
Discovering the roots: Uniform closure results for

algebraic classes under factoring∗

Pranjal Dutta † Nitin Saxena ‡ Amit Sinhababu §

Abstract

Newton iteration (NI) is an almost 350 years old recursive formula that approximates a
simple root of a polynomial quite rapidly. We generalize it to a matrix recurrence (allRootsNI)
that approximates all the roots simultaneously. In this form, the process yields a better
circuit complexity in the case when the number of roots r is small but the multiplicities
are exponentially large. Our method sets up a linear system in r unknowns and iteratively
builds the roots as formal power series. For an algebraic circuit f(x1, . . . , xn) of size s we
prove that each factor has size at most a polynomial in: s and the degree of the squarefree
part of f . Consequently, if f1 is a 2Ω(n)-hard polynomial then any nonzero multiple

∏
i f

ei
i

is equally hard for arbitrary positive ei’s, assuming that
∑

i deg(fi) is at most 2O(n).
It is an old open question whether the class of poly(n)-sized formulas (resp. algebraic

branching programs) is closed under factoring. We show that given a polynomial f of degree
nO(1) and formula (resp. ABP) size nO(log n) we can find a similar size formula (resp. ABP)
factor in randomized poly(nlog n)-time. Consequently, if determinant requires nΩ(log n) size
formula, then the same can be said about any of its nonzero multiples.

As part of our proofs, we identify a new property of multivariate polynomial factorization.
We show that under a random linear transformation τ , f(τx) completely factors via power
series roots. Moreover, the factorization adapts well to circuit complexity analysis. This with
allRootsNI are the techniques that help us make progress towards the old open problems;
supplementing the large body of classical results and concepts in algebraic circuit factorization
(eg. Zassenhaus, J.NT 1969; Kaltofen, STOC 1985-7 & Bürgisser, FOCS 2001).

2012 ACM CCS concept: Theory of computation– Algebraic complexity theory, Problems,
reductions and completeness; Computing methodologies– Algebraic algorithms, Hybrid symbolic-
numeric methods; Mathematics of computing– Combinatoric problems.
Keywords: circuit factoring, formula, ABP, randomized, hard, VF, VBP, VP, VNP, quasipoly.

Contents

1 Introduction 2
1.1 Previously known closure results . 3
1.2 Our results . 5

1.2.1 A detour into numerical analysis (via arithmetic circuits) 5
1.2.2 Back to multivariate algebraic models . 7

1.3 Proof techniques . 8
1.4 Proof overview . 11

∗Preliminary version presented in 50th ACM Symposium on Theory of Computing (STOC), 2018.
†Chennai Mathematical Institute, pranjal@cmi.ac.in
‡CSE, Indian Institute of Technology, Kanpur, nitin@cse.iitk.ac.in
§CSE, Indian Institute of Technology, Kanpur, amitks@cse.iitk.ac.in

1

2 Preliminaries 13

3 Power series factorization of polynomials 13

4 Main Results 14
4.1 Factors of a circuit with low-degree radical: Proof of Theorem 1 14
4.2 Low degree factors of general circuits: Proof of Theorem 2 16
4.3 Closure of restricted complexity classes: Proof of Theorem 3 16

5 Extensions 21
5.1 Closure of approximative complexity classes . 21
5.2 When field F is not algebraically closed . 22
5.3 Multiplicity issue in prime characteristic . 23

6 Conclusion 24

A Preliminaries 30
A.1 Definition of ABP . 30
A.2 Randomized algorithm for linear algebra using PIT 30
A.3 Basic operations on formula, ABP and circuit . 31
A.4 Sylvester matrix & resultant . 33

B Useful in Section 3 34

C Useful in Section 4 35
C.1 Closure properties for VNP . 36

1 Introduction

Algebraic circuits provide a way, alternate to Turing machines, to study computation. Here,
the complexity classes contain (multivariate) polynomial families instead of languages. It is
a natural question whether an algebraic complexity class is closed under factors. This is also
a useful, and hence, a very well studied question both from the point of view of practice and
theory. We study the following two questions related to multivariate polynomial factorization:
(1) Let {fn(x1, . . . , xn)}n be a polynomial family in an algebraic complexity class C (egs. VP,
VF, VBP, VNP or VP etc.). Let gn be an arbitrary factor of fn. Can we say that {gn}n ∈ C?
Equivalently, is the class C closed under factoring? (2) Can we design an efficient, i.e. randomized
poly(n)-time, algorithm to output the factor gn with a representation in C? (Uniformity)

Different classes give rise to new challenges for the closure questions. Before discussing
further, we give a brief overview of the algebraic complexity classes relevant for our paper. For
more details, see [Mah14, SY10, BCS13].

Algebraic circuit is a natural model to represent a polynomial compactly. An algebraic
circuit has the structure of a layered directed acyclic graph. It has leaf nodes labelled as input
variables x1, . . . , xn and constants from the underlying field F. All the other nodes are labelled
as addition and multiplication gates. It has a root node that outputs the polynomial computed
by the circuit. Some of the complexity parameters of a circuit are size (number of edges and
nodes), depth (number of layers), syntactic degree (the maximum degree polynomial computed
by any node), fan-in (maximum number of inputs to a node) and fan-out. An algebraic formula
is a circuit whose underlying graph is a directed tree. In a formula, the fan-out of the nodes is at
most one, i.e. ‘reuse’ of intermediate computation is not allowed.

2

The class VP (resp. VF) contains the families of n-variate polynomials of degree nO(1) over
F, computed by nO(1)-sized circuits (resp. formulas). The class VF is sometimes denoted as
VPe, for it collects ‘expressions’ which is another name for formulas. Similarly, one can define
VQP (resp. VQF) which contains the families of n-variate polynomials of degree nO(1) over F,
computed by 2poly(logn)-sized circuits (resp. formulas). If we relax the condition on the degree in
the definition of VP, by allowing the degree to be possibly exponential, then we define the class
VPnb. Such circuits can compute constants of exponential bit-size (unlike VP).

Algebraic branching program (ABP) is another model for computing polynomials which we
define in Sec.A. The class VBP contains the families of polynomials computed by nO(1)-sized
ABPs. We have the easy containments: VF ⊆ VBP ⊆ VP ⊆ VQP = VQF [BOC92, VSBR83].

Finally, we give an overview of the class VNP, which can be seen as a non-deterministic analog
of the class VP. A family of polynomials {fn}n over F is in VNP if there exist polynomials t(n), s(n)
and a family {gn}n in VP such that for every n, fn(x) =

∑
w∈{0,1}t(n) gn(x,w1, . . . , wt(n)). Here,

witness size is t(n) and verifier circuit gn has size s(n). VP is contained in VNP and it is
believed that this containment is strict (Valiant’s Hypothesis [Val79]).

Newton iteration based numerical methods are very popular in engineering [OR00, GMS+86,
BSR+05]. This work introduces a new process to approximate all the roots of a circuit assuming
that they are few and their multiplicites are known. This is based on a matrix recurrence, which
in turn is derived from a new identity (Claim 6). Based on the process (called allRootsNI in
Section 1.3) we get several consequences in very high-degree circuit factoring (eg. Theorem 1):

Every factor of a given circuit C has size polynomial in: size(C) and the degree of the
squarefree part of C (note that it may be exponentially smaller than deg(C)).

and in factoring other poly-degree algebraic models (eg. Theorems 3, 14 & 15):
Every factor, of a degree-d polynomial with VF (respectively VBP, VNP) complexity s, has VF

(respectively VBP, VNP) complexity poly(s, dlog d). The latter is poly(s) if degree d = 2O(
√

log s).

Now, we briefly discuss the state of the art on the closure questions for various algebraic
complexity classes. (Those interested in numerical analysis could first read Section 1.2.1.) To
cover more depth and breadth, see [Kal90, Kal92, FS15].

1.1 Previously known closure results

Famously, Kaltofen [Kal85, Kal86, Kal87, Kal89] showed that VP is uniformly closed under
factoring, i.e. for a given d degree n variate polynomial f of circuit size s, there exists a randomized
poly(snd)-time algorithm that outputs its factor as a circuit whose size is bounded by poly(snd).
This fundamental result has several applications such as ‘hardness versus randomness’ in algebraic
complexity [KI03, AV08, DSY09, AGS18], derandomization of Noether Normalization Lemma
[Mul17], in the problem of circuit reconstruction [KS09, Sin16], and polynomial equivalence
testing [Kay11]. In general, multivariate polynomial factoring has several applications including
decoding of Reed-Solomon, Reed-Muller codes [GS98, Sud97], integer factoring [LLMP90],
primary decomposition of polynomial ideals [GTZ88] and algebra isomorphism [KS06, IKRS12].

It is natural to ask whether Kaltofen’s VP factoring result can be extended to VPnb which
allows degree of the polynomials to be exponentially high. It is known that not every factor of a
high degree polynomial has a small sized circuit. For example, the polynomial x2s − 1 can be
computed in size s, but it has factors over C that require circuit size Ω

(
2s/2/

√
s
)

[LS78, Sch77].
It is conjectured [Bür13, Conj.8.3] that low degree factors of high degree small-sized circuits have
small circuits. Partial results towards it are known. It was shown in [Kal87] that if polynomial
f given by a circuit of size s factors as geh, where g and h are coprime, then g can be computed
by a circuit of size poly(e,deg(g), s). The question left open is to remove the dependency on e.
In the special case where f = ge, it was established that g has circuit size poly(deg(g), size(f)).

3

On the other hand, several algorithmic problems are NP-hard, eg. computing the degree of the
squarefree part, gcd, or lcm; even in the case of supersparse univariate polynomials [Pla77b].

Now, we discuss the closure results for classes more restrictive than VP (such as VF, VBP
etc.). Unfortunately, Kaltofen’s technique [Kal89] for VF will give a superpolynomial-sized factor
formula; as it heavily reuses intermediate computations while working with linear algebra and
Euclid gcd. The same holds for the class VBP. In contrast, extending the idea of [DSY09], Oliveira
[Oli16] showed that an n-variate polynomial with bounded individual degree and computed by a
formula of size s, has factors of formula size poly(n, s). Furthermore, it was established that for
a given n-variate individual-degree-r polynomial, computed by a circuit (resp. formula) of size s
and depth ∆, there exists a poly(nr, s)-time randomized algorithm that outputs any factor of f
computed by a circuit (resp. formula) of depth ∆ + 5 and size poly(nr, s). We are not aware
of any work specifically on VBP factoring, except a special case in [KK08]—it dealt with the
elimination of a single division gate from skew circuits (also see Section A.1 & Lemma 20)—and
another special case result in [Jan11] that was weakened later owing to proof errors.

Going beyond VP we can ask about the closure of VNP. Bürgisser conjectured [Bür13,
Conj.2.1] that VNP is closed under factoring. Kaltofen’s technique [Kal89] for factoring VP
circuits does not yield the closure of VNP. After our paper was sent to review, Chou, Kumar
and Solomon [CKS18] have confirmed that VNP is indeed closed under factors.

Looking at the Border. Recently, approximative algebraic complexity classes like VP [GMQ16]
have become objects of interest, especially in the context of the geometric complexity program
[Mul12a, Mul12b, Gro15], but also in the framework that yields the fastest matrix multiplication
algorithms ([LG14] surveys the recent developments). Interestingly, [Mul17, Thm.4.9] shows
that the following three fundamental concepts are tightly related mainly due to circuit factoring
results: 1) efficient blackbox polynomial identity testing (PIT) for VP, 2) strong lower bounds
against VP, and 3) efficiently computing an ‘explicit system of parameters’ for the invariant
ring of an explicit variety with a given group action.

The related algorithmic questions, including factorization of VP circuits, have been recently
put in PSPACE [FS17]. This is the best uniform derandomization result known currently.

VP contains families of polynomials of degree poly(n) that can be approximated (infinitesi-
mally closely) by poly(n)-sized circuits. Bürgisser [Bür04, Bür01a, Bür01b] discusses approxi-
mative complexity of factors, proving that low degree factors of high degree circuits have small
approximative complexity. In particular, VP is closed under factoring [Bür01a, Thm.4.1]. Like
the standard versions, closure of VF resp. VBP is an open question. Recently, it has been shown
that VF = width-2-VBP [BIZ17] while classically it is false [AW11]. The new methods that we
present extend nicely to approximative classes because of their analytic nature (Theorem 14).

We conclude by stating a few reasons why closure results under factoring are interesting and
non-trivial. First, there are classes that are not closed under factors. For example, the class of
sparse polynomials; as a factor’s sparsity may blowup super-polynomially [vzGK85]. Closure
under factoring indicates the robustness of an algebraic complexity class, as, it proves that all
nonzero multiples of a hard polynomial remain hard. For this reason, closure results are also
important for proving lower bounds on the power of some algebraic proof systems [FSTW16].

Finally, factoring is the key reason why PIT, for VP, can be reduced to very special cases,
and gets tightly related to circuit lower bound questions (like VP6=VNP?). See [KI03, Thm.4.1]
for whitebox PIT connection and [AGS18, KST18] for blackbox PIT. One of the central reasons
is: Suppose a polynomial f(y) is such that for a nonzero size-s circuit C, C(f(y)) = 0. Then,
using factoring results for low degree C, one deduces that f also has circuit size poly(s). This
gives us the connection: If we picked a “hard” polynomial f then f(y) would be a hitting-set
generator (hsg) for C [KI03, Thm.7.7]. Our work is strongly motivated by the open question of
proving such a result for size-s circuits C that have high degree (i.e. sω(1)). Our first factoring

4

result (Theorem 1) implies such a ‘hardness to hitting-set’ connection for arbitrarily high degree
circuits C assuming that: the squarefree part Csqfree of C has low degree. In such a case we
only have to find a hitting-set for Csqfree which, as our result proves, has low algebraic circuit
complexity.

1.2 Our results

Before stating the results, we describe some of the assumptions and notations used throughout
the paper. Set [n] refers to {1, 2, . . . , n}. Logarithms are wrt base 2. For a polynomial f , size(f)
refers to the smallest size of circuits computing f ; it is the algebraic circuit complexity of f .

Field. We denote the underlying field as F and assume that it is of characteristic 0 and
algebraically closed. For eg. complex C, algebraic numbers Q or algebraic p-adics Qp. All the
results partially hold for other fields (such as R,Q,Qp or finite fields of characteristic >degree of
the input polynomial). For a brief discussion on this issue, see Section 5.

Ideal. We denote the variables (x1, . . . , xn) as x. The ideal I := 〈x〉 of the polynomial ring
will be of special interest, and its power ideal Id, whose generators are all degree d monomials in
n variables. Often we will reduce the polynomial ring modulo Id (inspired from Taylor series of
an analytic function around 0 [Tay15]).

Radical. For a polynomial f =
∏
i f

ei
i , with fi’s coprime irreducible nonconstant polynomials

and multiplicity ei > 0, we define the squarefree part as the radical rad(f) :=
∏
i fi.

What can we say about these fi’s if f has a circuit of size s? Our main result gives a good
circuit size bound when rad(f) has small degree. A more general formulation (with u0) is:

Theorem 1. If f = u0u1 is a nonzero product in the polynomial ring F[x], with size(f) +
size(u0) ≤ s, then every factor of u1 has a circuit of size poly(s+ deg(rad(u1))).

Note that Kaltofen’s proof technique in the VP factoring paper [Kal89] does not extend to
the exponential degree regime (even when degree of rad(f) is small) because it requires solving
equations with degxi(f) many unknowns for some xi, where degxi(f) denotes individual degree
of xi in f , which can be very high. Also, basic operations like ‘determining the coefficient of
a univariate monomial’ become #P-hard in the exponential-degree regime [Val82]. The proof
technique in Kaltofen’s single factor Hensel lifting paper [Kal87, Thm.2] works only in the
perfect-power case of f = ge. It can be seen that rad(f) “almost” equals f/ gcd(f, ∂xi(f)), but
the gcd itself can be of exponential-degree and so one cannot hope to use [Kal87, Thm.4] to
compute the gcd either. Univariate high-degree gcd computation is NP-hard [Pla77a, Pla77b].

