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1. Introduction

Polynomial Identity Testing (PIT) is the following problem: given an arithmetic
circuit C computing a polynomial p(x1, x2, · · · , xn) over a field F, determine if
the polynomial is identically zero. Besides being an interesting problem in it-
self, many other well-known problems such as Primality Testing and Bipartite
Matching also reduce to PIT. Moreover fundamental structural results in com-
plexity theory such as IP=PSPACE and the PCP theorem involve the use of
identity testing.

The first randomized algorithm for identity testing was discovered indepen-
dently by Schwartz (1980) and Zippel (1979) and it involves evaluating the
polynomial at a random point and accepting if and only if the polynomial eval-
uates to zero at that point. This was followed by randomized algorithms that
used fewer random bits (Agrawal & Biswas 2003; Chen & Kao 2000; Lewin &
Vadhan 1998) and a derandomization of the polynomial involved in primality
testing by Agrawal, Kayal & Saxena (2004) but a complete derandomization
remains distant.

Recently, a surprising development was by Impagliazzo & Kabanets (2004)
who showed that efficient deterministic algorithms for identity testing would
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also imply certain arithmetic circuit lower bounds. More specifically, they
showed that if identity testing has an efficient deterministic polynomial time al-
gorithm then (almost) NEXP does not have polynomial size arithmetic circuits.
This result gave further impetus to research on this problem and subsequently
algorithms were developed for some restricted models of arithmetic circuits.

Raz & Shpilka (2005) gave a deterministic polynomial time algorithm for
non-commutative formulas. Klivans & Spielman (2001) noted that even for
depth 3 circuits where the fanin of the topmost gate was bounded, deterministic
identity testing was an open problem. Subsequently, Dvir & Shpilka (2005) gave
a deterministic quasipolynomial time algorithm for depth 3 arithmetic circuits
(wlog ΣΠΣ circuits) where the fanin of the topmost gate is bounded (note that
if the topmost gate is a Π gate than the polynomial is zero if and only if one
of the factors is zero and the problem is then easily solved).

Example 1.1. The circuit:

C(x1, x2, y)
def
= (y) · (y + x1 + x2) + (x1) · (x2)− (y + x1) · (y + x2)

is a ΣΠΣ-circuit computing the identically zero polynomial over the field Q of
rational numbers. ♦

In this paper, we resolve this problem and give a deterministic polynomial
time algorithm for the identity testing of such ΣΠΣ circuits. Our main theorem
is:

Theorem 1.2. There exists a deterministic algorithm that on input a circuit
C of depth 3 and degree d over a field F, determines if the polynomial computed
by the circuit is identically zero in at most poly(n · dk) many field operations,
where k is the fanin of the topmost addition gate and n is the number of
inputs. In particular if k is bounded, then we get a deterministic polynomial
time algorithm for identity testing of depth 3 circuits.

Remark 1.3. Our algorithm works for all fields F. We analyze the time com-
plexity of our algorithm assuming that the elementary field operations (ad-
dition, multiplication, inverse computation and zero testing of field elements)
take constant time.

Dvir & Shpilka (2005) gave a structural result for ΣΠΣ circuits C with
bounded top fanin that compute zero. Let rank(C) be the maximum number
of linearly independent linear functions that appear in C. Then they showed
that such simple and minimal (as defined in the next section) C can have rank
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at most poly(log(d)). They also asked whether the upper bound of rank can
be improved to O(k). We answer this in the negative by giving identities of
the following form:

Theorem 1.4. 1) Let F be a field of characteristic 2. Then for any number
m ≥ 1, there is a minimal and simple ΣΠΣ zero-circuit C, over F, having
parameters: (k, d, rank(C)) = (3, 2m−1, m + 1).

2) Let F be a field of odd characteristic p. Then for any number m ≥ 1, there
is a minimal and simple ΣΠΣ zero-circuit C, over F, having parameters:
(k, d, rank(C)) = (p, pm−1, m + 1).

The rest of this paper is organized as follows. Section 2 gives an overview of
ΣΠΣ circuits. Section 3 proves a new generalization of the well-known Chinese
Remaindering Theorem which is crucial to our algorithm. Finally, Section 4
describes the identity test for ΣΠΣ circuits of bounded top fanin.

2. ΣΠΣ Arithmetic Circuits

As noted by Impagliazzo and Kabanets, the Polynomial Identity Testing prob-
lem is closely related to proving arithmetic circuit lower bounds. Proving lower
bounds for general arithmetic circuits is one of the central problems of com-
plexity theory. Due to the difficulty of the problem research has focused on
restricted models like monotone circuits and bounded depth circuits. For mono-
tone arithmetic circuits, exponential lower bounds on the size (Jerrum & Snir
1982; Shamir & Snir 1977) and linear lower bounds on the depth (Shamir &
Snir 1980; Tiwari & Tompa 1994) have been shown. However, only weak lower
bounds are known for bounded depth arithmetic circuits (Pudlák 1994; Raz
& Shpilka 2001). Thus, a more restricted model was considered – the model
of depth 3 arithmetic circuits (also called ΣΠΣ circuits if we assume alternate
addition and multipication gates with addition gate at the top). A ΣΠΣ circuit
computes a polynomial of the form:

(2.1) C(x) =
k∑

i=1

di∏
j=1

Li,j(x)

where Li,j’s are linear functions. Exponential lower bounds on the size of ΣΠΣ
arithmetic circuits have been shown over finite fields (Grigoriev & Karpinski
1998) and their function fields (Grigoriev & Razborov 2000). For ΣΠΣ circuits
over fields of characteristic zero only the quadratic lower bound of Shpilka &
Wigderson (2001) is known.
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No efficient algorithm for identity testing of ΣΠΣ circuits is known. Here,
we are interested in studying the identity testing problem for a restricted case
of ΣΠΣ circuits – when the top fanin is bounded. This case was posed as a
challenge by Klivans & Spielman (2001) and a quasipolynomial time algorithm
was given by Dvir & Shpilka (2005).

