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Abstract

We study the sum of fourth-powers (SO4) model to compute univariate polynomials
over F = Q. We conjecture : the univariate polynomial (x + 1)d when written as a sum of
o(d)-many fourth-powers requires Ω(d) distinct monomials. We show that the conjecture
puts blackbox-PIT (polynomial identity testing) in P; and proves VP 6= VNP (under Gen-
eralized Riemann Hypothesis). Thus, studying very simple polynomials, in very simple
computational models, suffices to solve the major questions of algebraic complexity theory.

Recently, (Dutta et al. , 2020), demonstrated such a connection for the sum of 25th-powers
model. Our work optimizes the exponent (from 25 to 4). We achieve this by employing a new
‘CNF’ normal-form, for general circuits, that is highly specialized towards SO4 expression.
Basically, it ‘reduces’ the intermediate degrees to 1/3rd before invoking the conjecture.

2012 ACM CCS concept: Theory of computation - Algebraic complexity theory, Problems, reduc-
tions and completeness, Pseudorandomness and derandomization; Computing methodologies -
Algebraic algorithms; Mathematics of computing - Combinatoric problems.
Keywords: VP vs VNP, hitting set, circuit, CNF, normal form, univariate polynomial, 4th powers,
PIT, lower bound, sparsity, monomials, support, CH, GRH.

1 Introduction

An algebraic circuit over a field F is a layered directed acyclic graph that uses field operations
{+,×} and computes a polynomial. It can be thought of as an algebraic analog of boolean
circuits. The leaf nodes are labeled with the input variables x1, . . . , xn and constants from
F. Other nodes are labeled as addition and multiplication gates. The root node outputs the
polynomial computed by the circuit. Some of the natural complexity parameters of a circuit
are: 1) the size, i.e. number of edges and nodes, 2) the depth, i.e. number of layers, 3) the fanin,
i.e. maximum number of inputs to a node, (resp. the fan-out, i.e. maximum number of outputs
of a node). In complexity classes, we specify only an upper bound on these parameters.

The class VP contains the families of n-variate polynomials of degree poly(n) over F, com-
puted by circuits of poly(n)-size. The class VNP can be seen as a non-deterministic analog
of the class VP. A family of n-variate polynomials ( fn)n over F is in VNP if there exists a
family of polynomials (gn)n in VP such that for every x = (x1, . . . , xn) one can write fn(x) =
∑w∈{0,1}t(n) gn(x, w), for some polynomial t(n) which is called the witness size. It is straightfor-
ward to see that VP ⊆ VNP and conjectured to be different (Valiant’s Hypothesis [Val79a]). For
more details see, [Mah14, SY10, BCS13]. Unless specified particularly, we consider the field
F = Q (resp. a finite field with ‘large’ characteristic).

Separating VP from VNP is a long standing open problem. One of the popular ways has been
via depth-reduction results [AV08, Koi12, GKKS13, Tav15]. These results demand a lower bound
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of nω(
√

d) on the top-fanin of an explicit n variate, d-degree polynomial when written as sum of
O(
√

d)-th powers of polynomials of degree at most O(
√

d). It seems that showing strong lower
bounds require deeper understanding of algebraic-combinatorial structure of circuits. Perhaps,
univariate polynomials could be easier to study due to the existing analytic tools in mathematics.
Thus, the stimulus for the study of univariate lower bounds comes quite naturally. One should
first try to develop techniques towards lower bounds for restricted univariate models.

In the world of univariate polynomials, the Pochhammer-Wilkinson polynomial, Pd(x) :=
∏d

i=1(x− i), is conjectured to be hard, i.e. size(Pd) ≥ Ω(d). It is known that such a hardness
proof would imply VP 6= VNP, assuming GRH (General Riemann Hypothesis) [Bür09, Cor.4.2].
But, sufficiency of proving lower bound on restricted models of univariate polynomials came
later when Koiran [Koi11] essentially showed that if there exists a univariate polynomial f (x) of
degree d such that any representation of the form f (x) = ∑s

i=1 ci ·Qei
i , where sparsity(Qi) ≤ t

and arbitrary ei ’s, requires top-fanin s ≥ (d/t)Ω(1), then VP 6= VNP.
Very recently, in [DST20, Thm.3], it was established that, in fact, showing a lower bound

of Ω(d) on the number of monomials required to write fd := (x + 1)d as sum of 25th-powers
of univariate polynomials, suffices to separate VP from VNP (assuming GRH). In fact, the same
hardness can be used to derandomize blackbox Polynomial Identity Testing (PIT) which asks for
an algorithm to test the zeroness of a given algebraic circuit via mere query access. We optimize
the recent connection to a surprising extent (see Theorems 2 and 3):

If (x + 1)d written as sum of 4th-powers of univariates requires sum of the sparsity of the
univariates to be Ω(d0.98289), then assuming GRH, we have VP 6= VNP.
Strengthening the requirement, to Ω(d) many distinct monomials, puts blackbox-PIT in P.

In this work, we improve the result of [DST20] in three ways– exponent, measure and requirement-
wise. To achieve this, we devise a new ‘CNF’ representation theorem (Theorem 1), which basically
expresses a degree d polynomial of size s as a sum of poly(s, d) many products of 4 polynomials,
each of size poly(s, d) and degree at most d/3. This improves the classic result; which is a sum
of product of 5 polynomials, each of degree at most d/2 [VSBR83, Sap19]. Our refinement
organically comes from the connection to sum of 4th-powers (SO4) representation:
SO4 model and our measure. We say that a polynomial f (x) ∈ R[x] over a ring R is computed
as a sum of 4th-powers (SO4) if

f =
s

∑
i=1

ci · ` 4
i , (1)

for some top-fanin s, where ci ∈ R and `i(x) ∈ R[x]. Interestingly, the sum of 4th-powers is a
complete model for R = F, a field of characteristic zero (resp. ≥ 5); for details see Lemma 14. A
natural complexity measure in Eqn.(1) is the sparsity-sum, the sum of the sparsity of `i’s. The
sparsity-sum size of f , denoted by SF( f ), is defined as the minimum sparsity-sum size when f
is written as in Eqn.(1).

A forthright counting argument shows that SR( f ) ≥ Ω(| f |1/4
1 ) where | f |1 denotes the

number of nonzero monomials in f (i.e. sparsity of f ). We want to inspect how SR( fd) behaves
w.r.t d for the ‘simplest’ polynomial family fd := (x + 1)d. To the best of our knowledge, here
are the estimates on SF( fd).
Upper bound on SF( fd). For fd(x) = (x+ 1)d, it is easy to see that if 4 | d, then SR( fd) ≤ d/4+ 1
as (x + 1)d = ((x + 1)d/4)4. In fact, Lemma 15 shows that SF( fd) ≤ 5 · (d/4 + 4) for any d ∈N.
SF is large for ‘almost all’ polynomials f . Wlog, in Eqn. (1), deg(`i) ≤ poly(d), as deg( f ) =
d. We claim that the algebraic-circuit complexity size( f ) ≤ O (SF( f ) · log d). As, size( f ) ≤(

∑i∈[s] size(`i)
)

and by repeated-squaring, size(`i) ≤ |`i|1 ·O(log d). Moreover, for random f
(of degree d), size( f ) ≥ Ω(d). Thus, one expects: SF( f ) ≥ Ω(d/ log d).
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To play safe, we shall restrict d to the domain I := {2m − 1 | m ∈N}. Let F be Q, or a finite
field of characteristic ≥ 5. Motivated from the upper bound on SF( fd) and the heuristic about
the largeness of SF for random f , we conjecture the following.

Conjecture 1 (C1). For d ∈ I, SF ( fd) ≥ Ω(d0.98289) .

Remarks. 1. We work with this particular domain I mainly because I suffices for later implica-
tions (Theorem 2). Additionally, it can be shown that the above conjecture is true over Z.
For d ∈ I, one can show that (d

i) = 1 mod 2 for all 0 ≤ i ≤ d, implying |(x + 1)d mod 2|1 =
d + 1, whereas ∑ ci · `i(x)4 ≡ ∑ ci · `i(x4) mod 2. Thus, SZ( fd) ≥ d + 1.

2. Ω(d0.98289), instead of Ω(d) [DST20], is a weaker requirement; yet, we show that it is strong
enough to separate VP and VNP (see Theorem 2).

3. We could even restrict the degrees of `i, to be O(d log d), in Eqn.(1), to prove the results in
this paper (Remark 3, Section 3.2). This might help in proving the conjecture.

4. We believe the conjecture to hold for any d ∈ N (i.e. beyond I). We also believe the
conjecture to be true for most polynomial families, e.g. f := ∑d

i=0 3i2
xi or f := ∏d

i=1(x− i).

1.1 Our Results: New circuit normal-form and implications of Conjecture C1

Algebraic circuits are quite well-structured, for instance, there is a famous depth-O(log d)
reduction result [VSBR83, SY10, Sap19]. This is made possible by discovering a specialized
normal-form decomposition for a circuit. Then, one recurses to reduce the degree with depth.

Connecting algebraic circuits to SO4 representation is a major challenge as the prior best
decomposition (with polynomial blow-up in size) required multiplication fanin 5 (hinting a sum
of 5th-powers, in a way). For details, see [VSBR83, Sap19]. It was established that an n-variate,
degree d polynomial f (x), computed by a circuit of size s, can be decomposed as

f (x) =
s′

∑
i=1

fi1 · fi2 · fi3 · fi4 · fi5 , (2)

for some top-fanin s′ = poly(s, d), where each fij has circuit size at most s′ and deg( fij) ≤ d/2, for
all i, j. This circuit normal-form (CNF) has played a key role in all recent depth-reduction results
[AV08, Koi12, Tav15, GKKS13]. We optimize Eqn.(2) in the following two ways: (i) reducing
multiplication-fanin from 5 to 4, and (ii) further reducing degree d/2 to d/3. The new CNF is:

Theorem 1 (New CNF). Let f (x) be an n-variate, degree d polynomial computed by a circuit of size s.
Then, there exist polynomials fij ∈ F[x] such that

f (x) =
s′

∑
i=1

fi1 · fi2 · fi3 · fi4 , (3)

for some top-fanin s′ = poly(s, d), where each fij has circuit size at most s” = poly(s, d) and deg( fij) ≤
d/3, for all i, j.

Remarks. 1. Concretely, we bound: s′ ≤ O(s6 · d13) and s” ≤ O(s · d2).
2. Notes on optimality: 1) we cannot expect sum of product of ≤ 2 decomposition for the

degree requirement d/3, 2) sum of product of 3 decomposition is also not expected, since it
essentially means that each fij has degree = d/3. Such intermediate nodes (with degree
= d/3) might not exist in the circuit of f . (See the concept of ‘frontiers’ in Definition 5).

The leitmotif of this paper is the interplay between Conjecture C1 and derandomization/
hardness questions in algebraic complexity. Could the suspected hardness of (x + 1)d, in SO4
representation, settle the infamous VP vs. VNP? We evince a positive answer.

3



Theorem 2 (Conditional lower bound). If GRH and Conjecture C1 hold, then VP 6= VNP.

Remarks. 1. [DST20] showed that an Ω(d) lower bound on the sum of 25th-powers of univari-
ates, for fd, suffices to prove VP 6= VNP (assuming GRH). The nearly optimal reduction of
the exponent 25, to 4, and a weaker demand of Ω(d0.98289), manifest from the new CNF (and
a new proof) that overcomes the prior technical bottlenecks; see Section 3.2.

