
Computational Complexity

Nitin Saxena

Winter term 2008/09 - University of Bonn, Germany

2

Contents

1 Formalizations 5
1.1 Formalizing Problems & Language 5
1.2 Formalizing Machines . 5
1.3 Church-Turing-Thesis . 7

2 P , NP and beyond 19
2.1 Polynomialtime . 20
2.2 NP : Nondeterministic polynomial-time 20
2.3 co-Classes . 25
2.4 EXP and NEXP . 26
2.5 Hierarchy Theorems . 27
2.6 can P ≠ NP be shown by diagonalization techniques? 30
2.7 More on space complexity . 31
2.8 PSPACE-completeness . 32
2.9 NL-completeness . 33
2.10 The Polynomial Hierarchy . 34
2.11 ΣPi -complete problems . 36
2.12 PH via oracle machines . 37
2.13 Between PH and PSPACE . 38
2.14 #P -completeness . 38
2.15 PERMANENT and #P . 39
2.16 Probabilistic turing machines . 48
2.17 BPP and PH . 51
2.18 Randomized Reductions . 52
2.19 Randomied Space-bounded Computation 52
2.20 Graph Isomorphism (GI) . 56

3 Circuits 59
3.1 Definition of Boolean & Arithmetic Circuits 59

3

4 CONTENTS

Chapter 1

Formalizations

1.1 Formalizing Problems & Language
Definition 1.1.1. The language generated by a finite set M is defined as

M∗ ∶= {s ∈Mk ∣ k ∈ N}

Definition 1.1.2. A problem is a function f ∶ {0,1}∗ ↦ {0,1}∗

Example 1.1.3. addition of a, b ∈ Z can be done in

O(log(sizeof(a)) + log(sizeof(b)))

Remark 1.1.4. all objects like “integer x”, “graph G”, “vector v” . . . will be
finite and we can fix a dictionary that interprets all characters {a1, a2, . . .} as
{1,11, . . .} and uses 0 as a seperator.

Definition 1.1.5. A Problem f is called boolean or decision problem if f ∶
{0,1}∗ ↦ {0,1}

Usually problems can be reduced to such boolean problems. For example
addition can be reduced to g: (+, i) ∶ Z × Z ↦ {0,1} s.t. ∀a, b ∈ Z ∶ g(a, b) is the
i-th bit of (a + b). A problem f has an associated set denoted by

Lf ∶= {x ∈ {0,1}∗ ∣ f(x) = 1}

this set is called language of f . So we have a strong connection between lan-
guages, decision problems and subsets of {0,1}∗.

Example 1.1.6. “testing whether a number is prime or not” ↔ f ∶ {0,1}∗ ↦
{0,1} ↔ PRIMES ∶= {x ∈ {0,1}∗ ∣ x is prime}

Definition 1.1.7. Identify “decide a language Lf” and “compute a boolean f”.

1.2 Formalizing Machines
Definition 1.2.1. A Turing machine M consists of

• a finite control-tape of (Γ,Q, δ)

5

6 CHAPTER 1. FORMALIZATIONS

• a possibly infinite data-tape

such that

• Γ is the alphabet of M, it always contains of ▷ (start), ◻ (blank), 0, 1 and
any other character, but finitely many

• Q is a finite set of stats (we say that M is in state . . .) and it has two
special states: qs (starting state) and qf (ending-state)

• δ ∶ Q × Γ2 → Q × Γ × {L,R,S}2 is a transition function of M

A configuration of M comprises of (state, input-head, work-head) and an ap-
plication of δ changes the configuration. One step of M looks like: Say the
current configuration is (q, i,w) and δ(q, i,w) = (q′,w′, ε1, ε2) than the action of
δ means:

• change the state to q′

• write w′ to the cell where the work-head is

• move the input head one cell in the direction ε1 ∈ {L = left,R = right, S =
stay} (if it is possible) and move the work-head in the direction ε2

Example 1.2.2. abc
(▷,▷)↦ (▷,R,S)
(0,▷)↦ (▷,R,S)
(1,▷)↦ (▷,R,S)
(◻,▷)↦ (▷, L,R)
(▷,◻)↦ (◻, S,L)
(0,◻)↦ (1, L,L)
(1,◻)↦ (0, L,L)

Remark 1.2.3. • The number of states (∣δ∣) represents the size of a C-
program

• The number of work-cells thatM actually uses represent the working-space
of a program that is used

• The number of δ-applications on the start configuration to reach the final
configuration is the time used by a program when executed

Exercise 1.2.4. • Simulate high-school methods of addition / multiplika-
tion on a turing machine

• proof that any C-program has a corresponding turing machine and vice
versa

So a turing machine is just a “computer” with an infinite harddisk.

1.3. CHURCH-TURING-THESIS 7

1.3 Church-Turing-Thesis
The Curch-Turing-Thesis says that every physically realizable computing dvice
- silicon based, DNA-based or alien technology - can be simulated on a turing
machine.

Definition 1.3.1. We say a problem f is computable or decidable or rekursive
if there exists a turing machine M s.t. ∀x ∈ {0,1}∗ it holds that M gives the
output f(x) in finite time. A boolean Funkton is called computable enumerable,
recursively enumerable or decidable enumerable when there is a turing machine
that “prints” Lf .

After this Definition the questien comes up if there are uncomputable func-
tions that are computable enumerable.

Definition 1.3.2.

HALT ∶= {(M,x) ∣M is a turing machine, x ∈ {0,1}∗ ,M halts on x}

Theorem 1.3.3. HALT is enumerable but HALT is not.

To proof theis theorem we will give turing machines as input to other turing
machines. Every description of a turing machine ... TODO: go on

Definition 1.3.4. Diophantine Problem: Given a Z-polynomial, decide it’s
solvability over N.

• posed by Hilbert (1900)

• Turing studied the Halting Problem 1.3.2 (1936)

• a plan was suggested by Davis, Putnam & robinson (1950-1960)

• the proof was completed by Matiyasevich (1970)

We will basically proof a stronger theorem:

Theorem 1.3.5. If R is a computably enumerable language then

∃PR ∈ Z [x,x1, . . . , xn]

s.t. ∀b ∈ {0,1}∗ ∩R the equation PR(b, x1, . . . , xn) = 0 is solvable over N. PR is
called a Diophantine representation.

Corrolar 1.3.6. If HALT has a Diophantine representation, the Diophantine
Problem is uncomputable.

Corrolar 1.3.7. Even for polynomials of degree 4 its undecidable.

Exercise 1.3.8. Let K be a field and P ∈K[x1, . . . , xn]. Show that the polyno-
mial equation P (x1, . . . , xn) = 0

a) has an equivalent quadratic system

b) can be reduced to an equation of degree ≤ 4

8 CHAPTER 1. FORMALIZATIONS

Corrolar 1.3.9. ∃f ∈ Z [x] s.t all its positive values on N-evaluations is exactly
PRIMES i.e.:

PRIMES = {f(n) ∣ n ∈ N & f(n) > 0}

Proof. PRIMES is computably enumerable. So by 1.3.5 a polynomial

PPRIMES(x,x1, . . . , xn)

exists. Define

f(x,x1, . . . , xn) ∶= x ⋅ (1 − P 2
PRIMES(x,x1, . . . , xn))

Now we see that (for x = (x1, . . . , xn))

f(x) > 0⇔ x > 0, (1 − P 2
PRIMES) > 0⇔ x > 0, PPRIMES = 0

◻
First step in the proof of 1.3.5: (representing a turing-machine computation

by an arithmetic formular in +,−,∗,=,<, & ,∨,∀,∃)
Let R be enumerable by a turing-machine MR. We will construct a first-

order arithmetic formula FR(b) s.t. b ∈ R⇔ FR(b) = true. Example:

∀x1∃x3∀x3 [x2
1 > x2 + x3 & x3 > 0]

FR will be built by using:

atomic formulas t1 = t2, t1 < t2 where t1, t2 ∈ N [x].

logical operators & (logical “and”), ∨ (logical “or”)

existential quantifier ∃ (universe = N)

restricted universal quantifier ∀z < U (universe = N and U ∈ N fixed)

Proposition 1.3.10. If a turing-machine MR enumerates R then we can con-
struct a first-order arithmetic formula FR(b) that imitates MR step-by-step till
it prints b only by using the above.

Proof. We construct

• a first-order arithmetic formula FR(b) that imitatesMR step-by-step until
it prints b.

• First attempt: Assume one head and one tape in MR

– associate a configuration of MR with a vector

C ∶= [s(C), p(C), q(C), a0(C), . . . aq(C)−1(C)]

where s is the state, p is the number of the cell where the head points
to, q is the number of used cells and ai are the bits on the tape.

– FR(b) ∶= ∃C1∃C2 [Start(C1) & Compute(C1,C2) & Stop(C2, b)]
– Start(C1): asserts the start configuration

(s(C1) = qstart) & (p(C1) = 1) & (a0(C1) = ◻)

1.3. CHURCH-TURING-THESIS 9

– Stop(C2, b): asserts that b = (b0, . . . bm−1) has been printed

(∃m < q(C2)) & (∀i <m)(ai(C2) = bi) & (am(C2) = ◻)

– Compute(C1,C2): asserts that there is a configuration sequence

L = [g0(L), . . . , gw(L)]

s.t. MR follows them to reach C2 from C1

∃L∃w(g0(L) = C1) & (gw(L) = C2) &

((∀i < w)∃C3∃C4(gi(L) = C3) & (gi+1(L) = C4)

& ⋀
I∈δMR

StepI(C3,C4))

– StepI(C3,C4): assert that C3 to C4 is a step following an instruction
I ∈ δMR

: Say, I = (s, b)↦ (s′, b′, ε); ε ∈ {L,R,S}. For ε = S:

(s(C3) = s) & (s(C4) = s′) &
(∃k∃n((p(C3) = k) & (p(C4) = k)

& (ak(C3) = b) & (ak(C4) = b′)
& (∀i < n) (ai(C3) = k) ∨ ai(C4)))

Exercise 1.3.11. Do it for ε = L and ε = R

• the problem is we are quantifying over vectors C1 and C2 of variable length
(even worse: L is a vector of vectors).

• Remedy: Try encoding a vector [a0, . . . , an−1] as a pair (x, y) of integers.

• How to decode ai back from (x, y) arithmetically?

◻

Theorem 1.3.12. Chinese Remainder Theorem: If m,n are coprime integers
then

∀a, b ∃x [x ≡ a (mod m) & x ≡ b (mod m)]

or equivalently: If gcd(m,n) = 1 then Z/mnZ ≅ Z/nZ × Z/nZ.

Exercise 1.3.13. Proof 1.3.12

• Encode C = [n, a0, . . . , an−1] as (x, y) s.t.

n ≡ x (mod y + 1)
a0 ≡ x (mod 2y + 1)
a1 ≡ x (mod 3y + 1)

. . .
an−1 ≡ x (mod ny + 1)

• Decoding requires modulo computation:

a ≡ b (mod c)⇔ (∃d) [(a = b + cd) ∨ (a = b − cd)]

10 CHAPTER 1. FORMALIZATIONS

• There always exists (x, y) encoding [a0, . . . , an−1, n]. Proof. it suffices to
use a y s.t. {y + 1,2y + 1, . . . , (n + 1)y + 1} are mutually coprimte. Verify
that lcm(1, . . . , n + 1) ∣ y then it works. ◻

• How to express y ≡ 0 (mod lcm(1, . . . , n + 1)) arithmatically?

lcm ∣ y⇔ (∀i < n + 2)(y ≡ 0 (mod i))

Exercise 1.3.14. Finish the construction of FR(b).

Proposition 1.3.15. If a first-order arithmetic formula has no universal quan-
tifier then we can derive a Diophantine instance from it.

Proof. We distinct the following cases:

a) (∃z)(P (z) = 0) is just a Diophantine instance

b) ∃z1∃z2 ∶ (P (z1) = 0 & P (z2) = 0)⇔ ∃z1∃z2 ∶ (P 2(z1) + P 2(z2) = 0)

c) ∃z1∃z2(P (z1) = 0 ∨Q(z2) = 0)⇔ ∃z1∃z2(P (z1)Q(z2) = 0)

d) ∃z1∃z2(P (z1) < Q(z2))⇔ ∃z1∃z2∃z(P (z1) + z + 1 −Q(z2) = 0)

Induction finishes the proof. ◻
So lets proof 1.3.5 assuming we already have a Diophantine representation

of:

Binomial Coefficient x =
y
z

Factorial x = y!

Exponential function x = yz

Proof. Let MR be the enumerator of R. We have already constructed FR
in 1.3 and the only part of it left to convert to a Diphantine problem is:

(∀z < U)∃x1 . . .∃xn(P (b, z, x1, . . . , xn) = 0)

Our aim is to get an equivalent formula that looks like

∃y1, . . .∃ym(Q(b, y1, . . . , ym) = 0)

The assertion is actually existential, it says there exists:

for z = 0 ∶ x
(0)
1 , . . . , x0

n

for z = 1 ∶ x
(1)
1 , . . . , x1

n

for z = U − 1 ∶ x
(U−1)
1 , . . . , xU−1

n

We want to compress the columns [0, . . . , U − 1] as Z and x0
i , . . . x

U−1
i as wi.

So we use the Chinese Remainder idea again: suppose we fix U coprime integers
u0, . . . , uU−1 then there is a vector (U,w1, . . . ,wn) s.t.:

∀z ∈ {0, . . . , U − 1}∀i ∈ {1, . . . , n},wi ≡ x(z)i (mod uz)

This encodes the z-th row by (Z,w1, . . . ,wn) but modulo uz. Because now

P (b,Z,w1, . . . ,wn) ≡ 0 (mod uz) ∀z < U

1.3. CHURCH-TURING-THESIS 11

or equivalently

P (b,Z,w1, . . . ,wn) ≡ 0 (mod u0 ⋅ . . . ⋅ uU−1)

So we have captured zeroness (mod uz) and we make it absolut by choosing
uz large enough. So its remains to find out how large we have to choose uz. Say
∣x(z)i ∣ <X ∀z, N = deg(P) and M = sum of absolute coefficients in P . Then

∣P (b, z, x1, . . . , xn)∣ <M ⋅ ((b + 1) ⋅U ⋅X)N =∶ T

Thus forcing uz > T gives us:

P (b,Z,w1, . . . ,wn) ≡ 0 (mod uz)⇒ P (b, z, x(z)1 , . . . , x(z)n) (mod uz)

Since uz > T > ∣P (b, z, x(z)1 , . . . , x
(z)
n)∣ it follows that P (b, z, xz1, . . . , x

(z)
n) = 0.

So we need coprime uzs whose product has a Diophantine representation.
Assuming the representation of the binomial cofficient, let us fix:

u0 ⋅ . . . ⋅ uU−1 = v
u

= v(v−1)...(v−u+1)
1⋅2⋅...⋅u

= (v+1
1 − 1) ⋅ (v+1

3 − 1) ⋅ . . . ⋅ (v+1
U

− 1)

Pick uz = (v+1
z+1 − 1).