2.1. Previous Approaches. Let C be a ΣΠΣ circuit, as in Equation (2.1),
computing the zero polynomial. We will call C minimal if no proper subset of
the summands of C sums to zero. We say that C is simple if there is no linear
function that appears in all the multiplication gates (up to a multiplicative
constant). Rank of C is the maximum number of linearly independent linear
functions appearing in C.

The motivation behind the above definition is that any circuit C(x) comput-
ing the zero polynomial and having addition gate at the top can be (uniquely)
decomposed into a sum of subcircuits p(x) · Ci(x) where each Ci(x) is a mini-
mal and simple circuit computing the zero polynomial. The quasipolynomial
time algorithm of Dvir & Shpilka (2005) is based on the result: the rank of a
minimal and simple ΣΠΣ circuit with bounded top fanin and computing zero
is “small”. Formally, the result says:

Theorem 2.2. (Thm 1.4 of Dvir & Shpilka 2005). Let k ≥ 3, d ≥ 2, and let
C ≡ 0 be a simple and minimal ΣΠΣ circuit of degree d with k multiplication
gates and n inputs, then rank(C) ≤ 2O(k2) log(d)k−2.

Thus, given a circuit C and k a constant either the rank(C) = O(log(d)k−2),
in which case we find out in (drank(C)) = 2O(log(d)k−1) many steps whether C is
zero. Or the rank(C) is larger and then we need to check whether a subset of
the summands of C add up to zero. Even this can be done as C can decompose
into sub-circuits in at most 2k many ways and each such sub-circuit can be
treated recursively. Effectively, this gives us a 2O(log(d)k−1) time identity test.

This raises hope of finding a polynomial time algorithm if we can improve
the upper bound on the rank(C) to a constant (i.e. independent of d). In fact,
Dvir & Shpilka (2005) conjectured that rank(C) = O(k). Here, we give an
identity with k = 3 that contradicts this conjecture.
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Lemma 2.3. Define

C(x1, . . . , xm, y) :=
∏

b1,...,bm∈F2
b1+···+bm≡0

(y + b1x1 + · · ·+ bmxm)

+
∏

b1,...,bm∈F2
b1+···+bm≡1

(b1x1 + · · ·+ bmxm)

+
∏

b1,...,bm∈F2
b1+···+bm≡1

(y + b1x1 + · · ·+ bmxm)

Then, over F2, C is a simple and minimal ΣΠΣ zero circuit of degree d = 2m−1

with k = 3 multiplication gates and rank(C) = log(d) + 2.

Proof. For brevity denote the output of the three multiplication gates by
T1, T2, T3 in order.

Let a1, . . . , am ∈ F2 be such that (a1 + · · · + am) = 1. Let us compute C
modulo (a1x1 + · · · + amxm). Since (a1x1 + · · · + amxm) occurs as a factor of
T2 we deduce T2 = 0 (mod a1x1 + · · ·+ amxm). Further,

T1 =
∏

b1,...,bm∈F2
b1+···+bm≡0

(y + b1x1 + · · ·+ bmxm)

≡
∏

b1,...,bm∈F2
b1+···+bm≡0

(y + (a1 + b1)x1 + · · ·+ (am + bm)xm)

(mod a1x1 + · · ·+ amxm)

≡
∏

b1,...,bm∈F2
b1+···+bm≡1

(y + b1x1 + · · ·+ bmxm) (mod a1x1 + · · ·+ amxm)

≡ T3 (mod a1x1 + · · ·+ amxm)

Thus, we deduce: T1+T2+T3 ≡ 0 (mod a1x1+· · ·+amxm) for any a1, . . . , am ∈
F2, (a1 + · · · + am) = 1. Also, notice that T1 = 0 (mod y) (consider the linear
factor of T1 obtained by setting: b1 = · · · = bm = 0) and T2 = T3 (mod y)
implying that T1 + T2 + T3 = 0 (mod y). Thus, we get that:y ·

∏
b1,...,bm∈F2
b1+···+bm≡1

(b1x1 + · · ·+ bmxm)

 divides C(x1, . . . , xm, y)
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But the divisor above has degree higher than that of C implying that C = 0
(see Lemma 3.4).

It is easy to verify that C is a minimal, simple ΣΠΣ circuit of degree 2m−1.
The rank of C is (m + 1) simply because x1, . . . , xm, y occur as linear functions
in the three summands of C. �

The above identity is over a very special field – F2. Are there minimal,
simple ΣΠΣ identities of bounded k but unbounded rank over any field F? We
are not sure about fields of characteristic 0 but over fields of prime characteristic
the following lemma answers in the affirmative.

Lemma 2.4. Let p be an odd prime. Define:

C(x1, . . . , xm, y) :=

p−1∑
i=0

∏
b1,...,bm∈Fp

b1+···+bm≡i

(y + b1x1 + · · ·+ bmxm)

Then, over Fp, C is a simple and minimal ΣΠΣ zero circuit of degree d = pm−1

with k = p multiplication gates and rank(C) = logp(d) + 2.

