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Abstract. Multivariate cryptography is based on multivariate quadratic
or MQ (i.e. multivariate quadratic root-finding) problem which is known
to be NP-hard; thus it is conjectured to be post-quantum secure. UOV
(unbalanced Oil-Vinegar) is a popular technique (Kipnis et.al.1999) used
to design the central polynomials in an MQ-based signature scheme; for
instance, the Rainbow scheme (ACNS’05) is one of the more well-known
candidates. A powerful attack on Rainbow was recently proposed by
Beullens (CRYPTO’22), which significantly decreases its security.
Our work proposes two new MQ-based digital-signature schemes, called
TriRainbow (short for ‘Triangular Rainbow’). TriRainbow effectively com-
bines, in a simple way, two well-known methods— Rainbow and Trian-
gular schemes. Our signature scheme, proposed in this work, is secure
against Beullens’s attack. TriRainbow needs one Gaussian elimination
during the signing phase, so it is as efficient as Rainbow, in addition, it
offers better security compared to Rainbow.

Keywords: Post-quantum · Digital signature · Multivariate Cryptogra-
phy· Rainbow · Oil-Vinegar · Triangular · Multivariate root-finding

1 Introduction

Cryptography is an old mathematical art ensuring data security in our rapidly
growing digital world. In 1970, Diffie and Hellman first introduced public key
cryptography, and the corresponding hardness of the discrete logarithm problem
(DLP) [19]. Later in 1977, Rivest, Shamir, and Adleman proposed a new public
key cryptosystem based on the hardness of integer factorization problem (IFP)
[43]. To reduce the public key size, Koblitz [32] and Miller [34] independently
proposed elliptic curve cryptography, which was based on the hardness of elliptic
curve discrete logarithm problem (ECDLP).

In 1994, Peter Shor proposed a quantum algorithm to solve IFP and DLP
in polynomial time [46]. Thus, conventional cryptography is no more secure in
the quantum era. However, trapdoors which are based on lattices (like SVP [27],
LWE [42]) and multivariate quadratic [37,38] can prevent quantum attacks. So,
NIST has called for standardization of post-quantum secure public key primitives
[4]. In the last couple of years, researchers are developing quantum technology
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rapidly [1]. Thus, many industries and government organizations have started
working on post-quantum secure primitives to avoid quantum threats or attacks
like harvest now, decrypt later [36].

The cryptography based on the hardness of multivariate quadratic (MQ)
problem is called multivariate cryptography. MQ problem asks to solve a system
of multivariate quadratic polynomials over Fq. This is already known to be NP-
hard [28]. Multivariate cryptography contributed many schemes like Matsumoto-
Imai [33] encryption scheme, Hidden Field Equation (HFE) based cryptosystem
[37,15], Oil-Vinegar [38] signature, Rainbow [20] signature, Triangular schemes
[35,45,51] signature, Simple Matrix encryption [48], and many more.

Patarin proposed the first Oil-Vinegar signature scheme [38]. Later Kipnis
and Shamir [30] showed how to forge the signature; and suitably updated the
scheme to Unbalanced Oil-Vinegar (UOV) [29]. To enhance the performance and
reduce the public key size, Ding and Schmidt proposed the Rainbow signature
[20]. The construction of this scheme can be viewed as a multi-layer UOV sig-
nature scheme [29]. Rainbow was a third-round candidate in the NIST-PQC
competition [5]. The cryptanalysis of Rainbow has been a well-studied area for
the last decade. Cryptanalysis literature includes direct attack [7,22,23], min-
rank attack [12,7,8,6], band-separation attack [21,49,47], rectangular min-rank
and intersection attack [10]. In 2022, Beullens recovered the secret key of Rain-
bow (for the round one parameter set) within 53 hours on a laptop [11].

Later in 2022, Cartor et al. proposed another layer-based construction called
IPRainbow [14]. They modified Rainbow using an internal perturbation by few
quadratic monomials. However, their major drawback is that the inversion of
the central map needs Gröbner basis computation, which increases its time com-
plexity for signature generation.

1.1 Our Contribution and Motivation

We propose a new layer-based construction, which has one UOV layer and one
triangular layer. A triangular layer means we are adding each new variable in
the central polynomial one by one. The first variant of our proposal uses vinegar
and oil variables in the first layer and triangular variables in the second layer.
The second variant uses vinegar and triangular variables in the first layer and
oil variables in the second layer.

Triangular Rainbow. The central polynomial map plays an essential role
in the Rainbow construction. Beullens’s simple attack revealed the subspaces due
to the properties of the public polynomial and sequences of input and output
subspaces. Here, we alter an Oil-Vinegar polynomial and a triangular polynomial
in each layer. So we rename it TriRainbow. The motivation is to decrease the
probability of guessing a vector in the input subspace. This modification allows
us to use the old security level one (SL1) parameters, which were broken due to
the simple attack. Further, we claim that our scheme remains efficient, as, the
only computational bottleneck is Gaussian elimination. We have reduced the
number of Gaussian elimination from two to one. Therefore, TriRainbow enjoys

2



better security and performance compared to Rainbow [25]. Here we consider
layer-two TriRainbow. First, we elaborate on our version-one TriRainbow.

Version-One. Suppose the total number of variables is n =: v3. The first
v1 variables are vinegar, the next v2 − v1 variables are oil, and the last v3 −
v2 variables are called triangular variables. The first layer of v2 − v1 central
polynomials are Oil-Vinegar, and the second layer of v3−v2 central polynomials
are triangular.