2. Our choice of fd = (x + 1)d is mostly because it is simple, namely, by repeated squaring, it
has circuit size Θ(log d). Interestingly, if Conjecture C1 holds for more ‘intricate’ polyno-
mial families, e.g. f = ∑d

i=0 3i2
xi, then we do not require GRH to conclude VP 6= VNP! (See

Remark 1 at the end of Sec.3.2.) GRH is not needed if F is finite with a large characteristic.

3. Whether ‘merely’ SOS (sum of squares of univariates) gives strong algebraic lower bounds
from our proof technique, is unclear. However, in the non-commutative setting, lower
bound on sum-of-squares (of multivariates) implies that Permanent is hard [HWY11]. Our
theorem can be seen as its natural analog in the commutative setting.

Hardness of general circuits have often lead to efficient derandomization [AGS19, GKSS19].
Our methods in Theorem 2 consequently put blackbox-PIT in quasi-polynomial time (in a way
similar to [KI03]). Recently, [DST20] demonstrated that the hardness of (x + 1)d, even for the
restricted model of sum of constant (≥ 25) powers, can completely derandomize blackbox-PIT.
The measure, which was used to establish such a connection was the support-union.
Support-union size of f with respect to s, denoted UF( f , s), is defined to be the minimum
number of distinct monomials in the representation of Eqn.(1); in other words,

∣∣⋃s
i=1 supp(`i)

∣∣
when f is written as Eqn.(1); it is ∞, if no such representation exists. Here, support supp(`)
denotes the set of nonzero monomials in the polynomial `(x). Note that, s is the top-fanin when
Eqn.(1) is considered as a depth-4 circuit. It is easy to see: SF( f ) ≥ mins max{s, UF( f , s)}.

A direct counting argument shows: UF( f , s) ≥ Ω(| f |1/4
1 ). As before, we want to investigate

the behaviour of UF( fd, s) w.r.t. d for the polynomial family fd := (x + 1)d and a given top-fanin
s. Here are some interesting examples of the behaviour of UF( fd, ·).
Examples. 1. (Small s) We show that UF( fd, 2) ≥ d/4 + 1 (Theorem 18). Also, we show that

UF( fd, 5) ≤ d/4 + 4 (Lemma 15).
2. (Large s) For s ≥ c · (d + 1) for any c > 4, we show that UF( fd, s) ≤ O(d1/4) (Lemma 16).

Thus, for large s, we get UF( fd, s) = Θ(d1/4), which resolves this case.
This enthralling trade-off between the measure U and the top-fanin s in the above examples,
motivated us to conjecture the following (same as [DST20, Conj.C1] with r = 4).

Conjecture 2 (C2). There exist positive constants δ1 ≤ 1, δ2 ≥ 1 such that UF

(
fd, dδ1

)
≥ d/4δ2 , for

all large enough d ∈ I.

Remarks. 1. The example above for large s does not apply for δ1 ∈ (0, 1], as s = dδ1 ≤ d. On
the other hand, by picking a large δ2, the lower bound on U required is smaller than d/4.

2. We believe the conjecture to hold for any large d ∈N (i.e. beyond I). We also believe the
conjecture to be true for most polynomial families, e.g. f := ∑d

i=0 3i2
xi or f := ∏d

i=1(x− i).
3. The proof of Theorem 2 could be made to work with the ‘stronger’ Conjecture C2 as well.
4. One can ask for the number of distinct monomials required to approximate fd(x) as a sum

of 4th-powers. We believe the above conjecture to hold in the approximative computation
model as well. See Conjecture C3 and its consequences in Section E.2.

[DST20] showed that studying representations like fd := (x + 1)d = ∑i `
25
i solves PIT; it

requires proving UF( fd, dδ1) ≥ Ω(d) for some δ1 ≤ 1. Here, we optimize the exponent (25 to 4).
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Theorem 3 (Conditional derandomization). If Conjecture C2 holds, then blackbox-PIT ∈ P.

Remarks. 1. Older results too lead to various conditional derandomizations. E.g. multi-variate
hard polynomials lead to blackbox-PIT ∈ QP (quasipoly-time) [KI03, AGS19]. Recently,
[GKSS19] showed that the circuit hardness of a k-variate polynomial yields blackbox-PIT
∈ P, where constant k ≥ 4 (see Theorem 28).

2. Very recent work of [DST20] improved it to k = 1 and showed that the hardness of a simple
univariate polynomial, in a much weaker model (sum of 25th-powers of univariates), also
translates to complete derandomization. In this paper, we weaken the model substantially.

3. One could also work with more intricate polynomials, e.g. ∏d
i=1(x− i) or ∑d

i=0 3i2
xi, whose

circuit complexity is unclear, but may well be Ω(d). Showing Conjecture C2 for any of
these polynomials would similarly lead us to Theorem 3.

4. For Theorem 3, we could restrict the degrees of `i, to be O(d). See Section 3.3, Remark 2.
5. One can show that the approximate version of the conjecture (see Conjecture C3) implies a

poly-time hitting-set for VP-circuits (Theorem 32).

1.2 Proof ideas

Proof idea of Theorem 1. The principal notions are those of gate quotient and frontier decomposi-
tion, first developed by [VSBR83], although there are important contrasts requiring non-trivial
observations. Wlog, f is homogeneous, computed by a circuit Φ with fanin 2; further, for every
node the degree of the right child is at least that of the left child (right-heavy). Let [u] denote the
polynomial computed at node u in Φ and the quotient [ f : u] somewhat behaves like a derivative
∂u f , which has a small circuit (by inductive definition). Identify the frontier F : nodes v such
that deg(v) ≥ d/3 with the children having degree < d/3 (the usual frontier definition uses the
threshold d/2). Induct on depth to express f as

f = ∑
v∈F

[v] · [ f : v] . (4)

By homogeneity deg([ f : v]) = deg( f )− deg([v]), implying that either [v] or [ f : v] has degree
in the range [d/3, d/2]; and the other is in [d/2, 2d/3]. This is a better estimate than the trivial
upper bound of 2d/3 on both. See Lemma 9.

Next, in each product, we decompose the larger degree factor. The standard way is to prove a
sum identity for [ f : u], in terms of quotient gates, and recurse. Instead, we will think of [ f : v] as
new polynomials, relabel, and decompose using Eqn.(4) to get an expression like f = ∑ fi1 fi2 fi3,
where each fij has degree at most d/2. Careful calculations show that, in each such product, at
least one fij has degree ≤ d/3 (see Lemma 10). If, two of them are so, we further decompose the
one with degree > d/3 using Eqn.(4); and show that the respective polynomial factors, after the
decomposition, do have degree ≤ d/3. So, we are done in this case.

The remaining case (for a fixed i) is: deg( fi1) ≤ d/3 < deg( fi2) ≤ deg( fi3) ≤ d/2. In this
case, the idea is to decompose some, and redistribute the factors among the three to finally
achieve a product of 4, where each factor has degree ≤ d/3. To achieve that, we decompose fi1
as sum of product of 3, while fi2 and fi3 as in Eqn.(4). So that, for the time being, it is a sum of
product of 7. Next, we redistribute the first 3 in the remaining 4 appropriately; clubbing (or
multiply) them to get the desired sum of product of 4 representation. (See Section 3.1.)

Proof idea of Theorem 2. The elemental idea is to use fd := (x + 1)d to construct Pk,n (non-
constant k), a k-variate polynomial of individual degree at most n (constant). We show that,
under GRH and assuming VP = VNP, (Pk,n)k is an explicit family in VP, and is exponentially hard
assuming Conjecture C1; leading to a contradiction.

5



Pk,n(x) is s.t. after a standard Kronecker substitution: Pk,n(x1, . . . , xk) 7→ Pk,n(x(n+1)0
, . . .,

x(n+1)k−1
) = fd(x), where d := d(k) ≤ (n + 1)k − 1 is the largest possible in I. This map is a

bijection between supp(Pk,n) and supp( fd). Note that, from definition of I and d, k = Θ(log d).
We prove that Pk,n requires s := d1/c = 2Ω(k)-size circuit, where c is a constant to be fixed

later. Assume the contrary, size(Pk,n) ≤ s. Using Theorem 1 and Fischer’s trick, one can write
Pk,n = ∑ ci · f̃i

4, with deg( f̃i) ≤ deg(Pk,n)/3 ≤ kn/3, and top-fanin poly(d1/c, k) (as n is constant).
A standard combinatorial argument shows: | f̃i|1 ≤ (k+kn/3

k ). As Kronecker substitution cannot
increase sparsity, SF( fd) ≤ poly(d1/c, k) · (k+kn/3

k ).
Stirling approximation (Eqn.5) gives: (k+kn/3

k ) ≤ (e(1+ n/3))k. We want to find the minimum
α such that (e(1 + n/3))k ≤ dα. As d = Ω((n + 1)k), we basically want to optimize α :=
minn (log(e(1 + n/3))/ log(n + 1)) ≈ 0.98285 (at n ≈ 113.62). For easier representation, we
choose n+ 1 = 27 for which α ≈ 0.982872; c := 6× 105 so that α+ 6/c < 0.98289; factor 6 comes
because calculation shows that 6 appears in the exponent of s in Theorem 1. This translates to
the fact that SF( fd) ≤ o(d0.98289), contradicting Conjecture C1. (See Section 3.2.)

Now assume that GRH is true and VP = VNP. Theorem 7 shows that the counting hierarchy
(CH) collapses to P/poly. It is not hard to show that each bit of (d

i), the coefficients of fd, is
computable inCH ⊆ P/poly. Thus, Valiant’s criterion implies (Pk,n)k ∈ VNP = VP; contradicting
the 2Ω(k)-hardness of Pk,n proved above from Conjecture C1. Hence, we conclude VP 6= VNP.

Proof idea of Theorem 3. Again, the basic idea is to use fd := (x + 1)d to construct Pk,n, but
now it is a k-variate (for constant k) polynomial of individual degree at most n (for non-constant
n). It is shown hard assuming Conjecture C2. With appropriate parameters, this hardness will
lead us to an efficient hitting-set for VP using the recent result of [GKSS19]; see Theorem 28.

The construction of Pk,n(x) is such that Pk,n(x1, . . . , xk) 7→ Pk,n(x(n+1)0
, . . . , x(n+1)k−1

) = fd(x),
where d := d(n) is the largest element in I which is ≤ (n + 1)k − 1, and k depends on δ1, δ2.

We prove that size(Pk,n) > d1/µ =: s, where µ ≥ 1 is a constant which depends on δ1, δ2.
Assume the contrary, size(Pk,n) ≤ s. Using Theorem 1 and Fischer’s trick, one can write Pk,n =

∑ ci · f̃i
4, with deg( f̃i) ≤ deg(Pk,n)/3 ≤ kn/3, and top-fanin poly(d1/µ, n) (as k is constant).

Direct combinatorial argument shows: | ∪i supp( f̃i)| ≤ (k+kn/3
k ). Kronecker map yields, fd =

∑ ci · g4
i ; wherein there are at most dδ1 summands and the support-union | ∪i supp(gi)| < d/4δ2 .

As Kronecker map does not increase the top-fanin and support, it contradicts Conjecture C2.
The coefficients (d

i) of Pk,n can be computed in poly(d)-time. Hence, Pk,n is both explicit
and hard! The hardness is d1/µ ≥ Ω((n + 1)k/µ) = Ω(nk/µ), and deg(Pk,n) = O(n). Thus, for
k > 3µ, we invoke Theorem 28, using Pk,n to construct a poly-time hitting-set for VP-circuits.

Note: One can invoke Eqn.(5) to show that (k+kn/3
k ) ≥ (1 + n/3)k ≥ Ω(d), thus one cannot

hope to weaken the lower bound in Conjecture C2 & still get Theorem 2. (See Section 3.3.)