Interestingly, our result when combined with [Kal87, Thm.3] implies that every factor g of
f has a circuit of size polynomial in: size(f), deg(g) and min{deg(rad(f)), size(rad(f))}. We
leave it as an open question whether the latter expression is polynomially related to size(f).

Theorem 1 shows an interesting way to create hard polynomials. In the theorem statement
let the size concluded be (s + deg(rad(u1)))e, for some constant e. If one has a polynomial
f1(x1, . . . , xn) that is 2cn-hard, then any nonzero f :=

∏
i f

ei
i is also 2Ω(n)-hard for arbitrary

positive ei’s, as long as
∑

i deg(fi) ≤ 2
cn
e
−1.

1.2.1 A detour into numerical analysis (via arithmetic circuits)

Root approximation of univariate polynomials has been an interesting problem in mathematics
& engineering. Interestingly, it has also found applications in various other problems such as
computing the largest eigenvalue, and checking whether a matrix is approximately PSD [LV16].

We can quantify the same question about ‘approximating roots’ of a univariate polynomial
and analyze the bit-complexity of the root; where the measure is the bitsize of the best circuit. For
an f(x) ∈ R[x] we define bitsize(f) = s if we can compute f(x) by a circuit using {+,−,×,÷}

5

gates and of overall bitsize s. Note that the degree of f could be exponential (eg. 2s) and the
coefficients may have exponential bit-length (eg. 2s bits, or values 2−2s to 22s).

For this complexity notion, we can show a surprising fact for the roots.

Claim: If a ∈ (0, 1) is 2m-bit approximation of a root of f(x) and ε ∈ (0, 1) lower bounds the gap
between a and the other roots of f(x), then bitsize(a) ≤ O(s+m log(1

ε)), where bitsize(f) =: s.

Note that the estimate is highly nontrivial, as it is essentially expressing 2m bits of the root
using ‘only’ bitsize m; so, roots of small circuits are rather special, in contrast to generic strings
that are incompressible [VL97]. It is relevant here to recall Shub-Smale’s tau conjecture that
states that ‘small’ circuits have ‘few’ integral roots! A proof of tau conjecture would imply
P6=NP over C [BCSS98]. This motivates well the study of roots of circuits.

Our Theorem 1 is an algebraic analogue of the above; there m log(1
ε) gets replaced by the

degree of the radical (or, the number of roots). Also, algebraic result is better in the sense that
we do not need ÷ gates.

Proof sketch– Now we give the main steps in the numerical result (the algebraic analogue Thm.1
would be more involved to prove as it is stronger). We use general Newton iteration (or, NI with
multiplicity). Observe that, we are interested in an existential statement; so, assume that we
know the multiplicity γ of the root a before-hand. Suppose, f(x) = (x− a)γg(x) where g(a) 6= 0.
Assume that g(x) =

∏r
i=1(x− bi)γi .

Hypothesis says that |a− bi| ≥ ε, for all i. We will use general NI to approximate 2m bits of a
(in this case after the decimal-point only). We will start with y0 such that |y0 − a| ≤ ε · 2−3m−1,
and wlog assume m ≥ s ≥ 2. Thus, to start with, y0 has a trivial circuit of bitsize O(m log(1

ε)).
Next, we use the general NI formula [DB08, Eqn.6.3.13], i.e.

yt+1 = yt − γ · f
f ′

∣∣∣∣
yt

.

Finally, we need to show that the process has quadratic convergence. Inductively, we want to
show that for all t ≥ 0,

|yt − a| ≤ ε · 2−3m · 2−2t . (1)

Note that the above inequality implies that ym is a 2m-bit approximation of a. Moreover,
computing yt+1 as a circuit– given the value yt and circuits for f(x), f ′(x) –requires O(1)
additional bitsize (as we already have γ, f, f ′ and ÷ is allowed in the circuit). So, ym will have a
circuit of bitsize O(s+m log(1

ε)).
We are only left to prove Equation 1. We have,

f(yt)

f ′(yt)
=

(yt − a)γg(yt)

(yt − a)γ−1 · (γg(yt) + (yt − a)g′(yt))

=
(yt − a)g(yt)

γg(yt) + (yt − a)g′(yt)
.

Hence,

|yt+1 − a| =

∣∣∣∣yt − a− γ f(yt)

f ′(yt)

∣∣∣∣
=

∣∣∣∣(yt − a)

(
1− γg(yt)

γg(yt) + (yt − a)g′(yt)

)∣∣∣∣
= |yt − a|2 ·

∣∣∣∣ g′(yt)

γg(yt) + (yt − a)g′(yt)

∣∣∣∣
6

= |yt − a|2 ·
∣∣∣∣γ g(yt)

g′(yt)
+ (yt − a)

∣∣∣∣−1

≤ |yt − a|2 ·
(∣∣∣∣ g(yt)

g′(yt)

∣∣∣∣− |yt − a|)−1

.

Observe that by Leibniz rule:

g′(yt)

g(yt)
=

r∑
i=1

γi
yt − bi

.

By the induction hypothesis |yt − a| ≤ ε2−3m · 2−2t ; so, we have for all i ∈ [r]:

|yt − bi| ≥ |a− bi| − |yt − a| ≥ ε · (1− 2−2t2−3m) .

Since γi, r ≤ 2s (∵ bitsize-s circuit can have degree at most 2s), we can upper bound as:∣∣∣∣g′(yt)g(yt)

∣∣∣∣ ≤ ∑
i∈[r]

γi
|yt − bi|

≤ 22s

ε(1− 2−2t2−3m)
.

This means,
∣∣∣ g(yt)g′(yt)

∣∣∣ ≥ 2−2s−1ε. Consequently,∣∣∣∣ g(yt)

g′(yt)

∣∣∣∣ − |yt − a| ≥ 2−2s−1ε− ε2−3m · 2−2t

= ε2−3s ·
(

2s−1 − 23s−3m · 2−2t
)

Hence,

|yt+1 − a| ≤ |yt − a|2 ·
(∣∣∣∣ g(yt)

g′(yt)

∣∣∣∣− |yt − a|)−1

≤ 2−2t+1
(ε · 2−3m)2 ·

(
ε2−3s

)−1

≤ 2−2t+1 · ε · 2−3m

This finishes the inductive step and we are done.

We leave some interesting questions open: Whether bitsize(a) could be improved to poly(s+
m)? Whether a bound for bitsize(a) could be proved without requiring ÷ gates?

1.2.2 Back to multivariate algebraic models

In general, for a high degree circuit f , rad(f) can be of high degree (exponential in size of the
circuit). Ideally, we would like to show that every degree d factor of f has poly(size(f), d)-size
circuit. The next theorem reduces the above question to a special kind of modular division, where
the denominator polynomial may not be invertible but the quotient is well-defined (eg. x2/x
mod x). All that remains is to somehow eliminate this kind of non-unit division operator (which
we leave as an open question). Consider ‘random’ elements αi, βi ∈r F and the corresponding
random linear map τ : xi 7→ αiy+xi+βi, i ∈ [n], where y is a new variable apart from x1, . . . , xn.

Theorem 2. If nonzero f ∈ F[x] can be computed by a circuit of size s, then any degree d factor
of f(τx) is of the form A/B mod 〈x〉d+1 where polynomials A,B have circuits of size poly(sd).

7

Note that in Theorem 2, B may be non-invertible in F[x]/〈x〉d+1 and may have a high degree
(eg. 2s). So, we cannot use the famous trick of Strassen to do division elimination here [Str73].

We prove uniform closure results, under factoring, for the algebraic complexity classes defined
below. Let s : N −→ N be a function. Define the class VF(s) to contain families {fn}n such
that n-variate fn can be computed by an algebraic formula of size poly(s(n)) and has degree
poly(n). Similarly, VBP(s) contains families {fn}n such that fn can be computed by an ABP of
size poly(s(n)) and has degree poly(n). Finally, VNP(s) denotes the class of families {fn}n such
that fn has witness size poly(s(n)), verifier circuit size poly(s(n)), and has degree poly(n).

Theorem 3. The classes VF(nlogn),VBP(nlogn),VNP(nlogn) are all closed under factoring.
Moreover, there exists a randomized poly(nlogn)-time algorithm that: for a given nO(logn)

sized formula (resp. ABP) f of poly(n)-degree, outputs nO(logn) sized formula (resp. ABP) of a
nontrivial factor of f (if one exists).

Remark. The “time-complexity” in the algorithmic part makes sense only in certain cases. For
example, when F ∈ {Q,Qp,Fq}, or when one allows computation in the BSS-model [BSS89]. In
the former case our algorithm takes poly(nlogn) bit operations (assuming that the characteristic
is zero or larger than the degree; see Theorem 15 in Section 5.2).

It is important to note that Theorem 3 does not follow by invoking Kaltofen circuit factoring
[Kal89] and VSBR transformation [VSBR83] from circuit to log-depth formula. Formally, if we
are given a formula (resp. ABP) of size nO(logn) and degree poly(n), then it has factors which
can be computed by a circuit of size nO(logn) and depth O(log n). If one converts the factor
circuit to a formula (resp. ABP), one would get the size upper bound of the factor formula to

be a much larger (nO(logn))logn = nO(log2 n). Moreover, Kaltofen’s methods crucially rely on the
circuit representation to do linear algebra, division with remainder, and Euclid gcd in an efficient
way; a nice overview of the implementation level details to keep in mind is [KSS15, Sec.3].

Our proof methods extend to the approximative versions C(nlogn) for C ∈ {VF,VBP,VNP}
as well (Theorem 14).

As before, Theorem 3 has an interesting lower bound consequence: If f has VF (resp. VBP
resp. VNP) complexity nω(logn) then any nonzero fg has similar hardness (for deg(g) ≤ poly(n)).

In fact, the method of Theorem 3 yields a formula factor of size sed2 log d for a given degree-d
size-s formula (e is a constant). This means— If determinant detn requires na logn size formula,
for a > 2, then any nonzero degree-O(n) multiple of detn requires nΩ(logn) size formula.

Similarly, if we conjecture that a VP-complete polynomial fn (say the homomorphism
polynomial in [DMM+14, Thm.19]) has na logn ABP complexity, for a > 4, then any nonzero
degree-O(n) multiple of fn has nΩ(logn) ABP complexity.

1.3 Proof techniques

We begin by describing the new techniques that we have developed. Since they also give a
new viewpoint on classic properties, they may be of independent interest. The techniques are
analytic at heart ([KP12] has a good historical perspective). The way they appear in algebra is
through the formal power series ring F[[x1, . . . , xn]]. The elements of this ring are multivariate
formal power series, with degree as precision. So, an element f is written as f =

∑∞
i=0 f

=i,
where f=i is the homogeneous part of degree i of f . In algebra texts it is also called the
completion of F[x1, . . . , xn] wrt the ideal 〈x1, . . . , xn〉 (see [Kem10, Chap.13]). The truncation
f≤d, i.e. homogeneous parts up to degree d, can be obtained by reducing modulo the ideal 〈x〉d+1.
Here d is seen as the precision parameter of the respective approximation of f .

The advantages of the ring F[[x]] are many. They usually emerge because of the inverse
identity (1− x1)−1 =

∑
i≥0 x

i
1 , which would not have made sense in F[x] but is available now.

8

First, we introduce a factorization pattern of a polynomial f , over the power series ring, under a
random linear transformation. Next, we discuss how this factorization helps us to bound the
size of factors of the original polynomial.

Power series complete split: We are interested in the complete factorization pattern of a
polynomial f(x1, . . . , xn). We can view f as a univariate polynomial in one variable, say xn,
with coefficients coming from F[x1, . . . , xn−1]. It is easy to connect linear factors with the roots:
xn − g is a factor of f iff f(x1, . . . , xn−1, g(x1, . . . , xn−1)) = 0.

Of course, one should not expect that a polynomial always has a factor which is linear in
one variable. But, if one works with an algebraically closed field, then a univariate polynomial
completely splits into linear factors (also see the fundamental theorem of algebra [CRS96, §2.5.4]).
So, if we go to the algebraic closure of F(x1, . . . , xn−1), any multivariate polynomial which
is monic in xn will split into factors all linear in xn. A representation of the elements of
F(x1, . . . , xn−1) as a finite circuit is impossible (eg.

√
x1). On the other hand, we show in this

work that all the roots (wrt a new variable y) are actually elements from F[[x1, . . . , xn]], after
a random linear transformation on the variables, τ : x 7→ x+ αy + β, is applied (Theorem 4).
Note– By a random choice α ∈r F we will mean that choose randomly from a fixed finite set
S ⊆ F of appropriate size (namely > deg(f)). This will be in the spirit of [Sch80].

Our proof of the existence of power series roots is constructive, as it also gives an algorithm
to find approximation of the roots up to any precision, using formal power series version of
the Newton iteration method (see [BCS13, Thm.2.31]). We try to explain the above idea using
the following example. Consider f = (y2 − x3) ∈ F[x, y]. Does it have a factor of the form
y − g where g ∈ F[[x]] ? The answer is clearly ‘no’ as x3/2 does not have any power series
representation in F[[x]]. But, what if we shift x randomly? For example, if we use the shift
y 7→ y, x 7→ x+ 1. Then, by Taylor series around 1, we see that (x+ 1)3/2 has a power series

expansion, namely 1 + 3
2x+ 3/2×1/2

2! x2 +
Formally, Theorem 4 shows that under a random τ : x 7→ x + αy + β where α, β ∈r Fn,

polynomial f can be factored as f(τx) =
∏d0
i=1(y − gi)γi , where gi ∈ F[[x]] with the constant

terms gi(0) being distinct, d0 := deg(rad(f)) and γi > 0.

Reducing factoring to computing power series root approximations: Using the split
Theorem 4, we show that multivariate polynomial factoring reduces to power series root finding
up to certain precision. Following the above notation f splits as f(τx) =

∏d0
i=1(y − gi)γi . For all

t ≥ 0, it is easy to see that f(τx) ≡
∏d0
i=1(y − g≤ti)γi mod It+1, where I := 〈x1, . . . , xn〉. Note

that there is a one-one correspondence, induced by τ , between the polynomial factors of f and
f(τx) (∵ τ is invertible and f is y-free). We remark that the leading-coefficient of f(τx) wrt y
is a nonzero element in F; so, we call it monic (Lemma 28). Next, we show case by case how to
find a polynomial factor of f(τx) from the approximate power series roots.

Case 1- Computing a linear factor of the form y − g(x): If the degree of the input polynomial is
d, all the non-trivial factors have degree ≤ (d− 1). So, if we compute the approximations of all
the power series roots (wrt y) up to precision of degree t = d− 1, then we can recover all the
factors of the form y − g(x1, . . . , xn). Technically, this is supported by the uniqueness of the
power series factorization (Proposition 1).

Case 2- Computing a monic non-linear factor: Assume that a factor g of total degree t is of
the form yk + ck−1y

k−1 + ...+ c1y + c0, where for all i, ci ∈ F[x]. Now this factor g also splits
into linear (in y) factors above F[[x]] and obviously these linear factors are also linear factors of
the original polynomial f(τx). So we have to take the right combination of some k power series
roots, with their approximations (up to the degree t wrt x), and take the product mod It+1.
Note that if we only want to give an existential proof of the size bound of the factors, we need
not find the combination of the power series roots forming a factor algorithmically. Doing it

9

through brute-force search takes exponential time (
(
d
k

)
choices). Interestingly, using a classical

(linear algebra) idea due to Kaltofen, it can be done in randomized polynomial time. We will
spell out the ideas later, while discussing the algorithm part of Theorem 3.

Once we are convinced that looking at approximate (power series) roots is enough, we need
to investigate methods to compute them. We will now sketch two methods. The first one
approximates all the roots simultaneously up to precision δ. The next ones approximate the
roots one at a time. In the latter, multiplicity of the root plays an important role.

