Quite Inefficient Algorithms for Solving Systems of Polynomial Equations
Without Gröbner Bases!
Resultants, Primary Decomposition and Galois Groups

Lars Wallenborn Jesko Hüttenhain

11/25/11 — 12/02/11

Contents

1 Resultants 2
1.1 Solving without Gröbner Bases .. 2
1.1.1 Multiplication Matrices ... 5
1.1.2 Solving via Multivariate Factorization 6
1.1.3 Ideal Membership ... 6
1.2 Multivariate Resultants ... 6

2 Primary Ideal Decomposition 8
2.1 Preliminaries ... 8
2.2 Rational Case ... 9
2.3 General Case ... 11

3 Galois Groups 14
3.1 The Universal Property .. 14
3.2 The Dimension of \mathcal{A} 15
3.3 The Emergence of Splitting Fields 15
1 Resultants

We discuss some methods for solving zero-dimensional systems of polynomial equations without the aid of Gröbner bases. It will turn out that these methods also yield techniques to compute resultants.

In this section, let always \(f_0, \ldots, f_n \in \mathbb{k}[x_1, \ldots, x_n] \) be polynomials over an algebraically closed field \(\mathbb{k} = \mathbb{K} \) of degrees \(\deg(f_i) \). Let \(I = (f_1, \ldots, f_n) \). We assume that \(f_0 \) is homogeneous of degree \(d_0 = 1 \). We set \(\mu := d_1 \cdots d_n \),
\[
\nu := \sum_{k=0}^{d} \binom{n+d}{d} - \mu = \binom{n+d+1}{d} - \mu.
\]
A point \(p \in \mathbb{k}^n \) is called a solution if \(p \in \mathbb{Z}(I) \). Finally, denote by \(\pi : \mathbb{k}[x_1, \ldots, x_n] \to \mathbb{k}[x_1, \ldots, x_n]/I =: A \) the canonical projection. We denote by \(L_f : A \to A \) the \(\mathbb{k} \)-automorphism of \(A \) which is given by multiplication with \(f \) for some \(f \in \mathbb{k}[x_1, \ldots, x_n] \).

1.1 Solving without Gröbner Bases

Theorem 1.1 (Bézout’s Theorem).

(a). If there are only finitely many solutions, then their number, counted with multiplicity, is at most \(\mu \).

(b). For a generic choice of \(f_1, \ldots, f_n \), there are precisely \(\mu \) solutions, each with multiplicity one. \(\square \)

Remark 1.2. Here, “generic” means that for “almost every” choice of polynomials, the above holds. To properly define this “almost”, one needs more algebraic geometry than we are willing to present here.

Definition 1.3. In the following, \(\gamma = (\gamma_1, \ldots, \gamma_n) \in \mathbb{N}^n \) denotes a multiindex. We partition the set \(S = \{ x^\gamma : |\gamma| \leq d \} \) as \(S = S_0 \cup \cdots \cup S_n \), where
\[
S_i := \left\{ x^\gamma \in S \mid \forall j < i : d_j > \gamma_j \text{ and } d_i \leq \gamma_i \right\}
\]
for \(i > 0 \) and \(S_0 := \{ x^\gamma \in S \mid \forall j : d_j > \gamma_j \} \). A monomial \(x^\gamma \in S_i \) is said to be reduced if \(d_j > \gamma_i \) for all \(j > i \).

We set \(S_+ := S_1 \cup \cdots \cup S_n \). \(S_0 \) is the set of monomials of degree at most \(d \) which are not divisible by any of the \(x_i^{d_i} \). Since \(S_0 \) will play a special role, we use \(x^\alpha \) to denote its elements and \(x^\beta \) for elements in \(S_+ \).
Fact 1.4. Behold:

(a) If $x^\alpha \in S_0$, then $\deg x^\alpha \leq d - 1$. Furthermore, $|S_0| = \mu$ and $|S_+| = \nu$.
(b) If $x^\beta \in S_i$ for $i > 0$, then $\deg \left(\frac{x^\beta}{x^d_i} \right) \leq d - d_i$

Proof. Part (a) follows from $S_0 = \{ x_1^{\gamma_1} \cdots x_n^{\gamma_n} \mid \forall i : 0 \leq \gamma_i \leq d_i - 1 \}$ and the observation that $d - 1 = \sum_{i=1}^n (d_i - 1)$. For part (b), use the explicit description (1.1). \qed

Definition 1.5. For $x^\gamma \in S_i$, define

$$ f_{\gamma} := \begin{cases} x^\gamma f_i / x^d_i & ; \text{i} \neq 0 \\ x^\gamma f_0 & ; \text{i} = 0 \end{cases} $$

Fact 1.6. We can write f_{γ} as a k-linear combination of the $x^\gamma \in S$.

Proof. For $\gamma \in S_0$, this follows from the assertions $d_0 = 1$ and Fact 1.4.(a). For $\gamma \in S_i$, this follows because $\deg(f_{\gamma}) \leq |\gamma| \leq d$. \qed

Definition 1.7. Write $S_0 = \{ x^\alpha_1, \ldots, x^\alpha_\mu \}$ and $S_+ = \{ x^\beta_1, \ldots, x^\beta_\nu \}$. The Sylvester-type matrix associated to our given data is the matrix \mathcal{M} such that

$$ \mathcal{M} \cdot \begin{pmatrix} x^\alpha_1 \\ \vdots \\ x^\alpha_\mu \\ x^\beta_1 \\ \vdots \\ x^\beta_\nu \end{pmatrix} = \begin{pmatrix} f_{\alpha_1} \\ \vdots \\ f_{\alpha_\mu} \\ f_{\beta_1} \\ \vdots \\ f_{\beta_\nu} \end{pmatrix}. $$