– First layer central polynomials:

f
(k)
1 (x1, x2, · · · , xn) =

v1∑
i=1

v1∑
j=1

αijxixj +

v1∑
i=1

v2∑
j=v1+1

βijxixj +

v2∑
i=1

γixi + δ

where k ∈ {v1+1, · · · , v2} and αij , βij , γi, δ ∈ Fq (note: these field elements
depend on k too.).

– Second layer central polynomials:

f
(k)
2 (x1, x2, · · · , xn) = xk · λk(x1, x2, · · · , xk−1) + ιk(x1, x2, · · · , xk−1)

where λk is a linear and ιk is a quadratic, and both are randomly chosen
from Fq[x1, x2, · · · , xk−1] , where k ∈ {v2 + 1, · · · , v3}.

Version-Two. Here, the first v1 variables are vinegar, the next v2 − v1
variables are triangular, and the last v3 − v2 variables are oil. Further, the first
layer of v2−v1 central polynomials are triangular and the second layer of v3−v2
central polynomials are Oil-Vinegar.

– First layer central polynomials:

f
(k)
1 (x1, x2, · · · , xn) = xk · λk(x1, x2, · · · , xk−1) + ιk(x1, x2, · · · , xk−1)

where λk is a linear and ιk is a quadratic, and both are randomly chosen
from Fq[x1, x2, · · · , xk−1] , where k ∈ {v1 + 1, · · · , v2}.

– Second layer central polynomials:

f
(k)
2 (x1, x2, · · · , xn) =

v2∑
i=1

v2∑
j=1

αijxixj +

v2∑
i=1

n∑
j=v2+1

βijxixj +

n∑
i=1

γixi + δ

where k ∈ {v2+1, · · · , v3} and αij , βij , γi, δ ∈ Fq (note: these field elements
depend on k too.).

Inversion of the UOV layer is already known, while the inversion of the
triangular layer is equally easy due to the underlying triangular-shape linear-
system. Like Rainbow, TriRainbow can be expressed using the differential polar
form. This helps to better understand the cryptanalysis of the proposed scheme.
Naively, TriRainbow can be visualized as an instance of Rainbow with layers
d + 1, where d denotes the depth of the triangular layers. Therefore to recover
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the secret key, the probability of guessing a vector in the input subspace is 1/qd.
Most of the cryptanalytic methods known, try to find a vector in the input sub-
space [10,39,47]. Hence, the success probability of such attacks is naively 1/qd.

Organization of the paper In the upcoming section, we present the con-
struction of the traditional Rainbow and the polar form description of the Rain-
bow. This section also describes the simple attack and the newly modified sig-
nature IPRainbow. Section 3 proposes a new post-quantum secure multivariate
signature scheme called TriRainbow or Triangular Rainbow. The cryptanalysis
of our scheme is presented in Section 4. Further, in Section 5, we compare our
results with the existing one, and a concluding remark is kept in the last section.

2 Prior Works

In 2005, Ding and Schmidt [20] proposed a multi-layer signature scheme Rainbow
which is one of the most popular digital signature schemes based on Multivariate
Cryptography. It is built on the older signature scheme UOV [29]. The motiva-
tion for such layer-based construction was to resist the Kipnis-Shamir attack [30].
The simple attack is the most efficient algorithm to recover the secret key (par-
tially) [11]. The rectangular min-rank attack can be combined with the simple
attack to make significant improvements to cryptanalysis [10,11]. Later Cartor
et al. perturbed the central polynomial map of Rainbow to resist such attacks
[14]. However, due to this perturbation, the time complexity increased during
the signing phase. In this section, we discussed some preliminaries required, like,
trapdoors, Rainbow signature and its polar form explanation, simple and rect-
angular min-rank attack, and IPRainbow signature scheme.

2.1 Trapdoors

The central polynomial map of any multi-layer signature scheme based on UOV,
F : Fn → Fm is sandwiched by two randomly chosen invertible affine maps
S : Fm → Fm and T : Fn → Fn from both sides, i.e. the public polynomial map
P = S ◦F ◦T : Fn → Fm. Now these individual maps S,F and T are secret keys
and P is the public key. Multi-layer-based signature schemes used MQ, min-rank
and extended isomorphism problems as trapdoors.

1. MQ. Knowing the public polynomial map P and y = P(x), the task is to
find x. This problem is called the MQ problem (multivariate quadratic), and
it is known to be NP-hard [28].

2. Min-rank. Let M1,M2, · · · ,Mk ∈ Fn×m
q be the given matrices and r ∈ N,

find a non-trivial linear combination (with m1,m2, · · · ,mk ∈ Fq) so that

rank

(
k∑

i=1

miMi

)
≤ r.

This problem is called the min-rank problem and has proven to be NP-hard
[13]. The min-rank problem appeared as a cryptanalytic tool in multivariate
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cryptography [31,24,7,10]. This attack helps to find a linear combination of
public matrices which sums up to a low-rank matrix.

3. EIP. Find an equivalent composition of P = S ′ ◦ F ′ ◦ T ′, where S ′ and T ′

are equivalent affine maps, and F ′ is an equivalent central map. The above
problem is the Extended Isomorphism of Polynomials (EIP) problem. No
such hardness classification is known (though it subsumes graph isomorphism
problem [2,3]), but for some instances, polynomial time algorithms exist [30].

2.2 Rainbow

Traditional description. The construction given by Ding and Schmidt is
known as the traditional description of Rainbow [20]. This discussion includes
the central polynomial map, trapdoors, and affine linear maps and later describes
the signature generation and verification process.