Recursive root finding via matrices (allRootsNI): We simultaneously find the approxi-
mations of all the power series roots gi of f(τx). At each recursive step we get a better precision
wrt degree. We show that knowing approximations g<δi , of gi up to degree δ − 1, is enough to
(simultaneously for all i) calculate approximations of gi up to degree δ. This new technique, of
finding approximations of the power series roots, is at the core of Theorem 1.

First, let us introduce a nice identity. From now on we assume f(x, y) =
∏
i(y − gi)

γi

(i.e. relabel f(τx)). By applying the derivative operator ∂y, we get a classic identity (which
we call logarithmic derivative identity): (∂yf)/f =

∑
i γi/(y − gi) . Reduce the above identity

modulo Iδ+1 and define µi := gi(0) ≡ gi mod I. This gives us (see Claim 6):

∂yf

f
=

d0∑
i=1

γi
y − gi

≡
d0∑
i=1

γi

y − g<δi
+

d0∑
i=1

γi · g=δ
i

(y − µi)2
mod Iδ+1.

In terms of the d0 unknowns g=δ
i , the above is a linear equation. (Note- We treat γi, µi’s

as known.) As y is a free variable above, we can fix it to d0 “random” elements ci in F,
i ∈ [d0]. One would expect these fixings to give a linear system with a unique solution for the
unknowns. We can express the system of linear equations succinctly in the following matrix
representation: M · vδ = Wδ mod Iδ+1. Here M is a d0 × d0 matrix; each entry is denoted
by M(i, j) := γi

(ci−µj)2 . Vector vδ resp. Wδ is a d0 × 1 matrix where each entry is denoted by

vδ(i) := g=δ
i resp. Wδ(i) :=

∂yf
f

∣∣
y=ci
−Gi,δ, where Gi,δ :=

∑d0
k=1 γk/(ci − g

<δ
k) . We ensure that

{ci, µi | i ∈ [d0]} are distinct, and show that the determinant of M is non-zero (Lemma 29). So,
by knowing approximations up to δ − 1, we can recover δ-th part by solving the above system
as vδ = M−1Wδ mod Iδ+1. An important point is that the random ci’s will ensure: all the
reciprocals involved in the calculation above do exist mod Iδ+1.

Self-correction property: Does the above recursive step need an exact g<δi ? We show the self
correcting behavior of this process of root finding, i.e. in this iterative process there is no need
to filter out the “garbage” terms of degree ≥ δ in each step. If one has recovered gi correct up
to degree δ − 1, i.e. say we have calculated g′i,δ−1 ∈ F(x) such that g′i,δ−1 ≡ g

<δ
i mod Iδ, and say

we solve Mṽδ = W̃δ exactly, where W̃δ(i) :=
∂yf
f

∣∣
y=ci
− G̃i,δ, and G̃i,δ :=

∑d0
k=1 γk/(ci − g′k,δ−1).

Still, we can show that g′i,δ := g′i,δ−1 + ṽδ(i) ≡ g≤δi mod Iδ+1 (Claim 7). So, we made progress in
terms of the precision (wrt degree).

Rapid Newton Iteration with multiplicity: We show that from allRootsNI, we can derive
a formula that finds g<2t+1

1 using only g<2t

1 , i.e. the process has quadratic convergence and it

does not involve roots other than g1. Rewrite ∂yf/f =
∑d0

i=1 γi/(y − gi) = (1 + L1)γ1/(y − g1),
where L1 :=

∑
1<i≤d0

γi
y−gi ·

y−g1
γ1

. This implies f/∂yf = (1 + L1)−1 · (y − g1)/γ1. Now, if we

put y = yt := g<2t

1 , then yt − gi = g<2t

1 − gi is a unit in F[[x]] for i 6= 1 (∵ it is a nonzero

constant mod I). Also, yt − g1 = g<2t

1 − g1 ≡ 0 mod I2t , implying L1|y=yt ≡ 0 mod I2t . Thus,

(L1 · (y − g1))
∣∣
y=yt

≡ 0 mod I2t+1
.

Hence, f/∂yf
∣∣
y=yt

= (yt − g1)/γ1 mod I2t+1
.

10

This shows that, if f(x, y) = (y − g)eh, where h|y=g 6= 0 mod I and e > 0, then the power
series for g can be approximated by the recurrence:

yt+1 := yt − e · f

∂yf

∣∣∣∣
y=yt

(2)

where yt ≡ g mod I2t . This we call a generalized Newton Iteration formula, as it works with
any multiplicity e > 0.

In fact, when e = 1, g is called a simple root of f ; the above is an alternate proof of the
classical Newton Iteration (NI) [New69] that finds a simple root in a recursive way (see Lemma
27). When all the roots are simple there are numerical methods to simultaneously approximate
them [Dur60, Ker66, Ehr67, Abe73]. However, it is well known that NI fails to approximate the
roots that repeat (see [Lec02]). In that case either NI is used on the function f/∂yf or, though
less frequently, the generalized NI is used in numerical methods (see [DB08, Eqn.6.3.13]).

There is a technical point about our Eqn.2 when e ≥ 2. The denominator ∂yf |y=yt is zero
mod I, thus, its reciprocal does not exist! However, the ratio (f/∂yf)

∣∣
y=yt

does exist in F[[x]].

On the other hand, if e = 1 then the denominator ∂yf |y=yt is nonzero mod I, thus, it is invertible
in F[[x]] and that is necessary for fast algebraic circuit computation (esp. division elimination).

We can compare the NI formula with the recurrence formula (which we call slow Newton
Iteration) used in [DSY09, Eqn.5], [Oli16, Lem.4.1] for root finding. The slow NI formula is

Yt+1 = Yt− f(x,Yt)

∂yf(0,Y1)
, where Yt ≡ g mod It. The rate of convergence of this iteration is linear, as

it takes δ many steps (instead of log δ) to get precision up to degree δ. One can also compare NI
with other widespread processes like multifactor Hensel lifting [vzGG13, Sec.15.5], [Zas69] and
the implicit function theorem paradigm [KP12, Sec.1.3], [KS16, PSS16]; however, we would not
like to digress too much here as the latter concept covers a whole lot of ground in mathematics.

1.4 Proof overview

In all our proofs, we use the reduction of factoring to power series root approximation, and then
find the latter using various techniques described before.

Proof idea of Theorem 1: We use the technique of allRootsNI to find the approximations of
all the power series roots of f(τx). As we already discussed how to find a polynomial factor g
of u1 (that divides f) from the roots of f(τx), what remains is to analyze the size bound for
power series roots that we get from allRootsNI process. We note a few crucial points that help
to prove the size bound.

Let d0 be the degree of rad(u1). The number of distinct power series roots, of u1(τx) wrt
y, is d0. It suffices to approximate the power series roots up to degree d0, as any nontrivial
polynomial factor of rad(u1(τx)) has degree less than d0. Also, a size bound on these factors of
the radical directly gives a size bound on the polynomial factor g.

The logarithmic derivative satisfies: ∂y log f(τx) = ∂y log u0(τx)+ ∂y log u1(τx). Since we
have size s circuits for both f and u0, and y is later fixed to random ci’s in F, we can approximate
the first two logarithmic derivative circuits modulo Id0+1. This approximates ∂yu1(τx)/u1(τx).

On this, allRootsNI process is used to approximate the power series roots of u1(τx) up to
degree d0. The self correcting behavior of the allRootsNI is crucial in the size analysis. If one
had to truncate modulo Id0+1 at each recursive step, there would have been a multiplicative
blowup (by d0) in each step, which would end up with an exponential blow up in the size of the
roots. The self correcting property allows to complete allRootsNI process, with division gates
and partially correct roots g′i,δ, to get a circuit of size poly(sd0). The truncation modulo Id0+1,
to get a root of degree ≤ d0, is performed only once in the end. See Section 4.1.

11

The steps in the proof of Theorem 1 are constructive. However, to claim that we have an
efficient algorithm we will need, in advance, the multiplicity of each of the d0 roots. It is not
clear how to find them efficiently, even in the univariate case n = 1, as the multiplicity could be
exponentially large.

Proof idea of Theorem 2: The main technique used is NI with multiplicity. The main barrier
in resolving high degree case is handling roots with high multiplicities (i.e. super-polynomial in
size s). If all the roots of the polynomial have multiplicity equal to one, then we can use classical
Newton iteration. If the multiplicity of a root is low (up to poly(s)), we can differentiate and
bring down the multiplicity to one. In Theorem 1, we handled the case of high multiplicity by
assuming that the radical has small degree.

So, the only remaining case is when both the number of roots, and their multiplicities, are
high. Newton iteration with multiplicity helps here. Note that we need to know the multiplicity
of the root exactly to apply NI with multiplicity; here, we will simply guess them non-uniformly.
In the end, the process gives a circuit of size poly(sd) with division gates, giving the root mod
Id+1. By using a standard method the division gates can all be pushed “out” to the root. See
Section 4.2.

Proof idea of Theorem 3: Here, we show the closure under factoring for the algebraic
complexity classes V F (nlogn), V BP (nlogn), V NP (nlogn). In fact, we also give randomized
nO(logn)-time algorithm to output the factors as formula (resp. algebraic branching program).
The key technique here is the classical Newton Iteration. The crucial advantage of NI over other
approaches of power series root finding is that NI requires only log d steps to get precision up to
degree d, whereas allRootsNI, [DSY09, Eqn.5] or [Oli16, Lem.4.1] require d steps. This leads to
a slower size blow up in the case of restricted models like formula or ABP.

In a formula resp. ABP, we cannot reuse intermediate computations. So each recursive
step of NI incurs a blow up by d2, as one needs to substitute yt in a degree d polynomial f(y)
which may require that many copies of yt-powers. But, as the NI process has only log d steps,
ultimately, we get d2 log d blow up in the size bound. This is the main idea of the existential
results in Theorem 3. Moreover, an interesting by-product is that VF, VBP and VNP are closed
under factors if we only consider polynomials with individual degree constant (also see [Oli16]).

All the steps in the proof of the existential result are algorithmically efficient except for one.
We are recovering all the power series roots and multiplying a few of them to get a non-trivial
factor. How do we choose the right combination of the roots which gives a non-trivial factor?
If we search for the right combination in a brute-force way, it would need exponential (like 2d)
time complexity. Here, linear algebra saves us; the idea dates back to Kaltofen’s algorithm for
bivariate factoring. Our contribution lies in the careful analysis of the different steps, coming up
with a new algorithm for computing gcd, and making sure that everything works with formulas
resp. ABPs.

Consider the transformed polynomial f(τx) that is monic and degree d in y. It will help
us if we think of this polynomial as a bivariate (i.e. in y and a new degree-counter T). This
somewhat reduces the problem to a two-dimensional case and makes the modular computations
feasible (see [KSS15, Sec.1.2.2]). So, we need to apply the map x 7→ Tx, where T is a new formal
variable; call the resulting polynomial f̃(x, T, y). This map preserves the power series roots; in
fact, we can get the roots of f(τx) by putting T = 1. Now comes the most important idea in
the algorithm. Approximate a root gi up to large enough precision (say k := 2d2). Solve the
system of linear equations u = (y − g≤ki (Tx)) · v mod T k+1 for monic polynomials u, v. Then,
u will give a non-trivial factor when we compute gcdy(u, f̃). Intuitively, the gcd gives us the
irreducible polynomial factor whose root is the power series gi that we had earlier computed by
NI.

12

Note that a modified gcd computation is needed to actually get a factor as a formula
resp. ABP. If one uses the classical Euclidean algorithm, there are d recursive steps to execute; at
each step there would be a blow up of d (as for formula or ABP, we cannot reuse any intermediate
computation). So, in this approach (eg. the one used in [KSS15]), gcd of the two formulas will
be of exponential size. The way we achieve a better bound is by first using NI to approximate
all the power series roots of u and f̃ . Subsequently, we filter the ones that appear in both to
learn the gcd. There is an alternate way as well based on our Claim 11. See Section 4.3.

2 Preliminaries

In our proofs we will need some basic results about formulas, ABPs and circuits. In particular,
we can efficiently eliminate a division gate, we can extract a homogeneous part, and we can
compute a (first-order) derivative. Also, see [KSS15, Sec.2].

Determinant is in VBP and is computable by a nO(logn) size formula.
We will use properties of gcd(f, g) and a related determinant polynomial called resultant.
To save space we have moved the well known details to Section A.

3 Power series factorization of polynomials

Instead of looking into the factorization over F[x], we look into the more analytic factorization
pattern of a polynomial over F[[x1, . . . , xn]], namely, formal power series of n-variables over field
F. To talk about factorization, we need the notion of uniqueness which the following proposition
ensures.

Proposition 1. [ZS75, Chap.VII] Power series ring F[[x1, . . . , xn]] is a unique factorization
domain (UFD), and so is F[[x]][y].

As discussed before, we need to first apply a random linear map, that will make sure that
the resulting polynomial splits completely over the ring F[[x]]. (Recall: F is algebraically closed.)

Theorem 4 (Power Series Complete Split). Let f ∈ F[x] with deg(rad(f)) =: d0 > 0. Consider
αi, βi ∈r F and the map τ : xi 7→ αiy + xi + βi, i ∈ [n], where y is a new variable.

Then, over F[[x]], f(τx) = k ·
∏
i∈[d0](y − gi)γi, where k ∈ F∗, γi > 0, and gi(0) := µi.

Moreover, µi’s are distinct nonzero field elements.

Proof. Let the irreducible factorization of f be
∏
i∈[m] f

ei
i . We apply a random τ so that f ,

thus all its factors, become monic in y (Lemma 28). The monic factors f̃i := fi(τx) remain
irreducible (∵ τ is invertible). Also, f̃i(0, y) = fi(αy + β) and ∂yf̃i(0, y) remain coprime (∵ β is
random, apply Lemma 26). In other words, f̃i(0, y) is square free (Lemma 25).

In particular, one can write f̃1(0, y) as
∏deg(f1)
i=1 (y − µ1,i) for distinct nonzero field elements

µ1,i (ignoring the constant which is the coefficient of the highest degree of y in f̃1). Using
classical Newton Iteration (see Lemma 27 or [BCS13, Thm.2.31]), one can write f̃1(x, y) as a

product of power series
∏deg(f1)
i=1 (y− g1,i), with g1,i(0) := µ1,i. Thus, each fi(τx) can be factored

into linear factors in F[[x]][y].
As fi’s are irreducible coprime polynomials, by Lemma 26, it is clear that f̃i(0, y), i ∈ [m],

are mutually coprime. In other words, µj,i are distinct and they are
∑

i deg(fi) = d0 many.
Hence, f(τx) can be completely factored as

∏
i∈[m] fi(τx)ei =

∏
i∈[d0](y − gi)γi , with γi > 0 and

the field constants gi(0) being distinct.

13

Corollary 5. Suppose g is a polynomial factor of f . As before let f(τx) =
∏
i∈[m] fi(τx)ei

= k ·
∏
i∈[d0](y − gi)γi . As g(τx) | f(τx) we deduce that g(τx) = k′

∏
(y − gi)ci with 0 ≤ ci ≤ γi.

Moreover, we can get back g by applying τ−1 on the resulting polynomial g(τx).

4 Main Results

This section proves Theorems 1–3. The proofs are self contained and we assume for the sake of
simplicity that the underlying field F is algebraically closed and has characteristic 0. When this
is not the case, we discuss the corresponding theorems in Section 5.

4.1 Factors of a circuit with low-degree radical: Proof of Theorem 1

In this section, we use Theorem 4 and allRootsNI to partially solve the case of circuits with
exponential degree (stated in [Kal86] and studied in [Kal87, Bür04]).

Proof of Theorem 1. From the hypothesis f = u0u1. Define deg(f) =: d. Suppose u1 =
he11 . . . hemm , where hi’s are coprime irreducible polynomials. Let d0 be the degree of rad(u1) =∏
i hi. Note that deg(hi),m ≤ d0 and the multiplicity ei ≤ d ≤ sO(s), where s is the size bound

of the input circuit. Thus, to get the size bound of any factor of u1, it is enough to show that
for each i, hi has a circuit of size poly(sd0).