1.3 Previously known results– Circuit complexity, sum-of-powers

It is known that the computation of most of the d-degree polynomials require Ω(d) many arith-
metic operations [Mot55, Bel58]. In fact, ∑d

i=0 22i
xi requires Ω

(√
d/ log d

)
size circuits [Str74].

It can be converted to an exponentially hard polynomial family ( fn), but unfortunately cannot
separate VP and VNP; because of the non-explicitness of ( fn); for details see [HS80, Bür13].

The classical Waring problem is to find the number g(k), for every k ∈ N, such that every
natural number can be written as the sum of g(k)-many kth-powers of numbers. Some remarkable
examples are g(3) = 9 [Kem12] and g(4) = 19 [BDD86]. Many variants of Waring’s problem
for polynomials have been investigated using analytic tools [FOS12, CCG12, BT15].

For representations like f = ∑ ci ·Qei
i , for deg(Qi) ≤ t, a lower bound of s ≥ Ω(

√
d/t) was

shown in [KKPS15]. For deg(Qi) ≤ 1, the bound s ≥ Ω(d) has been established for certain
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polynomials; using the concept of Birkhoff Interpolation [GMK17, KPGM18]. Note that we want
lower bounds with |Qi|1 ≤ t (with unrestricted degree) to separate VP and VNP [Koi12]. These
lower bound questions innately appear in the algebraic-geometry approaches to the P 6= NP
question, e.g. [Muk16, GMQ16, Gro15, Mul17].

‘Hardness to derandomization’ intrinsically demands deterministic PIT algorithms given
explicit hard polynomials. The celebrated Polynomial Identity Lemma [Ore22, DL78, Zip79, Sch80])
and efficient evaluation at random points lead to randomized poly-time algorithm for blackbox-
PIT. For details, see the surveys [Sax09, Sax14, SY10, KS19] or review articles [Wig17, Mul17].

Most lower bound connections used hitting-set generator (HSG) via combinatorial designs
to give quasi-poly-time blackbox-PIT, see [AV08, Bür09, Koi11, Koi12, Tav15]. Recently, it was
shown that HSG is compliant to bootstrapping (of variables) [AGS19, KST19]. Finally, [GKSS19]
came up with an HSG without designs; showing how ample hardness of constant-variate (k ≥ 4)
polynomials implies blackbox-PIT ∈ P. They used generalized derivatives of the hard polynomial.

2 Preliminaries

Basic notation. Denote the underlying field as F and assume that it is Q, Qp, or their fixed
extensions. Our results hold also for finite fields of large characteristic.

Let [n] = {1, . . . , n}. For i ∈ N and b ≥ 2, we denote by baseb(i) the unique k-tuple
(i1, . . . , ik) such that i = ∑k

j=1 ij bj−1. In the special case b = 2, we define bin(i) = base2(i).
For binomial coefficients, we use an easy bound based on the ek-series [Wik], for 1 ≤ k ≤ n,(n

k

)k
≤
(

n
k

)
≤
( en

k

)k
. (5)

Polynomials. For a multivariate polynomial p ∈ F[x], where x = (x1, . . . , xm), for some m ≥ 1,
the support of p, denoted by supp(p), is the set of nonzero monomials in p. The sparsity or support
size of p is |p|1 := |supp(p)|. By coef(p) we denote the coefficient vector of p (in some fixed order).
For polynomials p1, . . . , ps ∈ F[x], their span is the vector space spanF(p1, . . . , ps) := {∑i ci pi |
ci ∈ F }.

For an exponent vector e = (e1, . . . , ek), we use xe to denote the monomial xe1
1 . . . xek

k .
By F[x]≤d we denote the F-vector space of univariate polynomials of degree at most d.

Algebraic circuit complexity. For a polynomial f , the size of the smallest circuit computing f is
denoted by size( f ), it is the algebraic circuit complexity of f . By C(n, D, s), we denote the set of
circuits C that compute n-variate polynomials of degree D such that size(C) ≤ s. The circuit
complexity of a family (Pn)n is g(n), if size(Pn) = Θ(g(n)).
Circuit Normal Form (CNF) and Frontier. In an elegant and influential work, [VSBR83] showed
that every efficiently computable polynomial family (by algebraic circuits) is also efficiently
computable in parallel. Work of [AJMV98] proved a similar result with top-down approach. In
both the proof techniques, the notion of gate quotients was used. A hybrid, detailed discussion
can be sought in [Sap19]. For completeness, we define and go through the important details
which will be required for proving our new CNF (Theorem 1).

We assume without loss of generality that the given circuit Φ has the following properties:
(i) Φ is a homogeneous circuit, (ii) all multiplication gates in Φ have fanin at most two, and (iii)
Φ is a right heavy circuit, i.e. the degree of the right child of any multiplication gate is at least
as large as the degree of its left child. For any gate u in Φ, we denote by [u] the polynomial
computed at gate u. We denote uL and uR as left and right child of u respectively.

Definition 4 (Gate quotient). For gates u, v, the quotient polynomial [u : v] is defined as follows:

1. If u and v are same nodes, then [u : v] = 1
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2. If u is a leaf, and u 6= v, then [u : v] = 0

3. If u = u1 + u2, then [u : v] = [u1 : v] + [u2 : v]

4. If u = u1 × u2, then [u : v] = [u1] · [u2 : v]

Observation. [u : v] is a homogeneous polynomial of degree deg(u)− deg(v).

Definition 5 (Frontier). For any parameter m, define the frontier at degree m, denoted Fm, as the
deepest nodes in the circuit that have degree at least m. Formally, Fm := {v : deg(v) ≥
m, and deg(vL), deg(vR) < m } .

Observe that all frontier nodes must be multiplication gates. They give a nice decomposition:

Lemma 6 (CNF by frontier decomposition). [Sap19, Lem.5.12] Let Φ be a homogeneous, right-heavy
circuit. Let u be a node such that deg(u) ≥ m. Then, [u] = ∑w∈Fm

[u : w] · [w] .

Valiant’s hypothesis and GRH. Bürgisser [Bür00, Cor.1.2] showed that if Valiant’s hypothesis
is false, and GRH holds, then the polynomial hierarchy collapses. Similarly,

Theorem 7 (CH collapse). [DST20, Thm.9] If GRH is true and VP = VNP, then CH ⊆ P/poly.

Over finite fields, GRH is not needed; GRH is required only for Q. See Section C.
A useful sufficient condition for a polynomial family ( fn(x))n to be in VNP is known, due to
Valiant [Val79b]. For a proof, see [Bür13]. We use the slightly modified version of the criterion.

Theorem 8 (Valiant’s criterion, [Val79b]). Let function φ : [0, c]∗ → N be in #P/poly, for some
constant c ∈N. Then, the family of polynomials defined by fn(x) := ∑e∈[0,c]n φ(e) · xe, is in VNP.

Kronecker map and its inverse. Let p(x1, . . . , xk) be a polynomial, where the variables have
individual degree bounded by n. The Kronecker map φk,n(p)(x) yields a univariate polynomial
by replacing variable xi in p by x(n+1)i−1 , for all i ∈ [k].

The map has the property that any polynomial with individual degree at most n gets
uniquely mapped to a univariate polynomial of degree at most d = ∑k

i=1 n(n + 1)i−1 = (n +
1)k − 1 [Kro82].

Next, we consider the inverse map. Let q(x) be a univariate polynomial of degree d. For
k ≥ 1, let x := (x1, . . . , xk) and n := d(d + 1)1/ke − 1 ≥ 1. The inverse Kronecker map ψk,d(q)(x)
yields a k-variate polynomial by replacing xi, in q, by the monomial xbasen+1(i), for all i ∈ [k].

It is easy to see that ψk,d maps each xi to a distinct k-variate monomial of individual degree
≤ n, for 0 ≤ i ≤ d. Also, we have φk,n ◦ ψk,d(q) = q. Thus, φk,n ◦ ψk,d = id over F[x]≤d.

3 Proof of the main results
3.1 The new CNF : Proof of Theorem 1
Before proving the representation theorem for f (x) as the sum of product of 4, we study the
decomposition of a polynomial as sum of product of 2 (and subsequently 3). This will help us to
get the desired structure theorem. Here is a very pertinent decomposition lemma:
Lemma 9 (Sum of product of 2). Let f (x) be an n-variate, homogeneous, degree d polynomial computed
by a right-heavy homogeneous circuit Φ of size s. Then, there exist polynomials fij ∈ F[x] s.t.

f (x) =
s

∑
i=1

fi1 · fi2 , with the following properties: (6)

1. d/3 ≤ deg( fi1) ≤ d/2 ≤ deg( fi2) ≤ 2d/3, for all i ∈ [s],
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2. deg( fi1) + deg( fi2) = d, for all i ∈ [s], and
3. each fij has a right-heavy homogeneous circuit of size at most s2 := O(s).

Proof of Lemma 9. Choose m := d/3 in Lemma 6, to conclude that, f = ∑u∈Fm
[ f : u] · [u]. Note

that, |Fm| ≤ s. By definition of the frontier, deg(uL), deg(uR) < d/3 (implying deg([u]) <
2d/3). Recall that deg([u]) + deg([ f : u]) = d. Combining together, we get the range
d/3 ≤ deg([u]) , deg([ f : u]) ≤ 2d/3 .

If deg([u]) ∈ [d/3, d/2], then deg([u]) + deg([ f : u]) = d =⇒ deg([ f : u]) ∈ [d/2, 2d/3].
Otherwise, deg([u]) ∈ [d/2, 2d/3]. In that case, deg([ f : u]) ∈ [d/3, d/2]. After suitable
relabelling, we get Eqn.(6) with the desired degree properties.
Size analysis. We will prove that for any node u in Φ, [ f : u] can be computed by a right-heavy
homogeneous circuit of size ≤ 2s.

Fix node u. Maintain a ‘growing’ disjoint copy of Φ as circuit Φ′, which is intended to
inductively compute [v : u], for the ‘current’ node v. We induct on depth (of v in Φ). The base
case (namely, a leaf) occupies size ≤ 1 in Φ′, but no extra edge/node needs to be added.

Suppose, we have computed Φ′ bottom-up, till i-th level (i ≥ 1). For i + 1-th level, we need to
compute at most two quotients of the form [v : u] (by definition). Addition: If v =: vL + vR, then
[v : u] = [vL : u] + [vR : u]. By induction hypothesis, both the quotients are already computed
in Φ′. The two input edges and the + gate are already in Φ′. Thus, we do not need to add any
extra edge or node in Φ′ (i.e. they are copies of those in Φ). Multiplication: If v = vL · vR, then
[v : u] = [vL] · [vR : u]. By induction hypothesis, both are pre-computed; [vL] in Φ and [vR : u]
in Φ′. We delete the left incoming-edge of × in Φ′, replacing it with an edge from vL of Φ. So, no
extra edge or node is required.

Thus, [ f : u] has a circuit Φ′ (with Φ) of size at most s2 := 2s. Φ′ is homogeneous because all
the intermediate nodes [v], and [v : u], are homogeneous polynomials. It has fanin 2 again, by
the definition. The right-heaviness follows by swapping the sub-circuits appropriately without
incurring any size blowup.