Such a matrix exists by Fact 1.6. We write

$$ \mathcal{M} = \begin{pmatrix} \mathcal{M}_{00} & \mathcal{M}_{01} \\ \mathcal{M}_{10} & \mathcal{M}_{11} \end{pmatrix}. $$

Remark 1.8. For a generic choice of f_1, \ldots, f_n, the matrix \mathcal{M}_{11} is invertible. Let us understand why. If we let $\mathcal{M}_{11} = (\lambda_{ij})_{1,j}$ and consider the equality

$$ \mathcal{M}_{11} \cdot \begin{pmatrix} x^\beta_1 \\ \vdots \\ x^\beta_\nu \end{pmatrix} = \begin{pmatrix} f_{\beta_1} \\ \vdots \\ f_{\beta_\nu} \end{pmatrix}, $$
this means nothing more than
\[f_{\beta_i} = \sum_{k=1}^{\nu} \lambda_{ik} \cdot x^{\beta_k}. \]

A generic choice of the \(f_i \) means a generic choice of coefficients \(\lambda_{ik} \), and for almost every such choice, the vectors \((\lambda_{i1}, \ldots, \lambda_{i\nu}) \) for \(1 \leq i \leq \nu \) are linearly independent.

Hence, the following Assumption 1.9 is justified:

Assumption 1.9. We henceforth assume \(M_{11} \) to be invertible. Note that this implies that \(A \) is a zero-dimensional ring, i.e. a finite \(k \)-vectorspace.

Definition 1.10. We define
\[
\tilde{M} := \tilde{M}(f_0) := M_{00} - M_{01}M_{11}^{-1}M_{10}. \tag{1.4}
\]
Furthermore, we define two maps \(\phi : k^n \to k^\mu \) and \(\psi : k^n \to k^\nu \) where
\[
\phi(p) := \begin{pmatrix} p^{\alpha_1} \\ \vdots \\ p^{\alpha_\mu} \end{pmatrix} \quad \psi(p) := \begin{pmatrix} p^{\beta_1} \\ \vdots \\ p^{\beta_\nu} \end{pmatrix}
\]
In other words, the maps are induced by the monomials in \(S_0 \) and \(S_+ \), respectively.

Theorem 1.11. For all solutions \(p \), the vector \(\phi(p) \) is an eigenvector of \(\tilde{M} \) with eigenvalue \(f_0(p) \). Furthermore, for a generic choice of \(f_0 \), the set \(\phi(Z(I)) \) is linearly independent.

Proof. Let \(p \in Z(I) \). Then,
\[
\begin{pmatrix} M_{00} & M_{01} \\ M_{10} & M_{11} \end{pmatrix} \cdot \begin{pmatrix} \phi(p) \\ \psi(p) \end{pmatrix} = \begin{pmatrix} f_{\alpha_1}(p) \\ \vdots \\ f_{\alpha_\mu}(p) \\ f_{\beta_1}(p) \\ \vdots \\ f_{\beta_\nu}(p) \end{pmatrix} = \begin{pmatrix} (x^{\alpha_1} f_0)(p) \\ \vdots \\ (x^{\alpha_\mu} f_0)(p) \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} f_0(p) \cdot \phi(p) \\ 0 \end{pmatrix}
\]
by (1.2). This gives us the two identities
\[
\begin{align*}
M_{00} \cdot \phi(p) + M_{01} \cdot \psi(p) &= f_0(p) \cdot \phi(p) \tag{1.5} \\
M_{10} \cdot \phi(p) + M_{11} \cdot \psi(p) &= 0 \tag{1.6}
\end{align*}
\]
which we can use to conclude
\[\widetilde{M} \cdot \phi(p) = M_{00} \cdot \phi(p) - M_{01}M_{11}^{-1}M_{10} \cdot \phi(p) \quad \text{by (1.4)} \]
\[= M_{00} \cdot \phi(p) + M_{01}M_{11}^{-1}M_{11} \cdot \psi(p) \quad \text{by (1.6)} \]
\[= M_{00} \cdot \phi(p) + M_{01} \cdot \psi(p) \]
\[= f_0(p) \cdot \phi(p) \quad \text{by (1.5)} \]

Finally, we note that for a generic choice, \(f_0 \) takes distinct values at all the \(p \in \mathbb{Z}(I) \), therefore the eigenvalues are distinct and the corresponding eigenvectors linearly independent.

\[\text{Theorem 1.12.} \quad \text{For generic} \ f_0, \ \text{the set} \ \mathbb{S}_0 \ \text{is a} \ \mathbb{k}-\text{basis of} \ A. \ \text{Furthermore,} \ \widetilde{M} \ \text{is the matrix corresponding to} \ L_{f_0} \ \text{with respect to the basis} \ \mathbb{S}_0. \]

\[\text{Proof.} \quad \text{By Bézout (Theorem 1.1),} \ A \ \text{has dimension} \ \mu \ \text{over} \ \mathbb{k}. \ \text{Since this is also the cardinality of} \ S_0, \ \text{the first part of the theorem will follow once we show that the} \ \mathbb{F}^\alpha \ \text{are linearly independent. Assume that} \]
\[c_1 \cdot \mathbb{F}^\alpha_1 + \cdots + c_\mu \cdot \mathbb{F}^\alpha_\mu = 0. \]
Evaluating this equation at a solution \(p \) gives
\[c_1 \cdot \mathbb{F}^\alpha_1 + \cdots + c_\mu \cdot \mathbb{F}^\alpha_\mu = 0. \]
Let \(\mathbb{Z}(I) = \{ p_1, \ldots, p_\mu \} \) and define the square matrix \(P := (p_j^\alpha)_{ij} \). Since
\[(c_1, \ldots, c_\mu) \cdot P = 0 \]
and \(P \) is invertible by Theorem 1.11, we conclude \(c_i = 0 \) for all \(i \), which proves that \(\mathbb{S}_0 \) is linearly independent.