Central polynomial map. Let n be the number of variables and 1 < v1 <
v2 < · · · < vl+1 = n be some integer parameters. The vinegar set Vi and oil set
Oi are defined as: Vi = {1, 2, · · · , vi} and Oi = {vi + 1, vi + 2, · · · , vi+1} and
the cardinalities of Vi and Oi be vi and oi respectively. From the construction,
oi = vi+1 − vi, and Oi = Vi+1 − Vi. The nested sequence of the vinegar set Vi is
defined as follows

V1 ⊂ V2 ⊂ V3 · · · ⊂ Vl+1 = {1, 2, · · · , v1, · · · , v2, · · · , v3, · · · , n} .

Rainbow central map needs m = n− v1 central polynomials f (v1+1), · · · , f (n) ∈
Fq[x1, · · · , xn]. These are as follows, inspired by UOV, in the layer r:

f (k)(x1, x2, · · · , xn) =
∑

i,j∈Vr; i≤j

αijxixj +
∑

i∈Vr; j∈Or

βijxixj +
∑

i∈Vr∪Or

γixi + δ

where for each k ∈ Or, elements αij , βij , γi and δ are taken from Fq; and r
denotes the layer .

In each layer r, first vi’s are vinegar and the next vi+1 − vi’s are oil vari-
ables. In the next layer, newly added variables are considered oil variables,
and old variables are vinegar variables. Finally, include all central polynomi-
als from different layers to construct the central map F : Fn

q → Fm
q , where

F(x) = (f (v1+1)(x), · · · , f (n)(x)).
Inversion. An efficient inversion of the central map implies better perfor-

mance for the multivariate signature scheme. An l-th layer Rainbow requires
l-many Gaussian elimination (GE). Here, the inversion algorithm starts with
fixing the first v1 vinegar variables by choosing random values and feeding those
values into f (v1+1), f (v1+2), . . . , f (n) polynomials. In the first layer, use the mes-
sage, to get the o1 linear constraints with xv1+1, · · · , xv2 as unknown variables;
this is an MQ instance. Now, solve this linear system using GE and put the
solution into f (v2+1), · · · , f (n). In the second layer, the first v2 variables play
the role of vinegar variables. Again, a system of o2 linear equations with o2
unknowns can be obtained. To compute the unknown xv2+1, · · · , xv3 again use
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the GE algorithm. Therefore, performing these steps repeatedly, x1, x2, · · · , xn

can be computed; which gives a solution of MQ. It may happen that inversion
reports failure. To overcome such circumstances, (randomly) change the first v1
vinegar-variable values and repeat all the steps.

Signature. Let h ∈ Fm be the hash values of the arbitrary length mes-
sage. The signer uses her/his knowledge of individual maps S,F , and T to
sign the message. Recursively (s)he computes w = S−1(h), x = F−1(w) and
y = T −1(x). Since S and T are invertible affine maps, so S−1 and T −1 will
exist (and are computable by GE), and F−1 will follow the inversion operation
described above. Finally, y is the signature of the document h.

Verification. Verifier matches the hash value of h with h′ = P(y′). If h′ = h
holds, then (s)he reports signature is accepted, otherwise reject.

This construction can be visualized using the polar form of the public polyno-
mial P(y) = S ◦F ◦ T (y). For that purpose, the following discussion introduces
the polar form and later describes the structure of the Rainbow using the polar
form.

Polar Form Description. Beullens first explained Rainbow using the polar
form [10]. The homogeneous part of any multivariate quadratic polynomial can
be expressed as a matrix. Suppose p(x) is a multivariate quadratic polynomial,
then dp(x,y) is the differential polar form of p(x) and it is defined as

dp(x,y) := p(x+ y)− p(x)− p(y) + p(0) .

Hence, polar form DP of any multivariate quadratic map P is defined as

DP(x,y) := (dp1(x,y), dp2(x,y), · · · , dpm(x,y))

= (p1(x+ y)− p1(x)− p1(y) + p1(0), · · · ,
pm(x+ y)− pm(x)− pm(y) + pm(0))

=: P(x+ y)− P(x)− P(y) + P(0) .

Ingredients. To illustrate the polar form explanation of the l layer Rainbow,
we need,

– Two sequences of nested subspaces:

Ol ⊂ Ol−1 ⊂ · · · ⊂ O1 ⊂ O0 = Fn
q called input subspaces and

Ql ⊂ Ql−1 ⊂ · · · ⊂ Q1 ⊂ Q0 = Fm
q called output subspaces.

– A multivariate quadratic polynomial map P which maps each Oi to Qi and
its polar form satisfies the following condition (see Diagram 1)

for all x ∈ Fn
q and all y ∈ Oi , DP(x,y) ∈ Qi−1 .

– The secret information comprises these two sequences of nested subspaces;
while the hardness is to compute x from a given public quadratic map P and
message/hash y, such that y = P(x).
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...

...

Fig. 1. l layer Rainbow

Inversion. This algorithm uses the secret information to compute x = P−1(y).
Initially, the unknown x can be visualised as v+o1+· · ·+ol, where each oi ∈ Oi.
The first v is chosen randomly from Fn

q ; then using P and output subspace Qi,
we compute oi from ith-layer. Let us introduce the quotient space Oi := Oi/Oi+1

which will be useful in the later discussions.
At first layer: Let o1 ∈ O1 be the first unknown that we want to find by

solving the following equation mod Q1:

P(v + o1) +Q1 = y +Q1

=⇒ P(v) + P(o1) +DP(v,o1) +Q1 = y +Q1 .