The above lemma can be applied many-fold, to decompose f (x) as a sum of product of 3
polynomials with better degree restrictions. We claim the following (for proof refer Section B).
Lemma 10 (Sum of product of 3). Let f (x) be an n-variate, homogeneous, degree d polynomial
computed by a right-heavy homogeneous circuit of size s. Then, ∃ fij ∈ F[x] such that (for s1 := O(s2)),

f (x) =
s1

∑
i=1

fi1 · fi2 · fi3 , with the following properties: (7)

1. deg( fi1) ≤ deg( fi2) ≤ deg( fi3) ≤ d/2, for all i ∈ [s1].
2. deg( fi1) ≤ d/3 ≤ deg( fi3) and deg( fi1) + deg( fi2) + deg( fi3) = d, for all i ∈ [s1].
3. each fij has right-heavy homogeneous circuit of size at most s3 = O(s).

Proof of Theorem 1. Now, we are set to prove the main theorem. For the time being, assume that
the given f (x) is a degree d polynomial which can be computed by a right-heavy homogeneous
circuit of size s (as later, we can use this on each homogeneous part to finish). Using Lemma 10,
we can decompose f (x) with summand being s1 := O(s2) as follows:

f (x) =

(
∑

i∈S1

fi1 · fi2 · fi3

)
+

(
∑

i∈S2

fi1 · fi2 · fi3

)
=: G + H , (8)

where S1 and S2 are disjoint subsets of [s1] such that S1 ∪ S2 = [s1] with the following properties:
(i) deg( fi1) ≤ deg( fi2) ≤ d/3 ≤ deg( fi3) ≤ d/2 , ∀ i ∈ S1.
(ii) deg( fi1) ≤ d/3 ≤ deg( fi2) ≤ deg( fi3) ≤ d/2 , ∀ i ∈ S2.
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(iii) deg( fi1) + deg( fi2) + deg( fi3) = d, for all i ∈ [s1].
(iv) Each fij can be computed by a right-heavy homogeneous circuit of size at most s3 :=
O(s) , ∀ (i, j) ∈ [s1]× [3].

Decomposition of G. For i ∈ S1, we further decompose each fi3 (of size s3) as Eqn.(6), using
Lemma 9, to get:

G = ∑
i∈S1

fi1 · fi2 · fi3 = ∑
i∈S1,j∈[s3]

fi1 · fi2 · fi3,j1 · fi3,j2 . (9)

As, i ∈ S1, we have deg( fi1) ≤ deg( fi2) ≤ d/3. By the degree property in Lemma 9, it follows:
deg( fi3,j1) ≤ deg( fi3,j2) ≤ (2/3) · deg( fi3) ≤ 2/3 · d/2 = d/3.

Each polynomial fi3,jk, for j ∈ [s3], k ∈ [2], can be computed by a right-heavy homogeneous
circuit of size at most O(s3) = O(s). By Lemma 10, each fik, for i ∈ S1, k ∈ [2], already has
s2 = O(s) size right-heavy homogeneous circuit. The top fanin is at most |S1| · s3 = O(s3). Thus,
G admits the desired decomposition.

Decomposition of H. For i ∈ S2, we decompose each fi1 (of size s3) as Eqn.(7) using Lemma 10;
and each fi2 (resp. fi3), of size s3, as Eqn.(6) using Lemma 9 to get:

fi1 · fi2 · fi3 = ∑
(j,k,`)∈[s′]×[s3]×[s3]

( fi1,j1 · fi1,j2 · fi1,j3) · ( fi2,k1 · fi2,k2) · ( fi3,`1 · fi3,`2) . (10)

Note that, s′ := O(s2
3) = O(s2). Thus, the top fanin is s” := s′ · s2

3 = O(s4). Given (j, k, `), we
want to club the 7 factors in Eqn.(10) into 4. To attain that, we consider the following two cases.
Case I: (deg( fi1,j1) + deg( fi2,k2) ≤ d/3). In this case, we club the 7 product as follows:(

fi1,j1 · fi2,k2
)
·
(

fi1,j2 · fi2,k1
)
·
(

fi1,j3 · fi3,`1
)
· ( fi3,`2)

We claim that each product polynomial inside the brackets has degree ≤ d/3. Because,
(i) deg( fi1,j1 · fi2,k2) = deg( fi1,j1) + deg( fi2,k2) ≤ d/3 by assumption.
(ii) deg( fi1,j2 · fi2,k1) = deg( fi1,j2) + deg( fi2,k1) ≤ deg( fi1)/2 + deg( fi2)/2 ≤ d/3. The first
inequality follows directly from the degree bound on the decomposition of fi1 using Lemma 10
and fi2 using Lemma 9. The last inequality follows from degree bound on the decomposition of
f using Lemma 10, and since deg( fi3) ≥ d/3 =⇒ deg( fi1) + deg( fi2) ≤ 2d/3.
(iii) deg( fi1,j3 · fi3,`1) = deg( fi1,j3) + deg( fi3,`1) ≤ deg( fi1)/2 + deg( fi3)/2 ≤ d/3. The first
inequality follows directly from the degree bound on the decomposition of fi1 using Lemma
10 and fi3 using Lemma 9. The last inequality follows, since i ∈ S2 means that deg( fi2) ≥ d/3;
implying deg( fi1) + deg( fi3) ≤ 2d/3.
(iv) deg( fi3,`2) ≤ (2/3) · (deg( fi3)) ≤ (2/3) · (d/2) = d/3. Both the inequalities follows directly
from the degree bounds on the decomposition of fi3 and f using Lemma 9 and 10 respectively.
Case II: (deg( fi1,j1) +deg( fi2,k2) > d/3). In this case, we club the 7 factors in Eqn.(10) as follows:(

fi1,j1 · fi3,`1
)
·
(

fi1,j2 · fi1,j3 · fi2,k1
)
· ( fi2,k2) · ( fi3,`2)

We claim that each factor polynomial inside the bracket has degree ≤ d/3. Because:
(i) deg( fi1,j1 · fi3,`1) = deg( fi1,j1) + deg( fi3,`1) ≤ deg( fi1)/3 + deg( fi3)/2 < 1/2 · (deg( fi1) +
deg( fi3)) ≤ d/3. The first inequality follows directly from the degree bound on the decomposi-
tion of fi1 using Lemma 10 and fi3 using Lemma 9. The last inequality follows, as i ∈ S2 means
deg( fi2) ≥ d/3; implying deg( fi1) + deg( fi3)) ≤ 2d/3.
(ii) deg( fi1,j2 · fi1,j3 · fi2,k1) = deg( fi1,j2) + deg( fi1,j3) + deg( fi2,k1) = deg( fi1) − deg( fi1,j1) +
deg( fi2) − deg( fi2,k2) = (deg( fi1) + deg( fi2)) − (deg( fi1,j1) + deg( fi2,k2)) < 2d/3 − d/3 =
d/3. The second equality follows from homogeneity in the decomposition in Lemmas 9-10:
deg( fi1,j1) + deg( fi1,j2) + deg( fi1,j3) = deg( fi1) and deg( fi2,k1) + deg( fi2,k2) = deg( fi2). The
last inequality follows from the degree bound on the decomposition of f using Lemma 10,
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i.e. deg( fi3) ≥ d/3 =⇒ deg( fi1) + deg( fi2) ≤ 2d/3. The subtracted part follows from the
assumption in Case II.
(iii) deg( fi2,k2) ≤ (2/3) · (deg( fi2)) ≤ (2/3) · (d/2) = d/3. Both the inequalities follow directly
from the degree bounds on the decomposition of fi2 and f , using Lemmas 9-10 respectively.
(iv) deg( fi3,`2) ≤ (2/3) · (deg( fi3)) ≤ (2/3) · (d/2) = d/3. Both the inequalities follow directly
from the degree bounds on the decomposition of fi3 and f , using Lemmas 9-10 respectively.

Thus, in both the cases, we clubbed the product of 7, into that of 4, with the desired degree
properties. Thus, Eqn.(10) can be re-written to get:

H = ∑
i∈S2

fi1 · fi2 · fi3 =
|S2|·s”

∑
m=1

f̃m1 · f̃m2 · f̃m3 · f̃m4

as each fi1 · fi2 · fi3 could be decomposed as Eqn.(3) with the desired degree properties. Adding
up G and H in Eqn.(8), it follows that f (x) has the decomposition as Eqn.(3), with the desired
degree bound; and the top fanin being at most |S2| · s” = O(s6).

Size analysis. As in Lemmas 9-10, the size of the factor polynomials in the product is at most
O(s). Also, each factor polynomial in the product in Eqns.(9-10) is computed by a circuit of size
at most O(s). While clubbing 7 factors into 4, we multiply at most 3 of them together into one
which again is of size at most O(s). As discussed above, the top fanin can be at most O(s6).

Given an (inhomogeneous) f (x) of degree d, computed by Φ of size s, one can show that
there is a right-heavy homogeneous Φ′ of size O(s · d2) computing each homogeneous-part of f
(see [SY10]). One can apply the above decomposition on each i-th degree homogeneous-part; to
get the desired decomposition with the top fanin being O(d · (sd2)6) = O(s6 · d13). The degree
of each factor polynomial inside the product is ≤ d/3 and each can be computed by a circuit of
size at most O(sd2).

3.2 Conjecture C1 to VP 6= VNP: Proof of Theorem 2

Proof of Theorem 2. Let GRH and Conjecture C1 be true. For a non-constant parameter k, let
x := (x1, . . . , xk). For all k ∈N, take d := d(k) = 27k − 1 ∈ I, by definition. Thus, k = Θ(log d).

Define the polynomial family Pk,n(x) := ψk,d( fd) via the inverse Kronecker map (with
n := 127) applied to fd := (x + 1)d. Note that Pk,n is a k-variate polynomial with individual
degree being at most d(d + 1)1/ke − 1 = 27 − 1 = 127 = n. Hence, Pk,n has total degree at most
kn = 127 · k.

For the sake of contradiction, assume that VP = VNP. Then, we show that (Pk,n)k ∈ VP.

Claim 11. GRH and VP = VNP =⇒ (Pk,n)k ∈ VP.

Proof of Claim 11. By definition of the polynomial family Pk,n, we have

Pk,n(x) =
128k−1

∑
e=0

φ(e) · xbase128(e) ,

where base128(e) =: (e1, . . . , ek) such that, e = ∑k
i=1 ei · 128i−1 and φ(e) := coef(xe)(Pk,n) =

(d
e). Also, the number of monomials in Pk,n is |supp(Pk,n)| = |supp( fd)| = d + 1.

Clearly, φ(e) < 2d ≤ 2128k−1 < 2128k − 1. Write φ(e) in binary, i.e. φ(e) =: ∑128k−1
j=0 γe,j 2j,

where γe,j ∈ {0, 1}. From Theorem 22, we know that the sequence of coefficients φ(e) = (d
e) is

CH-definable. In particular, this means that γe,j’s are computable in CH, and hence in P/poly, by
our assumptions together with Theorem 7.
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We introduce new variables y = (y1, . . . , y7k) and consider the auxiliary polynomial φ̃e(y) :=
∑128k−1

j=0 γe,j ybin(j), where bin(j) =: (j1, . . . , j7k) so that j = ∑7k
i=1 ji 2i−1. Let y0 := (220

, 221
, . . . , 227k−1

).
Note that ybin(j)|y=y0

= 2j. Therefore φ̃e(y0) = φ(e). Now define

P̃k,n(x, y) :=
27k−1

∑
j=0

27k−1

∑
e=0

γe,j · ybin(j) · xbase128(e) ,

It is straightforward to see that Pk,n(x) = P̃k,n(x, y0). Since γe,j (as a function in bin(j), base128(e))
is in P/poly, we have (P̃k,n)k ∈ VNP = VP, by Theorem 8 (taking c = 127). As VP is closed
under substitution, we have (Pk,n)k ∈ VP as well.

On the other hand, next we show that Conjecture C1 implies that (Pk,n)k /∈ VP.