Let \(M \) be the coordinate matrix of \(L_{f_0} \) in the basis \(\mathbb{S}_0 \). Clearly, \(M\phi(p) = f_0(p)\phi(p) \) for every solution \(p \). But from Theorem 1.11 we know that \(f_0(p)\phi(p) = \widetilde{M}\phi(p) \) and therefore, \(M\phi(p) = \widetilde{M}\phi(p) \) for every solution \(p \). We know that the \(\mu \) different \(\phi(p) \) are linearly independent, so they form a basis. \qed

\[\text{1.1.1 Multiplication Matrices} \]

By setting \(f_0 = x_i \) in Theorem 1.12, we get that the matrix of multiplication by \(x_i \) is \(\widetilde{M}(x_i) \). However, it is possible to compute all of these maps simultaneously by using \(f_0 = u_1x_1 + \cdots + u_nx_n \), where \(u_1, \ldots, u_n \) are variables. Thus, by means of
\[\widetilde{M}(f_0) = u_1\widetilde{M}(x_1) + \cdots + u_n\widetilde{M}(x_n), \]
we can compute all multiplication matrices at once.
1.1.2 Solving via Multivariate Factorization

As above, suppose that \(f_0 = u_1x_1 + \cdots + u_n x_n \) where \(u_1, \ldots, u_n \) are variables. In this case, \(\det(\widetilde{M}(f_0)) \) becomes a polynomial in \(\mathbb{k}[u_1, \ldots, u_n] \). The results of this section imply that the eigenvalues of \(\widetilde{M}(f_0) \) are \(f_0(Z(I)) \). Since all of the eigenspaces have dimension 1,

\[
\det(\widetilde{M}) = \prod_{p \in Z(I)} f_0(p) = \prod_{(p_1, \ldots, p_n) \in Z(I)} (u_1p_1 + \cdots + u_np_n).
\]

(1.7)

By factoring \(\det(\widetilde{M}(f_0)) \) into irreducibles in \(\mathbb{k}[u_1, \ldots, u_n] \), we get all solutions.

1.1.3 Ideal Membership

For a given \(f \in \mathbb{k}[x_1, \ldots, x_n] \) we want to decide whether \(f \in I \) or not. Using the above \(\widetilde{M}(x_i) \), we can solve this problem by the following

Fact 1.13. \(f \in I \iff f(\widetilde{M}(x_1), \ldots, \widetilde{M}(x_n)) = 0 \in \mathbb{k}^{n \times \mu} \).

Proof. We know that \(f \in I \) if and only if \(\overline{f} = 0 \), i.e. \(f \) becomes zero in \(A \). This is equivalent to saying that \(L_f \) is the zero map. If we write \(L_i := L_{x_i} \) and \(f = \sum_{\lambda} a_{\lambda} x^\lambda \) then

\[
L_f = \begin{pmatrix} y & \mapsto \sum_{\lambda} a_{\lambda} x^\lambda \cdot y \end{pmatrix}
= \sum_{\lambda} a_{\lambda} \prod_{i=1}^n (y \mapsto x_i y)^{\lambda_i}
= \sum_{\lambda} a_{\lambda} L^{\lambda}
= f(L_1, \ldots, L_n),
\]

Thus, \(\widetilde{M}(f) = f(\widetilde{M}(x_1), \ldots, \widetilde{M}(x_n)) \) is the zero matrix if and only if \(f \in I \). ☐

1.2 Multivariate Resultants

We now set up notation for this section. Let \(f_{ij} \) be the homogeneous component of \(f_i \) in degree \(j \). Let \(F_0, \ldots, F_n \in \mathbb{k}[x_0, \ldots, x_n] \) arise from \(f_i \) by homogenization in a new variable \(x_0 \). This means \(F_i := x_0^d_i f_i \left(\frac{x_1}{x_0}, \ldots, \frac{x_n}{x_0} \right) \), \(F_0 = f_0 \) and \(F_i = \sum_{j=0}^{d_i} f_{ij} x_0^{-j} \). We say that \(p = [p_0 : \ldots : p_n] \in \mathbb{P}^n \) is a solution at infinity if \(p_0 = 0 \) and \(F_i(p) = 0 \) for all \(i \). We set \(G_i := f_{i,d_i} \) for all \(i \).

Definition 1.14. Let \(F_0, \ldots, F_n \in \mathbb{k}[x_0, \ldots, x_n] \) be homogeneous polynomials. The resultant \(\text{res}(F_0, \ldots, F_n) \) is a polynomial in their coefficients which is the zero polynomial if and only if the \(F_i \) have a common projective root. We denote the same polynomial by \(\text{res}(f_0, \ldots, f_n) \) if \(F_i \) is the homogenization of \(f_i \) by \(x_0 \).

Fact 1.15. There exist solutions at infinity if and only if \(\text{res}(G_1, \ldots, G_n) = 0 \).
Proof. Note that $F_i(0, x_1, \ldots, x_n) = G_i$. Thus, there exists a solution at infinity if and only if the homogeneous polynomials G_i share a common root.

Theorem 1.16. If there are no solutions at infinity and M is a matrix corresponding to L_{f_0}, then

$$\text{res}(f_0, \ldots, f_n) = \text{res}(G_1, \ldots, G_n) \cdot \det(M).$$

Furthermore, if we denote by $\chi_M(T)$ the characteristic polynomial of M in an indeterminante T,

$$\text{res}(T - f_0, f_1, \ldots, f_n) = \text{res}(G_1, \ldots, G_n) \cdot \chi_M(T).$$

Metaproof. A proof for these equalities can be traced back to [Jou91].