• To make uz ∈ N ∶ (u!)∣(v + 1)

• Note that gcd(v+1
1 − 1, v+1

j
− 1) = gcd(v+1

i
− 1, v+1

i
j−i
j

) = gcd(v+1
i
− 1, j−i

j
)

• Show that uz > uz+1

Exercise 1.3.16. a) If we force (u!)2∣(v + 1) then u0, . . . , uU−1 are coprime
naturals.

b) v ≡ z (mod uz)

G1: P (b, V,w1, . . . ,wn) ≡ 0 (mod v
u)

∀i ∈ {1, . . . , n} ∶ G2,i (∀z < U)(wi (mod (v+1
z+1 − 1) <X) ∶

G3: (v+1
U

− 1) ≥M ⋅ ((b + 1) ⋅U ⋅X)N

G4: v + 1 ≡ 0 (mod (u!)2)

Exercise 1.3.17. Verify that

∃X∃V ∃w1, . . .∃wn(G1 & G21 & . . . & G2n & G3 & G4)

is equivalent to

(∀z < U)∃x1 . . .∃xn(P (b, z, x1, . . . , xn) = 0)

12 CHAPTER 1. FORMALIZATIONS

The only kind of universal quantifier that we need to remove is:

(∀z < U)(wi (mod uz <X) . . .wi (mod uz <X))

if and only if (uz devides at least one of wi,wi − 1, . . . ,wi −X + 1). The second
statement implies that uz ∣wi ⋅ (wi − 1) ⋅ . . . ⋅ (wi −X + 1) which is equivalent to
uz ∣ wi!

(wi−X)! . So (∀z < U)(wi (mod uz < X) ⇒v
u ∣ wi!

(wi−X)! . If we know how to
express v

u and factorial then we can express the condition

G′
2,i:

v
u ∣ wi!

(wi−X)!

which says that

∀z ∈ {0, . . . , U − 1}∀i ∈ {1, . . . , n} ∶ uz ∣
wi!

(wi −X)!

So Fix a z ∈ {0, . . . , U − 1} and from the fact uz ∣ wi!
(wi−X)! we get:

∃S1∣(uz), S1 > u
1
x
z ∃y(z)1 <X,S1∣(w1 − y(z)1)

from S1∣ w2!
(w2−X)! we get:

∃S2∣S1, S2 > u
1
x2
z ∃y(z)2 <X,S2∣(w2 − y(z)2)

...

∃Sn∣Sn−1, Sn > u
1
xn

z ∃y(z)n <X,Sn∣(wn − y(z)n)
⇒ Sn > (uz)

1
xn & Sn∣(w1 − y(z)i , . . . , (wn − y(z)n)

⇒ P (b, V,w1, . . . ,wn) ≡ P (b, z, y(z)1 , . . . , y
(z)
n) ≡ 0 (mod Sn)

So if we choose Sn > T then P (b, z, y(z)1 , . . . y
(z)
n) = 0. So choose

G′
3: uU−1 ≥ (M((b + 1)XU)N)x

n

Exercise 1.3.18. Verify that:

∃X∃V ∃w1 . . .∃wn(G1 & G′
21 & . . . & G2n′ & G′

3 & G4)

is equivalent to

(∀z < U)∃x1 . . .∃xn(P (b, z, x1, . . . xn) = 0)

◻

Lemma 1.3.19. We can find a Diophantaine representation of the binomial
coefficients using that of the exponential: That means, we want a Diophantaine
representation of the predicat:

(z ≤ y) &
y
z∶

Proof.
(1 + p)y = ∑yi=0

y

i pi

= u + (
y
z +pv)pz

u ∶= ∑z−1
i=0

y

i pi

v ∶= ∑yi=z+1
y

i pi−z−1

So we can hope to

1.3. CHURCH-TURING-THESIS 13

a) quotient((1+p)y/p3)

b) and by (mod p) we get
y
z

The two divisions (first by p3 and the second by p) give
y
z if and only if u <

pz &
y
z< p. So let us choose p = (3y + 1):

a)
u = ∑i=0 z − 1

y

i pi

< 2y∑i=0 z − 1pi
= 2y p

z−1
p−1

= 2y p
z−1
3y

< pz

b)
y
z< 2y < p

The two divisions will extract
y
z from (1 + p)y for p = (3y + 1).

Exercise 1.3.20. Verify that: (z ≤ y) & (x =
y
z) is equivalent to

(z ≤ y) & ∃p∃u∃v((p = 3y + 1) & ((1+p)y = u+ (x+ vp)pz) & (u < pz) & (x < p))

So a Diophantaine representation of exponential yields a Diophantaine rep-
resentation of x =

y
z. ◻

Lemma 1.3.21. We can find a Diophantaine representation of factorial:

x = y!

using exponential and binomial coefficients.

Proof. Note that y! appears in
w
y= w!

y!(w−y)! . Let w >> y then
w
y≈ wy

y! ⇒ y! =
wy
w
y
. So how big should w be?

y! ≤ w
y

w
y

= y!w
w

w

w − 1
⋯ w

w − y + 1
≤ y!(w

w − y
)
y

= y!(1 + y

w − y
)
y

So let 1
t
= y
w−y :

wy
w
y

≤ y!(1 + 1
t
)y ≤ y!(1 +∑yi=1

y

i 1
ti
)

≤ y!(1 + 2yy
t

) = y! + 2yyy!
t

let t = 2yyyy, then wy
w
y

≤ y! + 1
2 and note that w = y + 2y+1yy + 2 and that

y! ≤ wy
w
y

≤ y!+ 1
2 . By keeping the integral part of this term we have computed y!.

◻

Exercise 1.3.22. Verify that: x = y! is equivalent to

∃w∃r ((w = y + 2y+1yy+2) & (wy = x
w
y +r) & (r <

w
y))

14 CHAPTER 1. FORMALIZATIONS

Lemma 1.3.23. We will now reduce exponential to a special exponential: Com-
pute vn modulo a small polynomial in v (e.g. v2−2av+1). vn ≡ xn(a)+yn(a)(v−
a) (mod v2 = 2av + 1) where a ≥ 2 & ((a +

√
a2 − 1)n = xn(a) + yn(a)

√
a2 − 1)

Proof. Viewing (v2 − 2av + 1) as a polynomial in v. it factors as: (v −
(a+

√
a2 − 1))(v − (a−

√
a2 − 1)). For v = (a+

√
a2 − 1) or v = (a−

√
a2 − 1) the

congruence is true. ◻
Suppose we have a Diophantaine representation of xn(a) and yn(a) say

F (a, x, y, n) ∶= ((x = xn(a) & y = yn(a)

Then we immediatey have a representatin of u ≡ vn (mod v2 − 2av + 1). It will
be an absolute equality if (2av − v2 − 1) > u, vn.

Lemma 1.3.24. xn(b) ≥ bn ∀b ≥ 2

Proof. We have (b+
√
b2 − 1)n = xn(b)+yn(b)

√
b2 − 1. We see that x0(b) = 1

and x1(b) = b. Observe that xn+1(b)+yn+1(b)
√
b2 − 1 = (xn(b)+yn(b)

√
b2 − 1)(b+√

b2 − 1) = (bxn(b) + (b2 − 1)yn(b)) + (xn(b) + byn(b))
√
b2 − 1 which implies by

comparison of coefficients

xn+1(b) = bxn(b) + (b2 − 1)yn(b)
≥ bxn(b)

⇒ xn+1(b) ≥ bn + 1

◻
We can make 2av − v2 − 1 > vn if we froce (2av − v2 − 1) > xn(v). So the

conditions for u = vn are:

E1: F (a, x, y, n) represents (a +
√
a2 − 1))n = x + y

√
a2 − 1

E2: u ≡ x + y (mod v2 = 2av + 1) represents u0vn (mod v2 − 2av + 1)

E3: (u < (2av − v2 − 1)) & (X < (2av − v2 − 1))

E4: F (v,X,Y,n) represents (v +
√
v2 − 1)n = (X + Y

√
v2 − 1)⇒X ≥ vn

Exercise 1.3.25. Verify that: (u = vn) is equivalent to

∃a∃x∃y∃X∃Y (E1 & E2 & E3 & E4)

Finally we want to represent xn(a) and yn(a) such that

(a +
√
a2 + 1)

n
= xn(a) + yn(a)

√
a2 − 1

(xn(a), yn(a)) are roots of a special Fermat’s equation:

x2 − (a2 − 1)y2 = 1

because: 1 = xn(a)2 − (a2 − 1)yn(a)2 and (a +
√
a2 − 1)(a −

√
a2 − 1) = 1

In the hope of representing (xn(a), yn(a)) we investigate this equation:
We can write a recurrence for (xm+n(a) in terms of xm(a), yn(a) and

xn(a) because of xm+n(a)+ ym+n(a)
√
a2 − 1 = (xm(a)+ ym(a)

√
a2 − 1)(xn(a)+

yn(a)
√
a2 − 1)

1.3. CHURCH-TURING-THESIS 15

Lemma 1.3.26.
xm+n = xmxn + (a2 − 1)ymyn
ym+n = xmyn + xnym
xn+1 = axn + (a2 − 1)yn
xn+1 = ayn + xn

Lemma 1.3.27. Say a ≥ 2. Then

x2 − (a2 − 1)y2 = 1;x, y ≥ 0⇔ ∃n(x = xn(a) & y = yn(a))

Proof. “⇐” is clear, so suppose x2 − (a2 − 1)y2 = 1 and (w.l.o.g.) y > 1.

⇒ (x − y
√
a2 − 1)(x + y

√
a2 − 1) = 1

⇒ [(x − y
√
a2 − 1)(a +

√
a2 − 1)][x + y

√
a2 − 1)(a −

√
a2 − 1)] = 1

Look at the integral points give by this equation: (ax−y(a2−1),−x+ay) which
is obviously satisfying the fermat equation. It is an N-point and its “smaller”
than (x, y).

• Suppose ax < y(a2 − 1) then 1 = x2 − (a2 − 1)y2 < y2 (a2−1)2

a2 − (a2 − a)y2 =
(a2−1)y2

a2 (−1) < 0, a contradiction.

• Suppose x < ay then 1 = x2 − (a2−)y2 = a2y2 − (a2 − 1)y2 = y2 > 1 also a
contradiction.

• Suppose −x + ay ≥ y then 1 = x2 − (a2 − 1)y2 ≤ (a − 1)2y2 − (a2 − 1)y2 =
(−2a + 1)y2 < 0, a contradiction.

◻
We can see that several (say n) applications of the descent will have to stop

at: y = 1, x = a.

(x + y
√
a2 − a)(a −

√
a2 − 1)n = (a +

√
a2 − 1)

⇒ (x + y
√
a2 − a) = (a +

√
a2 − 1)n+1

Thus, x = xn+1(a) & y = yn+1(a).
Next we show that modulo relations: xN(a) ≡ xm(a) (mod xn(a)) is almost

equivalent to: N ≡m (mod n).

Lemma 1.3.28. Say, a ≥ 2 & 0 <m < n. Then

∀N,xN(a) ≡ xm(a) (mod xn(a))⇔ N ≡ ±m (mod 4n)

Proof. Let us compute xi+2n (mod xn):

xi+2n + yi+2n
√
a2 − 1 = (xi + yi

√
a2 − 1)(xn + yn

√
a2 − 1)2

⇒ xi+2n ≡ xiy
2
n(a2 − 1) (mod xn)

⇒ xi+2n ≡ xi(x2
n − 1) (mod xn)

⇒ xi+2n ≡ −xi (mod xn)

◻

Exercise 1.3.29. Similary, compute x2n−i (mod xn) and proof that

x2n−i ≡ −xi (mod xn)

16 CHAPTER 1. FORMALIZATIONS

Therefor, we have:
• {x0x1, . . . , xn−1}

• {xn, . . . , x2n−1} ≡xn {−xn,−xn−1, . . . , x1}

• {x2n, . . . , x3n−1} ≡xn {−x0,−x1, . . . ,−xn−1}

• {x3n, . . . x4n−1} ≡xn {xn, xn−1, . . . , x1}
Exercise 1.3.30. Show that x0 < x1 < ⋯ < xn−1 < xn using 1.3.26
So xm appears at ±m (mod 4n) places. Now do the same thing for y:
Lemma 1.3.31. Say, a ≥ 2 & n ≥ 1 then ∀N ∶ yN(a) ≡ 0 (mod yn(a))⇔ N ≡ 0
(mod n)
Exercise 1.3.32. proof this lemma.

We can also look at yN (mod y2
n):

Lemma 1.3.33. Say, a ≥ 2 & n ≥ 1, then ∀N,yN(a) ≡ 0 (mod yn(a)2)⇔ N ≡
0 (mod nyn).

Proof. “⇒” Suppose y2
n∣yN then n∣N and so ∃k,N = kn:

⇒ (xN + yN
√
a2 − 1) = (xkn + ykn

√
a2 − 1) = (xn + yn

√
a2 − 1)k

= ∑ki=0
k
i xk−1

n ⋅ (yn
√
a2 − 1)i

⇒ yn ≡ kxk−in yn (mod y2
n)

Since y2
n∣yN we get yn∣kxk−1

n ⇒ yn∣k ⇒ nyn∣N . “⇐” Suppose nyn∣N . Then
∃k ∶ N = kn & yn∣k and yN ≡ 0 (mod y2

n) by 1.3. ◻
Now look (mod a − 1):

Lemma 1.3.34. Say a ≥ 2 & n ≥ 1 then (xn, yn) ≡ (1, n) (mod a − 1).
Proof.
By 1.3.26:

xi+1 = axi + (a2 − 1)yi
xi+1 = xi + ayi

xi+1 ≡ xi (mod a − 1) ⇒ xi ≡ 1 (mod a − 1)
xi+1 ≡ xi + yi (mod a − 1) ⇒ yi ≡ i (mod a − 1)

Simply 1.3.26:
Lemma 1.3.35.

a ≡ a′ (mod b)⇒ (xn(a), yn(a)) ≡ (xn(a′), yn(a′)) (mod b)

Exercise 1.3.36. proof this lemma
Now we are ready to give a Diophantine representation of F (a, x, y, n) ∶=

(a +
√
a2 − 1)n = x + y

√
a2 − 1. We certainly need F1 ∶ x2 − (a2 − 1)y2 = 1.

But how do we ensure that (x, y) is the n-th point in F1? So we can put
y ≡ n (mod a − 1), but it is not enough as n can be much larger hen a. The
idea is to construct sort of an n-th (X,Y) point on another Fermat-equation
F2 ∶ X2 − (A2 − 1)Y 2 = 1 which has a large A. Then connect the points (x, y)
and (X,Y) by a third point (U,V) satisfying F3 ∶ U2 − (a2 − 1)V 2 = 1 such that
F (a, x, y, n) is forced.

Say (x, y) = (xm(a), ym(a)); (U,V) = (xN(a), xN(a)), (X,Y) = (xM(A), yM(A)).