Claim 12. Conjecture C1 =⇒ (Pk,n)k /∈ VP.

Proof of Claim 12. We prove that size(Pk,n) > d10−5/6 = 2Ω(k). Assume the contrary. Then, there
exists an infinite subset J ⊂ N such that size(Pk,n) ≤ d10−5/6, for all k ∈ J. We will show that
Conjecture C1 is false over an infinite subset J′ := {d(k) : k ∈ J} ⊆ I which is a contradiction.

Let C be a circuit of size ≤ d10−5/6 that computes Pk,n, for some k. Then, using Theorem 1,
we know that there exists fij ∈ F[x] of degree at most deg(Pk,n)/3 ≤ 127k/3 such that

Pk,n =
s′

∑
i=1

fi1 · fi2 · fi3 · fi4 ,

where s′ ≤ c · d10−5 · (127k)13, for some constant c. We apply Fischer’s formula on each product
∏j fij, to write Pk,n as

Pk,n = ∑
i∈ [16·s′]

ci · f̃ 4
i , (11)

where f̃i ∈ spanF

(
f jk | j ∈ [s′], k ∈ [4]

)
, for every i. Thus, deg( f̃i) ≤ 127k/3. Applying the

Kronecker map φk,n to Pk,n yields

fd = φk,n(Pk,n) =
16s′

∑
i=1

ci ·
(
φk,n( f̃i)

)4
,

Note that, a simple combinatorial argument shows that | f̃i|1 ≤ (k+127k/3
k ) = (130k/3

k ). As
Kronecker map φk,n cannot increase the sparsity, it follows that SF( fd) ≤ 16s′ · (130k/3

k ) =: s1.
We want to show that s1 < o(d0.98289), for all large enough k. Then, we will have SF( fd) <

o(d0.98289), for all large d ∈ J′ ⊆ I which contradicts Conjecture C1. For all large enough d,

s1 ≤ 16 · c · d10−5 · (127k)13 ·
(

130k/3
k

)
< (16c · 12713) · k13 · d10−5 · (130e/3)k

< c′ · k13 · d10−5 · (128)α·k

< c′ · k13 · d10−5 · 2α · dα

= c′ · k13 · 2α · d0.982882 < o(d0.98289) ,
where α := 0.982872 > log128(130e/3) = 0.982871 . . . and c′ := 16c · (127)3. We invoked the
inequality in Eqn.(5) and also the fact that d = (27k − 1) > (1/2) · 128k, for k ≥ 1. This proves
Claim 12.

Since Claim 12 contradicts Claim 11, we conclude that VP 6= VNP, finishing Theorem 3.
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Remarks. 1. We can consider f̃d(x) := ∑d
i=0 3i2

xi and redefine Pk,n as above. Consider the poly-
nomial P̃k,n(x, y) defined on 3k variables x = (x1, . . . , xk), y = (y1, . . . , y2k) by P̃k,n(x, y) :=

∑27k−1
e=0 φ(e) · ybase128(e2) · xbase128(e), where φ(e) := 1 for all 0 ≤ e ≤ d, and 0 otherwise. Note

that, substituting yj = 3128j−1 for all j ∈ [2k] in P̃k,n, we get Pk,n.
Given (k-tuples) base128(i) and base128(j), one can easily calculate whether j = i2 or
not, in O(k2) time. Hence, the function φ is in FP. As, FP ⊂ #P/poly, therefore by
Valiant’s criterion, we have (P̃k,n)k ∈ VNP. As VNP is closed under substitution, we get
(Pk,n)k ∈ VNP as well. The hardness part for (Pk,n)k follows similarly as in the above proof.
Thus, we do not need GRH for this particular polynomial!

2. The similar proof works for ∏i∈[d](x ± i). The hardness part remains the same. The
only non-trivial part is to show that (Pk,n)k ∈ VP, assuming GRH and VP = VNP. The
polynomial family ∏i∈[d](x± i) is CH-explicit (see Section C) and the rest follows similarly.

3. Recall the proof notation. As the degree of f̃i’s is ≤ 127k/3, the degree of φk,n( f̃i) is
≤ 128k−1 · 127k/3 = O(d log d) (∵ k = Θ(log d)). Thus, it suffices to study the repre-
sentation of fd as sum-of-4th-powers `4

i , where deg(`i) ≤ O(d log d). Thus, Conjecture C1
even with this restriction, leads to the same conclusion as that in Theorem 1.

4. Note that Eqn.(5) gives a good approximation for the binomial (k+kn/3
k ), and the 1/3-rd

degree factor in Theorem 1 is critical to make the combinatorial estimate work in the proof.
We do not know how to significantly reduce the exponent 0.98289.

3.3 Conjecture C2 to blackbox-PIT ∈ P : Proof of Theorem 3

Proof of Theorem 3. Let Conjecture C2 be true for some 0 < δ1 ≤ 1, and δ2 ≥ 1. Let k be a constant
that will be specified later and x := (x1, . . . , xk). For all large n ∈N, define d := d(n) to be the
largest element in I which is ≤ (n + 1)k − 1. Also, d ≥ (1/3) · ((n + 1)k − 1) as the ratio of two
consecutive elements in I is (2m+1 − 1)/(2m − 1) < 3, for m ≥ 2.

Define the polynomial family Pk,n(x) := ψk,d( fd) via the inverse Kronecker map applied to
fd = (x + 1)d. It is clear that Pk,n is a k-variate polynomial with individual degree at most n,
because the individual degree is bounded by d(d + 1)1/ke − 1 ≤ n. Thus, deg(Pk,n) ≤ kn.

Note that (Pk,n)n is an explicit family of polynomials because its coefficient vector coef(Pk,n)
can be computed in poly(d) = poly(n) time. To see this, observe that for e = (e1, . . . , ek), we
have coef(xe)(Pk,n) = (d

e), where e := ∑k
i=1 ei(n + 1)i−1. Also, the number of monomials in Pk,n

is |supp(Pk,n)| = |supp( fd)| = d + 1.
Next we will show the hardness of the polynomial family (Pk,n)n. Let µ := 6/(δ1 − 14/k) .

We want µ > 0. This enforces a condition on k, namely k > 14/δ1.

Claim 13 (Hardness of Pk,n). size(Pk,n) > d1/µ, for all large enough n.

Proof of Claim 13. Assume to the contrary, that there exists an infinite subset J ⊂ N such that
size(Pk,n) ≤ d1/µ, for all n ∈ J. We will show that Conjecture C2 is false over an infinite subset
J′ := {d(n) : n ∈ J} ⊆ I; which is a contradiction.

Let C be a circuit of size ≤ d1/µ that computes Pk,n, for some n. Then, using Theorem 1, we
know that there exist fij ∈ F[x], of degree at most deg(Pk,n)/3 ≤ kn/3, such that

Pk,n =
s′

∑
i=1

fi1 · fi2 · fi3 · fi4 ,

13



where s′ ≤ c ·
(
d1/µ

)6 · (kn)13, for some constant c. We apply Fischer’s formula on each ∏j fij to
write Pk,n as

Pk,n = ∑
i∈[s0]

ci · f̃ 4
i , (12)

where s0 := 16 · s′ and f̃i ∈ spanF

(
f jk | j ∈ [s′], k ∈ [4]

)
, for every i. Thus, deg( f̃i) ≤ kn/3.

Applying the Kronecker map φk,n to Pk,n yields

fd = φk,n(Pk,n) =
s0

∑
i=1

ci ·
(
φk,n( f̃i)

)4
.

Note that, a simple combinatorial argument shows that |⋃i supp( f̃i)| ≤ (k+kn/3
k ) =: s1.

Since Kronecker substitution cannot increase the support size, |⋃i supp(φk,n
(

f̃i
)
)| ≤ s1, and

therefore UF( fd, s0) ≤ s1.
We want to show that s0 < dδ1 and s1 < d/4δ2 , for all large enough n. Then we have

UF( fd, dδ1) < d/4δ2 , for all large d ∈ J′ ⊆ I; which contradicts Conjecture C2.
Bound on s0. We have for large enough n (and thus d),

s0 = 16 · s′ ≤ 16c ·
(

d1/µ
)6
· (kn)13 ≤ (16c · k13) · d6/µ · (3d)13/k

= (16c · k13 · 313/k) · d6/µ+13/k = c′ · dδ1−1/k < dδ1

where c′ := 16c · k13 · 313/k is a constant. We used that d ≥ ((n + 1)k − 1)/3 ≥ nk/3 for n ≥ 1,
and δ1 = 6/µ + 14/k.

Bound on s1. Finally, we show that s1 < d/4δ2 . By Eqn.(5), we have

s1 =

(
k + k n/3

k

)
≤ (e (1 + n/3))k < (2.8/3)k · nk ≤

(
3 · (2.8/3)k

)
· d ,

We used the fact that e(1 + n/3) < (2.8 n/3) = (14n/15), for all large enough n and d ≥ nk/3.
Therefore, it suffices to show that 3 · (14/15)k ≤ 1/4δ2 . As, δ2 ≥ 1, it is enough to choose

k · log(15/14) ≥ δ2 log(12) [∵ δ2 log(12) ≥ log 3 + δ2 log 4]. The last condition is satisfied if
k ≥ 37 · δ2 [∵ log(12)/ log(15/14) ≈ 36.02]. Thus, from the above calculations, it is enough to
pick k > max (37δ2, 14/δ1). This proves Claim 13.

From hardness to HSG. We show that from the hardness of Pk,n in Claim 13, we can fulfil the
assumption in Theorem 28: size(Pk,n) > s10k+2 deg(Pk,n)

3, for some ‘growing’ function s = s(n).
Recall that deg(Pk,n) ≤ kn. We define, s(n) := n1/(10k+3). Then we have

s10k+2 (kn)3 = n(10k+2)/(10k+3) (kn)3 = k3 n4−(1/(10k+3)) <
n4

31/µ
. (13)

For the last inequality note that k, µ are constants. So for large enough n, the inequality will hold.
Additionally assume that 4 ≤ k/µ. Recall the fact: nk/3 ≤ d for n ≥ 1. So, we can continue
Eqn.(13) as

n4

31/µ
≤ nk/µ

31/µ
≤ d1/µ < size(Pk,n) . (14)

Equations (13) and (14) give the desired hardness of Pk,n. It remains to ensure the last requirement
of 4 ≤ k/µ. We show below that k ≥ 38/δ1 suffices:

µ = 6/(δ1 − 14/k) ≤ 6/ (δ1 − (14/38)δ1) = (6× 38)/(24δ1) = 19/(2δ1) ≤ k/4 .
Hence our final choice for k is: k ≥ max(37 δ2, 38/δ1).

Thus, Theorem 28 gives a poly(s)-time HSG for C(s, s, s). Hence, blackbox-PIT ∈ P.

Remarks. 1. The same proof works for other polynomials like, ∏i∈[d](x± i) or ∑d
i=0 3i2

xi. The
hardness-proof part does not change at all (assuming the corresponding Conjecture C2).
Their explicitness is also clear as their coefficient vector is computable in poly(d)-time. So,
the corresponding Pk,n will be k (=constant) variate and poly(n)-time explicit.
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2. Recall the proof notation. As the degree of f̃i’s is ≤ kn/3, the degree of φk,n( f̃i) is ≤
(n + 1)k−1 · kn/3 < k/3 · (n + 1)k ≤ k/3 · (3d + 1) = O(d) (∵ k is a constant). Thus, it
suffices to study the representation of fd as sum-of-4th-powers `4

i , where deg(`i) ≤ O(d).