Definition 1.17. Recall Definition 1.7. We define the matrix M' to be the matrix that arises from M by deleting all rows and columns corresponding to reduced monomials.

Proposition 1.18. It is $\text{res}(f_0, \ldots, f_n) \cdot \det(M') = \det(M)$.

Metaproof. This is [CLO98, Theorem 4.9].

Corollary 1.19. It is $\text{res}(G_1, \ldots, G_n) \cdot \det(M') = \det(M_{11})$.

Proof. If $\det(M_{11}) \neq 0$, we can write

$$\text{det}({\tilde{M}}) \cdot \det(M_{11}) = \det \begin{pmatrix} {\tilde{M}} & 0 \\ M_{10} & M_{11} \end{pmatrix} = \det \begin{pmatrix} I & -M_{01}M_{11}^{-1} \\ 0 & I \end{pmatrix} \cdot \det \begin{pmatrix} M_{00} & M_{01} \\ M_{10} & M_{11} \end{pmatrix}$$

$$= \det(M).$$

Hence by Proposition 1.18, Theorem 1.16 and Theorem 1.12 (in this order),

$$\text{det}({\tilde{M}}) \cdot \det(M_{11}) = \det(M)$$

$$= \text{res}(f_0, \ldots, f_n) \cdot \det(M')$$

$$= \text{res}(G_1, \ldots, G_n) \cdot \det(L_{f_0}) \cdot \det(M')$$

$$= \text{res}(G_1, \ldots, G_n) \cdot \det(M) \cdot \det(M').$$

when f_1, \ldots, f_n are sufficiently generic. Cancelling $\text{det}({\tilde{M}})$, which is generically nonzero, we conclude that

$$\det(M_{11}) = \text{res}(G_1, \ldots, G_n) \cdot \det(M')$$

holds for almost all choices of coefficients of the f_i.

Since both sides of this equation are polynomial in the coefficients of the f_i, it means that the equality holds in general.

2 Primary Ideal Decomposition

In this section, \(I \) the ideal generated by the polynomials \(f_1, \ldots, f_s \in k[x_1, \ldots, x_n] \) over any field \(k \). We denote by \(\overline{k} := \bar{k} \) the algebraic closure of \(k \). We then write \(\pi : k[x_1, \ldots, x_n] \to k[x_1, \ldots, x_n]/I =: A \) for the canonical projection. Assume that \(A \) is of dimension zero, i.e. \(V := Z(I) \subseteq \mathbb{K}^n \) is finite.

We denote by \(n_f(p) \) (resp. \(m_f(p) \)) the multiplicity of \((T - f(p)) \) in the characteristic (resp. minimal) polynomial of \(L_f \), where \(L_f : A \to A \) is the multiplication by \(f \) for some polynomial \(f \). When there is no risk of confusion, we write \(n(p) \) instead of \(n_f(p) \) and equivalently, \(m(p) \) instead of \(m_f(p) \).

2.1 Preliminaries

Definition 2.1. An ideal \(J \subseteq R \) of a ring is said to be primary if \(fg \in I \) implies that \(f \in I \) or \(g^k \in I \) for some \(k \in \mathbb{N} \). If \(J \) is primary, then \(\sqrt{J} \) is a prime ideal.

Definition 2.2. A primary decomposition of an ideal \(J \) is a decomposition of the form \(J = J_1 \cap \cdots \cap J_r \) with \(J_i \) primary. By [Eis94, Theorem 3.10], every ideal of a Noetherian ring has a primary decomposition. We say that the decomposition is minimal if \(r \) is minimal. In this case, the ideals \(P_i := \sqrt{J_i} \) are prime ideals which are minimal over \(J \).

Fact 2.3. Assume that \(I \) and \(J \) are primary ideals of a domain \(R \). If \(\sqrt{I} = \sqrt{J} \), then \(I \cap J \) is primary.

Proof. Let \(fg \in I \cap J \subseteq I \). We can assume that \(f \notin I \cap J \). Hence, let us assume that \(f \notin I \). This means \(g^r \in I \) for some \(r \). But this means \(g^s \in J \) for some \(s \). We set \(k := \max(r, s) \) and obtain \(g^k \in I \cap J \).

Fact 2.4. Let \(P \) be a maximal ideal in a domain \(R \). Then, for any \(h \notin P \), there exists an element \(g \in R \) such that \(1 + gh \in P \).

Proof. Since \(h \notin P \), it becomes a unit in \(K := R/P \). Choosing any element \(g \in R \) which is mapped to \(-h^{-1} \) under \(R \to R/P \) yields \(1 + gh = 0 \) in \(K \), i.e. \(1 + gh \in P \).

Lemma 2.5. The ideal \(I \) has a minimal primary decomposition \(I = I_1 \cap \cdots \cap I_r \). For any such decomposition, the \(P_i := \sqrt{I_i} \) are distinct maximal ideals. Furthermore, \(I_i \not\subseteq \bigcup_{j \neq i} P_j \) and for any \(g \in I_i \setminus \bigcup_{j \neq i} P_j \), it is \(I_i = I + (g) \).
Proof. We already established that such a primary decomposition always exists. Note that \(P_i \) is a minimal prime ideal over \(I \), so \(\dim(I_i) = \dim(P_i) = \dim(I) = 0 \). Since \(P_i \) is zero-dimensional and prime, it is maximal. If \(P_i = P_j \) for some \(i \neq j \), then \(I_i \cap I_j \) is primary by Fact 2.3, contradicting minimality of the decomposition. If \(I_i \subseteq \bigcup_{j \neq i} P_j \), then \(I_i \subseteq P_j \) for some \(j \neq i \) by Prime Avoidance (see [Eis94, Lemma 3.3]). This means \(P_i \subseteq P_j \) and hence, \(P_i \equiv P_j \) by maximality, which is absurd.