1.3. CHURCH-TURING-THESIS 17

Force M to be sort of n F4 ∶ Y ≡ n (mod A−1) which implies 1.3.35⇒M ≡
n (mod A − 1)

connect (X,Y) to (x, y) via (U,V)

F5 ∶ 0 < x < U & X ≡ x (mod U) & A ≡ a (mod U)

and with 1.3.27 it follows that xM(a) ≡ xM(a) ≡ xm(a) (mod yN(a)) and
by 1.3.31 it follows that M ≡ ±m (mod 4N).

connect these two congruences F6 ∶ V ≡ 0(mdy2) by 1.3.34 it follows that
my∣N . F7 ∶ A − 1 ≡ 0 (mod 4y) which implies 4y∣(A − 1),4N ⇒ n ≡ ±m
(mod 4y)

make the congruence absolute F8 ∶ n ≤ y which implies m ≤ y⇒ n =m

Exercise 1.3.37. Verify that (a ≥ 2) & (a +
√
a2 − 1)n = (x + y

√
a2 − 1) is

equivalent to (a ≥ 2) & ∃A∃X∃Y ∃U∃V (F1 & . . . & F8)

◻

18 CHAPTER 1. FORMALIZATIONS

Chapter 2

P , NP and beyond

We now consider problems that have obious algorithms that run in finite time
and will study the resources required by an algorithm. Examples for resources
are:

time which is the number of transitions of a turing machine M till it stops on
a given input x. We say that is the “time taken by M on x”.

space which is the number of cells used on the tape

randomness which is a more exotic resources, describing the number of ran-
dom bits an algorithm uses

Time taken by M is viewed as a function timeM ∶ N → N, n ↦ timeM(n)
where timeM(n) ∶= max∣x∣=n{time taken by M on x}. As timeM is dependent
on low-level details of M , it is quite messy to specify timeM exactly. So we just
applroximate timeM(n) by asymptotic. Two functions f, g ∶ N → N can be in
the following relations:

a) f = O(g)⇔ ∃c,N > 0∀n ≥ N.f(n) ≤ cg(n)

b) f = Ω(g)⇔ g = O(f)

c) f = Θ(g)⇔ f = O(g) & g = O(f)

d) f = o(g)⇔ ∀ε ∈ R>0∃N > 0∀n ≥ N

e) f = ω(g)⇔ g = o(f)

Example 2.0.38. 10n2 + 100 log(n) = O(n2),Θ(n2), ω(n1.99) ≠ ω(n2)

Definition 2.0.39. We say that

• g is an upper bound on f if f = O(g)

• f is a lower bound on g if g = Ω(f)

Exercise 2.0.40. Show that the high-school method to add two integers takes
time Θ(n).

19

20 CHAPTER 2. P , NP AND BEYOND

2.1 Polynomialtime
For a function T ∶ N → N we define a set of languages (which is equivalent to
decision problems) that have algorithms of time O(T (n)):

Dtime(T) ∶= {L ⊂ {0,1}∗ ∣ L is decided by a turing machine M
& timeM(n) = O(T (n))}

Which algorithms should we call “efficient” now? Algorithms that run in time
O(∣x∣n) for a constant n are called efficient. The set of all these problems is
called P :

P ∶= ⋃
c∈N

Dtime(nc)

It stands for polynomial-time algorithms. We call an algorithm or a turing
machine M deterministic polynomial-time if it is solving a problem L ∈ P .
There are some tricky issues with polynomial time: For timeM1 = f1(n) =
n100, timeM2 f2(n) = nlglglgn the turing machine M1 is polynomial-time while
M2 is not. M2 is more than polynomial-time. But

timeM2(n) > timeM1(n)⇔ n > 222100

Nevertheless P is the most eleganz way to study inherent complexity of natural
problems.

2.2 NP : Nondeterministic polynomial-time
Let us start with some example problems:

Travelling Salesman Problem (TSP) Suppose we are given a complete graph
on n nodes {1, . . . , n} with distances {dij ∈ N∣1 ≤ i, j ≤ n}. Is there a closed
circuit visiting each node exactly once of length ≤ k?

Subset Sum Given a set S = {s1, . . . , sm} ⊆ N and t ∈ N. Is there a subset
T ⊆ S that sums to t?

Integer Programming Given m linear inequalities, over Z in x1, . . . , xn:

ai1x1 + . . . + aimxm ≤ bi ∀1 ≤ i ≤m

Is there a common point (x1, . . . , xm) ∈ Zm?

Exercise 2.2.1. Proof that

a) “TSP” can be solved in O(n!) ≈ O(2nlog(n)) time

b) “Subset Sum” can be solved in O(2m) time

c) “Integer Programming” can be solved in O(2m2
) time

All these algorithms are in

EXP ∶= ⋃
c∈N

Dtime(2n
c

)

Anything better for these three problems is still unknown!

2.2. NP : NONDETERMINISTIC POLYNOMIAL-TIME 21

Exercise 2.2.2. Show that a given candidate solution for “TSP”, “Subset Sum”
or “Integer Programming” can be verified in P .

This was observed and the class NP was defined by Cook (1971) and Levin
(1973).

Definition 2.2.3. A language L ⊂ {0,1}∗ is in NP if ∃c ∈ N and a polynomial-
time turing-machine M s.t. ∀x ∈ {0,1}∗:

x ∈ L⇔ ∃u ∈ {0,1}∣x∣
c

,M(x,u) = 1

This u satisfying M(x,u) = 1 is called a certficate for x with respect to M and
M is called a verifier of L.

Lemma 2.2.4. “Subset Sum” is in NP

Proof.

language

L ∶= {(S, t) ∣ S ⊆ N, t ∈ N,∃T ⊂ S,∑
x∈T

x = t}

input x ∶= (S,T)

certificate u ∶= T for which ∑x∈T x = t & T ⊆ S

verifier M ∶= the turing machine that outputs 1 on input (S, t, T) iff

T ⊆ S & ∑
x∈T

x = t

constant c ∶= 1

◻

Exercise 2.2.5. Proof that P ⊆ NP (note that u can be just taken empty)

Lemma 2.2.6. NP ⊆ EXP

Proof. Let L ∈ NP , let M be its verifier (of time nd) and c s.t. x ∈ L iff
∃u ∈ {0,1}∣x∣

c

,M(x,u) = 1. Define M ′ to be the turing machine that scans an
u of length ∣x∣c, simulates M on (x,u) and outputs 1 iff M(x,u) = 1 for some
u. Note that M ′ runs in time 2∣x∣c ∣x∣d < 2∣x∣c+1 and that M ′ accpets x iff x ∈ L.
So L ∈ Dtime(2∣x∣c+1

). ◻

Remark 2.2.7. Its not known whether P = NP or NP = EXP .

Definition 2.2.8. A Nondeterministic Turing Machine (NDTM) N is a Turing
Machine (1.2.1) with two transition functions, so N = (Γ,Q, δ0, δ1) (+ infinite
tapes). At any configuration C = [s, p, b] it’s transition is no more unique and
it can follow δ0 or δ1 each step. N is said to accept x ∈ {0,1}∗ iff there is a
non-empty set of options for steps leading to the halt and the accept state. The
time taken by N on x is minpaths{# steps taken to halt on x}.

22 CHAPTER 2. P , NP AND BEYOND

We cannot really identify this with a physical device (unlike we did with
turing-machine , which are actually computers), so a non-deterministic turing-
machine is really an abstract machine. non-deterministic turing-machines mo-
tivate a class, like Dtime:

Definition 2.2.9. Let T be a functions N→ N, define

Ntime(T (N)) ∶= {L ⊆ {0,1}∗ ∣ L is decided by a non-deterministic turing-machine N
& timeN(n) = O(T (n))}

Theorem 2.2.10.
NP = ⋃

c∈N
Ntime(nc)

Proof. First we show that NP ⊆ ⋃c∈NNtime(nc): Let L ∈ NP . Then L has
a deterministic polynomial-time verifierM , s.t. x ∈ L iff ∃u ∈ {0,1}∣x∣

c

,M(x,u) =
1. Define a non-deterministic turing-machine N that has transition functions δ0
and δ1 s.t. on input x, N writes at each transition either 0 (by δ0) or 1 (by δ1).
N does this for ∣x∣c many steps, call this output w. Then N should simulate
M(x,w) and copies its output. So L ∈ Ntime(nc + 1 + timeM(x)).

Next we show ⋃c∈NNtime(nc) ⊆ NP . Let L ∈ Ntime(nc). Then there exists
a non-deterministic turing-machine N that decides L in time O(nc). x ∈ L iff ∃
path p in N (which can be views as string of length O(∣x∣c)) s.t. N accepts x
in p which has a deterministic polynomial-time turing-machine given (x, p) as
input, simulate N following p. So L ∈ NP . ◻

Definition 2.2.11. A boolean formular in cinjunctive normal form (CNF) is

φ(x1, . . . , xn) =⋀
i

(⋁
j

vij)

where the literals vij ∈ {x1, . . . , xn, x1, . . . xn}. The Terms in the brakets are
called clause. A boolean formula φ is called satisfiable if there exists a valuation
v of the variables s.t. φ(v) = 1.

NP has a “hardest” problem (with respect to efficiency, not to computabil-
ity).

Definition 2.2.12. SAT: Given a boolean formula φ in CNF, decide if φ is
satisfiable. The corresponding language is:

SAT ∶= {φ ∣ φ is in CNF and is satisfiable}

Example 2.2.13.
(x1 ∨ x2 ∨ x3) & (x2 ∨ x3)

(so it’s a combination of ∨, & , . . .)

Lemma 2.2.14.
SAT ∈ NP

Proof. Given a boolean formula φ in CNF. The valuation v is the certificate
and the verifier is: evaluate φ at v. ◻

2.2. NP : NONDETERMINISTIC POLYNOMIAL-TIME 23

Lemma 2.2.15. ∀L ∈ NP , L can be “efficiently reduced” to SAT .

Proof. (The proof is really what we did in the beginning of proof of Hilbert’s
10th problem) As L ∈ NP there exists a polynomial-time verifier M s.t.

x ∈ L⇔ ∃u ∈ {0,1}∣x∣
c

,M(x,u) = 1

Idea: We want to capture the computation of M on (x,u) step-by-step in a
CNF formula φx s.t. φx is satisfiable iff ∃u with M(x,u) = 1 in other words:

φx ∈ SAT ⇔ x ∈ L

With each configuration C of M we associated an array of variables:

[s(C), p(C), a0(C), . . . , aT−1(C)]

but now we just know T as a functions of ∣x∣. Final formula looks like:

φx(. . .) ∶= Start(C1, x) & Compute(C1,C2) & Stop(C2)

where Compute(C1,C2) asserts that there is a sequence of configurations C1 =
g0, . . . , gT−1 = C2 s.t. each step is valid (follows δM):

(g0 = C1) & (gT−1 = C2) & (∀i < T)(⋁
I∈δM

StepI(gi, gi+1))

and StepI(gi, gi+1) asserts that the transition from gi to gi+1 follows the instruc-
tions I: (q, b)↦ (q′, b′, ε). For ε = “Stay”:

s(gi) = q & s(gi+1) = q′

& ∃k(p(gi) = p(gi+1) = k & ak(gi) = b & ak(gi+1) = b′ &

(∀j < T)(j = k ∨ aj(gi) = aj(gi+1)))

Exercise 2.2.16. a) Observe that “a = b” can be written as & s of ai = bi
where are ai, bi are bits.

ai = bi⇔ (ai ∨ bi) & (ai ∨ bi)

b) (∀i < T)Ei ≡ E0 & . . . & ET−1

c) We can convert M to an oblivious turing-machine M ′ (i.e. on an input x
the head-position at the i-th step of M ′ is just a function of (∣x∣, i)) and
then construct φx.

d) x ∈ L iff φx is satisfiable.

◻

Theorem 2.2.17. SAT is NP -hard.

Remark 2.2.18. SAT can be “efficiently reduced” to 3SAT (where 3SAT ∶=
{φ ∣ φ is a 3 CNF and is satisfiable}. We say that φ is in 3 CNF if φ = ⋀i(vi1 ∨
vi2 ∨ vi3)).

24 CHAPTER 2. P , NP AND BEYOND

Proof. Idea: A clause like x1∨x2∨x3∨x4 is satisfiable iff (x1∨x2∨z) & (z∨
x3∨x4) is satisfiable. So φ can be converted into an equivalent 3 CNF wth more
variables and more clauses (but not much more, it’s only a polynomial blow-up).
◻

3SAT is a hardest problem in NP . We now formalize this feature:

Definition 2.2.19. We say that a problem A reduces to a problem B via a
complexity class C (in symbols A ≤C B) iff there is a turing machine M in C
s.t. x ∈ A iff M(x) ∈ B.

Definition 2.2.20. A problem A is Karp reducible to B iff A ∈P B (where P
is the polynomial-time complexity class)

Definition 2.2.21. We say that a problem B is NP -hard iff ∀A ∈ NP ∶ A ≤P B
and we say that it is NP -complete iff B is NP -hard and B ∈ NP .

Exercise 2.2.22. • A ≤P B & B ≤P C ⇒ A ≤P C

• If A is NP -hard & A ∈ P ⇒ P = NP

• If A is NP -hard & A ≤P B ⇒ B is NP -hard

• If A and B are NP -complete ⇒ A ≤P B & B ≤P A

Corrolar 2.2.23. Thus NP -complete problems are the hardest in NP .

Lemma 2.2.24.

3SAT ≤ INTEGER − PROGRAMMING

Proof. Let φ = C1 & . . . & Cm and xi,j ∈ {xj , xj} the variables in Ci for
i ∈ {1, . . . ,m} , j ∈ {1,2,3} and define for j ∈ {1,2,3}

if xi,j = xj define zi,j = yi,j ∈ Z
if xi,j = xj define zi,j = 1 − yi,j ∈ Z

Now for every clause Ci we generate the following inequalities:

zi,1 + zi,2 + zi,3 ≥ 1
1 ≥ yi,1 ≥ 0
1 ≥ yi,2 ≥ 0
1 ≥ yi,3 ≥ 0

Example: We transform (x1 ∨ x2 ∨ x3) (where x1, x2, x3 ∈ {T,F}) into

y1 + (1 − y2) + (1 − y3) ≥ 1
1 ≥ y1 ≥ 0
1 ≥ y2 ≥ 0
1 ≥ y3 ≥ 0

y1, y2, y3 ∈ Z

Exercise 2.2.25. Show that the integer-program, defined above, is solveable iff
φ is satisfiable.

◻

2.3. CO-CLASSES 25

Definition 2.2.26. Quadratic equality over finite fields:

QUADEQN ∶= {S ∣ S is a set of quadratic equations over a finite field & S has a root}

Lemma 2.2.27.

3SAT ≤P QUADEQN & QUADEQN ∈ NP

Proof. Let φ = C1 & . . . & Cm and xi,j ∈ {xj , xj} the variables in Ci for
i ∈ {1, . . . ,m} , j ∈ {1,2,3} and define for j ∈ {1,2,3}

Example: We transform (x1 ∨ x2 ∨ x3) (where x1, x2, x3 ∈ {T,F}) into 1 −
(1 − x1)x2x3 with x1, x2, x3 ∈ F2.

Define ψ(φ) ∶= ∏m
i=1 φ(Ci), now we see that ψ(φ) = 1 has an F2-root iff φ is

satisfiable.
How to reduce the degree (from 3m to 2)?

1 − (1 − x1)x2x3 ↦ { 1 − (1 − x1)z1 = 1
z1 = x2x3

◻

2.3 co-Classes
Definition 2.3.1. To a language L ⊆ {0,1}∗ we define the co-language L by

L ∶= {0,1}∗L

Definition 2.3.2.
coNP ∶= {L ⊆ {0,1}∗ ∣ L ∈ NP}

Remark 2.3.3. If L ∈ NP then given an x, it is “easy” to verify whether x ∉ L
(or equivalently x ∈ L).

