theorems in terms dbylvester-Gallai drop all thez; terms, i.e. ‘truncate’ the-part of £. This
f , l.e. .

cllos%reandcrjank bg_unds(pleflqltfn 3). Using sc;]mef_llnear gives a set of linear forms over thevariables. The rank of
algebra and combinatorial tricks, we prove the first evefoqa is the not rank of .

general Sylvester-Gallai bound for all fields. We are now ready to state the theorem that is proved in
Step 3. It basically shows a neat relationship between the

Theorem 13 (General Sylvester-Gallafor any field F non-nucleus part and Sylvester-Gallai.

andk,m € N>1, SG,(F,m) < 9k lgm.

) S ) . Theorem 16 (Bound for simple, strongly minimal identities)
The following definition is very helpful in applying | et F| > d. The non-nucleus rank of a simple and strongly
Sylvester-Gallai rank bounds to our scenario. minimal SIIS(k, d) identity overF is at most SG_ (F, d).

More specifically, (for nucleug() the vectors inL(C) \ K
Definition 14 (SG operator){SGy(-)] Let k,m € N”'.  form an SG_;-closed set.

Suppose a sef C F" has rank greater than S&,m)

(Where#S < m). Then, by definitionS is not SG-closed. Observe that this theorem together with Theorem 11 gives
In this situation we say thé-dimensional Sylvester-GalIai a Comp|ete structure theorem for Strong|y minimal de3)th-
operator SG; () (applied onS) returns a set ok linearly  jdentities. One can make suitable claims for identitieg tha
independent vectorig in S whose span has no pointf\V.  are not strictly minimal. Essentially, we just take a subset
of linearly independent terms, sak,..., Ty, that form
Let C be a simple and strongly minimallI¥(k, d) iden-  a basis for{T;|i € [k]}. We can now construct strongly
tity. Theorem 11 gives us a nuclei$, of rank < 2k2, that  minimal identities using these terms and apply the above
matchesT; to each ternf;. As seen in Step 2, if we look at theorem. Specifically, we get the following.
the corresponding multiplication terns; := M (Lk(T;)),
i € [k], then they again form &II%(k,d’) “nucleus Definition 17 (Independent-faninjet C' = 3, T;
identity” C" =}, i fS;, for someay’s in F*, which is  be a XII%(k,d) circuit. The independent-faninof C,
simple and strongly minimal. Define tim®n-nucleus pardf  ind-fanin(C'), is defined to be the size of the maximal
T; asL(Ti) == L(T;)\ K, for all i € [k] (cin the exponent 7 C [k] such that{T;|i € Z} are linearly independent
annotates “complement”, sindg(T;) = Lk (T;) U L% (T3)). polynomials.
What can we say about the rank bf, (T;) ?
Define the non-nucleus part ofC' as L% (C) := We now state the following stronger version of the main
Uiep L% (Ti). Our goal in Step 3 is to bound theorem.
rk(LS (C) mod K) by 2k when the field isR. This will give
us a rank bound of <)+ rk(L5 (C)mod K) < (2k?+2k) Theorem 18 (Final bound)Let |[F| > d. The rank of a
for simple and strongly minimalIIX(k, d) identities over simple, minimalXIIX(k, d), independent-fanii’, identity
R. The proof is mainly combinatorial, based on higheris at most2k? + (k — k') - SG (F, d).
dimensional Sylvester-Gallai theorems and a property bf se
partitions, with a sprinkling of algebra. Remark: In particular, the rank of a simple,
We apply the S@ operator not directly on the forms in minimal XIIX(k,d) identity over reals is at most
L(C) but on a suitable truncation of those forms. So we2k? + (k — k') - SGy(R,d) < 2k* + (k — K)2(k' — 1)
need another definition. < 3k?, proving the main theorem over reals. Likewise, for
anyF, we get the rank bound @2 + (k — k') - SG (F, d)



< 282 + (K — K9k lgd < 2k% + 22 lgd < 3k*1g2d,  operator outputyo+y1, yo+y2, yo-+ys3) and the fact that”
proving the main theorem. is a simple, strongly minimaLIlX(4, d) identity. Consider
the setting given in Figure 2. Suppose the linear forms in

Proof Idea for Theorem 16:Basically, we apply the C that are similar to a form iy, + y; + K|i € [3]} are

SG(-) operator on the non-nucleus part of the téfimi.e.  exactly those depicted in the figure. All forms within a row

we treat a linear form} _, a;z; as the point1, ¢2,...,%*) €  are K-matched. We would like to find formg, £;, £5 with

F" for the purposes of Sylvester-Gallai and then we con+the following properties: 1) ¢; = c;¢;(mod K) (for some

sider SG(L% (T1)) assuming that the non-nucleus rank of constantc;). (2) There exists somg such that nd; divides

T, is more than SGF,d). This application of Sylvester- T; but for eachZ; (I # j), some/; divides T;. In this

Gallai is much more direct compared to the methods usedituation, we can choo$é = yo+y1+21, £5 = yo+y2+ 22,

in [KS09b]. There, they effectively needed to prove ver-and?; = —yo — y3 + z2. None of these divide%,. Observe

sions of Sylvester-Gallai that dealt with colored pointsl an that the triple(yo 4+ y1 + 21, Yo + y2 + 22, yo + y3 + 21) does

needed ayperplane decompositigoroperty after applying not satisfy these conditions, since no appropriétean be

a SGom (+) operator onL(C'). Since, modulo the nucleus, found.