Finally, let \(g \in I_i \setminus \bigcup_{j \neq i} P_j \). Certainly, \(I + (g) \subseteq I_i \). Now for every \(j \neq i \), note that \(g \notin P_j \) and so we can choose a \(h_j \in \mathcal{R} \) with the property that \(1 + gh_j \in P_j \), by Fact 2.4. We choose \(m \in \mathbb{N} \) such that, for all \(j \), \((1 + gh_j)^m \in I_j \). Expanding the product

\[
\prod_{j \neq i}(1 + gh_j)^m \in \prod_{j \neq i} I_j \subseteq \bigcap_{j \neq i} I_j,
\]

we conclude \(1 + gh \in \text{I}_{j \neq i} \) for a particular \(h \in \mathcal{R} \). Given any \(a \in I_i \),

\[
a(1 + gh) \in I_i \cap \bigcap_{j \neq i} I_j = I
\]

and therefore \(a = (1 + gh)a + g(-ha) \in I + (g) \) as desired.

In the following, we describe a method to compute certain \(g_i \in I_i \setminus \bigcup_{j \neq i} P_j \) which yield the ideals \(I_i \) by Lemma 2.5. We can do this, again, without using Gröbner bases.

2.2 Rational Case

Recall that a solution \(p \in V \) is \(k \)-rational if \(p \in k^n \). For this subsection, we assume that all solutions are \(k \)-rational.

Proposition/Definition 2.6. \(I = \bigcap_{p \in V} I_p \) is a minimal primary decomposition with

\[
I_p := \{ f \in k[x_1, \ldots, x_n] \mid \exists g \in k[x_1, \ldots, x_n] : gf \in I \text{ and } g(p) \neq 0 \}.
\]

In this case, \(\sqrt{I_p} \) is the maximal ideal \(m_p := (x_1 - p_1, \ldots, x_n - p_n) \) where the \(p_i \) are the coordinates of \(p \).

Remark. In fact, in the zero-dimensional case, the minimal primary decomposition is unique, but we will not give a proof for this.

Proof. The assumption that all solutions are \(k \)-rational means that we can assume \(k = \mathbb{K} \) is algebraically closed.

We show \(\bigcap_{p \in V} I_p \subseteq I \). Pick any \(f \) such that \(f \in I_p \) for all \(p \). Choose polynomials \(g_p \) such that \(g_p(p) \neq 0 \) and \(g_pf \in I \). We have already seen that there exist idempotents \(e_p \in A \), i.e. \(e_p(q) = \delta_{pq} \). The function \(g := \sum_{p \in V} e_pg_p \) satisfies \(g(p) = g_p(p) \neq 0 \) for all \(p \in V \). Let \(h := \sum_{p \in V} \frac{e_p}{g(p)} \), then \((1 - gh) \) vanishes on all of \(V \) and thus, \((1 - gh)^k \in I \) for
some \(k \), by the Hilbert Nullstellensatz. Multiplying this out gives \(1 - gh' \in I \) for some polynomial \(h' \). Since \(gh \in I \), we know \(gfh' \in I \). Since \(f - fgh' = f(1 - gh') \in I \), we conclude \(f \in I \).

To show that \(\sqrt{I_p} = \mathfrak{m}_p \), it will suffice to show that there exists a natural number \(k \in \mathbb{N} \) such that \((x_i - p_i)^k \in I_p \) because it implies \(\mathfrak{m}_p \subseteq \sqrt{I_p} \) and the statement then follows by maximality of \(\mathfrak{m}_p \). Set

\[
g_i := \prod_{q \in V \setminus \{q_i\}} (x_i - q_i)
\]

Then, \(g_i \cdot (x_i - p_i) \) vanishes on all of \(V \). Hence, \(g_i^k(x_i - p_i)^k \in I \) for some \(k \in \mathbb{N} \). Since \(g_i^k(p) \neq 0 \), we know \((x_i - p_i)^k \in I_p \) by definition. This also proves that \(I_p \) is primary.

We are left to show minimality of the decomposition. Assume that \(I = \bigcap_{i=1}^{r} I_i \) is minimal. Let \(P_i := \sqrt{I_i} \). It is a maximal ideal with corresponding point \(p_i \in \mathbb{K}^n \). Then,

\[
V = Z(I) = Z(\sqrt{T}) = Z(\bigcap_{i=1}^{r} P_i) \subseteq Z(\prod_{i=1}^{r} P_i) = \bigcup_{i=1}^{r} Z(P_i) = \{ p_1, \ldots, p_r \}
\]

implies \(|V| \leq r \) and we are done. We used well-known facts about algebraic sets, see [Har06, Propositions 1.1 and 1.2], for instance.

\[\square\]

Proposition 2.7. If \(f \in \mathbb{k}[x_1, \ldots, x_n] \) takes distinct values at all solutions, then

\[
\forall p \in V : \quad I_p = I + \left((f - f(p))^{m(p)} \right).
\]

Proof. Pick \(p \in V \) and set \(g := (f - f(p))^{m(p)} \). By Lemma 2.5 and Proposition 2.6, it suffices to show that \(g \in I_p \) and \(g \notin \mathfrak{m}_q \) for all \(q \neq p \). The latter condition is equivalent to \(g(q) \neq 0 \), which follows because \(f(q) \neq f(p) \) by assumption. To prove that \(g \in I_p \), let

\[
h := \prod_{q \neq p} (f - f(q))^{m(q)}.
\]