Proof. Fix an i0 ∈ Fp and let a1, . . . , am ∈ Fp such that (a1 + · · ·+am) = i0.
Now we compute C modulo (y + a1x1 + · · ·+ amxm):

C =

p−1∑
i=0

∏
b1,...,bm∈Fp

b1+···+bm≡i

(y + b1x1 + · · ·+ bmxm)

≡
p−1∑
i=0
i6=i0

∏
b1,...,bm∈Fp

b1+···+bm≡i

(y + b1x1 + · · ·+ bmxm) (mod y + a1x1 + · · ·+ amxm)

≡
p−1∑
i=0
i6=i0

∏
b1,...,bm∈Fp

b1+···+bm≡i

((b1 − a1)x1 + · · ·+ (bm − am)xm)

(mod y + a1x1 + · · ·+ amxm)

≡
p−1∑
i=1

∏
b1,...,bm∈Fp

b1+···+bm≡i

(b1x1 + · · ·+ bmxm) (mod y + a1x1 + · · ·+ amxm)
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≡

p−1
2∑

i=1

 ∏
b1,...,bm∈Fp

b1+···+bm≡i

(b1x1 + · · ·+ bmxm) +

∏
b1,...,bm∈Fp

b1+···+bm≡−i

(b1x1 + · · ·+ bmxm)

 (mod y + a1x1 + · · ·+ amxm)

≡

p−1
2∑

i=1

 ∏
b1,...,bm∈Fp

b1+···+bm≡i

(b1x1 + · · ·+ bmxm) +

(−1)pm−1 ·
∏

b1,...,bm∈Fp

b1+···+bm≡i

(b1x1 + · · ·+ bmxm)


≡ 0 (mod y + a1x1 + · · ·+ amxm)

Thus, we deduce that for any a1, . . . , am ∈ Fp:

C(x1, . . . , xm, y) ≡ 0 (mod y + a1x1 + · · ·+ amxm)

⇒

 ∏
a1,...,am∈Fp

(y + a1x1 + · · ·+ amxm)

 divides C(x1, . . . , xm, y)

But the divisor above has a degree higher than that of C implying that C = 0
(see Lemma 3.4).

By looking at the coefficient of the term of highest degree in y the minimality
of C is obvious. Also, the p summands in C are coprime because b1, . . . , bm sum
upto different values modulo p in different summands.

Thus, C is a minimal, simple, ΣΠΣ zero circuit of degree pm−1. The rank of
C is (m + 1) simply because x1, . . . , xm, y occur as linear functions in the three
summands of C. �

Thus, methods of Dvir & Shpilka (2005) are unlikely to give an efficient
algorithm and we give new techniques in the subsequent sections that solve the
problem.

2.2. Our Approach. We now give the basic idea behind our approach to
this problem after introducing a little bit of notation.
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2.2.1. Terminology - Leading monomial and leading coefficient. Let
F be a field and � be the graded-lexicographic ordering on monomials in
F[x1, . . . , xn]. That is, � ranks monomials by their total degree and breaks
ties by using lexicographic ordering. For f(x) ∈ F[x]:

◦ The leading monomial of f(x), written LM(f(x)), is the monomial which
is ranked highest under� of all monomials which have nonzero coefficients
in f(x). If f is a constant then LM(f(x)) = 1.

◦ For a monomial xα1
1 xα2

2 . . . xαn
n and a polynomial f(x1, . . . , xn) ∈

F[x1, . . . , xn], we will denote the coefficient of the monomial xα1
1 xα2

2 . . . xαn
n

in f(x1, . . . , xn) by Coeff(xα1
1 xα2

2 . . . xαn
n , f(x1, . . . , xn)).

◦ The leading coefficient of a polynomial f(x) is defined to be
Coeff(LM(f(x)), f(x)) and is concisely denoted as LC(f).

Note that the leading monomial operator – LM – satisfies the following
property:

Fact 2.5. For f1(x), f2(x) ∈ F[x],

(i) LM(f1(x) · f2(x)) = LM(f1(x)) ·LM(f2(x)). Thus, it is easy to compute
LM(T ) when T is given as a product of linear functions.

(ii) If LM(f1(x)) � LM(f2(x)) then LM(f1(x)) � LM(f1(x) + f2(x)).

2.2.2. The Idea. The input is a circuit C(x1, . . . , xn) in F[x1, . . . , xn] which
looks like:

C = T1 + T2 + · · ·+ Tk

where, each Ti is a product of linear functions:

Ti = Li,1 · Li,2 · . . . · Li,d

and where, each Li,j looks:

Li,j = ai,j,0 + ai,j,1x1 + ai,j,2x2 + · · ·+ ai,j,nxn

for some ai,j,0, ai,j,1, ai,j,2, · · · , ai,j,n ∈ F. We want to check if C computes the
identically zero polynomial over F.

By rearranging the terms if necessary we can assume without loss of gener-
ality that:

LM(T1) � LM(T2) � . . . � LM(Tk).
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Then by property (ii) of leading monomials we have:

LM(T1) � LM(C).(2.6)

We first verify that T1 divides C by using a recursive algorithm to be described
a short while later. We next check if Coeff(LM(T1), C(x1, . . . , xn)) = 0. We
accept C if and only if it passes both the tests. Clearly, if C(x1, . . . , xn) = 0,
the input will pass both the tests and our algorithm will correctly identify
C(x1, . . . , xn) as the zero polynomial. So assume that C(x1, . . . , xn) 6= 0 but it
passes both the tests. In that case, by Property (i) of LM we then have

LM(C) � LM(T1).(2.7)

Combining equations (2.6) and (2.7), we get:

LM(C) = LM(T1).

But

Coeff(LM(T1), C(x1, . . . , xn)) = 0

implying that

Coeff(LM(C), C(x1, . . . , xn)) = 0

which is a contradiction since C(x1, . . . , xn) was assumed to be non-zero.

Checking that T1 divides C(x1, . . . , xn): We have T1 = L1,1 ·L1,2 ·. . .·L1,d.
We recursively verify that C ≡ 0 (mod L1,j) for all 1 ≤ j ≤ d. If L1,j is not a
constant then note that T1 vanishes modulo L1,j and that F[x1, . . . , xn]/〈L1,j〉 ∼=
F[y1, . . . , yn−1] is isomorphic to a polynomial ring in (n− 1) variables over the
field F. Therefore, verifying C ≡ 0 (mod L1,j) amounts to identity testing of a
ΣΠΣ circuit of top fanin (k − 1) in (n− 1) variables over the field F.