Using Theorem 4, we have f̃(x, y) := f(τx) = k · u0(τx) ·
∏
i∈[d0](y − gi)γi , with gi(0) := µi

being distinct. From Corollary 5 we deduce that hi(τx) = ki
∏
i∈[d0](y− g

≤d0
i)δi mod Id0+1, with

ideal I := 〈x1, . . . , xn〉, exponent δi ∈ {0, 1} and nonzero ki ∈ F. We can get hi by applying τ−1.
Hence, it is enough to bound the size of g≤d0i .

Let ũ0 := u0(τx). From the repeated applications of Leibniz rule of the derivative ∂y, we

deduce, ∂yf̃/f̃ = ∂yũ0/ũ0 +
∑d0

i=1 γi/(y − gi). (Recall: ∂y(FG) = (∂yF)G+ F (∂yG).)
At this point we move to the formal power series, so that the reciprocals can be approximated

as polynomials. Note that y − gi is invertible in F[[x]] when y is assigned any value ci ∈ F
which is not equal to µi. We intend to find gi mod Iδ inductively, for all δ ≥ 1. We assume that
µi’s and γi’s are known. Suppose, we have recovered up to gi mod Iδ and we want to recover
gi mod Iδ+1. The relevant recurrence, for δ ≥ 1, is:

Claim 6 (Recurrence).
∑d0

i=1 γi ·g=δ
i /(y−µi)2 ≡ ∂yf̃/f̃ − ∂yũ0/ũ0 −

∑
i γi/(y−g

<δ
i) mod Iδ+1.

Proof of Claim 6. Using a power series calculation (Lemma 31), we have 1
y−gi ≡

1
y−(g<δi +g=δi)

≡
1

y−g<δi
+

g=δi
(y−µi)2 mod Iδ+1. Multiplying by γi and summing over i ∈ [d0], the claim follows. �

By knowing approximation up to the δ − 1 homogeneous parts of gi, we want to find the
δ-th part by solving a linear system. For concreteness, assume that we have a rational function
g′i,δ−1 := Ci,δ−1/Di,δ−1 such that g′i,δ−1 ≡ g

<δ
i mod Iδ. Next, we show how to compute g≤δi .

We recall the process as outlined in allRootsNI (Section 1.3). In the free variable y, we
plug-in d0 random field value ci’s and get the following system of linear equations: M · vδ = Wδ,
where M is a d0 × d0 matrix with (i, j)-th entry, M(i, j) := γj/(ci − µj)2. Column vδ resp. Wδ

is a d0 × 1 matrix whose i-th entry is denoted vδ(i) resp. (∂yf̃/f̃ − ∂yũ0/ũ0)|y=ci − G̃i,δ, where

G̃i,δ :=
∑d0

j=1 γj/(ci − g′j,δ−1). Think of the solution vδ as being both in F(x)d0 and in F[[x]]d0 ;
both the views help.

Now we will prove two interesting facts. First, M is invertible (Lemma 29). Second, define
g′i,0 := µi and, for δ ≥ 1, g′i,δ := g′i,δ−1 + vδ(i). Then, g′i,δ approximates gi well:

14

Claim 7 (Self-correction). Let i ∈ [d0] and δ ≥ 0. Then, g′i,δ ≡ g≤δi mod Iδ+1.

Proof of Claim 7. We prove this by induction on δ. It is true for δ = 0 by definition. Suppose it is
true for δ−1. This means we have g′i,δ−1 ≡ g

<δ
i mod Iδ for all i. Let us write g′i,δ−1 =: g<δi +Ai,δ+

A′i,δ, where A′i,δ ≡ 0 mod Iδ+1 and Ai,δ is homogeneous of degree δ. Hence, for i ∈ [d0], the linear

constraint is:
∑d0

j=1 γj · vδ(j)/(ci − µj)2 ≡ ∂yf̃/f̃ − ∂yũ0/ũ0 −
∑

j γj/(ci − g′j,δ−1) mod Iδ+1.

The “garbage” term Aj,δ in RHS can be isolated using Lemma 31 as: 1/(ci − g′j,δ−1) ≡
1

ci−(g<δj +Aj,δ)
≡ 1/(ci − g<δj) + Aj,δ/(ci − µj)2 mod Iδ+1. So, we get:

d0∑
j=1

γj · vδ(j)
(ci − µj)2

≡ ∂yf̃

f̃
− ∂yũ0

ũ0
−

d0∑
j=1

γj

ci − g<δj
−

d0∑
j=1

γj ·Aj,δ
(ci − µj)2

mod Iδ+1 .

Rewriting this, using Claim 6, we get:

d0∑
j=1

γj
(ci − µj)2

(vδ(j) +Aj,δ) ≡
d0∑
j=1

γj
(ci − µj)2

· g=δ
j mod Iδ+1 .

Thus,
∑d0

j=1 γj · (vδ(j) + Aj,δ − g=δ
j)/(ci − µj)2 ≡ 0 mod Iδ+1. As we vary i ∈ [d0] we

deduce, by Lemma 29, that vδ(j) + Aj,δ − g=δ
j ≡ 0 mod Iδ+1. Hence, g′j,δ = g′j,δ−1 + vδ(j)

≡ (g<δj +Aj,δ) + (g=δ
j −Aj,δ) = g≤δj mod Iδ+1. This proves it for all j ∈ [d0]. �

Size analysis: Here we give the overall process of finding factors using allRootsNI technique
and analyze the circuit size needed at each step to establish the size bound of the factors. As
discussed before, we need to analyze only the power series root approximation g≤δi or g′i,δ.

At the (δ − 1)-th step of allRootsNI process, we have a multi-output circuit (with division
gates) computing g′i,δ−1 as a rational function, for all i ∈ [d0]. Specifically, let us assume that
g′i,δ−1 =: Ci,δ−1/Di,δ−1, where Di,δ−1 is invertible in F[[x]]. So, the circuit computing g′i,δ−1 has
a division gate at the top that outputs Ci,δ−1/Di,δ−1. We would eliminate this division gate
only in the end (see the standard Lemma 21). Now we show how to construct the circuit for g′i,δ,
given the circuits for g′i,δ−1.

From vδ = M−1Wδ, it is clear that there exist field elements βij such that vδ(i) =∑d0
j=1 βijWδ(j) =

∑d0
j=1 βij

(
(∂yf̃/f̃ − ∂yũ0/ũ0)|y=cj − G̃j,δ

)
.

Initially we precompute, for all j ∈ [d0], (∂yf̃/f̃ − ∂yũ0/ũ0)|y=cj : Note that ∂yf̃ has poly(s)

size circuit (high degree of the circuit does not matter, see Lemma 22). Invertibility of f̃ |y=cj

and ũ0|y=cj follows from the fact that we chose cj ’s randomly. In particular, f̃(0, y), and so

ũ0(0, y), have roots in F which are distinct from cj , j ∈ [d0]. Thus, f̃(x, cj) and ũ0(x, cj) have
non-zero constants and so are invertible in F[[x]]. Similarly, γ`/(cj − g′`,δ−1) exists in F[[x]].

Thus, the matrix recurrence allows us to calculate the polynomials Ci,δ and Di,δ, given their
δ − 1 analogues, by adding poly(d0) many wires and nodes. The precomputations costed us size
poly(s, δ). Hence, both Ci,δ and Di,δ has poly(s, δ, d0) sized circuit.

We can assume we have only one division gate at the top, as for each gate G we can keep
track of numerator and denominator of the rational function computed at G, and simulate all
the algebraic operations easily in this representation. When we reach precision δ = d0, we can
eliminate the division gate at the top. As Di,d0 is a unit, we can compute its inverse using the
power series inverse formula and approximate only up to degree d0 (Lemma 20). Finally, the
circuit for the polynomial g≤d0i ≡ Ci,d0/Di,d0 mod Id0+1, for all i ∈ [d0], has size poly(s, d0).

Altogether, it implies that any factor of u1 has a circuit of size poly(s, d0).

15

4.2 Low degree factors of general circuits: Proof of Theorem 2

Here, we introduce an approach to handle the general case when rad(f) has exponential degree.
We show that allowing a special kind of modular division gate gives a small circuit for any low
degree factor of f .

The modular division problem is to show that if f/g has a representative in F[[x]], where
polynomials f and g can be computed by a circuit of size s, then f/g mod 〈xd〉 can be computed
by a circuit of size poly(sd). Note that if g is invertible in F[[x]], then the question of modular
division can be solved using Strassen’s trick of division elimination [Str73]. But, in our case g is
not invertible in F[[x]] (though f/g is well-defined).

Proof of Theorem 2. As discussed before, to show size bound for an arbitrary factor (with low
degree) of f , it is enough to show the size bound for the approximations of power series roots.
From Theorem 4, f̃(x, y) = f(τx) = k ·

∏d0
i=1(y − gi)γi , with gi(0) := µi being distinct.

Fix an i from now on. To calculate g≤δi , we iteratively use Newton iteration with multiplicity
(as described in Section 1.3) for log δ + 1 many times. We know that there are rational functions

ĝi,t such that ĝi,t+1 := ĝi,t − γi· f̃∂y f̃
∣∣
y=ĝi,t

and ĝi,t ≡ gi mod 〈x〉2t . We compute ĝi,t’s incrementally,

0 ≤ t ≤ log δ+ 1, by a circuit with division gates. As before, f̃ and ∂yf̃ have poly(s) size circuits.
If ĝi,t has St size circuit with division, then St+1 = St+O(1). Hence, ĝi,lg δ+1 has poly(s, log δ)

size circuit with division.
By keeping track of numerator and denominator of the rational function computed at each

gate, we can assume that the only division gate is at the top. As the size of ĝi,log δ+1 was initially
poly(s, log δ) with intermediate division gates, it is easy to see that when division gates are
pushed at the top, it computes A/B with size of both A and B still poly(s, log δ).

Finally, a degree δ polynomial factor h|f will require us to estimate g≤δi for that many i’s.
Thus, such a factor has poly(sδ) size circuit, using a single modular division.

4.3 Closure of restricted complexity classes: Proof of Theorem 3

This subsection is dedicated towards proving closure results for certain algebraic complexity
classes. In fact, for “practical” fields like Q,Qp, or Fq for prime-power q, we give efficient
randomized algorithm to output the complete factorization of polynomials belonging to that
class (stated as Theorem 15). We use the notation g || f to denote that g divides f but g2 does
not divide f . Again, we denote I := 〈x1, . . . , xn〉

Proof of Theorem 3. There are essentially two parts in the proof. The first part talks only about
the existential closure results. In the second part, we discuss the algorithm.

Proof of closure: Given f of degree d, we randomly shift by τ : xi 7→ xi + yαi + βi. From
Theorem 4 we have that f̃(x, y) := f(τx) splits like f̃ =

∏d0
i=1(y − gi)γi , with gi(0) =: µi being

distinct. Here is the detailed size analysis of the factors of polynomials represented by various
models of our interest.

Size analysis for formula: Suppose f has a formula of size nO(logn). To show size bound for
all the factors, it is enough to show that the approximations of the power series roots, i.e. g≤di
has size nO(logn) size formula. This follows from the reduction of factoring to approximations of
power series roots.

We differentiate f̃ wrt y, (γi − 1) many times, so that the multiplicity of the root we want to
recover becomes exactly one. The differentiation would keep the size poly(nlogn) (Lemma 22).
Now, we have (y − gi) || f̃ (γi−1) and we can apply classical Newton iteration formula (Section
1.3). For all 0 ≤ t ≤ log d+ 1, we compute At and Bt such that At/Bt ≡ gi mod I2t . Moreover,
Bt is invertible in F[[x]] (∵ gi is a simple root of f̃ (γi−1)).

16

To implement this iteration using the formula model, each time there would be a blow up
of d2. Note that in a formula, there can be many copies of the same variable in the leaf nodes
and if we want to feed something in that variable, we have to make equally many copies. That
means we may need to make s (= size(f)) many copies at each step. We claim that it can be
reduced to only d2 many copies.

We can pre-compute (with blow up at most poly(sd)) all the coefficients C0, . . . , Cd wrt
y, given the formula of f̃ =: C0 + C1y + . . . + Cdy

d using interpolation. We can do the same
for the derivative formula. For details on this interpolation trick, see [Sap16, Lem.5.3]. Using
interpolation, we can convert the formula of f̃ and its derivative to the form C0 +C1y+ . . .+Cdy

d.
In this modified formula, there are O(d2) many leaves labelled as y. So in the modified formula
of the polynomial f̃ and in its derivative, we are computing and plugging in (for y) d2 copies of

g<2t

i to get g<2t+1

i . This leads to d2 blow up at each step of the iteration.
As Bt’s are invertible, we can keep track of the division gates across iterations and, in the

end, eliminate them causing a one-time size blow up of poly(sd) (Lemma 21).
Now, assume that size(At, Bt) ≤ St. Then we have St+1 ≤ O(d2St) + poly(sd). Finally, we

have Slog d+1 = poly(sd) · d2 log d = poly(nlogn).

Hence, g≤di ≡ Alog d+1/Blog d+1 mod Id+1 has poly(nlogn) size formula, and so does every
polynomial factor of f after applying τ−1.

Size analysis for ABP: This analysis is similar to that of the formula model, as the size blow
up in each NI iteration for differentiation, division, and truncation (to degree ≤ d) is the same
as that for formulas. A noteworthy difference is that we need to eliminate division in every
iteration (Lemma 20) and we cannot postpone it. This leads to a blow up of d4 in each step.
Hence, Slg d+1 = poly(sd) · d4 log d = poly(nlogn).

Size analysis for VNP: Suppose f can be computed by a verifier circuit of size, and witness
size, nO(logn). We call both the verifier circuit size and witness size as size parameter. Now, our
given polynomial f̃ has nO(logn) size parameters. As before, it is enough to show that g≤di has
nO(logn) size parameters.

For the preprocessing (taking γi − 1-th derivative of f̃ wrt y), the blow up in the size
parameters is only poly(nlogn). Now we analyze the blow up due to classical Newton iteration.
We compute At and Bt such that At/Bt ≡ gi mod I2t . Using the closure properties of VNP
(discussed in Section C.1), we see that each time there is a blow up of d4. The main reason for
this blow up is due to the composition operation, as we are feeding a polynomial into another
polynomial.

Assume that the verifier circuit size(At, Bt) ≤ St and witness size ≤ Wt. Then we have
St+1 ≤ O(d4St) + poly(nlogn). So, finally we have Slog d+1 = poly(sd) · d4 log d = poly(nlogn). It

is clear that g≤di ≡ Alog d+1/Blog d+1 mod Id+1 has poly(nlogn) size verifer circuit. Same analysis
works for Wt and witness size remains nO(logn). Moreover, we get the corresponding bounds for
every polynomial factor of f after applying τ−1.

Remark. Recently in a follow-up paper, Chou, Kumar and Solomon [CKS18] have improved
our result on VNP, showing that VNP is closed under factors. Their proof uses the reduction
of polynomial factoring to power series root approximation. To avoid division gates, they use
the slow variant of Newton iteration (as done in [DSY09, Eqn.5], [Oli16, Lem.4.1]) and use
it to compute the circuit of an approximator polynomial. An approximator polynomial is a
polynomial function of the coefficients (w.r.t one variable, say y) of the circuit that gives the
power series roots (w.r.t y) approximated up to certain degree. It can be proved that the
approximator polynomial has a small sized circuit. To get the approximate power series roots,
one has to compose this circuit with the coefficients of the given polynomial. To finish the proof,
use Valiant’s lemma [Val82] showing VNP is closed under composition.

17

The same idea does not solve the VF (resp. VBP) closure under factoring questions as it is not
clear if there is an approximator polynomial that has a small sized formula (resp. ABP). If one
wants to use the slow Newton iteration iteratively, in each step there would be a multiplicative
blow-up, as in the formula (resp. ABP) model we have to make copies of the same computation.