Since v is chosen randomly, so P(v) is constant and DP(v,o1) is linear in o1.
By the construction (see Figure 1), P(o1) ∈ Q1. Hence, the above equation is a
linear system over the quotient vector space Fn

q /Q1. This gives dim(Fm
q /Q1) =

m−dim(Q1) many linear constraints. While the number of unknowns (to specify
o1 ∈ O1) is dim(O1) = dimO1 − dimO2 = m − dimQ1. Hence, there exists a
unique solution o1 with probability (1− 1/q), which is quite high.

At second layer: Right now we know v+o1. Similarly, we solve for o2 ∈ O2

using the following relation mod Q2:

P(v + o1 + o2) +Q2 = y +Q2 .

At last layer: From Figure 1, Ql = {0}. Suppose ol ∈ Ol, now use the
relation,

P(v + o1 + · · ·+ ol) = y

=⇒ P(v + o1 + · · ·+ ol−1) + P(ol) + DP(v + o1 + · · ·+ ol−1, ol) = y

In the LHS, the first term is constant because all oi’s are known till the l − 1
layer. By definition, P(ol) = 0. Thus, the above equation forms a linear system
that has dim(Ol) unknowns and dim(Ol) constraints. Hence, a unique solution
exists for ol with probability (1 − 1/q). There may be a failure, in which case
randomly change v and repeat the entire algorithm.

This viewpoint of inversion algorithm, helped Beullens to explain the simple
attack. He exploited the properties of input/output subspaces and the public
polynomial maps.
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2.3 Beullens Simple Attack

Since the NIST security level of Rainbow has only two layers, so his cryptanalysis
considers two layers of Rainbow. Beullens attack consists of four steps:

Layer two Rainbow

Fig. 2. Polar form description of Rainbow

1. Find a vector o2 ∈ O2: At first, we fix s ∈ Fn
q to get the linear map

t 7→ DP(s, t). From the property of polar form for fixed s ∈ Fn
q and any

o2 ∈ O2 =⇒ DP(s,o2) ∈ Q1. We call this linear map DPs; it sends O2 to
Q1. Also, dimQ1 = dimO2 = o2. Hence, the kernel of the linear map DPs

non-trivially intersects O2 with a probability around 1/q. So, the idea is to
find a solution to the following system:

DPs(o2) = 0

P(o2) = 0 .

Here attacker gets a system of m homogeneous linear equations (from the
first equation) and m homogeneous quadratic equations (from the second
equation) with n unknowns of o2. Now m homogeneous linear equations
reduce the number of unknowns. Hence, the task is to solve a system of m
homogeneous quadratic equations with n − m unknowns. If no solution is
found, then randomly change s and re-execute these steps.

2. Recover Q1: Randomly choose a basis {si}i of Fn
q and compute DP(si,o2),

for 1 ≤ i ≤ n. Then, with overwhelming probability,

Span{DP(s1,o2),DP(s2,o2), · · · ,DP(sn,o2)} = Q1 holds ,

because, each DP(si,o2) ∈ Q1.

3. Recover O2: Once Q1 is recovered, consider the linear system

DP(s1, t) = 0 mod Q1

DP(s2, t) = 0 mod Q1

...
DP(sn, t) = 0 mod Q1 .

Recall that for o2 ∈ O2 we have DP(sn,o2) ∈ Q1. Therefore, the kernel
equals O2 with high probability.
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4. Recover O1: Once Q1 and O2 is found then the upper layer is erased. Thus,
the problem reduces to a small parameter UOV instance P ′ : Fn−o2

q −→
Fm−o2
q . Consequently, the Kipnis-Shamir attack [30] can be used to retrieve

O1.

Attack Complexity: Main computation is to solve (m−1) random homoge-
neous quadratic equation in (n−m− 1) variables (for even characteristic field).
This complexity dominates the computation of recovering O1. Beullens used
block Wiedemann XL algorithm [17,18] to solve the quadratic system. There-
fore, the total number of field multiplications required for this attack is

3 · q ·
(
n−m− 2

d

)2(
n−m

2

)
,

where, d is the smallest positive integer for which the coefficient of td in the
series (1− t2)m−1/(1− t)n−m−1 is negative.

2.4 Rectangular Min-rank Attack

Beullens first designed the rectangular min-rank attack [10]. Let M1,M2, · · · ,Mn

be n×m-rectangular matrices over Fq and each Mi is defined as

Mi =


DP(s1, si)
DP(s2, si)

...
DP(sn, si)


where (si)

n
i=1 forms a basis of Fn

q .
Let o2 ∈ Fn

q , then the bi-linearity of DP implies

M :=

n∑
i=1

o2iMi :=


DP(s1,o2)
DP(s2,o2)

...
DP(sn,o2)


Therefore, M has rank at most o2 when o2 ∈ O2; which gives us a min-rank
instance to find o2i’s in Fq.

Beullens combined the rectangular min-rank attack with the simple attack
[11]. He employed the linear map DPx for fixed x. Earlier we have seen that
DPx(o2) = 0 is a useful linear constraint to find o2.

This system of linear equations helps to reduce the number of matrices
by m in the rectangular min-rank instance. Thus, the basis of Ker(DPx) is
b1, · · · ,bn−m. Therefore, the new min-rank instance has n − m matrices M̃i,
where

M̃i :=

n∑
j=1

bijMj :=


DP(s1,bi)
DP(s2,bi)

...
DP(sn,bi)

 , for i = 1 to n−m.
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If y is a solution of the new min-rank problem having n − m matrices then
o2 =

∑n−m
i=1 yibi is a solution of the old min-rank problem. Hence, the attack

needs to repeat approximately q times, until it finds o2 ∈ ker (DPx)∩O2 ̸= {0}.