Having verified that C ≡ 0 (mod L1,j) for all 1 ≤ j ≤ d, we can deduce by

the Chinese Remaindering Theorem that L
def
= lcm(L1,1, L1,2, . . . , L1,d) divides

C. Now if the degree of L is as large as that of T1 then we are done.

In general, however there would exist pathological cases in which T1 has
repeated factors and the degree of L is smaller than that of T1. The algorithm
for the general case has the same structure as above, except that we now work
with polynomials over local rings instead of fields. Our main tool will be a
generalization of the Chinese Remainder Theorem (CRT). The next section is
devoted to this generalization of CRT.
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3. Chinese Remaindering

This section develops the algebraic tools that we eventually use to prove the
main result of this paper. The basic algebraic structure that keeps recurring
here is a local ring. The advantage of working with local rings is that polyno-
mials over them inherit some of the nice properties of polynomials over fields
and this is really helpful in computation.

In our algorithm, the polynomials that we get will be over some local ring
R ⊇ F instead of being over F but we can show that the Chinese remainder-
ing property of polynomials in F[z1, . . . , zn] continues to hold in R[z1, . . . , zn].
Specifically, we need that:

Chinese Remaindering: If “coprime” polynomials f(z1, . . . , zn) and
g(z1, . . . , zn) divide p(z1, . . . , zn) then f · g | p over R.

Throughout this paper, all the rings that we will come across will be finite
dimensional algebras over the base field F. Some of the known results related
to local rings over F can be found in the appendix.

3.1. Notation and Terminology.

3.1.1. Terminology - Natural Ring Homomorphism. Let R ⊇ F be a
local ring over a field F with maximal ideal M (i.e., R/M ≡ F). We will
denote by R∗ the set the group of invertible elements (units) of R. Then
every element r ∈ R can be written uniquely as r = α + m where α ∈ F
and m ∈ M is a nilpotent (i.e., for some index i, mi = 0) element of R.
Such an element r is a unit (i.e. r ∈ R∗) if and only if α 6= 0. By the term
natural ring homomorphism from R to F, we will mean the unique non-zero
homomorphism φ : R 7→ F that maps every element in M to zero in F. That
is, φ(r) = α. The map φ then extends in a natural way to a homomorphism
from the polynomial ring R[z1, . . . , zn] to the polynomial ring F[z1, . . . , zn] so
that the polynomial

∑
β aβzβ is mapped to the polynomial

∑
β φ(aβ)zβ, where,

β = (β1, . . . , βn) ∈ Zn and zβ = zβ1

1 · · · zβn
n . We will say that two polynomials

f(z) and g(z) in R[z] are coprime if and only if the corresponding polynomials
φ(f(z)) and φ(g(z)) are coprime.

3.1.2. Notation - Set of Linear Functions over R. Let R be a local ring
over a field F with maximal ideal M. We will denote by LFR/F(x) the set of
all linear functions in n variables x = (x1, x2, . . . , xn) over R with coefficients
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from F. That is,

LFR/F(x1, . . . , xn) =

{
a0 +

i=n∑
i=1

aixi + m | m ∈M, ∀i ai ∈ F , ∃i : ai 6= 0

}

3.2. Preliminaries. For any ring S, we can define the ring of fractions Sfr

of a ring S as the set of elements u
v

where, u, v ∈ S and v is not a zero divisor
of S. Clearly, Sfr is also a ring. We will be considering polynomials over rings
S and Sfr. A polynomial g(z) ∈ S[z] is called monic if its leading coefficient
is a unit of S (S∗ denotes the group of units of S). The following is a well
known lemma that relates polynomial factorization over the ring S to its ring
of fractions Sfr.

Lemma 3.1 (Gauss’ Lemma). Suppose f(z), g(z) ∈ S[z] and h(z) ∈ Sfr[z]
such that: f(z) = g(z)h(z). If g(z) is monic then h(z) ∈ S[z].

Proof. Let the degrees of f , g and h be α, β and γ respectively. Let

f(z) =
α∑

i=0

fiz
i where fi ∈ S ,

g(z) =

β∑
i=0

giz
i where gβ = 1, gi ∈ S and

h(z) =

i=γ∑
i=0

hiz
i where hi ∈ Sfr.

Suppose if possible that h(z) /∈ S[z]. Let k ∈ [1 · · · γ] be the largest integer such
that hk, the coefficient of zk in h(z), does not belong to S. Now the coefficient
of zβ+k in g(z)h(z) is

fβ+k = gβhk +

β∑
j=1

gβ−jhk+j

= hk +

β∑
j=1

gβ−jhk+j

Thus, fβ+k ∈ Sfr \ S. This is a contradiction to the fact that f(z) ∈ S[z].
�
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3.3. Properties of multivariate polynomials over local rings. In this
section we will show that (multivariate) polynomials over local rings have di-
visibility properties analogous to those of polynomials over fields. In showing
this, we will often make use of linear transformation of variables. We start out
with a lemma which shows that after the application of a suitable linear trans-
formation, any polynomial p(x1, x2, · · · , xn) ∈ F[x1, x2, · · · , xn] of total degree
d can be transformed into a monic polynomial p̂ having degree d with respect
to the variable x1.

Lemma 3.2. Let F be a field of size at least 2d and p(x1, x2, · · · , xn) ∈
F[x1, x2, · · · , xn] be any polynomial of total degree d. Then there ex-
ists an invertible linear transformation τ : xi 7→

∑n
j=1 αi,jxj such that

p̂(x1, x2, · · · , xn)
def
= p(τ(x1), τ(x2), · · · , τ(xn)) has a nonzero coefficient of xd

1.