Definition 2.3.4. A DNF formular is a formular in the form:

⋁
i

(
ni

⋀
j

xij &
mi

⋀
j

xij)

Definition 2.3.5. Problem: Tautology

TAUT ∶= {φ ∣ φ is a DNF formular and a tautology (i.e. true for all evaluations)}

Remark 2.3.6.
TAUT ∈ coNP

Proof. Given φ(x1, . . . , xn), φ ∉ TAUT iff ∃v ∶ φ(v) = False. ◻

Theorem 2.3.7. TAUT is coNP -hard.

Proof. Given L ∈ coNP we can want to reduce L to TAUT : We knot that
there exists a polynomial-time turing-machine M s.t. x ∈ L iff ∃u ∶M(x,u) = 1.
Using the idea in 2.2.17 we construct a boolean formular φx s.t. x ∈ L iff φx is
satisfiable. So x ∈ L iff φx is unsatsisfiable. And ¬φx is a tautology. In symbols:

L ≤P TAUT

◻

26 CHAPTER 2. P , NP AND BEYOND

Definition 2.3.8.

NP ∩ coNP ∶= {L ⊆ {0,1}∗ ∣ L ∈ NP & L ∈ coNP}

Remark 2.3.9. P ⊆ NP ∩ coNP but it is not known whether if this is an
equation or a strict subset-relation.

Exercise 2.3.10. “The decision version of integer factoring” ∈ NP ∩ coNP

Remark 2.3.11. It is unknown if

GraphIso ∈ NP ∩ coNP

Theorem 2.3.12.
NP ≠ coNP ⇒ P ≠ NP

Proof. If NP ≠ coNP but P = NP than P ≠ coP = P which is a contradic-
tion. ◻

Remark 2.3.13. But it’s an open question whether NP = coNP or whether
NP = coNP ⇒ P = NP .

Definition 2.3.14.
1n ∶= 1 . . .1

²
n−times

Remark 2.3.15. Gödels’s question:

Theorems ∶= {(φ,1n) ∣ φ is a mathematical statement for which
there is a proof of length ≤ n}

First notice that Theorems ∈ NP and that it is NP -hard. If P = NP then
Theorems ∈ P and mathematicians are obsolete.

2.4 EXP and NEXP
Definition 2.4.1.

EXP ∶= ⋃
C∈N

Dtime(2n
C

)

is the class of exponential-time problems, and

NEXP ∶= ⋃
C∈N

Ntime(2n
C

)

is the class of nondeterministic exponential-time problems.

Remark 2.4.2. P ⊆ NP ⊆ EXP ⊆ NEXP and it is unknown whether any of
this relations are strict. It is known that P ≠ EXP and NP ≠ NEXP .

Theorem 2.4.3.
P = NP ⇒ EXP = NEXP

2.5. HIERARCHY THEOREMS 27

Proof. Let P = NP and L ∈ NEXP , say L ∈ Ntime(2nC) for some n,C ∈ N
and M is a polynomial-time turing-machine s.t.

x ∈ L⇔ ∃u ∈ {0,1}2∣x∣
C

∶M(x,u) = 1

Define a language L′ ∶= {(x,1∣x∣C) ∣ x ∈ L} (this trick is called padding technice).
And we see that L′ ∈ NP with the same verifier as M and the same certificate
as in L. So L′ ∈ P ⇒ L ∈ EXP ⇒ NEXT ⊆ EXP ⇒ NEXP = EXP . ◻

Remark 2.4.4. It’s unknown whether EXP = NEXP ⇒ P = NP .

Definition 2.4.5. Let f ∶ N→ N, define

Space(f(n)) ∶= {L ⊆ {0,1}∗ ∣ L is decided by a turing machine that uses
O(f(n)) cells/space}

and then we can define
PSpace ∶= ⋃

c∈N
Space(nc)

2.5 Hierarchy Theorems
Now we will show some “easy” complexity class sparations: given “strictly more”
resources (time, space, nondeterminism) turing machines can soolve more prob-
lems.

Theorem 2.5.1. Let f, g ∶ N → N s.t. g(n) = ω(f(n)2) then Dtime(f(n)) ⊊
Dtime(g(n)).

Proof. Idea is the use of “diagonalization”, i.e. simulating My on y.
Consider the turing machine D which does the following on an input x ∈ {0,1}∗:

• Output 0 if x is not a description of a turing machine

• else simulate the encoded turing machine Mx with x as input. Simulate
g(∣x∣) steps:

– if it does not get an output in {0,1} then output 0
– else if it does get an output Mx(x) output 1 −Mx(x)

Notice that D desides a language, say L, in time g(n). So L ∈ Dtime(g(n)).
Suppose L ∈Dtime(f(n)) and let M be a turing machine deciding L in time ≤
c ⋅ f(n)∀n ≥ n0 for a constant n0.

Remark: There exist infinitely many strings y ∈ {0,1}∗ that describe M
(add garbage steps and variables to M and encode it againt). Pick a “large”
y ∈ {0,1}∗ describing M with g(∣y∣) ≥ (c ⋅ f(∣y∣))2 and y ≥ n0. What is D(y)?
My =M on y gives an answer in {0,1} in ≤ c ⋅ f(∣y∣).

Exercise 2.5.2. Show that D can simulate “s steps of M” in ≤ s2 steps

So D can be simulate c ⋅ f(∣y∣) steps of My(y) in g(∣y∣) steps so D(y) =
1 −My(y) = 1 −M(y). This contradicts. D and M deciding the same language
L. So L ∉ Dtime(f(n)). ◻

28 CHAPTER 2. P , NP AND BEYOND

Theorem 2.5.3. Let f, g ∶ N → N s.t. g(n) = ω(f(n)) then Space(f(n)) ⊊
Space(g(n)).

Exercise 2.5.4. Proof the preceding theorem.

Theorem 2.5.5. Let f, g ∶ N → N s.t. g(n) = ω(f(n)). Then Ntime(f(n)) ⊊
Ntime(g(n)).

Proof. The idea is to use “lazy diagonalisation”: D will be “mostly” be
identical to a non-deterministik turing machine My and differ only for “very
large” y. Define a turing machine D which acts on input x ∈ {0,1}∗:

• If x ∉ {1}∗ then output 0

• else

– if s(i) < n < s(i + 1) then simulate the non-deterministik turing ma-
chines Mi(1n + 1) for g(∣x∣) steps

– if n = s(i + 1) then output 1 if Mi(11+s(i)) recets in g(i + s(i)) steps
and output 0 if it accepts.

If we choose 2g(1+s(i)) < g(s(i+1)) then D decides a language L ∈ Ntime(g(n)).
Remark: for g(n) = n the function is 21 + s(i) < s(i + 1) which means that

s is very rapidly growing. Again suppose that L ∈ Ntime(f(n)). First suppose
it is, let M be a non-deterministic turing machine deciding L in time ≤ c ⋅ f(n),
∀n ≥ n0. We remark again there are infinitely many strings y ∈ {0,1}∗ describing
M . Pick a “large” y desciribing for M . Notice that M = My and for all
n ∈ (s(y), s(y + 1)) ∩ Z we see d(1n) = My(1n) = M(1n). By step (2) for all
n ∈ (s(y), s(y + 1)) ∩Z, D(1n) =My(1n+1) =M(1n+1).
⇒M(11+s(y)) =D(1s(y)+1) =D(1s(y)+2) = . . . =D(1s(y+1))
But by step (3): D(1s(y+1)) ≠My(11+s(y)) which is a contradiction and

L ∉ Ntime(f(n))

◻
These Hirarchy theorems are based on:

a) corresponding turing machines can be enumerated

b) they can be simulated by a turing machine

Definition 2.5.6.
PSPACE ∶= ⋃

c∈N
Space(nc)

EXPSPACE ∶= ⋃
c∈N

Space(2n
c

)

Exercise 2.5.7.

P ⊆ NP ⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ EXPSPACE

Corrolar 2.5.8. (from the Hirarchy theorems)

• P ≠ EXP

2.5. HIERARCHY THEOREMS 29

• NP ≠ NEXP

• PSPACE ≠ EXPSPACE

Are there “expected” to be only NP -hard problems in NP / P?

Theorem 2.5.9. (Ladner’s Theorem) If P ≠ NP then ∃L ∈ NP − P s.t. L is
not NP -complete.

Proof. P ≠ NP ⇒ SAT ∉ P and we “pad” SAT to get the promised L:

SATH ∶= {φ01∣φ∣H(∣φ∣) ∣ φ is a satisfiable formular in CNF}

for any function H ∶ N→ N. First we shot that SAT is NP -complete for

lim
n→∞

H(n) =∞

Suppose that H is unbounded but SAT ≤P SATH . This means that for any
CNF ψ there is a φ(ψ) by the polynomial reduction with ψ ↦ φ01∣φ∣H(∣φ∣). If
∣ψ∣ = n then

∣φ∣ + ∣φ∣H(∣φ∣) ≤ nC

⇒ ∣φ∣ ≤ n
c

H(∣φ∣)

⇒ ∣φ∣ = o(n) = o(∣ψ∣)

Repeating this reduction ∣ψ∣ times we get a constant sized formula whose satis-
fiability can be tested trivially. so SAT ∈ P , a contradiction. So for H(n)→∞
SATH is not NP -complete.

Secondly define H s.t H(n)→∞ and show that SATH ≠ P : Let H(n) be the
smallest i < log logn s.t. ∀x ∈ {0,1}≤logn and turing machine Mi generated by i
accept x in i∣x∣i steps iff x ∈ SATH . If there is no such i then H(n) ∶= log logn.
This is an iteratie definition of H (it’s not circular). Remark following exercise
(not needed for the proof):

Exercise 2.5.10. Such an H(n) is computable in o(n3).

Now suppose that SATH ∈ P and M is a turing machine solving it in time
≤ cnc for some constant c. Now let j be s.t.

• M is generated by j: M =Mj

• j > c

ThusMj decides SATH in nj steps implying by the definition ofH that: H(n) ≤
j ∀n with log log j.

⇒ SATH is equivalent to SAT (up to polynomial time computations)
⇒ SAT ∈ P a contradiction
⇒ SATH ∉ P

At last we have to show that limn→∞H(n) = ∞. Since SATH ∉ P , for any j
describing a turing machine Mj there is an xj ∈ {0,1}∗ s.t. Mj cannot decide
xj ∈ SATH in time j∣x∣j . Then the definition of H implies that {n ∣H(n) = j0}
is finite, in fact ∀n ∶ n <≤ 2∣xj ∣. So H(n)→∞ for n→∞ and finally SATH ∉ P ,
SATH is not NP -complete and SATH ∈ NP . ◻

Can one proof that P ≠ NP by these diagonalization techniques?

30 CHAPTER 2. P , NP AND BEYOND

Definition 2.5.11. We call a (non-deterministic) turing machine M an oracle
(non-deterministic) turing machine using a language O if M has three special
states qquery, qyes and qno and a special oracle tape s.t. when M enters the state
qquery with string x on the oracle tape, in one step it moves to the state qyes (or
qno) if x ∈ 0 (or x ∉ 0).

Definition 2.5.12.

PO ∶= {L ∣ L has a polynomial-time oracle turing-machine using O}
NPO ∶= {L ∣ L has a polynomial-time oracle non-deterministic

turing machine using O}

Exercise 2.5.13. a) SAT ,TAUT ∈ PSAT

b) If O ∈ P then PO = P

c) With

ExpCom ∶= {(M,x,1n) ∣ the turing machine M accepts x in ≤ 2n steps}

then
EXP = PExpCom = NPExpCom

2.6 can P ≠ NP be shown by diagonalization
techniques?

The seperation proofs we saw till now also hold under any fixed oracle O, e.g.

Dtime(f(n))O ≠ Dtime(f(n)3)O

Definition 2.6.1. Proofs about turing machines that also hold for every oracle
O are called relativizing proofs.

We will now show, that diagonalization proofs are not able to show P ≠ NP
or in other words: A proof of P ≠ NP will be non-relativizing.

Theorem 2.6.2. (Baker-Gill-Solovay) ∃ oracles A and B s.t. PA = NPA and
PB ≠ NPB.

Proof. Define

A ∶= {(M,x,1n) ∣ a turing machine M accepts x in less than 2n steps}

Exercise 2.6.3. Proof that EXP = PA = NPA.

We will construct B by diagonlization. For any language B let

UB ∶= {1m ∣ ∃x ∈ B of length m}

and we will construct B s.t. UB ∈ NPB but UB ∉ PB . First note that there is
an enumeration of oracle turing machines:

{Mi ∣ i describes the oracle turing machine Mi}

2.7. MORE ON SPACE COMPLEXITY 31

ordered accordiing to the ncreasing order of i. we will define B iteratively.
Initially B = ∅ and in the i-th iteration we already have defined a finite number
of strings in or out of B and let ni be an integer greater than the length of any
string whose status is already defined. RunMB

i on 1ni for a maximum of 2ni −1
steps:

(1) if Mi queries B on a string whose status is undetermined, we define it “out
of B”.

(2) if Mi queries B on a string whose status is known, be consistent

(3) eventually in 2ni − 1 steps if MB
i accepts 1ni then we define all strings of

length ni “out of B”.

(4) ifMB
i rejects 1ni then we put an undetermined string of length ni (a string

which status is unknown right now) in B (that is possible because Mi

queries 2ni − 1 strings at maximum)

Exercise 2.6.4. Show that there is a string x ∈ {0,1}ni at the end of the i-th
iteration for which MB

i does not decide x ∈ UB in 2ni − 1.

Thus if UB ∈ PB then pick a large enough j s.t. MB
j decides UB in polynomial

time. This contradicts the definition of B. So UB ∉ PB while UB ∈ NPB which
implies that PB ≠ NPB . ◻

2.7 More on space complexity
Recall that NP ⊆ PSPACE ⊆ EXP and we now ask the question if any of this
inclusions is strict.

Definition 2.7.1. For a function f ∶ N→ N define

NSpace(f(n)) ∶= {L ⊆ {0,1}∗ ∣ ∃ a non-deterministic turing
machine deciding L in O(f(n)) space}

and
NPSPACE ∶= ⋃

c∈N
NSpace(nc)

Definition 2.7.2.
L ∶= Space(log(n))

NL ∶= NSpace(log(n))
(of course we mean the work-tape)

If your working-space is log(n) the number of distinct configurations is just
2log(n) so L ⊆ P .

Example 2.7.3.

MULT = {(m,n,mn) ∣m,n ∈ Z} ∈ L

We will see that
L ⊆ NL ⊆ P

32 CHAPTER 2. P , NP AND BEYOND

Exercise 2.7.4. Show that:

a) Dtime(f(n)) ⊆ Space(f(n)) ⊆ NSpace(f(n)) ⊆ Dtime(2O(f(n)))

b) NP ⊆ PSPACE

2.8 PSPACE-completeness
Definition 2.8.1. B is PSAPCE-complete if B ∈ PSPACE & ∀A ∈ PSPACE ∶
A ≤P B.

Definition 2.8.2.