Attack Complexity: Beullens used Bardet et. al [8] algorithm for solving
a min-rank instance with n−m matrices of size (n− 1)×m. Note that, at this
point, the attacker hopes that he successfully guessed a vector in O2. Now the
number of field multiplications required for this attack is

3 · q · (n−m− 1)(o2 + 1)

(
n

r

)2

·
(
n−m+ b− 3

b

)3

where b is the operating degree for the algorithm [8].

2.5 IPRainbow

Like Rainbow, IPRainbow is a multi-layer construction based on the ground
layer UOV. The signing and verification phase is the same as Rainbow, the only
difference is in the central polynomial. Central polynomials of the second layer
are perturbed by s-many variables, which decreases the probability of guessing
a variable in O2 by 1/qs. The first layer has OV central polynomial and any
central polynomial in the second layer looks like:

fIPR(x) =

v2∑
i=1

v2∑
i=1

αijxixj+

v2∑
i=1

n∑
j=v2+1

βijxixj+

v2+s∑
v2+1

v2+s∑
j=v2+1

ιijxixj+

n∑
i=1

γixi+δ

where αij , βij , ιij , γi, δ ∈ Fq.
In particular, the second layer has s × s-many oil×oil monomials. So the

next question is how to do the inverse. It is almost the same as Rainbow, but
slower. After first layer computation, x1, x2, · · · , xv2 ’s are known and n − v2
variables are unknowns. Earlier, we have a linear system in oil variables. However,
due to the perturbation, a “small” quadratic system of equations is present in
v2+1, · · · , v2+s variables. So, we need to apply standard Gröbner basis technique
to recover those values. Hence inversion adds an extra 22

s

multiplier in the
complexity. They showed that for sufficiently small s, Beullens simple attack
succeeds with probability 1/qs+1. So, IPRainbow is quite expensive due to the
presence of Gröbner basis technique in the inversion.

3 TriRainbow (Triangular Rainbow)

In this section, we present a new layer-based signature scheme that we call
TriRainbow, or Triangular Rainbow; as it combines the benefits of both Rainbow
and the Triangular signature schemes.

We are going to propose two versions of TriRainbow; where the first version
has OV followed by a triangular polynomial and the second version has a trian-
gular polynomial followed by an OV polynomial. Let us first introduce the new
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central polynomial map, and then we will illustrate its inversion, the signature
and the verification procedures.

Central map. First, we define the central polynomial map F : Fn
q −→ Fm

q .
We introduce a new set of variables called triangular variables. Similarly, define a
triangular set which contains triangular variables. For these triangular variables,
corresponding central polynomials are in a triangular fashion. For version one we
first fix vinegar variables and then solve for oil variables. In the next layer, add
some new triangular variables and treat known variables as vinegar variables.

For the second version, we swap oil variables with triangular variables. This
means that in the first layer, fix vinegar variables and solve for triangular vari-
ables. In the next layer, all known variables are vinegar variables and newly
added variables are oil variables.

3.1 Version One

For version one, every even layer has newly added variables as triangular vari-
ables; while for odd layers, newly added variables are oil variables. Therefore,
central polynomials for even layers are triangular polynomials; while that for
odd layers are OV polynomials.

– Layer one: [1, 2, · · · , v1]︸ ︷︷ ︸
vinegar

{v1 + 1, v1 + 2, · · · , v2}︸ ︷︷ ︸
oil

– Layer two: [1, 2, · · · , v1, · · · , v2]︸ ︷︷ ︸
vinegar

{v2 + 1, v2 + 2, · · · , v3}︸ ︷︷ ︸
triangular

– Layer three: [1, 2, · · · , v1, · · · , v2, · · · , v3]︸ ︷︷ ︸
vinegar

{v3 + 1, v3 + 2, · · · , v4}︸ ︷︷ ︸
oil

– Layer r (assuming odd): [1, 2, · · · , v1, · · · , v2, · · · , vr]︸ ︷︷ ︸
vinegar

{vr + 1, , · · · , vr+1}︸ ︷︷ ︸
oil

– Layer r (assuming even): [1, 2, · · · , v1, · · · , v2, · · · , vr]︸ ︷︷ ︸
vinegar

{vr + 1, · · · , vr+1}︸ ︷︷ ︸
triangular

For l-layer TriRainbow, Vr is a nested sequence of subsets (of n variables),

V1 ⊂ V2 ⊂ V3 · · · ⊂ Vl+1 = {1, 2, · · · , v1, · · · , v2, · · · , v3, · · · , n} .

Now define the vinegar set Vr := {1, 2, · · · , vr}, oil set Or := {v2r−1 +1, v2r−1 +
2, · · · , v2r}, and triangular set Tr := {v2r + 1, v2r + 2, · · · , v2r+1}. Also, define
m-central polynomials f (v1+1), f (v1+2), · · · , f (n) ∈ Fq[x1, · · · , xn].

◦ Odd layer r:

f
(k)
odd(x1, · · · , xn) =

∑
i,j∈Vr;
i≤j

αijxixj +
∑
i∈Vr;

j∈O r+1
2

βijxixj +
∑

i∈Vr∪O r+1
2

γixi + δ

where, for each k ∈ O r+1
2

, pick αij , βij , γi, δ ∈U Fq.
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◦ Even layer r:

f (k)
even(x1, · · · , xn) =

∑
i∈[k−1]

α′
ixixk +

∑
i,j∈[k−1];

i≤j

β′
ijxixj +

∑
i∈[k−1]

γ′
ixi + δ

′

where for each k ∈ Tr/2, pick α′
i, β

′
ij , γ′

i, δ′ ∈U Fq.