Proof. Let p(x) = q(x)+r(x) where q(x) 6= 0 is a homogeneous polynomial
of degree d and r(x) consists of all the remaining smaller degree terms of p(x).
Then the coefficient of xd

1 in p̂(x) is simply q(α1,1, α2,1, . . . , αn,1).
If F is a finite field then by the Schwartz-Zippel lemma (Schwartz 1980;

Zippel 1979):

Prα1,1,α2,1,...,αn,1∈F [q(α1,1, α2,1, . . . , αn,1) 6= 0] ≥
(

1− d

#F

)
and so in particular there exists α1,1, α2,1, . . . , αn,1 ∈ F such that q(α1,1, α2,1, . . . ,
αn,1) 6= 0. Now these values of αi,1, i ∈ [n] can be easily extended (using linear
algebra) to an invertible linear transformation τ such that p̂(x) is monic in x1.

If F is an infinite field then since q(x) 6= 0 there will exist αi,1 ∈ F, for all
i ∈ [n] such that q(α1,1, α2,1, . . . , αn,1) 6= 0. Again these values of αi,1, i ∈ [n]
can be easily extended to an invertible linear transformation τ such that p̂(x)
is monic in x1.

�

Throughout the rest of this section we will assume that R is a local ring
over a field F and the natural ring homomorphism from R to F is φ. The
natural extension of the map φ to a homomorphism from R[z1, z2, · · · , zn] to
F[z1, z2, · · · , zn] will also be denoted by φ. The unique maximal ideal of R is
M and t is the least integer such that Mt = 0 in R.

Lemma 3.3. Let F be a field of size at least 2d and R be a local ring over F.
Let p(x1, x2, · · · , xn) ∈ R[x1, x2, · · · , xn] be any polynomial such that φ(p) has
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total degree d. Then there exists an invertible linear transformation τ : xi 7→∑n
j=1 αi,jxj such that α’s are in F and the coefficient of xd

1 in

p̂(x1, x2, · · · , xn)
def
= p(τ(x1), τ(x2), · · · , τ(xn)) is a unit.

Proof. We could apply Lemma 3.2 to the polynomial φ(p) over the field F
to get a τ ′ such that φ(p)(τ ′(x1), · · · , τ ′(xn)) has a nonzero coefficient of xd

1.
As a result, the coefficient of xd

1 in p(τ ′(x1), · · · , τ ′(xn)) is a unit of R. �

Now we prove a Chinese Remainder like theorem for the case of local rings
that we will be working with in our identity test.

Lemma 3.4. Let R be a local ring over F and p, f, g ∈ R[z1, z2, · · · zn] be
multivariate polynomials such that φ(f) and φ(g) are coprime.

If p ≡ 0 (mod f)

and p ≡ 0 (mod g)

then p ≡ 0 (mod f · g).

Proof. Let the (total) degrees of φ(f) and φ(g) be df and dg respectively.
We could assume wlog that F is large enough for else we can go to its extension
field. By Lemma 3.3 we can now apply a suitable invertible linear transforma-
tion on the variables z1, . . . , zn, if needed, and can thus assume without loss of

generality that the coefficients of z
df
n in f and that of z

dg
n in g are both units

of R. Consequently, in the product fg the coefficient of z
df+dg
n is also a unit.

Now think of f and g as polynomials in one variable zn with coefficients
coming from the ring of fractions, R(z1, z2, · · · , zn−1), of R[z1, z2, · · · , zn−1].
Now since φ(f) and φ(g) are coprime over F, they are also coprime as univariate
polynomials in zn over the function field F(z1, z2, · · · , zn−1). Consequently,
there exists a, b ∈ F(z1, z2, · · · , zn−1)[zn] such that:

(3.5) aφ(f) + bφ(g) = 1 in F(z1, z2, · · · , zn−1)[zn].

Now we want to apply Hensel Lifting lemma (see Lemma 5.5 in the appendix)
to the above and so let us define an ideal:

I := {r | r ∈ R(z1, . . . , zn−1)[zn] and r is nilpotent}

Thus, we can write Equation 3.5 as:

af + bg = 1 in R(z1, · · · , zn−1)[zn]/I.
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By the repeated application of Hensel Lifting we get that there exists
a∗, b∗, f∗, g∗ in R(z1, . . . , zn−1)[zn] such that (f ∗ − f), (g∗ − g) ∈ I and:

a∗f ∗ + b∗g∗ = 1 in R(z1, z2, · · · , zn−1)[zn]/It

which is the same as saying (∵ It = 0):

a∗f ∗ + b∗g∗ = 1 in R(z1, z2, · · · , zn−1)[zn]

Now since (f ∗ − f), (g∗ − g) ∈ I there exists an m ∈ I such that a∗f +
b∗g = 1 + m in R(z1, z2, · · · , zn−1)[zn]. Since m is a nilpotent, there exists
(1 + m)−1 ∈ R(z1, z2, · · · , zn−1)[zn]. Thus, by defining a′ = a∗(1 + m)−1 and
b′ = b∗(1 + m)−1 we have:

a′f + b′g = 1 in R(z1, z2, · · · , zn−1)[zn]

Now by the hypothesis:

p ≡ 0 (mod f)

⇒ p = fq for some q in R[z1, z2, · · · , zn−1][zn]

also, p ≡ 0 (mod g)

⇒ fq ≡ 0 (mod g)

⇒ a′fq ≡ 0 (mod g) in R(z1, z2, · · · , zn−1)[zn]

⇒ q ≡ 0 (mod g) in R(z1, z2, · · · , zn−1)[zn]

∴ p = fgh for some h in R(z1, z2, · · · , zn−1)[zn]

Since, the leading coefficient of zn in fg is in R∗ and p, fg are in
R[z1, z2, · · · , zn−1][zn], therefore, by Gauss Lemma (see Lemma 3.1) we get
that, in fact, h ∈ R[z1, z2, · · · , zn−1][zn] and so:

p ≡ 0 (mod fg) in R[z1, z2, · · · , zn].