TQBF ∶= {y = Q1x1⋯Qnxn ∣ Q1, . . . ,Qn ∈ {∀,∃}, φ is a boolean formula s.t. y is true}

Example 2.8.3. for a Quantified Boolean Formular ∀x1∃x2∀x3 ∶ φ(x1, x2, x3)
where φ is a boolean formula and x1, x2, x3 ∈ {0,1}

Lemma 2.8.4.
TQBF ∈ PSPACE

Proof. Let ψ ∶= Q1x1⋯Qnxnφ(x1, . . . , xn) be the input QBF with ∣φ∣ =∶ m
where φ is given in a format where it can be evaluated in O(m) time. We give
the following recursive algorithm to check whether ψ is true: Define q = ∨ if
Q1 = ∃ and q = & if Q1 = ∀. Then ψ is true iff

Q2x2⋯Qnxnφ(0, x2, . . . xn)qQ2x2⋯Qnxnφ(1, x2, . . . xn)

Now let sn,m be the space used by this algorithm, then

sn,m = sn−1,m +O(n +m)
⇒ sn,m = O(n(m + n))
⇒ TQBF ∈ Space(n2) ⊂ PSPACE

◻

Exercise 2.8.5. Show that sn,m can be made O(n +m).

Lemma 2.8.6.
∀A ∈ PSPACE ∶ A ≤P TQBF

Proof. Say let M be a turing machine deciding A in space s(n) (which is
a polynomial in n). We will construct a QBF ψM,x of size (s(n))2 whose truth
depends on M accepting x. By the proof of the hardness of SAT we have a
formula φM,x(c, c′) that is true iff c ↦ c′ is a valid transition step and it is of
size O(∣c∣ + ∣c′∣) = O(s(n)). M will take 2ds(n) configuration steps to accpet x
with n = ∣x∣, because 2ds(n) is the number of distinct configurations of M on x.
Let ψi(c, c′) be a formula which is true iff ∃ at most 2i steps from c↦ c′. Then
ψM,x = ψds(n)(cstart, cend) & ψi(c, c′) = ∃c′′(ψi−1(c, c′′) & ψi−1(c′′, c′)). We need
to improve the recurrence:

ψi(c, c′) = ∃c′′(ψi−1(c, c′′) & ψi−1(c′′, c′))
= ∃c′′∀D1,D2((D1 = c & D2 = c′′) ∨ (D1 = c′′ & D2 = c′)⇒ φi−1(D1,D2))

2.9. NL-COMPLETENESS 33

Remark 2.8.7. Remember that

A⇒ B ≡ /A ∨B
/(A ∨B) ≡ /A & /B

A ∨ (∃x ∶ B) ≡ ∃x ∶ (A ∨B) if A is free of x

⇒ ψds(n)(c, c′) is now a QBF of size O(s(n)) ⋅ ds(n) = O((s(n))2). Observe
that x ∈ A iff ψds(n)(cstart,x, cstop,x) is true which implies that A ≤P TQBF . ◻

Theorem 2.8.8. TQBF is PSPACE-complete.

Proof. 2.8.4 and 2.8.6. ◻

Theorem 2.8.9. (Savitch [1970])

NSpace(s(n)) ⊆ Space((s(n))2) s(n) ∈ Ω(log(n))

Proof. LeetM be a nontederministic turing machine decidingA in Space(cs(n)).
Then by 2.8.6 for all possible x ∈ {0,1}∗: ψM,x = ψds(n)(cstart,x, cend,x) is of size
O((s(n))2). Using 2.8.4 check whether the QBF ψM,x is true or not, in space
O((s(n))2). So x ∈ A can be checked in Space((s(n))2). ◻

Corrolar 2.8.10.
NPSPACE = PSPACE

2.9 NL-completeness
We need a notion of reductioins weaker than P (as NL ⊆ P):

Definition 2.9.1. • We call f ∶ {0,1}∗ → {0,1}∗ implicitly L-computable
if:

Lf ∶= {< x, i >∣ (f(x))i = 1} ∈ L

(here (f(x))i means the i-th bit of f(x))

L′f ∶= {< x, i >∣ i ≤ ∣f(x)∣} ∈ L

• We say AleqLB if ∃ an impicitly L-computable f s.t. ∀x ∈ {0,1}∗ , x ∈
A⇔ f(x) ∈ B.

• B is NL-complete if B ∈ NL & ∀A ∈ NL ∶ A ≤L B.

Exercise 2.9.2. a) A ≤L B ≤L C ⇒ A ≤L C

b) A ≤L B & B ∈ L⇒ A ∈ L

c) If B is NL-hard & B ∈ L⇒ NL = L

Definition 2.9.3.

Path ∶= {(G,s, t) ∣ G directed graph, s, t ∈ V (G)
s.t. there is a directed path from to t}

Lemma 2.9.4.
Path ∈ N

34 CHAPTER 2. P , NP AND BEYOND

Proof. Let G be a directed graph with vertices s and t. Define a non-
deterministic turing machineM s.t. it is always at some vertex and a transition
step just goes to one of the many possible neighbours.

Exercise 2.9.5. add the implementation details to this proof to finish it.

As each vertex can be uniquely refered in log(n) bits, M can be shown to
be using O(log(n)) space. ◻

Lemma 2.9.6.
∀A ∈ NL ∶ A ≤L Path

Proof. Let M decide A. For an x ∈ A construct a graph G where the
vertices are all configurations of M , the edges are (c, c′) where c ↦ c′ is a valid
step of M and s = cstart,x, t = cend,x

Exercise 2.9.7. Show that this is a L-reduction.

◻

Theorem 2.9.8. Path is NL-complete.

Proof. 2.9.4 and 2.9.6. ◻

2.10 The Polynomial Hierarchy
We will define an infinite family of complexity-classes, the Polynomial Hirar-
chy PH, which will basically consist of NP,NPNP ,NPNPNP , . . ., will be a
generalization of NP and coNP and tries to devide NP from PSPACE:

NP ⊆ PH ⊆ PSPACE

Definition 2.10.1.

MinDNF ∶= {φ ∣ φ is a DNF formula not equivalent to any smaller DNF}
{φ ∣ ∀ DNF ψ, ∣ψ∣ < ∣φ∣,∃s,ψ(s) ≠ φ(s)}

This problem does not seem to be in NP (because of ∃) and coNP (because
of ∀), but it is in PSPACE. So it’s motivating the following definition of a
complexity class:

Definition 2.10.2. A language L ∈ ΠP
2 iff there is polynomial-time turing-

machine M and a constant C > 0 s.t. for any string x ∈ {0,1}∗ ∶ x ∈ L ⇔
∀u1 ∈ {0,1}∣x∣

c

,∃u2 ∈ {0,1}∣x∣
c

,M(x,u1, u2) = 1.

Remark 2.10.3. If you replace ∀ by ∃ the definition yields the definition of
NP and if you replace ∃ by ∀ the definition of coNP . If you exchange ∃ and
∀ it is unknown which complexity class we will get (since it is not known if
NP ≠ coNP).

Exercise 2.10.4. a) MinDNF ∈ ΠP
2

b) NP, coNP ⊆ ΠP
2 ⊆ PSPACE

2.10. THE POLYNOMIAL HIERARCHY 35

Definition 2.10.5. A language L ∈ ΣP2 iff there is a polynomial-time turing-
machineM and a constant c > 0 s.t. ∀x ∈ {0,1}∗ ∶ x ∈ L⇔ ∃u1 ∈ {0,1}∣x∣

c

,∀u2 ∈
{0,1}∣x∣

c

,M(x,u1, u2) = 1

Exercise 2.10.6. a) NP, coNP ⊆ ΣP2 ⊆ PSPACE

b) ΣP2 = coΠP
2 , ΠP

2 = coΣP2
c) NP, coNP ⊆ ΣP2 ∩ΠP

2

Now we define ΣPi and ΠP
i by alternating the quantitifiers ∀ and ∃ for (i−1)

times:

Definition 2.10.7. • For i ≥ 1 a language L ∈ ΣPi iff there is a polynomial-
time turing-machine M and a constant c > 0 s.t. ∀x ∈ {0,1}∗ , x ∈ L ⇔
∃u1 ∈ {0,1}∣x∣

c

,∀u1 ∈ {0,1}∣x∣
c

, . . . ,Qiui,M(x,u1, . . . , ui) = 1 where Qi ∈
{∀,∃}.

• Define ΠP
i analog.

• ΣP0 ∶= ΠP
0 ∶= P

• PH ∶= ⋃i≥0 ΣPi
Exercise 2.10.8. a) ΣP1 = NP , ΠP

1 = coNP

b) ∀i ≥ 0 ∶ ΣPi ⊆ ΣPi+1 & ΠP
i ⊆ ΠP

i+1

c) ∀i ≥ 0 ∶ ΣPi = coΠP
i

d) ∀i ≥ 0 ∶ ΠP
i ⊆ ΣPi+1 & ΣPi ⊆ ΠP

i+1

e) ∀i ≥ 0 ∶ ΣPi ,ΠP
i ⊆ ΣPi+1 ∩ΠP

i+1

f) PH = ⋃i≥0 ΠP
i

g) PH ⊆ PSPACE

It is open if ∃i ≥ 0 s.t.
ΣPi ≠ ΣPi+1

Even for i = 0 it is very hard: P = ΣP0 ≠ ΣP1 = NP . Just like we believe
P ≠ NP ≠ coNP , we also believe the above.

Definition 2.10.9. If PH turns out to be equal to ΣPi for a constant i then we
say that PH collapses to the i-th level. The PH conjecture is: PH does not
collapse.

The following resulsts follow by the PH-conjecture:

Theorem 2.10.10. ∃i ≥ 1 ∶ ΣPi = ΠP
i ⇒ PH = ΣPi

Proof. L ∈ ΣPi+1 iff there is a polynomial-time turing-machine M and a
constant c > 0 s.t. x ∈ L iff ∃u1∀u2 . . .Qi+1ui+1 ∶ M(x,u1, . . . , ui+1) = 1 (1).
Now define a related language

L′ ∶= {(y, z) ∣ ∀u2 ∈ {0,1}∣y∣
c

∃u3 . . .Qi+1ui+1 ∶M(y, z, u2, . . . ui+1)}

36 CHAPTER 2. P , NP AND BEYOND

clearly: L′ ∈ ΠP
i = ΣPi ⇒ ∀(y, z), (y, z) ∈ L′ iff ∃v1∀v2 . . .Qivi ∶M ′(y, z, v1, . . . , vi) =

1 (2). Now (1) can be rewritten as:

x ∈ L⇔ ∃u1, (x,u1) ∈ L′

. Which by (2) gives iff ∃u1∃v1∃v2∀v2 . . .QiviM ′(x,u1, v1, . . . , vi) = 1. L ∈
ΣPi ⇒ ΣPi+1 = ΣPi ⇒ ΠP

i+1 = ΠP
i (by applying co− on both sides). so ΣPi+1 = ΣPi =

ΠP
i = ΠP

i+1. Now we can repeat the argument again and again. ◻

Corrolar 2.10.11.
NP = coNP ⇒ PH = NP

Theorem 2.10.12.

∃i ≥ 0 ∶ ΣPi = ΣPi+1 ⇒ PH = ΣPi

Proof. Applying co− to both sides of ΣPi = ΣPi+1 gives ΠP
i = ΠP

i+1. As
ΠP
i ⊆ ΣPi+1 & ΣPi ⊆ ΠP

i+1 we get ΣPi+1 = ΣPi = ΠP
i = ΠP

i+1. Applying 2.10.10 on
ΣPi+1 = ΠP

i+1 we get PH = ΣPi+1 = ΣPi . ◻

Corrolar 2.10.13.
P = NP ⇒ PH = P

Suppose A is PH-complete then A ∈ ΣPi for some i ≥ 0. Which implies that
PH = ΣPi . Thus the PH-conjecture implies that A cannot exist. And as a

Corrolar 2.10.14. PH-cojecture ⇒ PH ⊊ PSPACE.

2.11 ΣP
i -complete problems

Nevertheless there is no PH-complete, we can define ΣPi -complete problems for
all constants i ∈ N:

Definition 2.11.1. For i ≥ 1, define

ΣiSAT ∶= {φ(u1, . . . , ui) ∣ φ(x1, . . . , xn)
is a boolean formular with a partition of
x1, . . . , xn into u1, . . . , ui s.t.
∃u1∀u2 . . .Qiui [φ(u1, . . . , ui) = 1]}

For exmplate u1 could be x1x2x3 and u2 = x2x6 etc.

Theorem 2.11.2. ΣiSAT is ΣPi -complete, for every i ∈ N≥1.

Proof. First we see by the definition of ΣiSAT that it is contained in ΣPi ,
you can take a turing machine that evaluates φ(x1, . . . , xn) for a given valuation
u1, . . . , ui. φ ∈ ΣiSAT iff ∃u1∀u2 . . .Qiui[M(φ,u1, . . . , ui) = 1]. Now we will
show that ΣiSAT is ΣPi -hard: Any L ∈ ΣPi has a corresponding polynomial-
time turing-machine M by definition. The computation of M on (x, y1, . . . , yi)
can be captured in a boolean formula φx,y1,...,yi (as in the proof of NP -hardness
of SAT). Thus L ≤P ΣiSAT . ◻

Definition 2.11.3. ΠiSAT ∶= flip the quantifiers in the definition of ΣiSAT .

Theorem 2.11.4. ΠiSAT is ΠP
i -complete.

2.12. PH VIA ORACLE MACHINES 37

2.12 PH via oracle machines
Definition 2.12.1. For complexity classes C1 and C2, we define

CC2
1 ∶= ⋃

L∈C2

CL1

For e.g. NPNP = NPSAT . We will now see that ΣP2 = NPNP , i.e. a
non-deterministic turing machine using SAT as an oracle can solve Σ2SAT
in polynomial time. Note that PP = P but it is an open question whether
NPNP = NP or not.

Theorem 2.12.2.
∀i ≥ 2 ∶ ΣPi = NPΣPi−1

Proof. We will demonstrate the proof-idea by prooving that ΣP2 = NPNP
which will naturaly generalize to every i.

Suppose that L ∈ ΣP2 then there exists a polynomial-time turing-machine
and a constant c > 0 s.t.

∀x ∈ {0,1}∗ ∶ x ∈ L⇔ ∃u1 ∈ {0,1}∣x∣
c

∀u2[M(x,u1, u2) = 1]

The associated language L′ ∶= {(y, z) ∣ ∀u2 ∈ {0,1}∣y∣
c

,M(y, z, u2) = 1}. Than
we can rewrite the above to x ∈ L iff ∃u1(x,u1) ∈ L′. As L′ ∈ coNP ⊆ PNP and
we get L ∈ NPNP . So ΣP2 ⊆ NPNP .