3.2 Version Two

Suppose 1, · · · , v1 are vinegar variables and v1 + 1, · · · , v2 are triangular vari-
ables in the first layer. Now randomly fix vinegar values. Then add one by one
triangular variable to form v2 − v1-many central polynomials. This means any
triangular polynomial in the first layer looks like:

f
(k)
1 (x1, · · · , xn) = xk · λk(x1, x2, · · · , xk−1) + ιk(x1, x2, · · · , xk−1)

where λk is a linear and ιk is a quadratic, and both are randomly chosen from
Fq[x1, x2, · · · , xk−1] , where k ∈ {v1 + 1, · · · , v2}.

Now we generalize the definition for any layer r.

– Even layer r: [1, · · · , v1, · · · , v2, · · · , vr]︸ ︷︷ ︸
vinegar

{vr + 1, , · · · , vr+1}︸ ︷︷ ︸
oil

.

– Odd layer r: [1, · · · , v1, · · · , v2, · · · , vr]︸ ︷︷ ︸
vinegar

{vr + 1, · · · , vr+1}︸ ︷︷ ︸
triangular

.

This means that now the triangular set Tr := {v2r−1 + 1, v2r−1 + 2, · · · , v2r},
and oil set Or := {v2r + 1, v2r + 2, · · · , v2r+1}. The central map F looks like:

◦ Odd layer r:

f
(k)
odd(x1, · · · , xn) =

∑
i∈[k−1]

αixixk +
∑

i,j∈[k−1];
i≤j

βijxixj +
∑

i∈[k−1]

γixi + δ

where for each k ∈ T(r+1)/2, pick αi, βij , γi, δ ∈U Fq .
◦ Even layer r:

f (k)
even(x1, · · · , xn) =

∑
i,j∈Vr;
i≤j

αijxixj +
∑
i∈Vr;
j∈O r

2

βijxixj +
∑

i∈Vr∪O r
2

γixi + δ

where for each k ∈ O r
2
, pick α′

ij , β′
ij , γ′

i, δ′ ∈U Fq .

Inversion. Inversion of the TriRainbow central map is very efficient. Two-
layer TriRainbow has one UOV layer and one triangular layer. So far we know
how to inverse UOV central polynomial map [29,20], and we adopt the same
technique for the UOV layer. Inversion in the triangular layer is much simpler.
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When one puts the vinegar values in the triangular polynomial then it reduces
to a linear equation in xk, that is

xk · h(x1, · · · , xk−1)︸ ︷︷ ︸
constant

= yk − g(x1, · · · , xk−1)︸ ︷︷ ︸
constant

where h and g are multivariate linear and quadratic polynomials respectively.
Do this process repeatedly until we recover all xi’s. The signature generation

and verification processes are the same as Rainbow. Like Rainbow, TriRainbow
needs two affine maps S : Fm

q −→ Fm
q and T : Fn

q −→ Fn
q . The signature

process uses knowledge of S,F and T as secret information, and verification
uses knowledge of P as public information.

TriRainbow can be explained using the polar form description. Using this
description we will show that Beullens’ attack can be adapted to TriRainbow
albeit with a very low success probability. This allows the user to restore the
SL1 parameter set. We will also analyse it via the known attacks related to UOV
and Rainbow.

3.3 Polar Form Description

Both the variants of TriRainbow can be thought of as multi-layer Rainbow and
each triangular polynomial is a UOV polynomial having a single oil variable.
Hence it can be observed using the polar form description proposed by Beullens
[10]. Since polar form description is the most friendly way for cryptanalysis, so
we first present the polar form description of TriRainbow and then using this
description we analyze the proposed signature scheme.

Version-One. TriRainbow version one has OV polynomials in the first layer
and the second layer has triangular polynomials. First, we define the sequences
of input and output subspaces. To avoid confusion, we denote Oti for input
subspaces corresponding to each triangular layer, and Qti for output subspaces
corresponding to each triangular layer.

Secret input subspaces: Fn
q ⊃ O1 ⊃ Ot1 ⊃ · · · ⊃ Otl︸ ︷︷ ︸

O2

= {∗} .

Secret output subspaces: Fm
q ⊃ Q1 ⊃ Qt1 ⊃ · · · ⊃ Qtl︸ ︷︷ ︸

Q2

= {0} .

Note that the dimension of O1 is m. The dimension of the subspace Ot1 is
m−o1 = l = o2, while the dimension of each next subspace (in order) is one less
than that of the previous subspace in the sequence, which means: dim(Ot2) =
m − o1 − 1, dim(Ot3) = dim(Ot2) − 1, etc. If the depth of the triangular layer
is l, then dim(Otl) = 1 = dim(Qtl−1

). Here, the depth denotes the number of
triangular variables in the layer.

Version-Two. TriRainbow version two has vinegar variables and triangular
variables in the first layer and the second layer has oil variables. So, the secret

13



...

...

Fig. 3. Triangular Rainbow: Vinegar → Oil → Triangular

key is as follows:

Secret input subspaces: Fn
q ⊃ Ot1 ⊃ · · · ⊃ Otl︸ ︷︷ ︸

O1

⊃ O2 .

Secret output subspaces: Fm
q ⊃ Qt1 ⊃ · · · ⊃ Qtl︸ ︷︷ ︸

Q1

⊃ Q2 = {0} .