Before moving to the constructive part, we discuss a new method for computing gcd of two
polynomials, which not only fits well in the algorithm but is also of independent interest. We
recall the definition of gcd of two polynomials f, g in the ring F[x]: gcd(f, g) =: h ⇐⇒ h|f , h|g
and (h′|f, h′|g ⇒ h′|h). It is unique up to constant multiples.

Claim 8 (Computing formula gcd). Given two polynomials f, g ∈ F[x] of degree d and computed
by a formula (resp. ABP) of size s. One can compute a formula (resp. ABP) for gcd(f, g), of
size poly(s, dlog d), in randomized poly(s, dlog d) time.

Proof of Claim 8. The idea is the following. Suppose, gcd(f, g) =: h is of degree d > 0,
then we will compute h(τx) for a random map τ as in Theorem 4. We know wlog that f̃ :=
f(τx) =

∏
i(y −Ai)ai and g̃ := g(τx) =

∏
i(y −Bi)bi , where Ai, Bi ∈ F[[x]]. Since F[x] ⊂ F[[x]]

are UFDs (Proposition 1), we could say wlog that h(τx) =
∏
i∈S(y − Ai)

min(ai,bi), where
S = {i | Ai = Bi} after possible rearrangement. Now, as τ is a random invertible map, we
can assume that, for i 6= j, Ai 6= Bj and that Ai(0) 6= Bj(0) (Lemma 26). So, it is enough

to compute A≤di and B≤dj and compare them using evaluation at 0. If indeed Ai = Bi, then

A≤di = B≤di . If they are not, they mismatch at the constant term itself! Hence, we know the set
S and so we are done once we have the power series roots with repetition.

Using univariate factoring, wrt y, we get all the multiplicities, of the roots, ai and bi’s,
additionally we get the corresponding starting points of classical Newton iteration, i.e. Ai(0) and
Bi(0)’s. Using NI, one can compute A≤di and B≤di , for all i. Suppose, after rearrangement of Ai
and Bi’s (if necessary), we have Ai = Bi for i ∈ [s] =: S and Ai 6= Bj for i ∈ [s+1, d], j ∈ [s+1, d].
Lemma 26 can be used to deduce that Ai(0) 6= Bj(0) for i, j ∈ [1, d] − S. So, we have in
gcd(f̃ , g̃) =

∏
i∈S(y −Ai)min(ai,bi): the index set S, the exponents and Ai(0)’s computed.

Size analysis: We compute A≤di and B≤di by NI, (possibly) after making the corresponding
multiplicity one by differentiation. It is clear that at each NI step there will be a multiplicative
d2 blow up (due to interpolation, division and truncation). There are log d iterations in NI.
Altogether the truncated roots have poly(s, dlog d) size formula (resp. ABP). This directly implies
that gcd(f̃ , g̃) has poly(s, dlog d) size formula (resp. ABP). By taking the product of the linear
factors, truncating to degree d, and applying τ−1, we can compute the polynomial gcd(f, g).

Randomization is needed for τ and possibly for the univariate factoring over F. Also, it is
important to note that F may not be algebraically closed. Then one has to go to an extension,
do the algebraic operations and return back to F. For details, see Section 5.2. �

Randomized Algorithm. We give the broad steps of our algorithm below. We are given
f ∈ F[x], of degree d > 0, as input.

1. Choose α, β ∈r Fn and apply τ : xi → xi + αiy + βi. Denote the transformed polynomial
f(τx) by f̃(x, y). Wlog, from Theorem 4, f̃ has factorization of the form

∏d0
i=1(y − gi)γi ,

where µi := gi(0) are distinct.

2. Factorize f̃(0, y) over F[y]. This will give γi and µi’s.

3. Fix i = i0. Differentiate f̃ , wrt y, (γi0 − 1) many times to make gi0 a simple root.

18

4. Apply Newton iteration (NI), on the differentiated polynomial, for k := dlog(2d2 + 1)e
iterations; starting with the approximation µi0 (mod I). We get g<2k

i0
at the end of the

process (mod I2k).

5. Apply the transformation xi 7→ Txi (T acts as a degree-counter). Consider g̃i0 := g<2k

i0
(Tx).

Solve the following homogeneous linear system of equations, over F[x], in the unknowns
uij and vij ’s, ∑

0≤i+j<d
uij · yiT j = (y − g̃i0) ·

∑
0≤i<d

0≤j<2k

vij · yiT j mod T 2k .

Solve this system, using Lemma 19, to get a nonzero polynomial (if one exists) u :=∑
0≤i+j<d uij · yiT j .

6. If there is no solution, return “f is irreducible”.

7. Otherwise, find the minimal solution wrt degy(u) by brute force (try all possible degrees
wrt y; it is in [d− 1]).

8. Compute G(x, y, T) := gcdy(u(x, y, T), f̃(Tx, y)) using Claim 8.

9. Compute G(x, y, 1) and transform it by τ−1 : xi 7→ xi − αiy − βi, i ∈ [n], and y 7→ y.
Output this as an irreducible polynomial factor of f .

Claim 9 (Existence). If f is reducible, then the linear system (Step 5) has a non-trivial solution.

Proof of Claim 9. If f is reducible, then let f =
∏
feii be its prime factorization. Assume wlog

that y − gi0 | f̃1 := f1(τx). Of course 0 < degy(f̃1) = deg(f1) < d.

Observe that we are done by picking u to be f̃1(Tx, y). For, total degree of f1 is < d, and so
that of f̃1(Tx, y) wrt the variables y, T is < d.

Moreover, y − gi0 | f̃1 =⇒ f̃1 = (y − gi0)v, for some v ∈ F[[x]][y] with degy < d. Hence,

f̃1 ≡ (y − g<2k

i0
) · v mod I2k =⇒ u ≡ (y − g̃i0) · v(Tx, y) mod T 2k . This shows the existence of

a nontrivial solution of the linear system (Step 5). �

Now, we show that if the linear system has a solution, then the solution corresponds to a
non-trivial polynomial factor of f .

Claim 10 (Step 8’s success). If the linear system (Step 5) has a non-trivial solution, then
0 < degy G ≤ degy u < d.

Proof of Claim 10. Suppose (u, v) is the solution provided by the algorithm in Lemma 19 (u
being in the unknown LHS and v being the unknown RHS). Consider G = gcdy(u, f̃(Tx, y)). We

know that there are polynomials a and b such that au+ bf̃(Tx, y) = Resy(u, f̃(Tx, y)) (Section
A.4). Consider degT (Resy(u, f̃(Tx, y)). As degree of T in u and f̃(Tx, y) can be at most d,
hence degree of T in Resultant can be atmost 2d2 (Section A.4). Clearly, degy G ≤ degy u < d.

If degy G = 0 then the resultant of u, f̃(Tx, y) wrt y will be nonzero (Proposition 2). Suppose
the latter happens.

Now, we have u = (y − g̃i0)v mod T 2k . Since y − gi0 | f̃ we get that y − gi0(Tx) | f̃(Tx, y).
Assume that f̃(Tx, y) =: (y − gi0(Tx)) · w.

Thus, we can rewrite the previous equation as: au + bf̃(Tx, y) ≡ (y − g̃i0)(av + bw) ≡
Resy(u, f̃(Tx, y)) mod T 2k . Note that the latter is nonzero mod T 2k because the resultant is a

19

nonzero polynomial of degT < 2k. Putting y = g̃i0 the LHS vanishes, but RHS does not (∵ it is
independent of y). This gives a contradiction.

Thus, Resy(u, f̃(Tx, y) = 0. This implies that 0 < degy G < d. �

Next we show that if one takes the minimal solution u (wrt degree of y), then it will
correspond to an irreducible factor of f . We will use the same notation as above.

Claim 11 (Irred. factor). Suppose y − gi0 | f̃1 and f1 is an irreducible factor of f . Then,
G = c · f̃1(Tx, y), for c ∈ F∗, and degy(G) = degy(u) = degy(f1) in Step 8.

Proof of Claim 11. Suppose f is reducible, hence as shown above, G is a non-trivial factor
of f̃(Tx, y). Recall that f̃(Tx, y) =

∏
i(y − gi(Tx))γi is a factorization over F[[x, T]]. We have

that y − g̃i0 | G mod T 2k . Thus, y − gi0(Tx) | G absolutely (∵ the power series ring is a UFD
and use Theorem 4). So, y − gi0(Tx) | gcdy(G, f̃1(Tx, y)) over the power series ring. Since,

f̃1(Tx, y) is an irreducible polynomial, we can deduce that f̃1(Tx, y) | G in the polynomial ring.
So, degy(f1) ≤ degy(G).

We have degy(f̃1(Tx, y)) = deg(f1) =: d1. By the above discussion, the linear system
in Step 7 will not have a solution of degy(u) below d1. Let us consider the linear system
in Step 7 that wants to find u of degy = d1. This system has a solution, namely the one

with u := f̃1(Tx, y) mod T 2k . Then, by the above claim, we will get the G as well in the
subsequent Step 8. This gives degy(G) ≤ degy(u) = d1. With the previous inequality we get

degy(G) = degy(u) = degy(f1). In particular, G and f̃1(Tx, y) are the same up to a nonzero
constant multiple. �

Alternative to Claim 8: The above proof (Claim 11) suggests that the gcd question of Step 8
is rather special: One can just write u as

∑
0≤i≤d1 ci(x, T)yi and then compute the polynomial

G =
∑

0≤i≤d1(ci/cd1) · yi as a formula (resp. ABP), by eliminating division (Lemma 20).

Once we have the polynomial G we can fix T = 1 and apply τ−1 to get back the irreducible
polynomial factor f1 (with power series root gi0).

The running time analysis of the algorithm is by now routine. If we start with an f computed
by a formula (resp. ABP) of size nO(logn), then as observed before, one can compute g̃i0 which
has nO(logn) size formula (resp. ABP). This takes care of Steps 1-4.

Now, solve the linear system in Steps 5-7 of the algorithm. Each entry of the matrix is a
formula (resp. ABP) size nO(logn). The time complexity is similar by invoking Lemma 19.

Steps 8 is to compute gcd of two nO(logn) size formulas (resp. ABPs) which again can be
done in nO(logn) time giving a size nO(logn) formula (resp. ABP) as discussed above.

This completes the randomized poly(nlogn)-time algorithm that outputs nO(logn) sized factors.

Remarks.

1. The above results hold true for the classes V BP (s), V F (s), V NP (s) for any size function
s = nΩ(logn).

2. By using a reversal technique [Oli16, Sec.1.1.2] and a modified τ , our size bound can be
shown to be poly(s, dlog r), where r (resp. d) is the individual-degree (resp. degree) bound
of f . So, when r is constant, we get a factor as a poly(s)-size formula (resp. ABP). Oliveira
[Oli16] proved the same result for formulas. But, [Oli16] used slow Newton iteration and
in each iteration the method was different, owing to which the size was poly(s, dr).

20

5 Extensions

5.1 Closure of approximative complexity classes

In this section, we show that all our closure results, under factoring, can be naturally generalized
to corresponding approximative algebraic complexity classes.

In computer science, the notion of approximative algebraic complexity emerged in early
works on matrix multiplication (the notion of border rank, see [BCS13]). It is also an important
concept in the geometric complexity theory program (see [GMQ16]). The notion of approxi-
mative complexity can be motivated through two ways, topological and algebraic and both the
perspectives are known to be equivalent. Both allow us to talk about the convergence ε→ 0.

In what follows, we can see ε as a formal variable and F(ε) as the function field. For an
algebraic complexity class C, the approximation is defined as follows [BIZ17, Defn.2.1].

Definition 12 (Approximative closure of a class [BIZ17]). Let C be an algebraic complexity
class over field F. A family (fn) of polynomials from F[x] is in the class C(F) if there are
polynomials fn;i and a function t : N 7→ N such that gn is in the class C over the field F(ε) with
gn(x) = fn(x) + εfn;1(x) + ε2fn;2(x) + . . .+ εt(n)fn;t(n)(x).

The above definition can be used to define closures of classes like VF, VBP, VP, VNP which
are denoted as VF, VBP, VP, VNP respectively. In these cases one can assume wlog that the
degrees of gn and fn;i are poly(n).

Following Bürgisser [Bür01a]:- Let K := F(ε) be the rational function field in variable ε over
the field F. Let R denote the subring of K that consists of rational functions defined in ε = 0.
Eg. 1/ε /∈ R but 1/(1 + ε) ∈ R.

Definition 13. [Bür01a, Defn.3.1] Let f ∈ F[x1, . . . , xn]. The approximative complexity size(f)
is the smallest number r, such that there exists F in R[x1, . . . , xn] satisfying F |ε=0 = f and
circuit size of F over constants K is ≤ r.

Note that the circuit of F may be using division by ε implicitly in an intermediate step.
So, we cannot simply assign ε = 0 and get a circuit free of ε. Also, the degree involved can be
arbitrarily large wrt ε. Thus, potentially size(f) can be smaller than size(f).

Using this new notion of size one can define the analogous class VP. It is known to be closed
under factors [Bür01a, Thm.4.1]. The idea is to work over F(ε), instead of working over F, and
use Newton iteration to approximate power series roots. Note that in the case of VF, VBP,
VP and VNP the polynomials have poly(n) degree. So, by using repeated differentiation, we
can assume the power series root (of f̃ := f(τx)) to be simple (i.e. multiplicity= 1) and apply
classical NI. We need to carefully analyze the implementation of this idea.

Root finding using NI over K. For degree-d f ∈ F[x] if size(f) = s then: ∃F ∈ R[x] with
a size s circuit satisfying F |ε=0 = f . The degree of F wrt x may be greater than d. In that
case we can extract the part up to degree d and truncate the rest [Bür04, Prop.3.1]. So wlog
degx(F) = deg(f).

By applying a random τ (using constants F) we can assume that F̃ := F (τx) ∈ R[x, y] is monic
(i.e. leading-coefficient, wrt y in F̃ , is invertible in R). Otherwise, degy(F̃) = degy(f̃) = degx(f)
will decrease on substituting ε = 0 contradicting F |ε=0 = f . Wlog, we can assume that the
leading-coefficient of F̃ wrt y is 1 and the y-monomial’s degree is d. From now on we have
F̃ |ε=0 = f̃ and both have their leading-coefficients 1 wrt y.

Let µ be a root of f̃(0, y) of multiplicity one (as discussed before). Since F̃ (0, y) ≡ f̃(0, y) mod
ε, we can build a power series root µ(ε) ∈ F[[ε]] of F̃ (0, y) using NI, with µ as the starting point.
But µ(ε) may not converge in K. To overcome this obstruction [Bür01a] devised a clever trick.

21

Define F̂ := F̃ (x, y+µ+ ε) − F̃ (0, µ+ ε). Note that (0, 0) is a simple root of F̂ (x, y) [Bür04,
Eqn.5]. So, a power series root y∞ of F̂ can be built iteratively by classic NI (Lemma 27):

yt+1 := yt −
F̂

∂yF̂

∣∣∣∣
y=yt

.

Where, y∞ ≡ yt mod 〈x̄〉2t . One can easily prove that yt is defined over the coefficient field K,
using induction on t.

Note that F̂ |ε=0 = f̃(x, y + µ) − f̃(0, µ) = f̃(x, y + µ). So, y∞ is associated with a root of
f̃ as well. This implies that by using several such roots y∞, we can get an appropriate product
Ĝ ∈ R[x, y], such that an actual polynomial factor of f̃ (over field F) equals Ĝ|ε=0.

The above process, when combined with the first part of the proof of Theorem 3, does imply:

Theorem 14 (Approximative factors). The approximative complexity classes VF(nlogn),
VBP(nlogn) and VNP(nlogn) are closed under factors.

The same question for the classes VF, VBP and VNP we leave as an open question. (Though,
for the respective bounded individual-degree polynomials we have the result as before.)