Denote by \(\mu \) the minimal polynomial of the multiplication map \(L_f \). Then, by definition \(gh = \mu(f) \). However, the Cayley-Hamilton Theorem [Eis94, Theorem 4.3] says that \(\mu(L_f) \) is the zero map on \(A \). Applied to 1, we obtain

\[
0 = \mu(L_f)(1) = \mu(T) = \mu(T).
\]

Hence, \(gh \in I \subseteq I_p \). Since \(h(p) = \prod_{q \neq p} (f(p) - f(q))^{m(q)} \neq 0 \) by our assumption on \(f \), we know \(h \notin \mathfrak{m}_p \). Thus, no power of \(h \) can be contained in \(I_p \). Since \(I_p \) is primary, this means \(g \in I_p \).

\[\square\]

Example 2.8. Consider the case \(\mathbb{k} = \mathbb{Q} \) and

\[
\begin{align*}
f_1 &:= x^2 + 2y(y - 1) \\
f_2 &:= xy(y - 1) \\
f_3 &:= y(y^2 - 2y + 1)
\end{align*}
\]
First, note that \(p = (0, 0) \) and \(q = (0, 1) \) are \(\mathbb{Q} \)-rational solutions. Since \(y \) takes different values at these, we can use \(f = y \) in Proposition 2.7.

We state without proof that the minimal polynomial of \(L_y \) is \(\mu(T) = T(T - 1)^2 \). It follows that the primary components are

\[
I_p = (f_1, f_2, f_3, y) = (x^2, y) \\
I_q = (f_1, f_2, f_3, (y - 1)^2) = (x^2 + 2(y - 1), x(y - 1), (y - 1)^2).
\]

The following, weaker statement can be proven analogously:

Corollary 2.9. If \(f \in \mathbb{k}[x_1, \ldots, x_n] \) takes distinct values at all solutions, then

\[
\forall p \in V : I_p = I + \left((f - f(p))^{n(p)} \right).
\]

2.3 General Case

We are now in the general setting where not all solutions must be \(\mathbb{k} \)-rational. However, we do assume that \(\mathbb{k} \) is a perfect field. Let \(I = \bigcap_{i=1}^{i=1} I_i \) be a minimal primary decomposition of \(I \) over \(\mathbb{k} \). Define \(V_i := V(I_i) \subseteq \mathbb{K}^n \). Let \(\mathbb{L} \subseteq \mathbb{K} \) be the smallest field such that \(V \subseteq \mathbb{L}^n \), i.e.

\[
\mathbb{L} := \mathbb{k} \left[\{ \lambda \mid \exists p = (p_1, \ldots, p_n) \in V : \exists i : p_i = \lambda \} \right]
\]

We set \(G := \text{Gal}(\mathbb{L}/\mathbb{k}) \). Note that this is a finite group.

Definition 2.10. For any \(\sigma \in G \) and \(p = (p_1, \ldots, p_n) \in \mathbb{L}^n \), write

\[
\sigma(p) := (\sigma(p_1), \ldots, \sigma(p_n)).
\]

For \(p \in V \), we note that \(f_i(\sigma(p)) = \sigma(f_i(p)) = 0 \), so the Galois group acts on \(V \) in the above way.

Proposition 2.11. \(G \) acts transitively on \(V_i \).

Proof. Let \(p \in V_i \) be a point corresponding to a maximal ideal \(\mathfrak{m}_p \subset \mathbb{L}[x_1, \ldots, x_n] \). Note that for any \(p \), the ideal \(\mathfrak{m}_p \cap \mathbb{k}[x_1, \ldots, x_n] \) is a prime ideal containing \(I_i \), therefore equal to \(\mathfrak{p} := \sqrt{I_i} \). Assume that \(\mathfrak{m}_p \neq \sigma(\mathfrak{m}_q) \) for any \(q \in V_i \). By the Chinese Remainder Theorem (see [Bos06, 2.3, Satz 12]), there exists an \(h \in \mathbb{L}[x_1, \ldots, x_n] \) such that

\[
h \equiv 0 \pmod{\mathfrak{m}_p} \quad \text{and} \quad \forall q \in V_i \setminus \{ p \} : \forall \sigma \in G : h \equiv 1 \pmod{\sigma(\mathfrak{m}_q)}.
\]

Then, by the well-known fact [Bos06, 4.7, Satz 4] about norms and since \(\mathbb{k} \) is perfect,

\[
g := \prod_{\sigma \in G} \sigma(h) = N_{\mathbb{L}/\mathbb{k}}(h) \in \mathbb{k}
\]
and since \(\text{id} \in G \), this means \(g \in k \cap m_p = p \). On the other hand, we can pick any \(q \in V_i \setminus \{p\} \) and see that \(h \notin \sigma(m_q) \) for any \(\sigma \in G \), hence \(\sigma(h) \notin m_q \). Consequently, \(g \notin k \cap m_q = p \) is a contradiction. \(\square \)

Fact 2.12. \(V_i \cap V_j = \emptyset \) for \(i \neq j \).

Proof. Assume the converse. Then, there exists a maximal ideal \(P \subseteq \mathbb{L}[x_1, \ldots, x_n] \) which contains both \(I_i \) and \(I_j \). Then, \(P' := P \cap k[x_1, \ldots, x_n] \) is a prime ideal which contains both \(I_i \) and \(I_j \), contradicting minimality by \(\sqrt{I_i} = P' = \sqrt{I_j} \). \(\square \)

Theorem 2.13. Let \(\chi \in k[T] \) be the characteristic polynomial of the multiplication map \(L_f \) for some polynomial \(f \), which takes distinct values at all solutions. Then,

\[
\chi = \prod_{i=1}^{r} \chi_i^{k_i} \quad \text{for} \quad \chi_i := \prod_{p \in V_i} (T - f(p))
\]

is an irreducible factorization and the \(\chi_i \) are distinct. The minimal primary decomposition \(I = I_1 \cap \cdots \cap I_r \) satisfies \(I_i = I + (\chi_i(f)^{k_i}) \).