4 Conclusion

This work effectively establishes that studying the univariate sum-of-rth-powers representation,
for any r ≥ 4, suffices to both derandomize and prove hardness in algebraic complexity (see
Section F).

Here are some immediate questions which require rigorous investigation (also see [DST20]).

1. Does the exponent 3, or 2, suffice to solve PIT, or VP 6= VNP? In particular, can we cleverly
define the frontier to improve Theorem 1?

2. Prove Conjectures C1-C3 for SOS (sum-of-squares) model. They relate to matrix rigidity
[DST20, Thm.4].
Here is a concrete structural conjecture to write fd via a ‘square of vectors’: Pick s, |S| = o(d)
and S ⊆ {0, 1, 2, ...., O(d)}. There do not exist column-vectors c, ui ∈ Qs, s.t. (x + 1)d =

cT.
(
∑i∈S ui · xi)2.

3. Prove Conjecture C1 for sum of constant many 4th-powers.
4. Prove Conjecture C2 for a ‘generic’ polynomial f with rational coefficients (Q). Does it fail

when we move to complex coefficients (C)?
5. Prove SZ((x + 1)d) ≥ Ω(d), for all large enough d (i.e. for the ones outside I too).
6. Remove the GRH assumption for the polynomial (x + 1)d (in Theorem 2).
7. Does proving bounds like Ω(d1/2) or Ω(d1/3) on SF( fd) suffice to conclude Theorem 2?

Note that, the trivial lower bound is Ω(d1/4). What’s a natural barrier on the lower bound?
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Grössen.(Abdruck einer Festschrift zu Herrn EE Kummers Doctor-Jubiläum, 10.
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A Bounds for the sum of 4th-powers: Details for Section 1

This section reminds some of the motivating observations made in [DST20]. We show some
upper/lower bounds for univariate polynomials represented as sum of 4th-powers. We will
show two different ways to write any f as sum of 4th-power of polynomials over F of characteristic
0 or large; thus, establishing that SO4 is a complete model.

A.1 Sum of r + 1 many r-th powers of polynomials– Upper bound

The first representation shows that any polynomial can be written as a sum of (r + 1)-many
rth-powers of polynomials. [However, the support-union is as large as the support of the original
polynomial.]

Lemma 14. Let F be a field of characteristic 0 or ≥ r + 1. Let x = (x1, . . . , xk) for some k ∈ N and
h(x) ∈ F[x] with 0 ≤ m ≤ r. There exist cm,i ∈ F and distinct λi ∈ F, for 0 ≤ i ≤ r, such that

h(x)m =
r

∑
i=0

cm,i (h(x) + λi)
r .

Proof. Consider the polynomial (h(x) + t)r, where t is a new indeterminate different from x. We
have

(h(x) + t)r =
r

∑
i=0

(
r
i

)
ti h(x)r−i .

Choose r+ 1 distinct λj’s in F, and put t = λj, for j = 0, . . . , r. We get r+ 1 many linear equations
which can be represented in matrix form Av = b, where matrix A :=

(
(r

i) λi
j

)
0≤j,i≤r

, and vectors

v =
(
hr−i)

0≤i≤r and b =
(
(h + λj)

r)
0≤j≤r.

Note that except for the binomial factors, A is a Vandermonde matrix. When computing
the determinant, one can pull out the binomial factor (r

i) from the i-th column, for i = 0, . . . , r.
Then, a Vandermonde matrix remains, and hence

det(A) =
r

∏
i=0

(
r
i

)
· ∏

0≤i<j≤r
(λj − λi) 6= 0 .

Therefore, A is invertible and v = A−1b. Let the (m + 1)-th row of A−1 be [cm,0 cm,1 · · · cm,r].
Then we have,

h(x)m =
r

∑
i=0

cm,i (h(x) + λi)
r .

Using Lemma 14, we show an upper bound on SF( fd) and UF( fd, 5) for fd(x) = (x + 1)d.

Lemma 15. For fd(x) = (x + 1)d, we have SF( fd) ≤ 5 · (d/4 + 4) and UF ( fd, 5) ≤ d/4 + 4.

Proof. Suppose d =: 4 · k + t, where 0 ≤ t ≤ 3 and 0 ≤ k ≤ d/4. Then, from Lemma 14, it
follows that there exists ci, λi ∈ F such that

(x + 1)d =
(
(x + 1)k

)4
· (x + 1)t

=
(
(x + 1)k

)4
·
(

4

∑
i=0

ci

((
x + 1)t + λi

)4
))

=
4

∑
i=0

ci

(
(x + 1)t+k + λi(x + 1)k

)4
=:

4

∑
i=0

ci · `4
i
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where `i := (x + 1)t+k + λi(x + 1)k. Note that, |`i|1 = |⋃4
i=0 supp(`i)| ≤ t + k + 1 ≤ d/4 + 4.

Thus, the respective bounds on SF( fd) and UF( fd, 5) follow.

A.2 Sum of powers of ‘small’ support-union– Upper bound
The second representation is a bit more complicated than the first one. Here we use the notion
of sumset. In additive combinatorics, the sumset (also called the Minkowski sum) of two subsets
A and B of an abelian group G (written additively) is defined to be the set of all possible sums
of an element from A with an element from B. That is,

A + B := {a + b | a ∈ A, b ∈ B} .
The n-fold iterated sumset of A is nA := A + · · ·+ A, where there are n summands.

We want a small support-union representation of a d-degree polynomial f as a sum of 4th-
powers. We consider a small B such that 4B covers {0, . . . , d}. In particular, we know that there
exists a unique non-negative integer t such that (t− 1)4 < d + 1 ≤ t4. Define the set B as,

B := {ai · tk | 0 ≤ ai ≤ t− 1, 0 ≤ k ≤ 3} .
So, |B| = 4 · t = O(d1/4). Clearly, 4B ⊇ {0, . . . , d} (using base-t representation). Note that
the largest element in B is m := (t − 1) · t3. For any ε > 0, there exists d0 such that t <
(1 + ε) · (d + 1)1/4, for all d ≥ d0. Thus, for any constant c > 1 and large enough d, we have
m < c · (d + 1). Therefore, the largest element in 4B is at most 4 ·m < 4 · c · (d + 1) = O(d). We
claim the following:

Lemma 16. For any f (x) ∈ F[x] of degree d, where F is a field of characteristic 0 or large, there exists
`i supported on B, and ci ∈ F such that f (x) = ∑4m

i=0 ci · `4
i .

Proof. Consider `i(zi, x) = ∑j∈B zijxj, for distinct indeterminates zij, for all i, j. Surely, degx(`i) =
m. There exists 4m + 1 many degree-4 polynomials Qj(zi), over |B| = 4t many variables, s.t.

`i(zi, x)4 =
4m

∑
j=0

Qj(zi) · xj ∀i ∈ [4m] .

Note that from any monomial in Qj we could recover j uniquely. Thus, we could conclude that
Qj(zi) (0 ≤ j ≤ 4m) are F-linearly independent.

Suppose f (x) =: ∑d
i=0 fixi. Define f̃ ∈ F1×(4m+1) and A ∈ F[z](4m+1)×(4m+1) as,

f̃ :=
[

f0 f1 . . . fd 0 . . . 0
]

, A :=


Q0(z0) Q1(z0) . . . Q4m(z0)
Q0(z1) Q1(z1) . . . Q4m(z1)

...
... . . .

...
Q0(z4m) Q1(z4m) . . . Q4m(z4m)

 .

We want to find c =:
[
c0 c1 . . . c4m

]
∈ F1×(4m+1) and α = (αij)i,j such that

4m

∑
i=0

ci · `i(α, x)r =
d

∑
i=0

fi · xi

⇐⇒ c · A|z=α ·


1
x
...

x4m

 = f̃ ·


1
x
...

x4m


⇐⇒ c · A|z=α = f̃ .

As zi are distinct variables, first column of A consists of different variables at each coordinate.
Moreover, first row of A contains F-linearly independent Qj’s. Thus, for random αij ∈ F, A|z=α

is full rank over F. Fix such an α. This fixes c = f̃ · (A|z=α)
−1.

From the above construction, it follows that f (x) = ∑4m
i=0 ci · `i(α, x)4 .
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Remarks. 1. Thus, for any d-degree f , UF( f , s := 4m + 1) ≤ O(d1/4). As seen before, 4m =
Θ(d). When s ≥ c · (d + 1) for c > 4, we have a small base representation for large enough
d. It is unclear, though, whether even for s ≤ d, such a small support-union representation
exists.

2. Unfortunately, the above calculation does not give ‘small’ sparsity-sum representation of
f : the top fanin is already Ω(d) and each |`i|1 = O(d1/4); giving ∑ |`i|1 = O(d5/4). This is
worse than the bound on SF( fd), derived from Lemma 15.

3. Both the above representations (small top-fanin s resp. small support-union) crucially
require a field F. E.g. they do not exist for fd over the ring Z (hint: go modulo 2).

A.3 (x + 1)d as sum of two 4th-powers– Lower bound
We show a strong lower bound of Ω(d) for fd(x) := (x + 1)d when expressed as a sum of two
4th-powers. Wlog, we consider F algebraically closed, as SF(·) ≤ SF(·) and UF(·) ≤ UF(·). Note
that, c1 · `4

1 + c2 · `4
2 = ˜̀4

1− ˜̀4
2 where ˜̀1 = c1/4

1 · `1 and ˜̀2 = (−c2)1/4 · `2. Also, |⋃2
i=1 supp(`i)| =

|⋃2
i=1 supp( ˜̀ i)|. Thus, it suffices to prove the bounds when fd is written as `4

1 − `4
2. Before that,

we prove the following.

Lemma 17. For a fixed d ≥ 1, if (x + 1)d = `4
1 − `4

2 , for some `i ∈ F[x], then `1 and `2 must share a
non-trivial gcd.

Proof. Suppose, gcd(`1, `2) = 1. Note that, `4
1 − `4

2 has the following factorization over F[x],
(x + 1)d = (`1 − `2) (`1 − ζ4 `2) (`1 − ζ2

4 `2) (`1 − ζ3
4 `2)

where ζ4 :=
√
−1, primitive 4-th root of unity. If (x + 1) | (`1 − ζ i

4 `2) and (`1 − ζ
j
4 `2), for i 6= j,

then subtraction would imply: (x + 1) | `1, `2. This contradicts our assumption; hence, there
must exist i: `1 − ζ i

4 `2 = c · (x + 1)d. In particular, it means: `1 − ζ
j
4 `2 is constant, for all j 6= i.

Subtracting two such equations immediately gives us: `1, `2 are constants; a contradiction again
as d ≥ 1.

Theorem 18. For any d ≥ 1, we have

UF( fd, 2) =

{
d/4 + 1 if 4 | d ,
∞ otherwise.

Proof. We prove the following claim.

Claim 19. For 1 ≤ d : (x + 1)d = `4
1 − `4

2 iff 4 | d. In that case, ∃α1, α2 ∈ F such that `i =
αi · (x + 1)d/4

Proof. Assume (x + 1)d = `4
1− `4

2. By Lemma 17, gcd(`1, `2) =: p(x) is non-constant. Therefore,
p4 | (x + 1)d; implying that p(x) is a power of x + 1. After dividing out, we can again apply the
lemma. Eventually, we deduce: 4 | d, and `i = αi · (x + 1)d/4, for some αi ∈ F.

The theorem follows directly from the claim.