�

4. Description of the Identity Test

4.1. Overview of the Algorithm. We now give an overview of our algo-
rithm. The input is a ΣΠΣ circuit C(x1, . . . , xn) having an addition gate at the
top with fanin k and computing a polynomial of total degree at most d over a
field F. Our algorithm is recursive such that in each recursive call k reduces
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while the base ring (initially, it was F) becomes larger. The intermediate larger
rings that appear are all ensured to be local. The dimension of the base ring
(over F) increases by a factor of at most d in each recursive call and thus, the
complexity comes out to be: poly(dk · n) field operations in F.

We will now demonstrate a snapshot of the algorithm. Let R be a local
ring over the field F having maximal ideal M. The circuit C(z1, . . . , zn) in
R[z1, . . . , zn] looks like:

C = β1 · T1 + β2 · T2 + . . . + βk · Tk

where, each βi ∈ R, each Ti is a product of linear functions:

Ti = Li,1Li,2 · · ·Li,d

and where, each Li,j is a nontrivial linear function:

Li,j = ai,j,0 + ai,j,1z1 + ai,j,2z2 + · · ·+ ai,j,nzn

for some ai,j,1, ai,j,2, · · · , ai,j,n ∈ F and ai,j,0 ∈ M. We want to check if C
computes the identically zero polynomial over R. Note that in each Ti, the co-
efficient of its leading monomial Coeff(LM(Ti), Ti) is in F ⊆ R∗. We renumber
the terms and ensure that:

LM(T1) � LM(T2) � . . . � LM(Tk).

Note that by the Fact 2.5 of leading coefficients we can efficiently decide if
LM(T1) � LM(T2) and consequently this renumbering is also efficiently doable.
Suppose that T1 factors over R into a product of coprime polynomials p1, . . . , p`.
We recursively verify that:

C ≡ 0 (mod pi) for 1 ≤ i ≤ `

By our version of Chinese Remaindering Theorem for local rings we deduce
that:

C ≡ 0 (mod
∏̀
i=1

pi).

Our choice of the polynomials pi ensures that the total degree of∏`
i=1 pi(z1, . . . , zn) is at least as large as that of C(z1, . . . , zn). Finally, by ver-

ifying that Coeff(LM(T1), C), the coefficient of the leading monomial of T1 in
C(z1, . . . , zn), is zero we deduce that C computes the identically zero polynomial
over R.

Our choice of the polynomials pi ensures two things:
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i) There is an invertible linear transformation τ on the variables z such that
it ‘simplifies’ the polynomial pi:

τ ◦ pi(z1, . . . , zn) = (z1 + m1) · (z1 + m2) · · · (z1 + ms)

where, mj ∈ M. Thus, the ring R′ := R[z1]/(τ ◦ pi) is again a local ring
(see Lemma 5.4).

ii) pi divides T1 and so T1 ≡ 0 (mod pi). Thus τ ◦C can be viewed as a ΣΠΣ
circuit with top fanin at most (k − 1), total degree d and (n− 1) variate
over the (larger) ring R′. We can check C ≡ 0 (mod pi) by checking
τ ◦ C ≡ 0 over R′ recursively.

4.2. The Algorithm. Input: The three inputs to the algorithm are:

◦ A local ring R of dimension r over a field F with maximal ideal M. (In
the initial call, R = F and M = 〈0〉). In the algorithm we always work
with rings in basis form.

◦ A set of k coefficients 〈β1, . . . , βk〉, where k ≥ 1 and ∀i : βi ∈ R.

◦ A set of k terms 〈T1, . . . , Tk〉. Each Ti is a product of di linear functions in
n variables over the ring R. That is, each Ti is of the form Ti =

∏di

j=1 Li,j

and each Li,j ∈ LFR/F(x1, x2, . . . , xn) .

Output: The input parameters specify the following polynomial over the ring
R:

p(x1, . . . , xn)
def
= β1T1 + . . . + βkTk

The output of the algorithm, ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉), is YES iff

p(x1, . . . , xn) = 0 .

Algorithm: ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉):

Step 1: (Rearranging the terms.) By rearranging the terms if needed
ensure that

LM(T1) � LM(Ti) for all 2 ≤ i ≤ k.

Step 2: (Base case of one multiplication gate) If k = 1 then we need to
check whether β1T1 = 0 as a member of R[x1, x2, · · · , xn]. Since LC(T1)
is a unit in F, this happens if and only if β1 = 0.
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Step 3: (Verifying that p(x1, . . . , xn) ≡ 0 (mod T1) ) We shall verify that
T1 divides p(x1, . . . , xn) by using recursion to verify that all the distinct
coprime factors of T1 divide p(x1, . . . , xn). Since T1 is the product of
linear functions over R, it can easily be written as the product of coprime
factors, each factor being of the form

S = (l + m1)(l + m2) . . . (l + mt)

where l ∈ F[x1, . . . , xn] is a linear function in n variables over F and
for all i ∈ [t], mi ∈ M. Now to verify that each such factor S divides
p(x1, . . . , xn) do the following:

Step 3.1 (Applying a linear transformation.) Define a linear tran-
formation σ acting on the variables x1, . . . , xn such that σ sends
l 7→ x1 and transforms x2, . . . , xn such that it is an invertible linear
map. Such a σ can be found by elementary linear algebra. Now S
divides p(x1, . . . , xn) if and only if σ(S) divides σ(p(x1, . . . , xn)).

Step 3.2 (Recursively verify σ(S) divides σ(p) ). Define the ring R′

as:

(4.1) R′ def
= R[x1]/(σ(S))

Note that σ(T1) ≡ 0 (mod σ(S)). For all i between 2 and k
compute γi and T ′

i such that:

σ(Ti) = γiT
′
i (mod σ(S)) where γi ∈ R′, T ′

i ∈ LFR′/F(x2, . . . , xn).