5.2 When field F is not algebraically closed

We show that all our results “partially” hold true for fields F which are not algebraically
closed. The common technique used in all the proofs is the structural result (Theorem 4) which
talks about power series roots with respect to y. Recall that we use a random linear map
τ : xi 7→ xi + αiy + βi, where αi, βi ∈r F, to make the input polynomial f monic in y and the
individual degree of y equal to d := deg(f). If we set all the variables to zero except y, we get a
univariate polynomial f̃(0, y) whose roots we are interested in finding explicitly.

The other common technique in our proofs is the classical NI, which starts with just one
field root, say µ1 of f̃(0, y), and builds the full power series on it. Let E (F be the smallest
field where a root µ1 can be found. Say, g|f̃1(0, y) is the minimal polynomial for µ1. The degree
of the extension E := F[z]/(g(z)) is at most d. So, computations over E can be done efficiently.
The key idea is to view E/F as a vector space and simulate the arithmetic operations over E by
operations over F. The details of this kind of simulation can be seen in [vzGG13]. In circuits
it means that we make deg(E/F) copies of each gate and simulate the algebraic operations on
these ‘tuples’ following the F-module structure of E[x].

Once we have found all the power series roots of f̃(x, y) over E[[x]], say starting from each
of the conjugates µ1, . . . , µi ∈ E, it is easy to get a polynomial factor in E[x, y]. This factor will
not be in F[x, y], unless E is a splitting field of f̃1(0, y). A more practical method is: While
solving the linear system over E in Steps 5-7 (Algorithm in Theorem 3) we can demand an
F-solution u. Basically, at the level of algorithm in Lemma 19, we can rewrite the linear system
Mw = (

∑
0≤i≤dMiz

i) · w = 0 as Miw = 0 (i ∈ [0, d]), where the entries of the matrix Mi are
given as formulas (resp. ABP) computing a poly(n) degree polynomial in F[x]. This way we
get the desired F-solution u. Then, Steps 8-9 will yield an irreducible polynomial factor of f in
F[x, y]. This sketches the following more practical version of Theorem 3.

Theorem 15. For F a number field, a local field, or a finite field (with characteristic > deg(f)),
there exists a randomized poly(snlogn)-time algorithm that: for a given nO(logn) size formula
(resp. ABP) f of poly(n)-degree and bitsize s, outputs nO(logn) sized formulas (resp. ABPs)
corresponding to each of the nontrivial factors of f .

Note that over these fields there are famous randomized algorithms to factor univariate
polynomials in the base case, see [vzGG13, Part III] & [Pau01].

22

The allRootsNI method in Theorem 1 seems to require all the roots µi, i ∈ [d0], to begin
with. Let ũ1 := rad(u1(τx)). Since µi’s are in the splitting field E ⊂ F of rad(ũ1(0, y)), we do
indeed get the size bound of the power series roots g≤d0i of ũ1 assuming the constants from E.
As seen in the proof, any irreducible polynomial factor h̃i := hi(τx) of rad(ũ1) is some product
of these (y − g≤d0i)’s mod Id0+1. So, for the polynomial h̃i in F[x, y] we get a size upper bound
over constants E. We leave it as an open question to transfer it over constants F (note: E/F
can be of exponential degree).

5.3 Multiplicity issue in prime characteristic

The main obstruction in prime characteristic is when the multiplicity of a factor is a p-multiple,
where p ≥ 2 is the characteristic of F. In this case, all versions of Newton iteration fail. This is
because the derivative of a p-powered polynomial vanishes. When p is greater than the degree of
the input polynomial, these problems do not occur, so all our theorems hold (also see Section
5.2).

When p is smaller than the degree of the input polynomial in Theorem 3, adapting an idea
from [KSS15, Sec.3.1], we claim that we can give nO(λ logn)-sized formula (resp. ABP) for the
pei-th power of fi, where fi is a factor of f whose multiplicity is divisible exactly by pei , and λ
is the number of distinct p-powers that appear.

Note that presently it is an open question to show that: If a circuit (resp. formula resp. ABP)
of size s computes fp, then f has a poly(sp)-sized circuit (resp. formula resp. ABP).

Theorem 3 can be extended to all characteristic as follows.

Theorem 16. Let F be of characteristic p ≥ 2. Suppose the poly(n)-degree polynomial given by
a nO(logn) size formula (resp. ABP) factors into irreducibles as f(x) =

∏
i f

peiji
i , where p - ji.

Let λ := #{ei|i}.
Then, there is a poly(nλ logn)-size formula (resp. ABP) computing fp

ei

i over Fp.

Proof sketch. Note that λ = O(logp n).

Let the transformed polynomial of degree d split into power series roots as follows: f̃ :=
f(τx, y) =

∏d0
i=1(y − gi)γi .

p - γi: If gi is such that p - γi, then we can find the corresponding power series roots using
Newton iteration and recover all such factors. After recovering all such irreducible polynomial
factors, we can divide f̃ by their product. Let G := f̃

/∏
p-γi(y − gi)

γi . Clearly, G is now a
p-power polynomial.

p | γi: Computing the highest power of p that divides the exponent of G (given by a formula
resp. ABP) is easy. First, write the polynomial as G = c0 + c1y ++ cdy

d using interpolation.
Note that it is a pe-th power iff: ci = 0 whenever pe - i, and pe+1 does not have this property.
After computing the right value of pe, we can reduce factoring to the case of a non-p-power.

Rewrite G as Ĝ :=
∑

pe|i ci(x) ·yi/pe , i.e. replacing yp
e

by y. Clearly, g is an irreducible factor

of G iff ĝ is an irreducible factor of Ĝ.
We can now apply NI to find the roots of G̃, that have multiplicity coprime to p. Divide by

their product and then repeat the above.
Size analysis. If G can be computed by a size s formula (resp. ABP), Ĝ can be computed

by a size O(d2s) formula (resp. ABP). Similarly, a single division gate leads to a blow up by a
factor of O(d2). The number of times we need to eliminate division is at most λ log d. So the
overall size is nO(λ logn).

However, the splitting field E where we get all the roots of f̃(0, y) may be of degree Ω(d!).
So, we leave the efficiency aspects of the algorithm as an open question.

23

High degree case. Note that the above idea cannot be implemented efficiently in the case of
high degree circuits. Still we can extend our Theorem 1 using allRootsNI. The key observation
is that the allRootsNI formula still holds but the summands that appear are exactly the ones
corresponding to gi with γi 6= 0 mod p.

This motivates the definition of a partial radical: radp(f) :=
∏
p-ei fi, if the prime factorization

of f is
∏
i f

ei
i .

Theorem 17. Let F be of characteristic p ≥ 2. Let f = u0u1 such that size(f)+size(u0) ≤ s.
Any factor of radp(u1) has size poly(s+ deg(radp(u1))) over F.

Proof idea: Observe that the roots with multiplicity divisible by p do not contribute to
the allRootsNI process. So, the process works with radp(u1) and the linear algebra complexity
involved is polynomial in its degree.

6 Conclusion

The old Factors conjecture states that for a nonzero polynomial f : g | f =⇒ size(g) ≤
poly(size(f),deg(g)). Motivated by Theorem 1, we would like to strengthen Factors conjecture
to a conjecture about the squarefree part of a circuit:

Conjecture 1 (radical). For a nonzero f : min{deg(rad(f)), size(rad(f))} ≤ poly(size(f)).

Is the Radical conjecture true if we replace size by size?

In low degree regime also there are many open questions. Can we identify a class “below” VP
that is closed under factoring? We conclude with some interesting questions.

1. Are VF,VBP or VNP closed under factoring? We might consider Theorem 3 as a positive
evidence. Additionally, note that these classes are already closed under e-th root taking.
This is easy to see using the classic Taylor series of (1 + f)1/e, where f ∈ 〈x〉.
In fact, what about the classes which are contained in V F (nlogn) but larger than V F . For
example, is VF(nlog logn) closed under factoring?

2. Can we find a suitable analog of Strassen’s (non-unit) division elimination for high degree
circuits? This, by Theorem 2, will resolve Factors conjecture.

Interestingly, if we can do Strassen’s (unit) division elimination in size polynomial in
log(deg) then it will imply VP= VP. In particular, it will prove Factors conjecture.

3. Our results weaken when F is not algebraically closed or has a small prime characteristic
(Sections 5.2, 5.3). Can we strengthen the methods to work for all F?

Acknowledgements. We thank Rafael Oliveira for extensive discussions regarding his works
and about circuit factoring in general. In particular, we used his suggestions about VNP and VP
in our results. We are grateful to the organizers of WACT’16 (Tel Aviv, Israel) and Dagstuhl’16
(Germany) for the stimulating workshops. P.D. would like to thank CSE, IIT Kanpur for the
hospitality, Google India Research Program Team for the support of all travel expenses and
PhD Fellowship. N.S. thanks the funding support from DST (DST/SJF/MSA-01/2013-14).
A.S. would like to thank Microsoft Research Lab India and IARCS for supporting the travel
expenses. We thank Manindra Agrawal, Sumanta Ghosh, Partha Mukhopadhyay, Thomas
Thierauf and Nikhil Balaji for the discussions.

24

References

[Abe73] Oliver Aberth. Iteration methods for finding all zeros of a polynomial simultaneously.
Mathematics of computation, 27(122):339–344, 1973. 11

[AGS18] Manindra Agrawal, Sumanta Ghosh, and Nitin Saxena. Bootstrapping variables in
algebraic circuits. In Proceedings of the 50th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages
1166–1179, 2018. 3, 4

[AV08] Manindra Agrawal and V Vinay. Arithmetic circuits: A chasm at depth four.
In Foundations of Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE
Symposium on, pages 67–75. IEEE, 2008. 3

[AW11] Eric Allender and Fengming Wang. On the power of algebraic branching programs
of width two. Automata, Languages and Programming, pages 736–747, 2011. 4

[BCS13] Peter Bürgisser, Michael Clausen, and Amin Shokrollahi. Algebraic complexity
theory, volume 315. Springer Science & Business Media, 2013. 2, 9, 13, 21, 34, 36

[BCSS98] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Complexity and Real
Computation. Springer Science & Business Media, 1998. 6

[BIZ17] Karl Bringmann, Christian Ikenmeyer, and Jeroen Zuiddam. On algebraic branching
programs of small width. In 32nd Computational Complexity Conference, CCC
2017, July 6-9, 2017, Riga, Latvia, pages 20:1–20:31, 2017. 4, 21

[BOC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant
number of registers. SIAM Journal on Computing, 21(1):54–58, 1992. 3

[BSR+05] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. Learning to rank using gradient descent. In Proceedings of the
22nd international conference on Machine learning, pages 89–96. ACM, 2005. 3

[BSS89] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and com-
plexity over the real numbers: NP-completeness, recursive functions and universal
machines. Bulletin (New Series) of the American Mathematical Society, 21(1):1–46,
1989. 8

[Bür01a] Peter Bürgisser. The complexity of factors of multivariate polynomials. In In Proc.
42th IEEE Symp. on Foundations of Comp. Science, 2001. 4, 21

[Bür01b] Peter Bürgisser. On implications between P-NP-hypotheses: Decision versus compu-
tation in algebraic complexity. In MFCS, pages 3–17. Springer, 2001. 4

[Bür04] Peter Bürgisser. The complexity of factors of multivariate polynomials. Foundations
of Computational Mathematics, 4(4):369–396, 2004. (Preliminary version in FOCS
2001). 4, 14, 21, 22

[Bür13] Peter Bürgisser. Completeness and reduction in algebraic complexity theory, volume 7.
Springer Science & Business Media, 2013. 3, 4, 36

[CKS18] Chi-Ning Chou, Mrinal Kumar, and Noam Solomon. Some closure results for
polynomial factorization and applications. eccc report tr18-052. In Electronic
Colloquium on Computational Complexity (ECCC), 2018. 4, 17

25

[CRS96] Richard Courant, Herbert Robbins, and Ian Stewart. What is Mathematics?: an
elementary approach to ideas and methods. Oxford University Press, USA, 1996. 9

[DB08] Germund Dahlquist and Åke Björck. Numerical methods in scientific computing,
volume I. Society for Industrial and Applied Mathematics, 2008. 6, 11

[DMM+14] Arnaud Durand, Meena Mahajan, Guillaume Malod, Nicolas de Rugy-Altherre, and
Nitin Saurabh. Homomorphism polynomials complete for VP. In 34th International
Conference on Foundation of Software Technology and Theoretical Computer Science,
FSTTCS, pages 493–504, 2014. 8

[DSY09] Zeev Dvir, Amir Shpilka, and Amir Yehudayoff. Hardness-randomness tradeoffs for
bounded depth arithmetic circuits. SIAM Journal on Computing, 39(4):1279–1293,
2009. (Preliminary version in STOC’08). 3, 4, 11, 12, 17

[Dur60] Émile Durand. Solutions numériques des équations algébriques. Tome I, Équations
du type F(x)= 0, racines d’un polynôme. 1960. 11

[Ehr67] Louis W Ehrlich. A modified Newton method for polynomials. Communications of
the ACM, 10(2):107–108, 1967. 11

[FS15] Michael A Forbes and Amir Shpilka. Complexity theory column 88: Challenges in
polynomial factorization. ACM SIGACT News, 46(4):32–49, 2015. 3

[FS17] Michael A. Forbes and Amir Shpilka. A PSPACE construction of a hitting set for
the closure of small algebraic circuits. Electronic Colloquium on Computational
Complexity (ECCC), 24:163, 2017. (To appear in 50th ACM Symposium on Theory
of Computing (STOC), 2018). 4

[FSTW16] Michael A Forbes, Amir Shpilka, Iddo Tzameret, and Avi Wigderson. Proof
complexity lower bounds from algebraic circuit complexity. In Proceedings of the
31st Conference on Computational Complexity, page 32. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2016. 4

[GMQ16] Joshua A. Grochow, Ketan D. Mulmuley, and Youming Qiao. Boundaries of VP and
VNP. In 43rd International Colloquium on Automata, Languages, and Programming
(ICALP 2016), volume 55, pages 34:1–34:14, 2016. 4, 21

[GMS+86] Philip E Gill, Walter Murray, Michael A Saunders, John A Tomlin, and Margaret H
Wright. On projected Newton barrier methods for linear programming and an equiva-
lence to Karmarkar’s projective method. Mathematical programming, 36(2):183–209,
1986. 3

[Gro15] Joshua A Grochow. Unifying known lower bounds via geometric complexity theory.
computational complexity, 24(2):393–475, 2015. 4

[GS98] Venkatesan Guruswami and Madhu Sudan. Improved decoding of reed-solomon and
algebraic-geometric codes. In Foundations of Computer Science, 1998. Proceedings.
39th Annual Symposium on, pages 28–37. IEEE, 1998. 3

[GTZ88] Patrizia Gianni, Barry Trager, and Gail Zacharias. Gröbner bases and primary
decomposition of polynomial ideals. Journal of Symbolic Computation, 6(2):149–167,
1988. 3

26

[IKRS12] Gábor Ivanyos, Marek Karpinski, Lajos Rónyai, and Nitin Saxena. Trading grh for
algebra: algorithms for factoring polynomials and related structures. Mathematics
of Computation, 81(277):493–531, 2012. 3

[Jan11] Maurice J Jansen. Extracting roots of arithmetic circuits by adapting numerical
methods. In 2nd Symposium on Innovations in Computer Science (ICS 2011), pages
87–100, 2011. 4

[Kal85] Erich Kaltofen. Computing with polynomials given by straight-line programs I:
greatest common divisors. In Proceedings of the 17th Annual ACM Symposium
on Theory of Computing, May 6-8, 1985, Providence, Rhode Island, USA, pages
131–142, 1985. 3

[Kal86] Erich Kaltofen. Uniform closure properties of p-computable functions. In Proceedings
of the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986,
Berkeley, California, USA, pages 330–337, 1986. 3, 14

[Kal87] Erich Kaltofen. Single-factor hensel lifting and its application to the straight-line
complexity of certain polynomials. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 443–452. ACM, 1987. 3, 5, 14, 32

[Kal89] Erich Kaltofen. Factorization of polynomials given by straight-line programs. Ran-
domness and Computation, 5:375–412, 1989. 3, 4, 5, 8