Thus, dim(Ot1) = m, dim(Ot2) = dim(Ot1)− 1, etc. Like above, if the depth
of the triangular layer is l, then dim(O2) = o2 = # oil variables in the second
layer = m− l.

...

...

Fig. 4. Triangular Rainbow: Vinegar → Triangular → Oil

4 Cryptanalysis

At first, we analyze the simple attack, rectangular min-rank and combined at-
tacks against TriRainbow. The intersection attack is an upgraded version of the
Kipnis-Shamir attack. We apply it on newly proposed schemes. High-rank at-
tack is important for schemes having triangular structures. Next, we discuss the
complexity of the direct attack against proposed schemes. In the end, we apply
the same trick to prove that both the versions of TriRainbow are EUF-CMA
secure.
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4.1 Simple Attack on TriRainbow

Now for cryptanalysis purposes, we first adopt Beullens simple attack. From
Beullens attack, we have observed the following things.

– Attack starts with finding a vector o2 from O2, and the probability of finding
a vector o2 in O2 is approximately 1/q.

– When o2 is found then learn Q1, and next learn O2.
– Now, when the upper layer is removed, then it is a smaller parameter UOV.

Thus, for our two-layer TriRainbow, the probability of recovering all nested
subspaces reduces multiplicatively to 1/ql. In our case, the attacker does not
have the benefit of a small parameter UOV layer because of the depth l of the
triangular layer. Similarly, the other attacks related to multivariate cryptography
(OV based) also try to find a vector in O2. We will present a brief discussion
about the simple attack on TriRainbow (both versions).

Version-One. As we know, version one TriRainbow has ground layer UOV
and the second layer is triangular. Therefore, for depth-l triangular layer, the
dimension of the smallest input subspace is one, that is dim(Otl) = 1 and
dim(Qtl−1

) = 1.
We can apply Beullens strategy to find a vector otl in Otl with probability

1/q, and then recover Qtl−1
using the following relation

⟨DP(otl , s1),DP(otl , s2), · · · ,DP(otl , sn)⟩ ⊆ Qtl−1
,

where (si)
n
i=1 forms a basis of Fn

q . Since dim(Otl) = 1, so Otl is recovered. Thus,
the upper layer is removed. Now doing a similar technique, the second upper layer
can be removed with probability 1/q, and thus the total probability is around
1/q2. Note that, this means that a partial key (for the upper layer) recovery is
possible; to mitigate this issue we may add a few (based on the security level)
dummy layers on the top.

As per NIST guidelines [16], SL1, SL3, and SL5 mean security levels are
equivalent to the security level of AES-128, AES-192, and AES-256 respectively.
If we adopt the Rainbow SL1 parameter set, (q, n,m, o2) = (16, 100, 64, 32),
then the triangular layer’s depth is 32. To avoid partial key recovery, we add two
dummy layers on the top. This would modify the SL1 parameter set for TriRain-
bow to (q, n,m, o2) = (16, 102, 66, 34). Here o2 is the depth of the triangular
layer. Therefore, the probability of retrieving the entire key through a simple
attack is approximately 1/qo2 (which is very low).

If we adopt the Rainbow SL3 parameter set, (q, n,m, o2) = (256, 148, 80, 48),
then 48 triangular layers are there. Like above, we can again add two more
dummy triangular layers to prevent partial key recovery. Therefore, SL3 param-
eter set for TriRainbow becomes (q, n,m, o2) = (256, 150, 82, 50). Similarly, the
SL5 parameter set is (256, 197, 101, 65).

Version-Two. TriRainbow version two has vinegar and triangular variables
in the first layer and oil variables in the second layer. Let the outer layer, O2

has dimension o2; therefore dim(Qtl) = o2. Now the goal is to find a vector o2 in
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O2, the simple attack can find such a vector with probability around 1/q. Once
o2 is found, then we use the following relation to recover Qtl .

⟨DP(o2, s1),DP(o2, s2), · · · ,DP(o2, sn)⟩ ⊆ Qtl .

Once Qtl is recovered then again guess for otl ∈ Otl with probability 1/q; there-
fore total probability to remove the outer layer and second outer layer is 1/q2.
Like version one TriRainbow, we may need to add a few dummy triangular layers
(depending on the security level) to avoid partial key recovery through the sim-
ple attack. Note that, we cannot simply add one UOV layer because it increases
complexity and key size. Hence using the simple attack, the total probability to
retrieve all subspaces is around 1/ql. Parameter sets are the same as in version
one.

4.2 Rectangular Min-rank Attack on TriRainbow

Any combination, of the simple attack with the rectangular min-rank attack,
needs to guess a vector with probability 1/q. Due to the depth-l of the triangular
layer, the probability of guessing a vector will decrease exponentially with the
depth.

4.3 Intersection Attack

Intersection attack is proposed by Beullens [10]. Basically, Beullens enhanced the
Rainbow band separation attack [21] with the help of the analysis proposed by
[39]. Like the simple attack, the attacker tried to find a vector in O2 efficiently.
Due to the triangular structure in our design, the attack complexity will increase
exponentially with the depth of the triangular layer. Also, the attacker may be
able to remove the topmost layer, but the dummy layer still protects the private
key.

4.4 High-rank Attack

High-rank attack is a powerful attack against triangular schemes like STS, TPM
[45,35,51]. The complexity of the high-rank attack reported in [50] is O(mn3Lqr),
where r is the depth of the layer, L is the number of total layers, m is the number
of quadratic equations and n is the number of variables. For our parameter set
one (based on SL1), q = 24, L = 35, r = 32, n = 102, and m = 66. Thus, the
complexity for the high-rank attack is approximately 2159 field multiplications.