B Decomposition as a sum of product of 3: Details for Section 3.1

Lemma 10 (restated). Let f (x) be an n-variate, homogeneous, degree d polynomial computed by a
right-heavy homogeneous circuit of size s. Then, ∃ fij ∈ F[x] such that (for s1 := O(s2)),

f (x) =
s1

∑
i=1

fi1 · fi2 · fi3 , with the following properties: (15)
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1. deg( fi1) ≤ deg( fi2) ≤ deg( fi3) ≤ d/2, for all i ∈ [s1].
2. deg( fi1) ≤ d/3 ≤ deg( fi3) and deg( fi1) + deg( fi2) + deg( fi3) = d, for all i ∈ [s1].
3. each fij has right-heavy homogeneous circuit of size at most s3 = O(s).

Proof of Lemma 10. Invoke Lemma 9 to conclude that f (x) has a decomposition of the form
Eqn.(6): Let di1 := deg( fi1) and di2 := deg( fi2), for all i ∈ [s]. From Lemma 9, we have
d/3 ≤ di1 ≤ d/2 ≤ di2 ≤ 2d/3. Next, we further decompose each fi2 as sum of product of 2
polynomials using Lemma 9, as follows (for s2 = O(s)):

fi2 =
s2

∑
j=1

fi2,j1 · fi2,j2 , with the following properties: (16)

(1) di2/3 ≤ deg( fi2,j1) ≤ di2/2 ≤ (1/2) · (2d/3) = d/3, for all j ∈ [s2].
(2) di2/2 ≤ deg( fi2,j2) ≤ 2di2/3 ≤ (2/3) · (2d/3) = 4d/9 < d/2, for all j ∈ [s2].
(3) deg( fi2,j1) + deg( fi2,j2) = di2 and deg( fi1) + deg( fi2,j1) + deg( fi2,j2) = d, for all j ∈ [s2].

Plug Eqn.(16) into Eqn.(6) to get a decomposition as a sum of products of 3 (unordered degree):
f (x) = ∑

i∈[s], j∈[s2]

fi1 · fi2,j1 · fi2,j2 ,

where the top fanin is s1 := s · s2 = O(s2). By the above calculation, we have
min

(
deg( fi1), deg( fi2,j1), deg( fi2,j2)

)
≤ deg( fi2,j1) ≤ d/3 , and

d/3 ≤ deg( fi1) ≤ max
(
deg( fi1), deg( fi2,j1), deg( fi2,j2)

)
≤ d/2

with deg( fi1) + deg( fi2,j1) + deg( fi2,j2) = d. After relabelling the factor polynomials (with
degree in increasing order), we get Eqn.(15) with the desired properties.

Size analysis. By Lemma 9, each fi1, fi2 has right-heavy homogeneous circuit of size at most
s2 = O(s). Applying the same argument on fi2, we can conclude that each fi2,j1, fi2,j2, for j ∈ [s2]
has right-heavy homogeneous circuit of size at most s3 = O(s2) = O(s).

C Primer on complexity classes: Details for Section 3.2

C.1 Complexity classes

The counting hierarchy (CH) was first introduced in [Wag86]. It can be defined by a count-
ing operator C that can be applied to complexity classes. We denote by {0, 1}∗ × {0, 1}∗ →
{0, 1}∗, (x, y) 7→ 〈x, y〉, a pairing function (e.g. by duplicating each bit of x and y and inserting
01 in between).

Definition 20. If K is a complexity class, then we define an operator C acting on K. The action, denoted
by C · K, produces a set of languages A, such that there exists a language B ∈ K and a polynomial p(·),
obeying :

x ∈ A ⇐⇒ #
{

y ∈ {0, 1}p(|x|) : 〈x, y〉 ∈ B
}

>
1
2
· 2p(|x|) .

The i-th level CiP of the counting hierarchy is defined recursively as C0P := P and CiP = C · Ci−1P.
Finally, we define the counting hierarchy: CH :=

⋃
i≥0 CiP. Often, PP := C1P is used in the

literature. Observe that C2P = PPPP.

Let us recall the definition of other complexity classes. For a survey of complexity classes,
see [Joh90].
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• FP denotes the class of all string functions which can be computed by a polynomial time
Turing machine.

• A polynomial advice is a function α : N→ {0, 1}∗ such that n 7→ α(n) is poly-bounded. The
(non-uniform) class C/poly for a complexity class C consists of all string functions of the
form ψ(x) =: φ(〈x, α(|x|)〉), where φ ∈ C and α is some polynomial advice function.

C.2 GRH, VP vs VNP and the CH collapse

The proof of Theorem 2 requires CH explicitness of certain families. Here is the formal definition.
Definition 21. A sequence a = (a(n, k))n∈N, k≤2p(n) of integers of exponential-bitsize is said to be
CH-definable iff Sgn(a) and Bit(|a|) ∈ CH, where (think of inputs n in unary & k in binary)

Sgn(a) := {(1n, k) | a(n, k) ≥ 0}
Bit(|a|) := {(1n, k, j, b) | the j-th bit of a(n, k) equals b} .

It was established that the family ∏i∈[d](x + i) is CH-explicit, for details see [Bür09, Cor.3.12].
A similar proof was used in [DST20, Thm. 31] to show that (x + 1)d is CH-explicit as well.

Theorem 22 ([DST20]). The sequence a = a(n, k) := (d
k), where d ≤ 2p(n) for some polynomial p(·)

(d given in binary) and k ≤ d, is definable in CH.

A useful sufficient condition for a polynomial family ( fn(x))n to be in VNP is known, due to
Valiant [Val79b]. For a proof, see [Bür13].

Theorem 23 (Valiant’s criterion, [Val79b]). Suppose φ : {0, 1}∗ → N is a function in the class
#P/poly. Then, the family ( fn)n of polynomials defined by fn(x) := ∑e∈{0,1}n φ(e) · xe ∈ VNP.

Theorem 8 (restated). Let function φ : [0, c]∗ → N be in #P/poly, for some constant c ∈ N. Then,
the family of polynomials defined by fn(x) := ∑e∈[0,c]n φ(e) · xe, is in VNP.

Proof sketch. The trick is to introduce yij, for every i ∈ [n], j ∈ [c′], where c′ := dlog(c + 1)e is a
constant. Define

f̃n(y) := ∑
e∈{0,1}c′ ·n

φ′(e) · ye

where φ(e1, . . . , en) =: φ′ (bin(e1), . . . , bin(en)). Note that under the substitution, ψ : yij 7→
x2j−1

i , f̃n(y) becomes fn(x). By the previous theorem, f̃n(y) ∈ VNP. As VNP is closed under
polynomial substitution, fn(x) ∈ VNP as well.

VP and VNP have several closure properties. In particular, they are closed under substitution.
That is, for a polynomial f (x, y) ∈ VP (or VNP), also f (x, y0) ∈ VP (resp. VNP), for any values
y0 from F assigned to the variables in y. In fact, one can assign y = g(x) where g(x) ∈ VP.
Fischer’s formula. By a formula due to Fischer [Fis94] one can write any monomial as an
exponential sum of powers. It requires char F = 0 or large. Also, it fails over Z.

Lemma 24. [Fis94] Let F be a field of characteristic 0 or ≥ 5. Any expression of the form g =
g1 · g2 · g3 · g4 can be written as g = ∑16

j=1 cjh4
j , where cj ∈ F and hj ∈ spanF (gi | i ∈ [4]), for

j ∈ [16].
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D Hardness to derandomization: Details for Section 3.3

Very recently, Guo et al. in [GKSS19] showed utility of the hardness of constant variate polynomi-
als to derandomize PIT. To make this discussion formal, we start with the following definition.
Definition 25 (Hitting-set generator (HSG)). A polynomial map G : Fk −→ Fn given by G(z) =
(g1(z), g2(z), . . . , gn(z)) is said to be a hitting-set generator (HSG) for a class C ⊆ F[x1, x2, . . . , xn]
of polynomials if for every nonzero f ∈ C, we have that f ◦ G = f (g1, g2, . . . , gn) is nonzero.

Remark. We say that G is t-time HSG if coef(gi) can be computed in t-time and maximum degree
of gi is also at most t. This gives (t · d)O(k) time blackbox-PIT algorithm, for circuits computed
by degree ≤ d, over popular fields like: rationals Q or their extensions, local fields Qp or their
extensions, or finite fields Fq. When k is constant, we get a poly-time blackbox-PIT.

Given an HSG, it can be seen that there is a corresponding hitting-set H such that one needs
to only query the given input circuit at points on H to determine non-zeroness.

Guo et al. in [GKSS19] came up with the following HSG connection.

Definition 26. For P(z) ∈ F[z], define the map Gen2
P : Fk × Fk → Fn+1 such that Gen2

P =:
(∆0(P)(z, y), . . . , ∆n(P)(z, y)), where ∆i(P) is the homogeneous degree i (in y) component in the
Taylor expansion of P(z + y), i.e. ∆i(P)(z, y) = ∑e∈Si

ye

e! ·
∂i P
∂ze , where Si ⊂ Nk such that for any

e ∈ Si, |e|1 = i.

The following theorem says that for a sufficiently hard and explicit P, Gen2
P is an efficient

HSG. It requires k ≥ 4.

Theorem 27. [GKSS19, KS19] Let P be a k-variate polynomial of degree d in F[x]. Suppose P cannot
be computed by algebraic circuits of size s̃ = s · D · d3 · n10k for parameters n, D, s. Then, for any
C ∈ C(n + 1, D, s), we have C 6= 0 ⇐⇒ C ◦ Gen2

P 6= 0.

We use the same theorem with the parameters n + 1 = D = s to get PIT for C(s, s, s).

Theorem 28. [GKSS19] Let P ∈ F[x] be a k-variate polynomial of degree d such that coef(P) can be
computed in poly(d)-time. If size(P) > s10k+2 · d3, then there is a poly(s)-time HSG for C(s, s, s).

E Approximative version of Conjecture C2 to Hitting-set for VP

Here we study hitting-set for the approximative class VP. Before doing that, it is important to
recall the meaning of approximation in the algebraic setting.

Definition 29 (Approximative computation). A circuit C over F(ε)[x] is said to approximate a
polynomial P(x) if the output of the circuit C is a polynomial in F[x, ε] such that C(x, ε) =: εM · P(x) +
εM+1 ·Q(x, ε), for some polynomial Q(x, ε) ∈ F[x, ε] and M ∈N≥0. In other words,

lim
ε→0

1
εM · C(x, ε) = P(x) .

We denote by size(P), the approximative circuit complexity of P, to be the size of the smallest
circuit approximating P. The class VP contains the families of n-variate polynomials, of degree
nO(1), over F, of approximative complexity nO(1).

Note: Equivalently, one could think of P as being ‘approximated’ by the circuit C(x, ε)/εM

over the function field F(ε). VP could potentially be larger than VP, because the degree wrt ε
(i.e. M above) could be exponentially-larger than n.
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E.1 Tools for VP

We point out that the CNF Theorem (Theorem 1) works for approximative circuits as well.

Theorem 30. Suppose f (x) ∈ F[x] is a polynomial of degree d which can be approximated by a size-s
circuit C. Then, there exist polynomials fij ∈ F(ε)[x] such that

C(x) =
s′

∑
i=1

fi1 · fi2 · fi3 · fi4 , (17)

for s′ = poly(s, d), where each fij has circuit size (over F(ε)) at most s” = poly(s, d) and deg( fij) ≤ d/3,
for all i, j. (Wherein deg(·) is wrt x.)

Proof sketch. Essentially the same proof (of Theorem 1 in Section 3.1) works. One needs to
consider C ∈ F(ε)[x] and realize that the earlier proof is field independent; so run it over
F(ε).

Kumar et al. in [KSS19] proved that the hardness of constant-variate polynomials in the approx-
imative sense, suffices to construct an HSG for VP using the generator Gen2

P (see Definition 26).