Now suppose that L ∈ NPNP = NPSAT . Say L is decided in polynomial-
time by a non-deterministic turing machine N using SAT as an oracle and let
c = (c1, . . . , cm) ∈ {0,1}m be the transition-choices of N on x. It queries the
oracle on formulas: φc,1, . . . , φc,k and got answers a = (a1, . . . , ak) ∈ {0,1}k.
Then

x ∈ L ⇔ ∃c, a ∶ (N accepts x on the path c) & (a are correct answers)
⇔ ∃c, a, u1, . . . , uk∀v1, . . . , vk ∶ (N accepts x on the path c) &

(∀1 ≤ i ≤ k, (ai = 0⇒ φc,i(vi) = 0) & (ai = 1⇒ φc,i(ui) = 1))

Exercise 2.12.3. Proof the last equivalence above.

So L ∈ ΣP2 and NPNP ⊆ ΣP2 . Thus ΣP2 = NPNP . ◻

Exercise 2.12.4. complete the proof for i > 2 by showing that ΣPi = NPΣPi−1SAT .

Corrolar 2.12.5.
ΣP2 = NPNP ,ΣP3 = NPNP

NP

, . . .

We have the following situation:

P ⊆ NP ⊆ NPNP ⊆ . . . ⊆ PH ⊆ PSPACE

And it is unknown if the last containment is sharp or not, but we will see
counting problems which are in between.

38 CHAPTER 2. P , NP AND BEYOND

2.13 Between PH and PSPACE
Definition 2.13.1. Define a function

#SAT ∶ {φ ∣ φ is a boolean formula} → N
φ ↦ number of satisfying assignments of φ

It is an open question if #SAT is efficiently computable. It can be computed
in polynomial space.

Definition 2.13.2.

FP ∶= {f ∶ {0,1}∗ → {0,1}∗ ∣
f is computable by a polynomial-time turing-machine Mf}

It is open if #SAT ∈ FP but if it is not, then P = NP .

Definition 2.13.3. A function f ∶ {0,1}∗ → N is in #P if there exists a
polynomial-time turing-machine M and c ∈ R>0 s.t. for all x ∈ {0,1}∗ ∶ f(x) =
∣{y ∈ {0,1}∣x∣

c

∣ M(x, y) = 1}∣. In other words #P is the collection of functions
that count the number of accepting paths of a polynomial-time non-deterministic
turing-machine .

Exercise 2.13.4. a) #SAT ∈ #P

b) NP ⊆ P#SAT ⊆ P#P

c) P#P ⊆ EXP,P#P ⊆ PSPACE

d) FP ⊆ #P

e) “Counting points on a variety over finite fields” ∈ #P

It is open to show that FP ⊊ #P (arithmetic version of P ≠ NP)

Remark 2.13.5. #P has an analogous decision problems class: PP .

Definition 2.13.6. A language L ∈ PP if there exists a polynomial-time turing-
machine M and c ∈ R>0 s.t. for all x ∈ {0,1}∗ ∶

x ∈ L⇔ ∣{y ∈ {0,1}∣x∣
c

∣M(x, y) = 1}∣ ≥ 1
2
2∣x∣c

In other words PP corresponds to t0 computing most-signifant-bit of #P -function.

Exercise 2.13.7. a) #SAT ∈ FPPP

b) P#P = PPP

2.14 #P -completeness
Definition 2.14.1. We call a function f ∶ {0,1}N is #P -comlete if f ∈ #P and
#P ⊂ FP f (here FP f is the set of functions computable by a polynomial-time
oracle turing-machine M using f as an oraclre, this is called “turing reduction”,
in contrast to the karp-reduction).

2.15. PERMANENT AND #P 39

Exercise 2.14.2. If f is #P -complete and f ∈ FP then #P = FP .

Theorem 2.14.3. #SAT is #P -complete

Proof. Recall that the computation of a polynomial-time non-deterministic
turing-machine M can be encoded in a boolean formula. Thus, for any g ∈ #P
with g(x) equals the number of acceptings paths of M on input x. We get a
boolean formula φM,x s.t. the number of satisfying assignments of φM,x = g(x).
So g ∈ FP#SAT . Since g was arbitrary: #P ⊆ FP#SAT . ◻

2.15 PERMANENT and #P
Definition 2.15.1. Let F be a field, for A = (Aij)1≤i,j≤n ∈ Fn×n the permanent
is defined as:

per(A) ∶= ∑
σ∈Sn

A1,σ(1) ⋅ . . . ⋅ an,σ(n)

here Sn is the group of n! permutations of {1, . . . , n}. So per is defined like det
but without any signs.

We will now show, that per is #P -complete:

Lemma 2.15.2. per for 0-1-matrices ∈ #P .

Proof. Let A ∈ {0,1}n×n, then per(A) = ∣{σ ∈ Sn ∣ ∏n
i=1 ai,σ(i) = 1}∣. Define

a non-deterministic turing-machine M that on input A, guesses σ ∈ Sn and
accpets A iff ∏n

i=1Ai,σ(i) = 1. Hence per(A) = number of accepting paths of M
on input A it follows that per for 0-1-matrices ∈ #P .

Exercise 2.15.3. Use the above idea to show: per for matrices over a finite
field ∈ #P .

This shows that per ∈ FP#SAT . ◻

Definition 2.15.4. Given A ∈ Fn×n and view it as the adjacency matrix of a
weightes digraph on n vertices (with weight-function w and which we will also
call A). Then a cycle cover C of the graph A is a subgraph of A having the n
vertices and each vertex v has δ+(v) = δ−(v) = 1 (in-degree and out-degree are
one). Thus a cycle cover C of A is basically a disjoint union of cycles covering
all vertices of A. The weight of C is defined as

wt(C) ∶= ∏
v∈E(C)

w(v)

Exercise 2.15.5. a) A1,σ(1) ⋅ . . . ⋅An,σ(n) equals the weight of the cycle cover
in the graph A corresponding to the cycle-decomposition of permutation σ.

b)
per(A) = ∑

C cycle-cover of A
wt(C)

Lemma 2.15.6. per for 0-1-matrices is #P -hard.

Proof. We will relate #3SAT with per. Let φ be a CNF formula with
m clauses (each with exactly 3 literals) F1, . . . , Fm and n, named x1, . . . , xn,
variables. Then we will construct a graph A with sum of its weighted cycle-
covers kind of “equals to” the number of satisfying assignments of φ:

40 CHAPTER 2. P , NP AND BEYOND

variables: x1, . . . , xn ↦ variable gadgets (graphs) V1, . . . , Vn

clauses: F1, . . . Fm ↦ clause gadgets C1, . . . ,Cm

occurrence: xi / xi occures in Fj ↦XORi,j-gadgets

These n +m + 3m gadgets together will form the graph A s.t.

∑
C cycle-cover

wt(C) = 43m number of satisfying assignments of φ

Unlabled edges are understood to have weight 1 in the following.
Each variable xi is converted to a graph gadget Vi:

●
false−edge

88

��

●xx

external−edges
● ZZ // ● ZZ // ● ZZ ⋯ // ● ZZ

LL

´¹¹¸¹¹¹¶
(m+1) vertices

the edges between the bottom m + 1 vertices are called external. The cycle
cover of Vi using the external edges corresponds to xi = T and the one using the
upper edge (called false edge) corresponds to xi = F .

Each clause Fj is converted to a graph gadged Cj :

●

��

��
●

VV

((��
● 44

HH

●

]]

hh

The 3 outer edges (called external again) correspond to the 3 literals of Fj .
This graph has 3 cycle-covers each of weight 1 and corresponding to a droped
outer (external) edge. The dropped external edge specifies the literal in Fj set
to “True”.

If a variable xi (not it’s complement xi) appears in Fj then we connect the
j-th external edge (u,u′) of Vi to the xi-external edge of Ci by a graph gadget
XORi,j :

2.15. PERMANENT AND #P 41

u ●

!!C
CC

CC
CC

C ●

ww

��

''

��
● u′

●
−1

//

77

−1 ''

●

=={{{{{{{{

!!C
CC

CC
CC

C

3
ww

gg

v′ ●

=={{{{{{{{
●

2

77

TT

ZZ ● v

Finally if xi is in Fj then we connect the false edge (u,u′) of Vi to the xi
external edge (v, v′) of Cj by XORi,j .

We call the resulting graph A′ and we can see by the following figure that
the number of edges is quadratic in n and m.

V1 ⋯ Vi ⋯ Vn

C1 ⋯ Cj

XORi′,jXORi′′,j
XORi,j

⋯ Vm

Now observe that the cycle-covers of XORi,j − {u, v, u′, v′} sum up to 0:

●

vv●

66

●

3
vv●

2

66

Weight: 6 ●

vv●

−1 ((

●

hh

●

2

66

Weight: −2

●

vv●
−1

// ●

3
vv●

TT Weight: −3 ●

vv●
−1

// ●

hh

● ZZ

Weight: −1

Thus the cycle-covers of A′ that “matter” in per(A′) are the ones for which
XORi,j contributes to exactly one of the paths (u,u′) or (v, v′) in the cycle-
cover (hence the name XOR). Consider such a cycle-cover C of A′: For every
Cj there will be an external edge not appearing in C say xi. XORi,j ensures
that the j-th external edge in Vi appears in C. Thus the “True” cycle of Vi
appears in C and we can take xi = T . So C induces a satisfying assignment of φ.

42 CHAPTER 2. P , NP AND BEYOND

The weightes sum of paths from u to u′ in XORi,j is −2:

●

((// ●

66

● //

● ZZ

●

��

// ●

66

● //

●

2

66

●
��

// ●

−1 ((

● //

●

2

66

●

((// ●

−1 ((

● //

●

TT

●
��

// ●
−1

// ● //

● ZZ

●

��

// ●
−1

// ● //

●

TT

Thus, for a satisfying assignment s of φ:

∑
C is a cycle cover of A′ corrresponding to s

wt(C) = (−2)3m

⇒ per(A′) = (−2)3m#(φ).

The final question is how to reduce A′ to a 0-1-matrix A′′: First reduce it to
a {−1,0,1}-matrix by replacing every k-weighted edge (u,u′) withh k ∈ Z−{0,1}
by the following graph (there are k vertices on top of each other):

2.15. PERMANENT AND #P 43

●
��

��

●
��

��
u ●

@@

66

((

⋮ ●
sgn(k)// ● u′

●
��

HH

Say A′′ ∈ {−1,0,1}n×n then per(A′′) ∈ [−(n!), n!] ∩Z. So use N ∶= 2n2 , work
(mod N) and replace −1 by (N−1) in the graph. So we get a {0,1,N−1}-matrix
A s.t.

per(A) ≡ (−2)3m#(φ) (mod N)

Exercise 2.15.7. Convert a {0,1,N − 1}-matrix to a {0,1}-matrix with the
same permanent.

⇒#SAT ∈ FP permanent of 0-1-matrix

◻

Theorem 2.15.8. (Valiant 1979) PERMANENT for 0-1-matrix is #P -complete.

Theorem 2.15.9. (Toda, 1991)

PH ⊆ P#P

First remember that PH = ⋃i=0 ΣPi and P#P = P#SAT

We will use some probabilistic methods during this proof.
Idea: We give a new type of reduction (i.e. random reduction) from any ΣPi

to a new class ⊕P (parity-p). Surprisingly, this “randomized reduction” will
help in proving a deterministic statement.

Definition 2.15.10. A language L ∈ ⊕P (called parity-P) if there is a polynomial-
time non-deterministic turing-machine M s.t. for all x ∈ {0,1}∗: x ∈ L iff
#(accepting paths of M on x) is odd.

Definition 2.15.11.

⊕SAT ∶= {φ ∣ φ is a boolean formula that has
an odd number of satisfying assignments}

Exercise 2.15.12. ⊕SAT is ⊕P -complete.

Open question: ⊕P = P ⇒ NP = P
The following theorem gives an evidence towards that:

44 CHAPTER 2. P , NP AND BEYOND

Theorem 2.15.13. (Valiant-Vazisani) There is a polynomial-time turing-machine
A s.t. for any boolean formula φ on n variables:

φ ∈ SAT ⇒ Prr [A(r, φ) ∈ ⊕SAT] ≥ 1
8n

φ ∉ SAT ⇒ Prr [A(r, φ) ∈ ⊕SAT] = 0

Remark 2.15.14. This we state as “SAT randomly reduces to ⊕SAT”

Idea: Given a CNF-boolean formula φ we want to ransform φ into a fomula
φ′ that has 0 or 1 satisfying assignments depending on whether φ is unsatisfiable
respectively. To describe this transformation we need the following lemma “hash
functions”:

Lemma 2.15.15. For a matrix B ∈ {0,1}k×n and a vector b ∈ {0,1}k, consider
the transformation:

hB,b ∶ {0,1}n → {0,1}k
x ↦ (Bx + b) (mod 2)

a) For a fixed x ∈ {0,1}n ∶ PrB,b [hB,b(x) = 0k] = 2−k

b) For a fixed x ≠ x′ ∈ {0,1}n ∶ PrB,b [hB,b(x) = hB,b(x′) = 0k] = 2−k

c) Let S ⊆ {0,1}∗ s.t. 2k−2 ≤ ∣S∣ ≤ 2k−1.

Then
Pr
B,b

[#{x ∈ S ∣ hB,b(x) = 0k} = 1] ≥ 1
8

Let us first use the lemma to proof the theorem:
Proof. Description of A: Given a CNF φ on n variables randomly pick

k ∈ {2, . . . , n + 1},B ∈ {0,1}k×n and b ∈ {0,1}k. Output the boolean formula:

ψ(x) ∶= φ(x) & [hB,b(x) = 0k]

The last term is expressed as a boolean formula.
Note that: If φ is unsatisfiable then ψ has 0, hence even, satisfiying assign-

ments. If φ is satisfiable then, let S ∶= {x ∈ {0,1}n ∣ φ(x) = 1} with probability
≥ 1
n
we whould have chosen k s.t. 2k−2 ≤ #S ≤ 2k−1.
Conditioned on this, with probability ≥ 1

8 we have chosen (B, b) s.t.

#{x ∈ S ∣ hB,b(x) = 0k} = 1

Thus with probability ≥ 1
8n we whould have chosen (k,B, b) s.t.

#(satisfying assignmen of ψ) = 1

hence odd. ◻
Proof. Let us now proof 2.15.15.

a) hB,b(x) = 0k, Bx = −b (mod 2). If we first pick B then the probability of
picking b ≡ (−Bx) (mod 2) is 1

2k so PrB,b[hB,b(x) = 0k] = 2−k

2.15. PERMANENT AND #P 45

b)

PrB,b[Bx = −b & Bx′ = −b] = PrB,b[Bx = −b] ⋅PrB,b[Bx′ = −b ∣ Bx = −b]
= 2−k ⋅PrB,b[B(x′ − x) = 0 ∣ Bx = −b]
= 2−k PrB[B(x′ − x) = 0] = 2−2k

c) Let N be the random variable #{x ∈ S ∣ hB,b(x) = 0k}. Then by inclusion-
exclusion:

PrB,b[N ≥ 1] ≥ (∑x∈S PrB,b[hB,b(x) = 0k]) − (∑x<x′∈S PrB,b[hB,b(x) = hB,b(x′) = 0k])

= ∣S∣ ⋅ 2−k−
∣S∣
2 ⋅2−2k

similarly:

PrB,b(N ≥ 2) ≤ ∑x<x′∈S PrB,b[hB,b(x) = hB,b(x′) = 0k]

=
∣S∣
2 ⋅2−2k

So
PrB,b[N = 1] = PrB,b[N ≥ 1] −PrB,b[N ≥ 2]

≥ ∣S∣2−k − 2
∣S∣
2 2−2k

= ∣S∣2−k − ∣S∣(∣S∣ − 1)2−2k

≥ ∣S∣2−k − (∣S∣2−k)2

≥ ∣S∣2−k(1 − ∣S∣2−k)
≥ 1

4(1 −
1
2) =

1
8

◻
Now we will use the idea in the proof that NP randomly reduces to ⊕P

repeatedly to show: PH randomly reduces to ⊕P . We will replace ∀ and ∃ by
a ⊕ quantifier one-by-one.