4.5 Direct Attack

So far we have seen that for multivariate signature schemes n > m holds, where
n is the number of unknowns and m is the number of homogeneous quadratic
equations. To solve this via the hybrid approach of [9], it needs to convert to
a determined system with m quadratic equations and m unknowns. So n − m
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variables should be fixed. We can estimate the complexity of the direct attack,
using [9], in terms of field multiplications as:

min
0≤k≤m

qk · 3
(
m− k + d

d

)2(
m− k

2

)
where k is the number of variables to be fixed during the algorithm and d is the
smallest integer for which the coefficient of td in the series (1− t2)m/(1− t)m−k

is non-positive. Quantum computers can use Grover’s search algorithm [26] to
reduce the search space, that is the number of field multiplications is reduced by
a factor of qk/2. In the following table, we have computed the attack complexity
in terms of the number of field multiplications.

Algorithm SL1 SL3 SL5
Quantum 126.5 203.5 244
Classical 166.5 235.5 286

Table 1. Complexity of direct attack in log2(#steps); see Sec.4.1 for the parameters

4.6 EUF-CMA Security

Like Rainbow, our TriRainbow only offers universal unforgeability [20]. Since
TriRainbow can be potentially visualized as a multi-layer Rainbow, using UOV
layers, so a modification like [44] allows us to make both the versions of TriRain-
bow EUF-CMA secure. [44] has detailed the proof for UOV. The same technique
can be adapted to state that EUF-CMA security of the modified TriRainbow
is the same as the security of the standard Rainbow.

5 Key Size and NIST Parameter Selection

Let us compute the key size of our two-layer TriRainbow, which means that it
has one Triangular and one UOV layer. First, we calculate the private key size
and then the public key size.

– Size of the central map F for a UOV layer is around o ×
(
v(v + 1)

2
+ ov

)
field elements (namely the α, β, γ, δ’s).

– Size of the central map F for a triangular layer having depth l is around

l∑
i=1

(
vi(vi + 1)

2
+ vi

)
field elements.

Note that, here v and o are the numbers of vinegar and oil variables in the UOV
layer respectively. For the triangular layer, vi’s are vinegar variables at i-th depth
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and vi+1 = vi +1. The size of the two affine transformations is as follows: for S,
we need m(m+ 1) and for T , we need n(n+ 1) field elements.

Now we compute the size of the public key of standard TriRainbow. Recall
that, the public polynomial map is defined as P : Fn

q → Fm
q . Each n-variate

quadratic polynomial needs (n+1)(n+2)
2 field elements. Hence, the size of the

public key is m (n+1)(n+2)
2 . Just like the reductions used in Petzoldt et al. [41]

and cyclicRainbow [40], we can also enhance the performance and significantly
reduce the size of the public key in TriRainbow.

In Table 2, for various parameter sets, we calculate the size of the key and
the signature for both versions of TriRainbow. Our signature and the public key
sizes are the same for both the versions, while the private key sizes differ. So we
maintain two columns for this purpose. However, this parameter set is tentative
as it needs a more extensive cryptanalysis; which we leave as an open question.
Here, we follow the NIST recommendation for parameter selection [16].

Security
level

Parameters
(q, n,m, o2)

Sign size
(bit)

Private
key size
(KB)
Version: I

Private
key size
(KB)
Version: II

Public
key size

Security
level

I (16, 102, 66, 34) 536 92.753 100.689 176.748 145
III (256, 150, 82, 50) 1328 546.754 612.226 941 207
V (256, 197, 101, 65) 1704 1193.52 1361.918 1989.801 272

Table 2. Preferable parameter set TriRainbow for both versions

5.1 Comparison within similar security levels

In this section, we compare our layer-based construction, combining UOV and
triangular, with other layer-based constructions based on UOV, like Rainbow
[20] and IPRainbow [14] (see Table 3). From all such schemes, Rainbow was the
NIST third-round finalist.

From the efficiency point of view, we can say that TriRainbow performs
better than IPRainbow, because the latter needs Gröbner basis algorithm in
the signature phase. Also, we know that Rainbow uses Gaussian elimination
algorithms twice during the inversion of the central map, however, both versions
of TriRainbow need only one Gaussian elimination. Hence, TriRainbow performs
at least as well as both Rainbow and IPRainbow signature schemes.

6 Conclusion

So far, we have seen that the new proposal called TriRainbow, or triangular
Rainbow, is as efficient as Rainbow. Its public key and signature sizes are smaller
and it offers better security than Rainbow. We survey all existing attacks based
on Rainbow and apply them to TriRainbow. We showed that the simple attack
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Signature Algorithm Sign size
(bit)

Private key size
(KB)

Public key size
(KB)

TriRainbow-I
(16, 102, 66, 34) 536 92.753 176.748

TriRainbow-II
(16, 102, 66, 34) 536 100.689 176.748

Rainbow (SL1)
( 256, 148, 80, 48) 1312 611.3 861.4

UOV
(256, 47, 71) 1072 276.9711 335.58

IPRainbow
(257, 32, 32, 38, 7 ) 944 220.320 342.784

Table 3. Comparison table for security level parameter set I

is ineffective against TriRainbow. However, we did not explore whether it offers
the same security level against fault and side-channel attacks. We leave further
cryptanalysis, against TriRainbow, as future work. Meanwhile, it is expected
that TriRainbow can replace Rainbow as a practical signature scheme.
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