(Basically, the linear factors of Ti having zero coefficients of
x2, . . . , xn get “collected” in γi while the other linear factors collect
in T ′

i .)

Recursively call ID(R′, 〈β2γ2, . . . , βkγk〉 , 〈T ′
2, . . . , T

′
k〉). If the

recursive call returns NO then output NO and exit.

Step 4: (Comparing coefficient of the highest monomial.) Compute the
coefficient of LM(T1) in p(x1, . . . , xn) and output YES iff its zero.

4.3. Proof of Correctness. The proof of correctness is now straightforward.
We continue using the notation set in the last subsection. The claim here is
summarized as:
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Theorem 4.2. Let R be a local ring of dimension r over a field F. Then

ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉)

returns YES iff β1T1 + · · ·+ βkTk = 0 in R[x1, . . . , xn]. Furthermore, the time
taken is poly(nrdk) field operations in F, where d is the maximum degree of
any term.

Proof. Time complexity. Note that in all the recursive calls that

ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉)

makes to ID(·, ·, ·) the dimension of the base ring R increases by a factor of
at most d whereas the value of k, the number of terms, decreases by one.
Moreover, there are at most d such recursive calls. Therefore, if h(k, r) denotes
the time taken by

ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉)

then we have the following recurrence:

h(k, r) ≤ d · h(k − 1, dr) + poly(nrdk)

Thus, we get that h(k, r) = poly(nrdk).

Correctness. We prove the correctess of the output of

ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉)

by induction on k:

Claim 4.3. ID(R, 〈β1, . . . , βk〉 , 〈T1, . . . , Tk〉) returns YES iff

β1T1 + . . . + βkTk = 0

Proof of Claim 4.3. The base case of the induction is when k = 1, handled
and explained by Step 2.
Now we assume that k ≥ 2 and that the claim is true for values smaller than
k. Let T1 = S1 · S2 · . . . · Sm. In Step 3 we verify that Si divides p(x1, . . . , xn)
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for all i ∈ [m]. Then by Lemma 3.4, we deduce that T1 =
∏

i∈[m] Si divides

p(x1, . . . , xn). Thus, we get that

p(x1, . . . , xn) = T1 · q(x1, . . . , xn) for some q ∈ R[x1, . . . , xn].

Since LC(T1) is a unit of R we have LM(p) = LM(T1) · LM(q) and in par-
ticular that LM(p) � LM(T1). On the other hand, since p =

∑
i∈[k] βiTi and

LM(T1) � LM(Ti) ∀i ∈ [k] we have that LM(T1) � LM(p). We therefore
deduce that LM(p) = LM(T1). Finally, in Step 4 we compute the coefficient
of LM(T1) in p and by the above observations it is the same as LC(p). Now
p = 0 over R iff LC(p) = 0 as required. �

This completes the proof of correctness and time complexity analysis of our
algorithm. �

5. Conclusion

We give an efficient algorithm for the identity testing of ΣΠΣ circuits with
bounded top fanin. The problem of identity testing for general ΣΠΣ arithmetic
circuits remains open. Also, it would be interesting to see if this method can
be generalized for ΣΠΣΠ circuits where the fanin of the topmost addition gate
is bounded.

The identities given in Theorem 1.4 are all over fields of prime characteristic.
We believe that the bounded rank conjecture of Dvir & Shpilka (2005) might
hold true over fields of characteristic 0, for example, Q. Proving such a result
might give new insights into the structure of ΣΠΣ identities.

Appendix: Useful Facts about Local Rings

In this appendix, we consider local rings over a field F. Any such ring R ⊇ F
that we consider will be a finite dimensional algebra over the field F. 1

We first collect some results related to decomposition of rings into simpler
rings. A ring R is said to be decomposable if there are subrings R1, R2 such
that:

◦ R1 ·R2 = R2 ·R1 = 0, i.e., for all r1 ∈ R1, r2 ∈ R2, r1 · r2 = r2 · r1 = 0.

◦ R1 ∩R2 = {0}.
1It is possible to define infinite dimensional local rings over F but we do not need them

in our application and shall not consider such rings.
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◦ R = R1 + R2, i.e., for every r ∈ R there are r1 ∈ R1, r2 ∈ R2 such that
r = r1 + r2.

We denote such a ring decomposition as R = R1 × R2. The subrings R1, R2

are called component rings of R.

Example 5.1. The ring R := F[x]/(x2 − x) decomposes as: R = R · x × R ·
(1−x) ∼= F×F. Here, R ·x is a short-hand for the set {r ·x | r ∈ R}. Note that
R · x, R · (1− x) are subrings of R and have x, (1− x) as their (multiplicative)
identity elements respectively. ♦

An element r ∈ R is called an idempotent if r2 = r. The following lemma
shows how idempotents help in decomposing a commutative ring.

Lemma 5.2. A commutative ring R decomposes iff R has an idempotent ele-
ment other than 0, 1.

Proof. Suppose R = R1 × R2 is a nontrivial decomposition and let the
identity element 1 of R be expressible as 1 = s + t where s ∈ R1, t ∈ R2. Then
we have:

1 · 1 = (s + t) · (s + t)

⇒ 1 = s2 + t2 [∵ s · t = 0]

⇒ s + t = s2 + t2

⇒ s− s2 = t2 − t

⇒ s− s2 = 0 [∵ s− s2 ∈ R1 ∩R2 = {0}]
⇒ s is an idempotent.

Note that if s = 0 then t = 1 and then R1 = 0 (as for all r1 ∈ R1, r1 · t = 0).
Similarly, if s = 1 then R2 = 0. As R1, R2 are nonzero subrings of R we deduce
that s 6= 0, 1 and hence s is an idempotent other than 0, 1.