Definition 2.15.16. For any boolean formula φ(z), ψ = ⊕zφ(z) is true iff #
satisfying assignments of φ(z) is odd. See this as a definition of the quantifier
⊕.

Lemma 2.15.17. Let x ∈ N be a constant. There is a deterministic polynomial
time transformation A s.t. for any formula ψ starting with c alternating ∀/∃-
quantifiers:

If ψ is true ⇒ Prr [A(r,ψ) ∈ ⊕SAT] = 2
3

If ψ is false ⇒ Prr [A(r,ψ) ∈ ⊕SAT] = 0

Proof. Let ψ be a formula with c′ ≤ c alternating ∀/∃-quantifiers. As
our aim is to replace them one-by-one with the ⊕-quantifier, let us assume
that ψ starts with a ⊕-quantifier. We will demonstrate the proof for ψ = ⊕z ∈
{0,1}l ∃x ∈ {0,1}n ,∀w ∈ {0,1}k , φ(z, x,w) with a boolean formula φ using the
l + n + k variables. By the proof of 2.15.13 there exists a formula τ s.t. for a
random string r (we will drop the domains of x,w and w in the following)

Pr
r

[⊕x∀w (φ(z, x,w) & τ(x, r)) is true] ≥ 1
8n

if ∃x∀wφ(z, x,w) is true .

Pr
r

[⊕x∀w (φ(z, x,w) & τ(x, r)) is true] = 0

46 CHAPTER 2. P , NP AND BEYOND

if ∃x∀wφ(z, x,w) is false
So Prr [⊕z ⊕ x∀w (φ(z, x,w) & τ(x, r)) is true] ≥ (1

8n)
2 if ψ is true.

So we have randomly reduced ψ to ⊕z ⊕ x∀w (φ(z, x,w) & τ(x, r)) but the
probability of success is extremly low. We improve it by first boosting equation
2.15. For any z, repeat the transformation in equation 2.15 for t ∈ N random
strings r1, . . . , rt.

p ∶= Pr
r1,...,rt

[
t

⋁
i=1

⊕x∀wφ(z, x,w) & τ(x, ri) is true]

• if ∃x∀wφ(z, x,w) is true then p = 1 − (1 − 1
8n)

t

• if ∃x∀wφ(z, x,w) is false then p = 0

Consider all z ∈ {0,1}l:

p ∶= Pr
r1,...,rt

[⊕z⋁⊕x∀wφ(z, x,w) & τ(x, ri) is true]

Exercise 2.15.18. a) if ψ is true then p = 1 − 2l (1 − 1
8n)

t

b) if ψ is false then p = 0

Exercise 2.15.19. Proof that 1 − 2l (1 − 1
8n)

t > 2
3

Hint: Pick t = 16n(l + 1) then something like

2l (1 − 1
8n

)
t

< 2l ((1 − 1
8n

)
8n

)
2l

≤ 2l (1
2n

)
2l
= 1

2l

happens

We have randomly reduced ψ = ⊕z∃x∀wφ(z, x,w) to ψ′ = ⊕z⋁ti=1⊕x∀wφ′(z, x,w, ri).
How to remove ∨-operators? We develope some usefull quantified boolean for-
mula algebra (for a boolean formla F denote the number of satisfying assign-
ments as #F):

a) For boolean formulas F (x) and G(x) we define

(F +G)(x,u) ∶= ((u = 0) & F (x)) ∨ (u = 1 & G(x))

Observation: #F = #G = #(F +G)

b) For boolean formula F (x) and G(y) define:

(F ⋅G)(x, y) ∶= F (x) & G(y)

Observation: #(F ⋅G) = (#F) ⋅ (#G)

c) For a boolean formla F (x) we define

(F + 1)(x,u) ∶= (u = 0 & F (x)) ∨ (u = 1 & x = 0n)

Observation: #(F + 1) = #F + 1

d) ⊕xF1(x) ∨ ⊕yF2(y) = ⊕(x, y, u1, u2, u3)((F1 + 1)(x,u1) ⋅ (F2 + 1)(y, u2) +
1)(x, y, u1, u2, u3)

2.15. PERMANENT AND #P 47

Thus in this way we can randomly reduce ψ = ⊕z∃x∀wφ(z, x,w) to

ψ′′ = ⊕z ⊕ x∗∀wφ′′(z, x∗,w)

Next we can remove the ∀-quantifier because:
Exercise 2.15.20.

⊕x∀yF (x, y) = ⊕x∃y /F (x, y)
Then repeat the older steps on ⊕z ⊕ x∗∃w /φ′′ and end up with

⊕(z, x∗,w∗)φ′′′(z, x∗, y∗)

and because the number of quantifiers in ψ is constant we only get a polynomial
blowup of φ′′′ in the size of φ and thee probability of 2

3 can be achieved. So PH
randomly reduces to ⊕P (with a “decent” probybility of 2

3). ◻
As ⊕P ⊂ P#P we already have a randomized reduction from PH to #P .

How to derandomize it?
For that we show a proberty of ⊕P :

Lemma 2.15.21. Let ψ be a boolean formula and m ∈ N0 then there exists a
deterministic polynomial-time transformation T s.t. φ ∶= T (ψ,1m) is a boolean
formula s.t.

#ψ = 1 (mod 2) ⇒ #φ ≡ −1 (mod 2m+1)
#ψ = 0 (mod 2) ⇒ #φ ≡ 0 (mod 2m+1)

Proof. We build φ iteratively. Let φ0 ∶= ψ. Consider ψi ∶= 4φ3
0 + 3φ4

0.

#φ0 = 1 (mod 2) ⇒ #φ1 = −1 (mod 22)
#φ0 = 0 (mod 2) ⇒ #φ1 = 0 (mod 22)

Exercise 2.15.22. The recurrence φi+1 = 4φ3
i + 3φ4

i gives

#φ0 = 1 (mod 2) ⇒ #φi + 1 = −1 (mod 22i+1
)

#φ0 = 0 (mod 2) ⇒ #φi + 1 = 0 (mod 22i+1
)

◻
Proof. (of theorem 2.15.9) Let L ∈ PH. We wil show how to check x ∈

using #SAT as an oracle. By the last two lemmas there exists a deterministic
polynomial-time turing-machine M and m = poly(∣x∣) s.t.

x ∈ L ⇒ Prr∈{0,1}m[#acceptingpaths(M(x, r)) ≡ −1 (mod ()2m+1)]
x ∉ L ⇒ ∀r ∈ {0,1}m#acceptingpaths(M(x, r)) ≡ 0 (mod ()2m+1)

Remark 2.15.23. M is the non-deterministic turing-machine corresponding to
φ in the last lemma i.e. M just guesses a satisfying assignment of φ and then
verifies it.

Now define a polynomial-time non-deterministic turing-machine M ′ that on
input x, guesses r ∈ {0,1}m and accepts iff M accepts (x, r).

accepting paths of (M ′(x)) = ∑
r∈{0,1}m

#accepting paths(M(x, r))4

If x ∈ L then #accepting paths(M ′(x)) (mod 2m+1) ∈ [−2m,− 2
32m].

If x ∉ L then #accepting paths(M ′(x)) (mod 2m+1) is 0.
Thus, computing #accepting paths(M ′(x)) is anough to solve L which means

that PH ⊆ P#P . ◻

48 CHAPTER 2. P , NP AND BEYOND

2.16 Probabilistic turing machines
Now we will formalize randomized computation. Randomness has been useful
in the last four decades to:

a) prooving theorems in complexity whose statements did not call for ran-
domness

b) develop simpler and faste algorithms for several problems in combinatorial
optimization (simplex, quicksort), algebraic computation, machine learn-
ing and network routing.

Definition 2.16.1. We call M a probabilistic turing machines (PTM) if M
has two transition functions δ0 and δ1 and in each transition step M randomly
follows δ0 or δ1 eaach with probability 1

2 . We say that a probabilistic turing-
machine M decides L if for any x ∈ {0,1}∗ x ∈ L⇔ Prsteps[M accepts x] 2

3

Definition 2.16.2. For a function T ∶ N→ N a probabilistic turing-machine M
decides L in time T (n) if M decides L and for all x ∈ {0,1}∗: M halts on x in
≤ T (∣x∣) steps regardess of its random choices.

BPTime(T (n)) ∶= {L ⊆ {0,1}∗ ∣ some probabilistic turing-machine M
decides L in time O(T (n))}

(bounded probabilistic)

BPP ∶= ⋃
c∈N

BPTime(nc)

Exercise 2.16.3. P ⊆ BPP ⊆ PSPACE ⊆ EXP

It is open if P = BPP (but “evidence” suggests that it is) or if BPP = NP
(we will connect with PH collapse).

Exercise 2.16.4. (Alternative definition of BPP) L ∈ BPP iff there is a de-
terministic polynomial-time turing-machine M and c > 0 s.t.

x ∈ L⇔ Pr
r∈{0,1}∣x∣c

[M(x, r) = 1] ≥ 2
3

Example 2.16.5. Primality testing given n ∈ N, check whether it is prime.
A randomized algorithm for primality was the first famous probabilistic
turing-machine . It was given by Solovay-Strassen (1970s):

a) Pick a random a ∈ (Z/nZ)∗

b) Output Y ES iff a
n−1

2 ≡ a
n
®

Jacobi-Symbol

(mod n)

Exercise 2.16.6. Prove it to be a probabilistic turing-machine (none triv-
ial)

Today there is a deterministic polynomial-time primality test (Agrawal-
Kayal-Saxena 2002).

2.16. PROBABILISTIC TURING MACHINES 49

Identity testing Given a polynomial C ∈ F[x1, . . . , xn] in some “compact”
form. Check whether C = 0. C(x1, . . . , xn) is often presented as an
arithmetic circuit: The circuit for (x1x2 + 2x3)(3x4 + 4x1x2x3)x4 is:

76540123⋅

 A
AA

AA
AA

AA

~~}}
}}

}}
}}

}

��

'&%$!"#+
�� 2

 A
AA

AA
AA

AA
AA

AA
AA

AA
AA

'&%$!"#+
��

3

��0
00

00
00

00
00

00
00

76540123⋅
~~}}

}}
}}

}}

��

76540123⋅

ttiiiiiiiiiiiiiiiiiiiiii

wwnnnnnnnnnnnnnnn

��
x1 x2 x3 x4

The algorithm of Schwartz-Zippel (1980) is:

a) Pick (a1, . . . , an) ∈ Fn

b) Output Y ES iff C(a1, . . . , an) = 0

Exercise 2.16.7. Show that this is a probabilistic turing-machine solving
identitiy testing (none trivial)

Currently no deterministic polynomial-time algorithm is known. The cor-
responding language is

ID ∶= {C ∣ C is a zero arithmetic statement}

BPP captures probabilistic algorithms with two-sided error, i.e. a proba-
bilistic turing-machine M decides L ⊆ BPP then M(x) could be errorneous
regardess of x ∈ L or x ∉ L.

Definition 2.16.8. (One-sided error, Monte-Carlo?) L ∈ Rtime(T (n)) if there
is a probabilistic turing-machine running in time O(T (n)) s.t.

x ∈ L ⇒ Pr[M accepts x] ≥ 2
3

x ∉ L ⇒ Pr[M accepts x] ≥ 0

RP ∶=⋃ c ∈ NRtime(nc)
coRP ∶= {L ∣ L ∈ RP}

Exercise 2.16.9. a) PRIMES ∈ coRP

b) ID ∈ coRP

c) RP ⊆ BPP and coRP ⊆ BPP

d) RP ⊆ NP and coRP ⊆ coNP

Definition 2.16.10. (Zero-sided but probabilistic error, Las Vegas?) For a
probabilistic turing-machine M , timeM(x) is a random variable (on the choices
of transition steps). We sayM has an expected running time T(n) if Exp[timeM(x)] ≤
T (∣x∣).

50 CHAPTER 2. P , NP AND BEYOND

L ∈ Ztime(T (n)) iff there is a probabilistic turing-machine M correctly de-
ciging L in expected time O(T (n)).

ZPP ∶= ⋃
c∈N

time(nc)

Exercise 2.16.11. ZPP = RP ∩ coRP
Hint (for ⊆): L ∈ ZPP , a probabilistic turing-machine M solves L in expected

time T (n). Run M for 2T (n) steps and if it has not stopped answer “YES”.
Hint (for oposite): L ∈ RP ∩ coRP , polynomial-time probabilistic turing-

machine M1,M2 s.t. M1 is always correct on x ∉ L and M2 is always correct
on x ∈ L. Define M ′ by running M1(x, r),M2(x, r):

If M1(x, r) =M2(x, r) then output M1(x, r)
else pick another random r′ and run M ′(x, r′)

Exercise 2.16.12. ZPP ⊆ NP ∩ coNP

The 2
3 in the definition of BPP seems arbitrary. In fact, we can fix it to

anything “slightly larger” tan 1
2 and get the same BPP .

Proposition 2.16.13. (Markov’s Inequality) Pr[X ≥ k] ≤ E[X]
k

for any non-
negative random variable X.

Proof. E[X] = ∑v≥0 vPr[X = v] ≥ 0 + kPr[X ≥ k] ◻

Proposition 2.16.14. (Chernoff’s bound) Let X1, . . . ,Xk be independent, iden-
tically distributed boolean random-variables with Pr[Xi = 1] = p∀i ∈ {1, . . . , k}
and δ ∈ (0,1). Then

Pr [∣∑
k
i=0Xi

k
− p∣ > δ] < e−

δ2
4 pk

Proof. Define X ∶= ∑ki=1Xk. We know E[X] = ∑ki=1E[Xi] = ∑ki=1 p = kp.
Now we estimate Pr[X−kp > kδ] and Pr[X−kp < −kδ] for an arbitrary δ ∈ (0,1).
Let t > 0 be a variable (which will be set later):

E[etX] ∶= E [∏k
i=1 e

tXi]
= ∏k

i=1E[etXi
= ∏k

i=1 ((1 − p) ⋅ 1 + pet)
= ∏k

i=1 (1 + p(et − 1))
≤ ∏k

i=1 e
p(et−1)

= ekp(e
t−1)

As quantities are all nonnegative, we get

Pr[X > kp + kδ] = Pr[etX > et(kp+kδ)]
< E[etX

et(kp+kδ)

< ekp(e
t−1)−t(kp−kδ)

Exercise 2.16.15. a) Show that t = ln (1 + δ
p
) is minimizing the right-hand

side.