all multiplication terms look essentially the same, it ste§ Take C modulo the ideal [ =
to focus attention on just one of them. Hence, we apply th€y + y1 + 21,90 + y2 + 22, —yo — y3 + 22). It is easy
SGi-operator on a single multiplication term. to see thatC = Ty(modI), so I “kills” the first three

Assume C' is a simple, strongly minimalkIIX(k, d) terms. SinceC' is an identity,7, € I. Thus, there is a
identity with terms{T;|i € [k]} and letK be its nucleus form ¢ € L(T},) such that! € sp(¢}, 5, ¢5). Since no form
given by Step 2. It will be convenient for us to fix a linear from ¢; divides Ty, so ¢ must be a non-trivial combination
form yo € L(R)* and a subspacE of L(R) such that we of these forms. By the matching property, there exists
have the followingorthogonalvector space decomposition some form¢ € L(T}) such that tru?) = trun(¢). In other
L(R) =TFyo® U @ K. This means for any formi € L(R),  words, trurt{) € trun(L%(71)). But that contradicts the
there is a unique way to expreés= ayo + u + v, where  fact that (¢}, ¢4, ¢5) form an SGs-tuple. This implies that
a € F,uw e U andv € K. Furthermore, we will assume the non-nucleus rank af' is at most SG(F, d).
wlog that for every form¢ € LS (71) the corresponding The approach above worked because we were lucky
« is nonzero, i.e. each form kg (77) is monicwrt yo.  enough to find?}, 45, ¢5 with the right properties. Can
Technically, we do not need the extra varialje and we always do this? No, because of repeating forms. Sup-
can work in a projective space. Nonetheless, it makes thpose, after going modulo fornd, the circuit looks like

presentation easier. 23y + 22%y% + 29 = 0. This is not simple, buit does
not have to beWe are only guaranteed that the original
Definition 19 (trurf-)): Fix a decompositionL(R) =  circuit is simple. Once we go modulg that property is

Fyo @ U & K. For any form{ € LS. (11), there is a unique lost. Now, the choice ofiny form kills all terms. We will
way to expresg = ayo + u+ v, wherea € F*, uw € U and  use our more powerful Chinese remaindering tools and the

veK. nucleus properties to deal with this. The minimality of the
The truncated form truf?) is the linear form obtained nucleus identity plays a crucial role here and helps us deal

by dropping theK part and normalizing, i.e. tryf) :=  with such situations. We have to prove a special theorem

Yo +a tu. about partitions ofk] and use strong minimality (which we

Given a list of formsS we define trufS) to be the did not use in the above sketch).
correspondinget (thus no repetitions) of truncated forms.

I1l. CONCLUSION

To be precise, we fix a basi$y;,...,yww)} of U In this work we developed the strongest methods, to date,
so that each form in trui$ (71)) has representation to study deptt8 identities. The ideal methods hinge on a
Yo + D> @iy (a’s € F). We view each such form classification of zerodivisors of the ideals generated igga
as thepoint (1,a1,...,aww)) wWhile applying Sylvester- of a SIIY circuit. That is useful in proving an ideal ver-
Gallai on trurf L5 (T%)). Assume, for the sake of contradic- sion of Chinese remaindering tailor-made Y. circuits,
tion, that the non-nucleus rank @f, rk(trun(L%(771))) >  which is in turn useful to show a connection between all
SG,_1(F,d). Therefore, SG_: (trun(L$(T1))) gives (k —  the gates involved in an identity. As a byproduct, it shows
1) linearly independent formgs,...,¢x_1 € (yo + U)  the existence of a low rankucleus identityC’ inside any
whose span contains ragher linear form of tru{LS.(7%1)).  given XIIX(k,d) identity C (when C' is not minimal,C’

For simplicity of exposition, let us fix = 4, K spanned can still be defined but it might not be homogeneous). The
by z's, U spanned by’s and¢; = yo + y; (i € [3]). Note  properties of the nucleus identity are an important part of
that (by definition) trufiyo + >, cizi + >, Biyi) = yo + an identity and it might be useful for PIT to understand
> &yl We want to derive a contradiction using the 3G (or classify) it further. Can the rank bound for the nucleus
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Figure 2

identity be improved toO(k)? More importantly, can the
rank bound for simple minimal reaLIIX(k,d) identities
be improved taO(k)? The best constructions known, since
[DS06], have ranki(k — 2). Over other fields, our upper
bound of O(k? log d) still leaves some gap in understanding
the exact dependence @n Of course, the most important
question is whether our techniques can help construct B\gros]
truly polynomial time deterministic (even non-black-box)
algorithm for PIT.

We generalize the notion of Sylvester-Gallai configura-
tions toanyfield and define a parameter 3@, m) associ-
ated with fieldF. This number seems to be a fundamental
property of a field, and as we show, is very closely related to
Y11Y identities. It would be interesting to obtain bounds for
SG(F,m) for differentF. For example, as also asked by [aAM07]
[KS09b], can we nontrivially bound the number §B, m)
for interesting fieldsC, finite fields with large characteristic,
or evenp-adic fields? The only known SGank bounds are
those forR, SG;(C,m) < 3, and SG(F,m) < O(logm).

We shed (a little) light on SG rank bounds by showing[Asog]
SG,(F,m) = O(klogm). We conjecture: SETF,m) is
O(k) for zero characteristic fields, whil@(k + & - log,, m)
for fields of characteristip > 1. The latter would mean
that when the characteristic is large % m), SG,(F,m) =
O(k), matching the bounds for zero characteristic fields.
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