Conversely, suppose that s 6= 0, 1 is an idempotent of R. Then consider the
subrings R·s and R·(1−s). Note that s, (1−s) are the identity elements of Rs,
R(1− s) respectively. For any two elements rs ∈ Rs and r′(1− s) ∈ R(1− s):
rs ·r′(1−s) = rr′(s−s2) = 0. If r ∈ Rs∩R(1−s) then rs = 0 and r(1−s) = 0
implying that r = 0. Finally, we can express any r ∈ R as: r = rs + r(1− s).
Thus, R decomposes as: R = Rs×R(1− s). �

In this paper we called a ring local if it is commutative and indecomposable.
Let us now see a structural property of such local rings.
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Lemma 5.3. For a field F, consider a ring R of the form:

R = F[x1, . . . , xn]/(xe1
1 , . . . , xen

n , h1(x1, . . . , xn), . . . , h`(x1, . . . , xn))

Then,

1) R is indecomposable.

2) R has a unique maximal ideal M such that M = set of nilpotents of R.

Proof (1). Any element r of R looks like a0+a1(x)x1+ · · ·+an(x)xn, where,
a0 ∈ F and a1(x), . . . , an(x) ∈ F[x1, . . . , xn].

Suppose a0 = 0. Since, xe1
1 = · · · = xen

n = 0 we have that:

re1+···+en = (a1(x)x1 + · · ·+ an(x)xn)e1+···+en

= 0

Suppose a0 6= 0. Let r0 := r − a0 and e := e1 + · · ·+ en. Then we have:

(a0 + r0)(a
e
0 − ae−1

0 r0 + · · ·+ (−1)e−1a0r
e−1
0 + (−1)ere

0) = ae+1
0 + (−1)ere+1

0

= ae+1
0 [∵ re

0 = 0]

∈ F∗

⇒ r ∈ R∗

Thus, every element r of R is either a nilpotent or a unit depending upon
whether a0 = 0 or not.

Now suppose R is decomposable. By Lemma 5.2 there has to be a nontrivial
idempotent t ∈ R. But we have:

t2 = t

⇒ t(t− 1) = 0

⇒ t = 0 or 1 [∵ either t or (t− 1) is a unit in R]

This contradiction shows that R is indecomposable. �

Proof (2). Define a set M := R \ R∗. As shown above M is the set of
nilpotents of R and hence is an ideal. M is maximal because any element
outside it is a unit. M is unique because it contains all the non-units of R. �

Now we consider the special form of local rings that appear in Equation (4.1)
and show how to do computations in that ring in an “efficient” way.
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Lemma 5.4. Suppose we are given (in basis form) a sequence of rings, over a
field F, as:

R0 := F having maximal ideal M0 = 0

R1 := R0[x1]/(x
e1
1 ) having maximal ideal M1 = (x1) = x1 ·R1

...

Rk := Rk−1[xk]/ ((xk + rk,1) · · · (xk + rk,ek
)) , where, rk,1, . . . , rk,ek

∈Mk−1.

Also, the maximal ideal of Rk is Mk = (x1, . . . , xk)

Define Di := e1 · · · ei, for all i ∈ [k]. Then the addition operation in Rk

takes O(Dk) field operations in F and the multiplication operation in Rk takes
O(kD2

k) field operations in F.

Proof. Inductively, we can check that Rk is indeed a local ring. Since
(xk + rk,1) · · · (xk + rk,ek

) = 0 and rk,1, . . . , rk,ek
∈ Mk−1 we have that, in the

ring Rk:

xek
k = rek−1x

ek−1
k + · · ·+ r1xk + r0 for some rek−1, . . . , r0 ∈Mk−1

As rek−1, . . . , r0 are nilpotents in Rk we deduce from the above equation that
xk is a nilpotent too. Hence, by Lemma 5.3, Rk is a local ring with the ideal
of nilpotents equal to (x1, . . . , xk).

For induction assume that the addition operation in Rk−1 takes time:
O(Dk−1). Let r := (αek−1x

ek−1
k + · · ·+ α1xk + α0) and r′ := (α′

ek−1x
ek−1
k + · · ·+

α′
1xk+α′

0) be two elements in Rk such that for all 0 ≤ i ≤ ek−1, αi, α
′
i ∈ Rk−1.

Now the addition operation: r + r′ entails computing ek additions (of the form
αi + α′

i) in Rk−1. Thus, addition in Rk takes time: ek ·O(Dk−1) = O(Dk).
Again for induction assume that the multiplication operation in Rk−1 takes

time: O((k − 1)D2
k−1). Then the multiplication operation: r · r′ entails e2

k

multiplications (of the form αi ·α′
j) in the ring Rk−1 and those many additions.

Hence, the time taken for multiplication in Rk is:

e2
kO((k − 1)D2

k−1) + e2
kO(Dk−1) = O((k − 1)D2

k) + ekO(Dk)

= O(kD2
k)

�

Recall that something called Hensel’s Lifting was crucial in proving the
Chinese Remaindering property for polynomials over local rings in Lemma 3.4.
We present the statement of Hensel’s Lifting lemma below.
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Lemma 5.5 (Hensel’s Lifting). Let R be a ring and I be an ideal. Let f(z) ∈
R[z] and f = gh (mod I) be a factorization of f over R/I such that there
exists a, b ∈ R[z], ag + bh = 1 (mod I). Then,

◦ There are efficiently computable g∗, h∗, a∗, b∗ ∈ R[z] satisfying:

f = g∗h∗ (mod I2)

g∗ = g (mod I) and h∗ = h (mod I)

a∗g∗ + b∗h∗ = 1 (mod I2)

◦ Also, g∗, h∗ above are unique in the sense that for any other g′, h′ satis-
fying the above conditions we have some u ∈ I such that:

g′ = g∗(1 + u) (mod I2)

h′ = h∗(1− u) (mod I2)

Proof. See Lidl & Niederreiter (1994) for the proof. �
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