Proof. We can write \(\chi \) over \(\mathbb{L} \) as

\[
\chi = \prod_{p \in V} (T - f(p))^n(p) = \prod_{i=1}^{r} \prod_{p \in V_i} (T - f(p))^n(p)
\]

Observe that \(\chi \) has coefficients in \(k \) and so,

\[
\prod_{i=1}^{r} \prod_{p \in V_i} (T - f(p))^n(p) = \chi = \sigma(\chi) = \sigma \left(\prod_{i=1}^{r} \prod_{p \in V_i} (T - f(p))^n(p) \right)
\]

\[
= \prod_{i=1}^{r} \prod_{p \in V_i} (T - f(\sigma(p)))^n(p)
\]

for all \(\sigma \in G \). By Proposition 2.11, for any \(p, q \in V_i \), we can find a \(\sigma \in G \) with \(\sigma(p) = q \) and conclude that \(n(p) = n(q) = k_i \) only depends on \(i \). We are now going to show that \(\chi_i \) is irreducible and has coefficients in \(k \). The latter follows because \(\chi_i = \sigma(\chi_i) \) for all \(\sigma \in G \) and this means that all coefficients of \(\chi_i \) are in \(\mathbb{L}^G = k \). Irreducibility now follows from [Bos06, 4.3, Satz 1].

We now proceed similar to the proof of Proposition 2.7. By Lemma 2.5, it suffices to show that \(g := \chi_i^{k_i} \in I_i \) and \(g \notin P_j = \sqrt{T_j} \) for all \(j \neq i \). Note that \(g(q) \neq 0 \) for all \(q \in V_j \) because \(f \) takes distinct values on all solutions by assumption. Hence,

\[
g \notin m_q \cap k[x_1, \ldots, x_n] = P_j.
\]
To prove that $g \in I_i$, let

$$h := \prod_{j \neq i} \chi_j^{k_j}.$$

Then, by definition $gh = \chi$. However, the Cayley-Hamilton Theorem [Eis94, Theorem 4.3] says that $\chi(L_f)$ is the zero map on A. Applied to 1, we obtain

$$0 = \chi(L_f)(1) = \chi(J) = \chi(F).$$

Hence, $gh \in I \subseteq I_i$. Since $h(p) \neq 0$ by our assumption on f, we know $h \notin m_p$. Thus, no power of h can be contained in I_i, since $\sqrt{I_i} = m_p \cap k[x_1, \ldots, x_n]$. Since I_i is primary, this means $g \in I_i$.

Remark 2.14. Provided that we can find an appropriate f, Theorem 2.13 yields an algorithm for computing primary decompositions. If we choose a random, homogeneous linear polynomial f, then it is suitable with very high probability. However, if we do not want to end up with a probabilistic algorithm, we need a certificate for f to take distinct values at all solutions.

- If I is radical, then f takes distinct values at the solutions if and only if the characteristic polynomial χ of L_f has distinct roots. Hence, we only need to compute $\gcd(\chi, \chi')$ by [Bos06, 3.6, Lemma 1].

- If I is not radical, we can simply compute its radical and proceed as before.

We can therefore choose a random f and check numerically if it is a suitable choice for Theorem 2.13.

Algorithm 2.15 (Primary Ideal Decomposition).

(a). Pick $f_0 = t_1x_1 + \cdots + t_nx_n$ such that all eigenspaces of L_{f_0} have dimension one.

(b). Calculate the irreducible factorization of the characteristic polynomial of L_{f_0}.

(c). Use Theorem 2.13 to calculate generators for a minimal primary decomposition.
3 Galois Groups

Let k be an infinite field with algebraic closure $\mathbb{K} := \overline{k}$ and consider a monic polynomial with distinct roots
\[f = \sum_{i=0}^{n} (-1)^i \cdot c_i \cdot T^{n-i} \in k[T]. \]

Definition 3.1. The elementary symmetric polynomials $\sigma_0, \ldots, \sigma_n \in k[x_1, \ldots, x_n]$ are defined by $\sigma_0 = 1$ and the identity
\[\prod_{i=1}^{n} (T - x_i) = \sum_{i=0}^{n} (-1)^i \sigma_i T^{n-i}. \]

For the rest of this section, we also set $f_i := \sigma_i - c_i$ and consider the associated algebra $A = k[x_1, \ldots, x_n]/I$, where $I = (f_1, \ldots, f_n)$. We write $s_i := \overline{\sigma_i} = \overline{c_i}$.

3.1 The Universal Property

Fact 3.2. The polynomial f splits completely over A.

Proof. We claim $f = \prod_i (T - s_i)$. Indeed,
\[f(s_j) = \sum_{i=0}^{n} (-1)^i c_i \sigma_j^{n-i} = \sum_{i=0}^{n} (-1)^i c_i \overline{\sigma_j}^{n-i} = \prod_{i=0}^{n} (\sigma_j - \sigma_i) = 0. \]

Proposition 3.3. Suppose that R is a k-algebra such that $f = \prod_{i=1}^{n} (T - \alpha_i)$ for certain $\alpha_1, \ldots, \alpha_n \in R$. Then, there exists a homomorphism $\phi : A \to R$ of k-algebras which maps $\phi(s_i) = \alpha_i$.