[Kal90] Erich Kaltofen. Polynomial factorization 1982-1986. Dept. of Comp. Sci. Report,
pages 86–19, 1990. 3

[Kal92] Erich Kaltofen. Polynomial factorization 1987–1991. LATIN’92, pages 294–313,
1992. 3

[Kay11] Neeraj Kayal. Efficient algorithms for some special cases of the polynomial equiva-
lence problem. In Proceedings of the twenty-second annual ACM-SIAM symposium
on Discrete Algorithms, pages 1409–1421. Society for Industrial and Applied Mathe-
matics, 2011. 3

[Kem10] Gregor Kemper. A course in Commutative Algebra, volume 256. Springer Science &
Business Media, 2010. 8

[Ker66] Immo O Kerner. Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von
Polynomen. Numerische Mathematik, 8(3):290–294, 1966. 11

[KI03] Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. In Proceedings of the thirty-fifth annual
ACM symposium on Theory of computing, pages 355–364. ACM, 2003. 3, 4

[KK08] Erich Kaltofen and Pascal Koiran. Expressing a fraction of two determinants as a
determinant. In Proceedings of the twenty-first international symposium on Symbolic
and algebraic computation, pages 141–146. ACM, 2008. 4

[KP12] Steven G Krantz and Harold R Parks. The implicit function theorem: history,
theory, and applications. Springer Science & Business Media, 2012. 8, 11

[KS06] Neeraj Kayal and Nitin Saxena. Complexity of ring morphism problems. computa-
tional complexity, 15(4):342–390, 2006. 3

27

[KS09] Zohar S Karnin and Amir Shpilka. Reconstruction of generalized depth-3 arithmetic
circuits with bounded top fan-in. In Computational Complexity, 2009. CCC’09.
24th Annual IEEE Conference on, pages 274–285. IEEE, 2009. 3

[KS16] Mrinal Kumar and Shubhangi Saraf. Arithmetic circuits with locally low algebraic
rank. In 31st Conference on Computational Complexity, CCC 2016, May 29 to June
1, 2016, Tokyo, Japan, pages 34:1–34:27, 2016. 11

[KSS15] Swastik Kopparty, Shubhangi Saraf, and Amir Shpilka. Equivalence of polynomial
identity testing and polynomial factorization. computational complexity, 24(2):295–
331, 2015. 8, 12, 13, 23, 30, 31

[KST18] Mrinal Kumar, Ramprasad Saptharishi, and Anamay Tengse. Near-optimal boot-
strapping of hitting sets for algebraic circuits. arXiv preprint arXiv:1807.06323,
2018. (To appear in SODA 2019). 4

[Lec02] Grégoire Lecerf. Quadratic newton iteration for systems with multiplicity. Founda-
tions of Computational Mathematics, 2(3):247–293, 2002. 11

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings
of the 39th international symposium on symbolic and algebraic computation, pages
296–303. ACM, 2014. 4

[LLMP90] Arjen K Lenstra, Hendrik W Lenstra, Mark S Manasse, and John M Pollard. The
number field sieve. In Proceedings of the twenty-second annual ACM symposium on
Theory of computing, pages 564–572. ACM, 1990. 3

[LN97] Rudolph Lidl and Harald Niederreiter. Finite Fields. Cambridge University Press,
Cambridge, UK, 1997. 33

[LS78] Richard J Lipton and Larry J Stockmeyer. Evaluation of polynomials with super-
preconditioning. Journal of Computer and System Sciences, 16(2):124–139, 1978.
3

[LV16] Anand Louis and Santosh Srinivas Vempala. Accelerated newton iteration for roots
of black box polynomials. In IEEE 57th Annual Symposium on Foundations of
Computer Science, FOCS’16, pages 732–740, 2016. 5

[Mah14] Meena Mahajan. Algebraic complexity classes. In Perspectives in Computational
Complexity, pages 51–75. Springer, 2014. 2, 30

[Mul12a] Ketan D. Mulmuley. The GCT program toward the P vs. NP problem. Commun.
ACM, 55(6):98–107, June 2012. 4

[Mul12b] Ketan D. Mulmuley. Geometric complexity theory V: Equivalence between blackbox
derandomization of polynomial identity testing and derandomization of Noether’s
normalization lemma. In FOCS, pages 629–638, 2012. 4

[Mul17] Ketan Mulmuley. Geometric complexity theory V: Efficient algorithms for Noether
normalization. Journal of the American Mathematical Society, 30(1):225–309, 2017.
3, 4

[MV97] Meena Mahajan and V Vinay. A combinatorial algorithm for the determinant. In
SODA, pages 730–738, 1997. 30, 31

28

[New69] Isaac Newton. De analysi per aequationes numero terminorum infinitas [on analysis
by infinite series] (in latin). 1669. (published in 1711 by William Jones). 11

[Oli16] Rafael Oliveira. Factors of low individual degree polynomials. Computational
Complexity, 2(25):507–561, 2016. (Preliminary version in CCC’15). 4, 11, 12, 17, 20

[OR00] James M Ortega and Werner C Rheinboldt. Iterative solution of nonlinear equations
in several variables. SIAM, 2000. 3

[Pau01] Sebastian Pauli. Factoring polynomials over local fields. Journal of Symbolic
Computation, 32(5):533–547, 2001. 22

[Pla77a] David Alan Plaisted. New NP-hard and NP-complete polynomial and integer
divisibility problems. In Foundations of Computer Science, 18th Annual Symposium
on, pages 241–253. IEEE, 1977. 5

[Pla77b] David Alan Plaisted. Sparse complex polynomials and polynomial reducibility.
Journal of Computer and System Sciences, 14(2):210–221, 1977. 4, 5

[PSS16] Anurag Pandey, Nitin Saxena, and Amit Sinhababu. Algebraic independence over
positive characteristic: New criterion and applications to locally low algebraic rank
circuits. In 41st International Symposium on Mathematical Foundations of Computer
Science, MFCS 2016, August 22-26, 2016 - Kraków, Poland, pages 74:1–74:15, 2016.
(In print, Computational Complexity, 2018). 11

[Sap16] Ramprasad Saptharishi. A survey of lower bounds in arithmetic circuit complexity.
URL https://github. com/dasarpmar/lowerbounds-survey/releases. Version, 3(0),
2016. 17, 32

[Sch77] Claus-Peter Schnorr. Improved lower bounds on the number of multiplica-
tions/divisions which are necessary to evaluate polynomials. In International
Symposium on Mathematical Foundations of Computer Science, pages 135–147.
Springer, 1977. 3

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, October 1980. 9, 31, 32, 34, 35

[Sin16] Gaurav Sinha. Reconstruction of real depth-3 circuits with top fan-in 2. In 31st
Conference on Computational Complexity, 2016. 3

[Str73] Volker Strassen. Vermeidung von divisionen. Journal für die reine und angewandte
Mathematik, 264:184–202, 1973. 8, 16, 31

[Sud97] Madhu Sudan. Decoding of reed solomon codes beyond the error-correction bound.
Journal of complexity, 13(1):180–193, 1997. 3

[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results
and open questions. Foundations and Trends® in Theoretical Computer Science,
5(3–4):207–388, 2010. 2, 30, 31, 32

[Tay15] Brook Taylor. Methodus incrementorum directa et inversa [direct and reverse
methods of incrementation] (in latin). 1715. (Translated into English in Struik, D.
J. (1969). A Source Book in Mathematics 1200–1800. Cambridge, Massachusetts:
Harvard University Press. pp. 329–332.). 5

29

[Val79] Leslie G. Valiant. Completeness classes in algebra. In Proceedings of the 11h Annual
ACM Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia,
USA, pages 249–261, 1979. 3

[Val82] L Valiant. Reducibility by algebraic projections in: Logic and algorithmic. In
Symposium in honour of Ernst Specker, pages 365–380, 1982. 5, 17

[VL97] Paul MB Vitanyi and Ming Li. An introduction to kolmogorov complexity and its
applications. 34(10), 1997. 6

[VSBR83] Leslie G. Valiant, Sven Skyum, Stuart Berkowitz, and Charles Rackoff. Fast parallel
computation of polynomials using few processors. SIAM Journal on Computing,
12(4):641–644, 1983. 3, 8

[vzGG13] Joachim von zur Gathen and Jürgen Gerhard. Modern computer algebra. Cambridge
university press, 2013. 11, 22, 33

[vzGK85] Joachim von zur Gathen and Erich Kaltofen. Factoring sparse multivariate polyno-
mials. Journal of Computer and System Sciences, 31(2):265–287, 1985. 4

[Zas69] Hans Zassenhaus. On Hensel factorization, I. Journal of Number Theory, 1(3):291–
311, 1969. 11

[ZS75] Oscar Zariski and Pierre Samuel. Commutative algebra. II. Reprint of the 1960
edition, volume 29. Graduate Texts in Mathematics, 1975. 13

A Preliminaries

A.1 Definition of ABP

ABP is a skew circuit, i.e. each multiplication gate has fanin two with at least one of its
inputs being a variable or a field constant. A completely different definition can be given via
layered graphs or iterated matrix multiplication or symbolic determinant. Famously, they are all
equivalent up to polynomial blow up [Mah14].

Definition 18 (Algebraic Branching Program). An algebraic branching program (ABP) is a
layered graph with a unique source vertex (say s) and a unique sink vertex (say t). All edges are
from layer i to i+ 1 and each edge is labelled by a linear polynomial. The polynomial computed
by the ABP is defined as f =

∑
γ:s t wt(γ), where for every path γ from s to t, the weight wt(γ)

is defined as the product of the labels over the edges forming γ.
Size of the ABP is defined as the total number of edges in the ABP. Width is the maximum

number of vertices in a layer.
Equivalently, one can define f as a product of matrices (of dimension at most the width),

each one having linear polynomials as entries. For more details, see [SY10].

It is a famous result that the ABP model is the same as symbolic determinant [MV97].

A.2 Randomized algorithm for linear algebra using PIT

The following lemma from [KSS15] discusses how to perform linear algebra when the coefficients
of vectors are given as formula (resp. ABP). This will be crucially used in Theorem 3 when we
would give an algorithm to output the factors.

30

Lemma 19. (Linear algebra using PIT [KSS15, Lem.2.6]) Let M = (Mi,j)k×n be a matrix
(where k is nO(1)) with each entry being a degree ≤ nO(1) polynomial in F[x]. Suppose, we
have algebraic formula (resp. ABP) of size ≤ nO(logn) computing each entry. Then, there is a
randomized poly(nlogn)-time algorithm that either:

• finds a formula (resp. ABP) of size poly(nlogn) computing a non-zero u ∈ (F[x])n such
that Mu = 0, or

• outputs 0 which declares that u = 0 is the only solution.

Proof. This was proved in [KSS15, Lem.2.6] for the circuit model. Since we are using a different
model we repeat the details. The idea is the following. Iteratively, for every r = 1, . . . , n we
shall find an r × r minor contained in the first r columns that is full rank. While continuing
this process, we either reach r = n in which case it means that the matrix has full column rank,
hence, u = 0 is the only solution, or we get stuck at some value say r = r0. We use the fact that
r0 is rank and using this minor we construct the required non-zero vector u.

We explain the process in a bit more detail. Using a randomized algorithm, we look for some
non-zero entry in the first column. If no such entry is found we can simply take u = (1, 0, . . . , 0).
So assume that such a non-zero entry is found. After permuting the rows we can assume wlog
that this is M1,1. Thus, we have found a 1× 1 minor satisfying the requirements. Assume that
we have found an r× r full rank minor that is composed of the first r rows and columns (we can
always rearrange and hence it can be assumed wlog that they correspond to first r rows and
columns). Denote this minor by Mr.

Now for every (r + 1) × (r + 1) submatrix of M contained in the first r + 1 columns and
containing Mr, we check whether the determinant is 0 by randomized algorithm. If any of these
submatrices have nonzero determinant, then we pick one of them and call it Mr+1. Otherwise,
we have found that first r + 1 columns of M are linearly dependent. As Mr is full rank, there
is v ∈ F(x)r such that Mrv = (M1,r+1, . . . ,Mr,r+1)T . This can be solved by applying Cramer’s

rule. The i-th entry of v is of the form det(M
(i)
r)/det(Mr), where M

(i)
r is obtained by replacing

i-th column of Mr with (M1,r+1, . . . ,Mr,r+1)T . Observe that det(Mr), as well as det(M
(i)
r), are

both in F[x].

Then it is immediate that u := (det(M
(1)
r), . . . ,det(M

(r)
r),−det(Mr), 0, . . . , 0)T is the desired

vector.
To find Mr, each time we have to calculate the determinant and decide whether it is 0 or not.

This is simply PIT for a determinant polynomial with entries of algebraic complexity nO(logn)

and degree nO(1). So, we have a comparable randomized algorithm for this. Determinant of a
symbolic n× n matrix has nO(logn) size formula (resp. poly(n) ABP) [MV97]. When the entries
of the matrix have nO(logn) size formula (resp. ABP), altogether, the determinant polynomial
has the same algebraic complexity. There are < n2 PIT invocations to test zeroness of the
determinant. Altogether, we have a poly(nlogn)-time randomized algorithm for this [Sch80].

A.3 Basic operations on formula, ABP and circuit

We use the following standard results on size bounds for performing some basic operations (like
taking derivative) of circuits, formulas, ABPs.

Lemma 20. (Eliminate single division [Str73], [SY10, Thm.2.1]) Let f and g be two degree-D
polynomials, each computed by a circuit (resp. ABP resp. formula) of size-s with g(0) 6= 0. Then
f/g mod 〈x〉d+1 can be computed by O((s+ d)d3) (resp. O(sd2D) resp. O(sd2D2)) size circuit
(resp. ABP resp. formula).

31

Proof. Assume wlog that g(0) = 1; we can ensure this by appropriate normalization. So, we
have the following power series identity in F[[x]]:

f/g = f/(1− (1− g)) = f + f(1− g) + f(1− g)2 + f(1− g)3 + · · · .

Note that this is a valid identity as 1− g is constant free. For all d ≥ 0, LHS=RHS mod〈x〉d+1.
If we want to compute f/g mod 〈x〉d+1, we can take the RHS of the above identity up to

the term f(1− g)d and discard the remaining terms of degree greater than d. The degree> d
monomials can be truncated, using Strassen’s homogenization trick, in the case of circuits and
ABPs (see [Sap16, Lem.5.2]), and an interpolation trick in the case of formulas (which also works
for ABPs and low degree circuits, [Sap16, Lem.5.4]). A careful analysis shows that the size blow
up is at most O((s+ d)d2 · d) (resp. O(sd ·D · d) resp. O(sd ·D2 · d)) for circuits (resp. ABP
resp. formula).

Using the above result, it is easy to see, that we get poly(s, d) size circuit (resp. ABP resp.
formula) for computing f/g mod 〈x〉d+1.

Remark. Note that it may happen that g(0) = 0, thus 1/g does not exist in F[[x]], yet f/g
may be a polynomial of degree d. In such a case, we need to discuss a modified normalization
that works. We can shift the polynomials f, g by some random α ∈ Fn. The constant term of the
shifted polynomial is non-zero with high probability [Sch80]. Now, we compute f(x+α)/g(x+α)
using the method described above. Finally, we recover the polynomial f/g by applying the
reverse shift x 7→ x− α.

What if our model has several division gates?

Lemma 21. (Div. gates elimination [SY10, Thm.2.12]) Let f be a polynomial computed by a
circuit (resp. formula), using division gates, of size s. Then, f mod 〈x〉d+1 can be computed by
poly(sd) size circuit (resp. formula).

Proof idea. We preprocess the circuit (resp. formula) so that the only division gate used in the
modified circuit (resp. formula) is at the top. Now to remove the single division gate at the top,
we use the above power series trick.

The idea of the pre-processing is the following. We can separately keep track of numerator
and denominator computed at each gate and simulate addition, multiplication and division gates
in the original circuit. This pre-processing incurs only poly(sd) blow up in the case of circuits.
In the case of formulas one has to ensure that in any path from the leaf to the root, there are
only O(log sd) division gates.