Theorem 31. [KSS19, Thm.1.6] Let P be a k-variate polynomial of degree d in F[x]. Suppose s̃ :=
size(P) > s ·D · d · n10k for parameters n, D, s. Then, for any (n + 1)-variate polynomial Q(x0, . . . , xn)
of degree D such that size(Q) ≤ s, we have Q 6= 0 ⇐⇒ Q ◦ Gen2

P 6= 0 .

E.2 Hitting-set for VP: Approximative version of Conjecture C2 and Theorem 1

Let field F be Q, Qp (or their fixed extensions), or a finite field of large characteristic. Let us first
formalize Conjecture C2 in the approximative setting. For a ring R, we define support-union
approximative size UR( f , s) as the number of distinct monomials (in x) required to approximate f
as sum-of-4th-powers. In particular, define

UR( f , s) := min

(∣∣∣∣ s⋃
i=1

supp(`i)

∣∣∣∣ : g(x, ε) =
s

∑
i=1

ci · `4
i and lim

ε→0

1
εM · g = f

)
.

Obviously, UR(·) ≤ UR(·). We conjecture that even UF( fd, s) is large for fd := (x + 1)d.

Conjecture 3 (C3). There exist positive constants δ1 ≤ 1, δ2 ≥ 1 such that UF

(
fd, dδ1

)
≥ d/4δ2 , for

all large enough d ∈ I.

Theorem 32. If Conjecture C3 holds true, then there is a poly-time HSG for VP-circuits.

Proof sketch. The proof is almost the same as that of Theorem 3. We define Pk,n similarly (i.e. in-
verse Kronecker applied on fd where d was chosen uniquely from an interval based on n). We
claim that size(Pk,n) > d1/µ, where µ ≥ 6/(δ1 − 14/k) (same as in Section 3.3).

Hardness of Pk,n: We assume that there is a circuit C of size at most d1/µ computing a
polynomial C(x, ε) ∈ F(ε)[x], which approximates Pk,n over large enough n ∈ J, where J ⊆N is
an infinite subset. In particular, C(x, ε) =: εM · Pk,n + εM+1 ·Q(x, ε) for some M ∈N≥0. Using
Theorem 30 and Fischer’s trick, one can write

C(x, ε) = ∑
i∈[s0]

ci · f̃ 4
i

where s0 ≤ 16c · d6/µ · (kn)13, for some constant c and deg( f̃i) ≤ kn/3. Apply φk,n on C(x, ε).
As, φk,n ◦ ψk,d = id, over F[x]≤d. Thus,

εM · fd + εM+1 · Q̃ := (φk,n ◦ ψk,d)(C) =
s0

∑
i=1

ci ·
(
φk,n

(
f̃i
))4
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where we have used that φk,n(Pk,n) = fd and φk,n(Q(x, ε)) = Q̃(x, ε), for some Q̃ ∈ F[x, ε]. It is
important to observe that |⋃i supp( f̃i)| ≤ s1 := (k+kn/3

k ). Since Kronecker map can not increase
the support size, therefore |⋃i supp(

(
φk,n

(
f̃i
))
)| ≤ s1. Thus, we must have UF( fd, s0) ≤ s1 from

the definition of UF(·).
We can show that s0 < dδ1 and s1 < d/4δ2 , for all large enough n, where k ≥ 37δ2 (as shown in

Section 3.3). Therefore, we have UF( fd, dδ1) < d/4δ2 , over all large d ∈ J′ := {d(n) | n ∈ J} ⊆ I.
This contradicts Conjecture C3. Thus, size(Pk,n) > d1/µ, for a suitable constant µ and all large
enough n.

Like in Section 3.3, Pk,n is explicit and hard; thus Theorem 31 gives us a poly(s)-time HSG
for size-s degree-s polynomials.

F Generalizing to the sum of rth-powers

We could generalize our results to the sum of rth-powers model, for a constant prime-power r ≥ 4.
This was done in [DST20], but only for r ≥ 25.

We say a polynomial f (x) ∈ R[x] over a ring R is computed as the sum of rth-powers if

f =
s

∑
i=1

ci · ` r
i . (18)

The sum of rth-powers is a complete model for R = F, a field of characteristic zero or large
characteristic. Like SF( f ), the sparsity-sum size of f wrt a fixed r, denoted by SF( f , r), is defined
as the minimum sparsity-sum size when f is written as in Eqn.(18).

We can restrict the domain to Ir := {rm− 1 | m ∈N}. Similar heuristic (as given in Section 1)
shows that for random f , SF( f , r) ≥ Ω(d/ log d). For fd := (x + 1)d, it is not hard to show
that SZ( fd, r) ≥ Ω(d). To argue, let r = r`0 for some ` ∈ N and a prime number r0. Then,∣∣ fd mod r0

∣∣
1 = d + 1; as using Lucas’s Theorem, (d

i) = ±1 for 0 ≤ i ≤ d where d ∈ Ir. Therefore,
we could conjecture the following (similar to Conjecture C1):

Conjecture 4 (C1’). If r is a prime-power and d ∈ Ir, then SF ( fd, r) ≥ Ω(d0.98289) .

Theorem 2 establishes that assuming GRH, Conjecture C1 implies VP 6= VNP. We could
show the same assuming Conjecture C1’. To formally state:

Theorem 33 (Conditional l.b.). If GRH and Conjecture C1’ for an r ≥ 4 hold, then VP 6= VNP.

Proof sketch. The proof is very similar to that of Theorem 2, see Section 3.2. We define Pk,n,
for a non-constant k, to be the k-variate polynomial with constant individual degree n, via the
inverse Kronecker map applied on fd (for d := d(k) picked the largest possible element in Ir
which is ≤ 27k − 1). It is clear that n := d(d + 1)1/ke − 1 = 127. As the ratio between two
consecutive elements in Ir can be at most (rm+1 − 1)/(rm − 1) < r + 1, for m ≥ 2, it is clear that
d ≥ (27k − 1)/(r + 1) = Ω(128k).

The proof strategy remains the same. We could prove that Claim 11 holds i.e. GRH and
VP = VNP =⇒ (Pk,n)k ∈ VP. The proof also remains unchanged. Assuming, Conjecture C1’,
we next show that (Pk,n)k 6∈ VP (same as Claim 12).

To prove the hardness part, the only crucial difference is to relate CNF (Theorem 1) to
sum of rth-powers. This can be tackled by using Lemma 14. In particular, we prove that
size(Pk,n) > d10−5/6 = 2Ω(k) by assuming a contradiction. Suppose there is an infinite J ⊂ N

such that size(Pk,n) ≤ d10−5/6, for all k ∈ J. This will prove that Conjecture C1’ is false over
infinite subset J′ := {d(k) : k ∈ J} ⊆ Ir which is a contradiction.
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Assume that C is a circuit of size ≤ d10−5/6 computing Pk,n. Then, as done in the proof of
Theorem 2, one could conclude that Pk,n can be expressed as Eqn. (11):

Pk,n =
16·s′

∑
i=1

ci · f̃ 4
i ,

where s′ ≤ c · d10−5 · (127k)13, for some constant c and deg( f̃i) ≤ 127k/3. Then, we apply Lemma
14 on each f̃ 4

i yielding the desired sum-of-rth-powers:

Pk,n =
16·s′·(r+1)

∑
i=1

c′i · g r
i ,

with deg(gi) ≤ maxj deg( f̃ j) ≤ 127k/3. Apply Kronecker φk,n on both sides; as it cannot increase
the sparsity, we get: SF( f , r) ≤ 16(r + 1)s′ · (130k/3

3 ) = (r + 1) · s1 (we follow the notation of the
proof of Theorem 2). As r is constant, similar calculation establishes that (r + 1) · s1 ≤ o(d0.98289)
contradicting Conjecture C1’.

To proclaim PIT result, we change the measure to support-union with respect to f and r.
Support-union size of f with respect to s and exponent r, denoted UF( f , r, s), is defined to be
the minimum number of distinct monomials in the representation of Eqn.(18); in other words,∣∣⋃s

i=1 supp(`i)
∣∣ when f is written as Eqn.(18); it is ∞, if no such representation exists. Similar

to Conjecture C2, one could conjecture the following (same as [DST20, Conj. C1]):

Conjecture 5 (C2’). Let r be a prime-power. There exist positive constants δ1 ≤ 1, δ2 ≥ 1 such that
UF

(
fd, r, dδ1

)
≥ d/rδ2 , for all large enough d ∈ Ir.

By [DST20, Thm. 1] the above conjecture implies blackbox-PIT ∈ P for r ≥ 25. We could
argue the same for a much less r ≥ 4. Formally,

Theorem 34. If Conjecture C2’ holds for an r ≥ 4, then blackbox-PIT ∈ P.

Proof sketch. This proof is very similar to the proof of Theorem 3, see Section 3.3. Define, for
a constant k, a k-variate, individual degree-n, polynomial Pk,n via the inverse Kronecker map
applied on fd. It is an explicit family as the coefficients are poly-time computatble. Similar to
Claim 13, we could show that size(Pk,n) > d1/µ, where µ := 6/(δ1 − 14/k).

To show the hardness, assume to the contrary that there is an infinite J ⊂ N such that
size(Pk,n) ≤ d1/µ for n ∈ J. We will show that Conjecture C2’ is false over an infinite J′ :=
{d(n) | n ∈ J} ⊆ Ir; which is a contradiction.

Let C be a circuit of size ≤ d1/µ computing Pk,n. Then, similar to Eqn. (12), we have
Pk,n = ∑

i∈[s0]

ci · f̃ 4
i ,

where s0 := 16 · c · (d1/µ)6 · (kn)13 for some constant c and deg( f̃i) ≤ kn/3. Then, we apply
Lemma 14 on each f̃ 4

i yielding the desired sum-of-rth-powers:

Pk,n =
s0·(r+1)

∑
i=1

ci · g r
i ,

with deg(gi) ≤ maxj deg( f̃ j) ≤ kn/3. Apply Kronecker φk,n on both sides; as it cannot increase
the union-support or the top fan-in, we get UF ( fd, r, s0 · (r + 1)) ≤ s1 := (k+kn/3

k ).
As, r is just a constant, the bound on s0 · (r + 1) holds similar to that in the proof of Theorem

3, establishing s0 · (r + 1) < dδ1 .
Bound on s1 requires a slightly different parameter settings as we want to show that s1 < d/rδ2

(which is tighter than d/4δ2). Once we prove this, we are done as, in that case, UF( fd, r, dδ1) <
d/rδ2 , for all large d ∈ J′ contradicting Conjecture C2’.
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We already showed in the proof of Theorem 3 (Section 3.3), that s1 <
(
3 · (14/15)k) · d. It

suffices to show that 3 · (14/15)k ≤ 1/rδ2 . As r ≥ 4, it is enough to choose k · log(15/14) ≥
(δ2 + 1) · log r. It is enough to pick k > max((δ2 + 1) · log r/ log(15/14), 14/δ1).

This hardness result, then, will directly give an efficient HSG using Theorem 28, as shown
in the proof of Theorem 3. Hardness to HSG requires k ≥ 38/δ1, same as in the earlier proof.
Hence, our final choice for k is k ≥ max((δ2 + 1) · log r/ log(15/14), 38/δ1). Thus, we have a
poly(s)-time HSG for C(s, s, s).

Remark. It is natural to define the approximative measure UF( f , r, s), for any constant prime-
power r ≥ 4. One could prove that similar lower bound on this measure will lead to efficient
HSG for VP. A similar result was proved in [DST20, Thm. 29], but for r ≥ 25.
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