Proof. We define a map $\psi : k[x_1, \ldots, x_n] \to R$ by $\psi(x_i) := \alpha_i$. We have to verify that $\ker(\psi) \supseteq I$ because this yields an induced map $\phi : A \to R$. Since
\[f(T) = \prod_{i=1}^{n} (T - \psi(x_i)) = \psi\left(\prod_{i=1}^{n} (T - x_i)\right) \]
\[= \psi\left(\sum_{i=0}^{n} (-1)^i \sigma_i T^{n-i}\right) = \sum_{i=0}^{n} (-1)^i \psi(\sigma_i) T^{n-i}, \]
we know $\psi(\sigma_i) = c_i = \psi(c_i)$ by comparing coefficients, so $\psi(f_i) = \psi(\sigma_i - c_i) = 0.$
3.2 The Dimension of A

Proposition 3.4. There are $|Z(I)| = n!$ solutions and each of them has multiplicity 1. The coordinates of each solution are the roots of f in k. The symmetric group acts on the solutions by permuting coordinates. In particular, $\dim_k(A) = n!$.

Proof. Let $\alpha_1, \ldots, \alpha_n \in k$ be the distinct roots of f in the algebraic closure of k. The point $p = (\beta_1, \ldots, \beta_n) \in k^n$ satisfies $\sigma_i(p) = c_i$ for all i if and only if

$$\prod_{i=1}^n (T - \beta_i) = \prod_{i=1}^n (T - x_i(p)) = \sum_{i=0}^n (-1)^i \sigma_i(p) T^{n-i} = \sum_{i=0}^n (-1)^i c_i T^{n-i} = f.$$

Any point with coordinates equal to some permutation of the α_i is therefore a solution. By Bézout (Theorem 1.1) and since $\deg(f_i) = i$, there are at most $n!$ many solutions counted with multiplicity, so each solution has multiplicity 1 and $\dim_k(A) = n!$.

Remark 3.5. We note that the symmetric group S_n acts on $k[x_1, \ldots, x_n]$ by permuting the variables, i.e. $\pi(x_i) := x_{\pi(i)}$ for $\pi \in S_n$. Since the elementary symmetric polynomials are invariant under this action, so are the f_i. Thus, we get an induced action $S_n \times A \to A$.

3.3 The Emergence of Splitting Fields

Let $f_0 \in k[x_1, \ldots, x_n]$ be a linear polynomial which takes distinct values at all $p \in Z(I)$ and let $\chi \in k[T]$ be the characteristic polynomial of the map L_{f_0}. Since k is infinite, note that we can always find such an f_0. In fact, a generic homogeneous linear polynomial satisfies this condition.

Fact 3.6. The eigenspaces of L_{f_0} are all one-dimensional. In particular, χ is the minimal polynomial of L_{f_0}.

Proof. This follows because $\chi = \prod_{p \in V}(T - f_0(p))$.

Lemma 3.7. There is an algebra isomorphism $k[T]/(\chi) \cong A$.

Proof. Consider the projection $\pi : k[T] \to A$ defined by $h \mapsto h(f_0)$. We know that

$$h \in \ker(\pi) \iff h(f_0) \in I \iff h(L_{f_0}) = 0$$

The minimal polynomial μ of L_{f_0} is the nonzero polynomial of smallest degree with $\mu(L_{f_0}) = 0$. Hence, $\ker(\pi)$ is generated by μ and we get an injective morphism

$$k[T]/(\mu) \to A.$$

By [Bos06, 3.2, Satz 6], Fact 3.6 and Proposition 3.4,

$$\dim_k(k[T]/(\mu)) = \deg(\mu) = \deg(\chi) = n! = \dim_k(A).$$
Definition 3.8. Let $\chi = \prod_{i=1}^r \chi_i$ be the irreducible factors of χ. They are distinct by Fact 3.6 and we define $k_i := k[T]/(\chi_i)$. Observe that $A \cong k[T]/(\chi) \cong \prod_{i=1}^r k_i$ by Lemma 3.7 and the Chinese Remainder Theorem.

Remark 3.9. For everyone who has lost track, let us understand what a permutation $\pi \in S_n$ does on an element of A, understood as the residue class of a polynomial $h \in k[T]$. The isomorphism $k[T]/(\chi) \cong A$ constructed in Lemma 3.7 is induced by mapping h to $h(f_0)$. Hence, applying π to h means to permute the variables of $h(f_0)$ and taking its residue class.

Fact 3.10. Let $\pi \in S_n$. For all i, there exists some j with $\pi(k_i) = k_j$.

Proof. Since π induces an automorphism, $\pi(k_i) \cap \pi(k_j) = \pi(k_i \cap k_j) = \{0\}$, therefore we know $\prod_i k_i \cong \pi(\prod_i k_i) = \prod_i \pi(k_i)$ and the statement follows.

We state the following theoretical result without proof:

Proposition 3.11. The symmetric group S_n acts transitively on the set $\{k_1, \ldots, k_r\}$. Furthermore we have isomorphisms

$$\text{Gal}(k_i/k) \cong G_i := \{ \pi \in S_n \mid \pi(k_i) = k_i \}.$$

We now obtain a quite inefficient algorithm to compute the Galois group of f:

Algorithm 3.12 (Calculating Galois Groups).

(a). Use Algorithm 2.15 to compute polynomials χ_i such that $I = \bigcap_{i=1}^r I_i$ is the minimal primary decomposition and $I_i = I + (\chi_i(f_0))$.

(b). Using the method of section 1.1.3\(^1\), calculate

$$\text{Gal}(k_i/k) = \{ \pi \in S_n \mid \pi(I_i) = I_i \} = \{ \pi \in S_n \mid \pi(\chi_i) \in I_i \}.$$

\(^1\)Mostly to avoid the devilish Gröbner bases.
References