Lemma 22 (Derivative computation). If a polynomial f(x, y) can be computed by a circuit

(resp. formula resp. ABP) of size s and degree d. Then, any ∂kf
∂yk

can be computed by circuit

(resp. formula resp. ABP) of size poly(sk).

Proof. The idea is simply to use the homogenization and interpolation properties [Sap16, Sec.5.1-
2].

Let f(x, y) = c0 + c1y + c2y
2 + . . . + cδy

δ, where c0, c1, . . . , cδ ∈ F[x]. Given the circuit
(resp. formula resp. ABP) computing polynomial f(x, y), we can get the circuits (resp. formula
resp. ABP) computing c0, . . . , cδ using homogenization and interpolation as discussed before.

Given c0, . . . , cδ, computing ∂kf
∂yk

in size poly(sd) is trivial. We use this approach of computing

derivative when the polynomial is of degree d ≤ poly(s).
In the case of high degree circuits, we cannot use the above approach. [Kal87, Thm.1] shows

that ∂kf
∂yk

can be computed by a circuit of size O(k2s), i.e. the degree of the circuit does not
matter. The main idea is to inductively use the Leibniz product rule of k-th order derivative.

32

A.4 Sylvester matrix & resultant

First, let us look at the notion of resultant of two univariate polynomials. Let p(x), q(x) ∈ F[x]
be of degree a, b respectively. From Euclid’s extended algorithm, it can be shown that there
exist two polynomials u(x), v(x) ∈ F[x] such that u(x)p(x) + v(x)q(x) = gcd(p(x), q(x)). This is
known as Bezout’s identity. If gcd(p(x), q(x)) = 1, then (u, v) with deg(u) ≤ b and deg(v) ≤ a
is unique. Let u(x) = u0 + u1x+ u2x

2 + . . .+ ubx
b and v(x) = v0 + v1x+ . . .+ vax

a.
Now, if we use the equation u(x)p(x)+v(x)q(x) = gcd(p(x), q(x)) and compare the coefficients

of xi, for 0 ≤ i ≤ a+ b, we get a system of linear equations in the a+ b+ 2 many unknowns (ui’s
and vi’s). The system of linear equations can be represented in the matrix form as Mx = y,
where x consists of the unknowns. Resultant of f, g is defined as the determinant of the matrix
M . It is easy to see that M is invertible if and only if the polynomials are coprime.

Now, the notion of resultant can be extended to multivariate, by defining resultant of
polynomials f(x, y) and g(x, y) wrt some variable y. The idea is same as before, now we take
gcd wrt the variable y and get a system of linear equations from Bezout’s identity. The matrix
can be explicitly written with entries being polynomial coefficients (or they could be from F[[x]]).
This is known as Sylvester matrix, which we define next.

Definition 23. Let f(x, y) =
∑l

i=0 fi(x)yi and g(x, y) =
∑m

i=0 gi(x)yi. Define Sylvester matrix
of f and g wrt y as the following (m+ l + 1)× (m+ l + 1) matrix:

Syly(f, g) :=

fl 0 0 . . . 0 gm 0 0 0
fl−1 fl 0 . . . 0 gm−1 gm 0 0
fl−2 fl−1 fl . . . 0 gm−2 gm−1 gl 0
...

...
...

...
...

...
...

...
...

f0 f1 fl g0 g1 . . . gm
0 f0 0 g0 . . . 0
...

...
...

...
...

...
...

...
...

0 f0 0 g0

So, resultant can be formally defined as follows (for more details and alternate definitions,

see [LN97, Chap.1]).

Definition 24. Given two polynomials f(x, y) and g(x, y), define the resultant of f and g wrt
y as determinant of the Sylvester matrix,

Resy(f, g) := det(Syly(f, g)) .

From the definition, it can be seen that Resy(f, g) is a polynomial in F[x] with degree bounded
by 2deg(f)deg(g). Now, we state the following fundamental property of the Resultant, which is
crucially used.

Proposition 2 (Res vs gcd). 1. Let f, g ∈ F[x, y] be polynomials with positive degree in y.
Then, Resy(f, g) = 0 ⇐⇒ f and g have a common factor in F[x, y] which has positive
degree in y.

2. There exists u, v ∈ F[x] such that uf + vg = Resy(f, g).

The proof of this standard proposition can be found in many standard books on algebra
including [vzGG13, Sec.6].

Lemma 25 (Squarefree-ness). Let f ∈ F(x)[y] be a polynomial with degy(f) ≥ 1. f is square
free iff f, f ′ := ∂yf are coprime wrt y.

33

Proof. The main idea is to show that there does not exist g ∈ F(x)[y] with positive degree in y
such that g | gcdy(f(x, y), f ′(x, y)). This is true because– suppose g is an irreducible polynomial
with positive degree in y that divides both f(x, y) and f ′(x, y). So,

f(x, y) = gh =⇒ f ′(x, y) = gh′ + g′h =⇒ g | g′h .

As g is irreducible and degy(g
′) < degy(g) we deduce that g | h. Hence, g2 | f . This

contradicts the hypothesis that f is square free.

Now, we state another standard lemma, which is useful to us and which is proved using the
property of Resultant.

Lemma 26 (Coprimality). Let f, g ∈ F(x)[y] be coprime polynomials wrt y (& nontrivial in y).
Then, for β ∈r Fn, f(β, y) and g(β, y) are coprime (& nontrivial in y).

Proof. Consider f =
∑d

i=1 fiy
i and g =

∑e
i=1 giy

i. Choose a random β ∈r Fn. Then, by
Proposition 2 & [Sch80], fd · ge · Resy(f, g) at x = β is nonzero. This in particular implies that
Resy(f(β, y), g(β, y)) 6= 0.

This implies, by Proposition 2, f(β, y) and g(β, y) are coprime.

B Useful in Section 3

Lemma 27. (Power series root [BCS13, Thm.2.31]) Let P (x, y) ∈ F(x)[y], P ′(x, y) = ∂P (x,y)
∂y

and µ ∈ F be such that P (0, µ) = 0 but P ′(0, µ) 6= 0 . Then, there is a unique power series S
such that S(0) = µ and P (x, S) = 0 i.e.

y − S(x) | P (x, y) .

Moreover, there exists a rational function yt, ∀t ≥ 0, such that

yt+1 = yt −
P (x, yt)

P ′(x, yt)
and S ≡ yt mod 〈x〉2t with y0 = µ .

Proof. We give an inductive proof of existence and uniqueness together. Suppose P =
∑d

i=0 ciy
i.

We show that there is yt, a rational function At
Bt

such that yt ∈ F[[x]] , For all t ≥ 0, P (x, yt) ≡
0 mod 〈x〉2t and for all t ≥ 1, yt ≡ yt−1 mod 〈x〉2t−1

. The proof is by induction. Let y0 := µ.

Thus, base case is true. Now suppose such yt exists. Define yt+1 := yt − P (x,yt)
P ′(x,yt)

.

Now, yt ≡ yt−1 mod 〈x〉2t−1
=⇒ yt(0) = µ . Hence P ′(x, yt)|x=0 = P ′(0, µ) 6= 0 and so

P ′(x, yt) is a unit in the power series ring. So, yt+1 ∈ F[[x]]. Let us verify that it is an improved
root of P ; we use Taylor expansion.

P (x, yt+1) = P

(
x, yt −

P (x, yt)

P ′(x, yt)

)
= P (x, yt)− P ′(x, yt)

P (x, yt)

P ′(x, yt)
+
P ′′(x, yt)

2!

(
P (x, yt)

P ′(x, yt)

)2

− . . .

= 0 mod 〈x〉2t+1
.

Thus, P (x, yt+1) ≡ 0 mod 〈x〉2t+1
and yt+1 ≡ yt mod 〈x〉2t . This completes the induction step.

Moreover, using the notion of limit, we have limt→∞ yt = S, a formal power series. It is
unique as µ is a non-repeated root of P (0, y). In particular, we get that for all t ≥ 0, P (x, S) = 0
or y − S | P .

34

Lemma 28 (Transform to monic). For a polynomial f(x) of total degree d ≥ 0 and random
αi ∈r F, the transformed polynomial g(x, y) := f(αy + x) has a nonzero constant as coefficient
of yd, and degree wrt y is d.

Proof. Suppose the transformation is xi 7→ xi + αiy where i ∈ [n]. Write f =
∑
|β|=d cβx

β +

lower degree terms . Coefficient of yd in g is
∑
|β|=d cβα

β . Clearly, for a random α this coefficient

will not vanish [Sch80], and it is the highest degree monomial in g.
This ensures degy(g) = deg(f) = d and that g is monic wrt y.

C Useful in Section 4

Lemma 29 (Matrix inverse). Let µi, i ∈ [d], be distinct nonzero elements in F. Define a d× d
matrix A with the (i, j)-th entry 1/(yi − µj)2. Its entries are in the function field F(y). Then,
det(A) 6= 0.

Proof. The idea is to consider the power series of the function 1/(yi − µj)2 and show that a
monomial appears nontrivially in that of det(A).

We first need a claim about the coefficient operator on the determinant.

Claim 30. Let fj =
∑

i≥0 βj,ix
i be a power series in F[[x]], for j ∈ [d]. Then, Coeffxα ◦

det (fj(xi)) = det (βj,αi).

Proof of Claim 30. Observe that the rows of the matrix have disjoint variables. Thus, xαii could be

produced only from the i-th row. This proves: Coeffxα ◦det (fj(xi)) = det
(

Coeffxαii
◦ fj(xi)

)
=

det (βj,αi). �

By Taylor expansion we have

1

(x− µ)2
=

1

µ2

∑
j≥1

j

(
x

µ

)j−1

.

Hence, the coefficient of yi−1
i in A(i, j) is

1

µ2
j

i

µi−1
j

=
i

µi+1
j

.

By the above claim, the coefficient of
∏
i∈[d] y

i−1
i in det(A) is: det

((
i

µi+1
j

))
. By cancelling i

(from each row) and 1/µ2
j (from each column), we simplify it to the Vandermonde determinant:

det

1
µ01

1
µ02

. . . 1
µ0d

1
µ11

1
µ12

. . . 1
µ1d

...
... . . .

...
1

µd−1
1

1
µd−1
2

. . . 1
µd−1
d

 =
∏

i<j∈[d]

(
1

µi
− 1

µj

)
6= 0 .

Hence, the determinant of A is non-zero.

Remark. If the characteristic of F is a prime p ≥ 2 then the above proof needs a slight
modification. One should consider the coefficient of

∏
i∈[d] y

si−1
i in det(A) for a set S =

{s1, . . . , sd} of distinct non-negative integers that are not divisible by p. Moreover, one has to
consider ‘random’ µi’s to deduce det(A) 6= 0.

35

Lemma 31 (Series inverse). Let δ ≥ 1. Assume that A is a polynomial of degree < δ and B is
a homogeneous polynomial of degree δ, such that A(0) =: µ 6= 0. Then, we have the following
identity in F[[x]](y) ∩ F[[x]][[y]]:

1

y − (A+B)
≡ 1

y −A
+

B

(y − µ)2
mod 〈x〉δ+1

Proof. We will use the notation A[1,δ−1] to refer to the sum of the homogeneous parts of A of
degrees between 1 and δ − 1 (equivalently, it is A<δ − µ). Note that B ·A[1,δ−1] vanishes mod
〈x〉δ+1. Now, in F[[x]][[y]],

1

y − (A+B)
≡ 1

y − µ−
(
A[1,δ−1] +B

) mod 〈x〉δ+1

≡ 1

y − µ

(
1

1− A[1,δ−1]+B
y−µ

)
mod 〈x〉δ+1

≡ 1

y − µ

1 +

(
A[1,δ−1] +B

y − µ

)
+

(
A[1,δ−1] +B

y − µ

)2

+

 mod 〈x〉δ+1

≡ 1

y − µ

1 +

(
A[1,δ−1] +B

y − µ

)
+

(
A[1,δ−1]

y − µ

)2

+

(
A[1,δ−1]

y − µ

)3

+

 mod 〈x〉δ+1

≡ 1

y − µ

1 +

(
A[1,δ−1]

y − µ

)
+

(
A[1,δ−1]

y − µ

)2

+

+
B

(y − µ)2
mod 〈x〉δ+1

≡ 1

y − µ

(
1

1− A[1,δ−1]

y−µ

)
+

B

(y − µ)2
mod 〈x〉δ+1

≡ 1

y −A
+

B

(y − µ)2
mod 〈x〉δ+1 .

C.1 Closure properties for VNP

VNP-size parameter (w, v) of F refers to w being the witness size and v being the size of the
verifier circuit f .

Let F (x, y), G(x, y), H(x) have verifier polynomials f, g, h and the VNP size parameters
(wf , vf), (wg, vg), (wh, vh) respectively. Let the degree of F wrt y be d. Then, the following
closure properties can be shown ([BCS13] or [Bür13, Thm.2.19]):

1. Add (resp. Multiply): F +G (resp. FG) has VNP-size parameter (wf + wg, vf + vg + 3).

2. Coefficient: Fi(x) has VNP-size parameter (wf , (d+1)(vf+1)), where F (x, y) =:
∑d

i=0 Fi(x)yi.

3. Compose: F (x,H(x)) has VNP-size parameter ((d+ 1)(wf + dwh), (d+ 1)2(vf + vh + 1)).

Proof. All the above statements are easy to prove using the definition of VNP.

1. (FG)(x, y) =
(∑

u∈{0,1}wf f(x, u1, . . . , uwf)
)
·
(∑

u∈{0,1}wg g(x, u1, . . . , uwg)
)

=∑
u∈{0,1}wf+wg A(x, u1, . . . , uwf+wg). Where, A(x, u1, . . . , uwf+wg) := f(x, u1, . . . , uwf) ·

36

g(x, uwf+1, . . . , uwf+wg). Trivially, A has size vf + vg + 3 (extra: one node, two edges) and
witness size is wf + wg.

Similarly, with F +G.

2. Interpolation gives, fi(x) =
∑d

j=0 αjF (x, βj), for some distinct arguments βj ∈ F. Clearly,
F (x, βj) has VNP-size parameter (wf , vf). Using the previous addition property we get
that the verifier circuit has size (d+ 1)(vf + 1). Witness size remains wf as we can reuse
the witness string of F .

3. Write F (x, y) =:
∑d

i=0 Fi(x)yi. We know that Fi has VNP-size parameter (wf , (d+ 1)(vf +
1)). For 0 ≤ i ≤ d, H i has VNP-size parameter (iwh, (i+ 1)vh) using i-fold product (Item
1). Substituting y = H in F , we can calculate the VNP-size parameter.

Suppose Fi and H i have corresponding verifier circuits Ai and Bi respectively. Then,

F (x,H(x)) =
∑d

i=0 Fi(x)H i(x) =
∑d

i=0

(∑
u∈{0,1}wf Ai(x, u)

)
·
(∑

u∈{0,1}iwh Bi(x, u)
)

.

Thus, the witness size is < (d+ 1)(wf + dwh). The corresponding verifier circuit size is
< (d+ 1)2(vf + vh + 1).

37

	Introduction
	Previously known closure results
	Our results
	A detour into numerical analysis (via arithmetic circuits)
	Back to multivariate algebraic models

	Proof techniques
	Proof overview

	Preliminaries
	Power series factorization of polynomials
	Main Results
	Factors of a circuit with low-degree radical: Proof of Theorem 1
	Low degree factors of general circuits: Proof of Theorem 2
	Closure of restricted complexity classes: Proof of Theorem 3

	Extensions
	Closure of approximative complexity classes
	When field F is not algebraically closed
	Multiplicity issue in prime characteristic

	Conclusion
	Preliminaries
	Definition of ABP
	Randomized algorithm for linear algebra using PIT
	Basic operations on formula, ABP and circuit
	Sylvester matrix & resultant

	Useful in Section 3
	Useful in Section 4
	Closure properties for VNP