2.17. BPP AND PH 51

b) in a similar way estimate Pr[X − kp < −kδ]

◻

Theorem 2.16.16. Let L ⊆ {0,1}∗ and M be a polynomial-time probabilistic
turing-machine s.t. ∃c > 0,∀x ∈ {0,1}∗ , x ∈ L iff Pr[M accepts x] ≥ (1

2 + ∣x∣−c).
Then ∀d > 0,∃ polynomial-time turing-machine M ′ s.t. ∀x ∈ {0,1}∗ , x ∈ L iff
Pr[M ′ accepts x] ≥ (1 − 2−∣x∣d)

Proof. DefineM ′: on input x runM(x) for k times and let y1, . . . , yk ∈ {0,1}
be the outputs. Now outpt forM ′(x) the majority of y1, . . . , yk. Let ∣x∣ =∶ n and
we will now fix k as a function of n. Let Xi be the random variable s.t. Xi = 1
if yi is correkt and Xi = 0 if yi is incorrect. We know Pr[Xi = 1] ≥ p ∶= 1

2 +
1
nc
.

X1, . . . ,Xk are independent and identically distributed random-variables.
By Chernoff’s bound we get that

Pr[M ′ is wrong] = Pr[majority is wrong]
= Pr [∑

k
i=1Xi
k

< 1
2]

≤ Pr [∣∑
k
i=1Xi
k

− p∣ > 1
nc

]

< e−
n−2n

4 (1
2+n

−c)k

Now it suffices to show that there is a k with n−2c

4 (1
2 + n

−c)k > nd. So k >
4nd+2c (2

1+2n−c) must hold. So pick a k with k > 8∣x∣d+2c.
◻

2.17 BPP and PH
BPP ⊆ NP is not known but BPP ⊆ NPNP is.

Exercise 2.17.1. coBPP = BPP

Theorem 2.17.2. (Sipser-Gács 1983) BPP = ΣP2 ∩ΠP
2

Proof. We show BPP ⊆ ΣP2 . Suppose L ∈ BPP . Then by the definition of
BPP and by the error-reduction theorem we get that there is a polynomial-time
turing-machine M and m ∈ N[X] s.t. ∀x ∈ {0,1}n,

x ∈ L ⇒ Prr∈{0,1}m[M(x, r) = 1] ≥ (1 − 1
2n)

x ∉ L ⇒ Prr∈{0,1}m[M(x, r) = 1] ≤ 1
2n

Denote Sx ∶= {r ∈ {0,1}m ∣M(x, r) = 1}. Then the above means that ∣Sx∣ ≥
(1 − 2−n)2m if x ∈ L while ∣Sx∣ ≤ 2m−n if x ∉ L. Can we capture this in ΣP2 ?

Fix k ∶= (m
n
+ 1). For any U = {u1, . . . , uk} ⊆ {0,1}m Define a Graph GU :

V (GU) ∶= {0,1}m, E(GU) ∶= {(s, s′) ∈ {0,1}m ∣ s ⊕ ui = s′ for some i} where ⊕
is bitwise XOR. GU is of degree k. For any S ⊆ {0,1}m define ΓU(S) to be the
neighbours of S in GU .

Claim 1: If ∣S∣ ≤ 2m−n then ∀U, ∣U ∣ = k,ΓU(s) ≠ {0,1}m. Proof: ∣ΓU(S)∣ ≤
∣U ∣∣S∣ = k2m−n < 2m.

Claim 2: ∃U, ∣U ∣ = k if ∣S∣ ≥ (1 − 2−n)2m then ΓU(S) = {0,1}m. Proof:
We prove the existence of such a U = {u1, . . . , uk} by a probabilistic argument.

52 CHAPTER 2. P , NP AND BEYOND

Choose U ⊆ {0,1}m randomly. Let us fix a set S which is large enougth. Now
let Er be the event that r ∈ {0,1}m is not in ΓU(S) and Er,i the event that
r ∉ S ⊕ ui. Clearly

PrU [Er] = ∏k
i=1 PrU [Er,i]

= ∏k
i=1 PrU [ui ∉ S ⊕ ui]

≤ ∏k
i=1 2−n = 2−kn < 2−m

So PrU [∃r, r ∉ ΓU(S)] ≤ ∑r∈{0,1}m PrU [r ∉ ΓU(S)] < 1. PrU [∀r, r ∈ ΓU(S)] >
0. So there are many U s.t. ΓU(S) = {0,1}∗. So Claims (1) and (2) to-
gether with 2.17 mean: ∀x ∈ {0,1}n , x ∈ L iff ∃u1, . . . , uk ∈ {0,1}m ,∀r ∈
{0,1}m ,⋁ki=1[M(x, r ⊕ ui) = 1] ◻

Exercise 2.17.3. • P ≠ BPP ⇒ P ≠ NP

• BPP = NP ⇒ NP = coNP ⇒ PH collapses to the first level.

Open question: Does an BPP -complete problem exist? It is even not clear
how to define such a problem.

2.18 Randomized Reductions
Definition 2.18.1. A language A reduces to B in randomized polynomial-time,
A ≤r B if there exists a polynomial-time probabilistic turing-machine M such
that for all x ∈ {0,1}∗:

Pr [B(M(x)) = A(x)] ≥ 2
3

Recall the reduction of PH to ⊕SAT .

Definition 2.18.2. A randomized version of NP :

BP ⋅NP ∶= {L ∣ L ≤r SAT}

Exercise 2.18.3. • NP ⊆ BP ⋅NP

• coBP ⋅NP = BP ⋅ coNP

Later we will see that GI ∶= Graph− Isomorphism ∈ NP ∩ coBP ⋅NP . This
is a very natural problem which lays between P and NP and is “almost” in
NP ∩ coNP .

2.19 Randomied Space-bounded Computation
Definition 2.19.1. A polynomial-time probabilistic turing-machine M works
in space S(n) if for all input x ∈ {0,1}∗ and random strings r ∈ {0,1}∗ M(x, r)
need work-space ≤ S(∣x∣).

A language L ∈ BPL if there exists a O(log(n))-space probabilistic turing-
machine M such that ∀x:

Pr [M(x) = L(x)] ≥ 2
3

2.19. RANDOMIED SPACE-BOUNDED COMPUTATION 53

A language L ∈ RL if there exists a O(log(n))-space probabilistic turing-
machine M such that ∀x:

x ∈ L⇒ Pr [M(x) = 1] ≥ 2
3

x ≠ L⇒ Pr [M(x) = 1] = 0

Exercise 2.19.2. • RL ⊆ NL ⊆ P

• * BPL ⊆ P (Hint: Look at the determinant of a modified configuration
graph)

One famous RL-algorithm is for UPath. Let G be an indirected graph and
s, t ∈ V (G):

UPath ∶= {(G,s, t) ∣ ∃ path from s to t}

Recall that Path (the directed case) is NL-complete, and its L or RL-
algorithms are open.

Theorem 2.19.3. Aleulinas, Karp, Lipton, Lovász, Rackoff [1979]: UPath ∈
RL

Reingold [2005]: UPath ∈ L

Proof. (of UPath ∈ RL).
Suppose G is the given undirected connected graph with n vertices and

s, t ∈ V (G). The Problem is to find an undirected path from s to t in G.
W.l.o.g. we can assume G to be d-regular (i.e. every vertex has d adjacent
edges). For example (d = 3) convert a vertex of degree 5 and Γ(v) = {u1, . . . , u5}
into three vertices v′, v′′, v′′′, connect them and then connect u1, u2 to v′, u3
to v′′ and u4, u5 to v′′′. Thus in logspace we can “make” G a d-regular graph
(d ≥ 3). Now the RL-algorithm for UPath is:

• do a random walk starting from s, of length n3 log(n). We will show that
for all vertices t ∈ V (G), s is connected to t Pr [reaching t] ≥ 1

2n .

• we will show that

s is connected to t ⇒ Pr[stop at t] > 1
2

s is not connected to t ⇒ Pr[stop at t] = 0

Thus repeating this random walk, say 10n times, we reach t with proba-
bility ≥ 2

3 .

Exercise 2.19.4. Repeat the proof of error-reduction in BPP to RP for RP -
algorithms where probability ≥ 1

nc
can be boosted to (1 − 2−nd).

We collect the probabilities pi ∶= Pr[walk is at vertex i] in a column vector
p⃗ ∈ [0,1]n. At any step of the walk: (1, . . . ,1) ○ p⃗ = 1. Let {e⃗i}ni=1 be the
elementary vectors in Rn (which are zero except at the i-th position where they
are one). Initially p⃗ = e⃗s.

W.l.o.g. we assume each vertex in G to have a self-loop.
Now let A be the “normalized adjavency matrix” of G i.e.

Ai,j ∶=
#edges between i and j

d

54 CHAPTER 2. P , NP AND BEYOND

A is symmetric (AT = A) with entries in [0,1]. and each row and column
sums to 1 (such matrices are called symmetric-stochastic-matrices). If the prob-
ability vector in the current step is p⃗ then it will be q⃗ = Ap⃗ in the next step,
because:

qi = Pr[walk is at i]
= ∑nj=0 Pr[walk is at 0 j]Pr[walk goes to i ∣ walk was at j]
= ∑nj=0 pjAi,j = (Ap⃗)i ⇒ q⃗ = Ap⃗

Then after l steps of the walk: p⃗ = Ale⃗s.
We will show that Pr [reaching i in l = 30n2 lg(n)] > 1

2n for all i in the con-
nected component of s and we will study powers of A and see how “soon” does
(Ale⃗s)t is a “decent” probability.

We will use the following notation

Euclidean norm ∥v⃗∥ ∶=
√
∑ni=1 v2

i

inner product < u⃗, v⃗ >= ∑ni=1 uivi

Cauchy-Schwarz Inequality ∥u⃗∥∥v⃗∥ ≥ ∑ni=1 ∣uivi∣ ≥< u⃗, v⃗ >

Definition 2.19.5. Let 1⃗ = (1
n
, . . . , 1

n
)T be the uniform distribuation vector.

Let 1⃗� ∶= {v⃗ ∈ Rn ∣< 1⃗, v⃗ >= 0}. Define:

λ(A) ∶= max{Av⃗ ∣ v⃗ ∈ 1⃗� & v⃗ is a unit vector}

Exercise 2.19.6. a) Show that the largest eigenvalue of A is 1 (with multi-
plicity 1)

b) Show that the second larges eigenvalue of A is λ(A)

By the definition of λ:

∥Av⃗∥ ≤ λ(A)∥v⃗∥ ∀v⃗ ∈ 1⃗�

Note that
< Av⃗, 1⃗ >=< v⃗,A1⃗ >=< v⃗, 1⃗ >= 0

which implies that A maps 1⃗� to itself and shrinks each vector in 1⃗� at least by
a factor of λ(A) ⇒ ∀v⃗ ∈ 1⃗�, ∥Alv⃗∥ ≤ λ(A)l∥v⃗∥

⇒ λ(Al) ≤ λ(A)l

Lemma 2.19.7. For every probability vector p⃗:

∥Alp⃗ − 1⃗∥ < λ(A)l

Remark 2.19.8. The further λ(A) is away from 1 the better is the “expansion
property” of G.

Proof. Decompose p⃗ = α1⃗ + p⃗′ where p⃗′ ∈ 1⃗�.

⇒ 1 = α+ < p⃗′, n1⃗ >⇒ α = 1
⇒ Alp⃗ = Al1⃗ +Alp⃗′ = (1⃗ +Alp⃗′)
⇒ ∥Alp⃗ − 1⃗∥ = ∥Alp⃗′∥ ≤ λ(Al)∥p⃗′∥ ≤ λ(A)l∥p⃗′∥

2.19. RANDOMIED SPACE-BOUNDED COMPUTATION 55

Observe that ∥p⃗∥2 = ∥1⃗∥2 + ∥p⃗′∥2 this implies ∥p⃗′∥ < ∥p⃗∥ < (∑ni=1 pi)2 = 1 this from
equation 2.19:

∥Alp⃗ − 1⃗∥ < λ(A)l

◻
What is λ(A) in general?

Lemma 2.19.9.
λ(A) ≤ (1 − 1

8dn3)

Proof. Let u⃗ ∈ 1⃗� be a unit vector and v⃗′ = Av⃗. We will show that

1 − ∥v⃗∥2 ≥ 1
4dn3

meaning that ∥v⃗∥ ≤
√

1 − 1
4dn3 < 1− 1

8dn3 . Which means that λ(A) < 1− 1
8dn3 by

definition.

1 − ∥v⃗∥2 = ∥u⃗∥2 − ∥v⃗∥2 = ∑
1≤i,j≤n

Ai,j(ui − vj)2

This holds because
∑i,j Ai,j(ui − vj)2 = ∑i,j Ai,ju2

i − 2∑i,j Ai,juivj +∑i,j Ai,jv2
j

= ∥u⃗∥2 − 2 < Au⃗, v⃗ > +∥v⃗∥2

= ∥u⃗∥2 − 2∥v⃗∥2 + ∥v⃗∥2

= ∥u⃗∥2 − ∥v⃗∥2

Thus it suffices to show some i, j s.t. Ai,j(ui − vj)2 ≥ 1
4dn3 . Because G has

self-loops, Ai,i = 1
d
and we can further assume ∣ui −vi∣ < 1

2n1.5 for all i, otherwise
we are done.

Sort the coordinates of u⃗ w.l.o.g. u1 ≥ u2 ≥ . . . ≥ un. Since ∑ni=1 ui = 0 and
∑ni=1 u2

i = 1 u1 > 0, un < 0 and either u1 ≥ 1√
n
or un ≤ − 1√

n
so u1 − un ≥ 1√

n
.

⇒ ∃i0 ∶ ui0 − ui0+1 ≥ 1
n1.5

⇒ ∀i ∈ {1, . . . , i0} & ∀j ∈ {i0 + 1, . . . , n}, ui − uj ≥ 1
n1.5

◻ Since G is connected there exists and edge (i, j) ∈ {1, . . . , i0} × {i0 + 1, . . . , n}
with Ai,j = 1

d
& ui − uj ≥ 1

n1.5 .
Note that ∣ui − vj ∣ ≥ ∣ui − uj ∣ − ∣uj − vj ∣ > 1

n1.5 − 1
2n1.5 = 1

2n1.50 . Which finally
shows that Ai,j(ui − vj)2 ≥ 1

d
1

4n3 and 1 − ∥v⃗∥2 > 1
4dn3 . ◻

Lemma 2.19.10. Do a random walk on G from s for l ≥ 10dn3 lg(n) steps.
Then

Pr [reaching tat the l-th step] > 1
2n

Proof. Let p⃗ be the probability distribution on V (G) at the l-th step. By
2.19.7 and 2.19.9:

∥Ale⃗s − 1⃗∥ < (1 − 1
8dn3)

l

< 1
2n1.5

and by Cauchy-Schwartz

∑ni=1 ∣(Ale⃗s − 1⃗)i∣ < 1
2n

⇒ ∣(Ale⃗s − 1⃗)t∣ < 1
2n

⇒ (Ale⃗s)t > 1
n
− 1

2n = 1
2n

◻

56 CHAPTER 2. P , NP AND BEYOND

Remark 2.19.11. a) So we have seen that UPath ∈ RL [1979]

b) Now, UPath ∈ L is known
Idea: If we can transform G to a graph G′ (in L) with a constant λ(G′)
(again this is the second largest eigenvalue of the normalized adjacency-
matrix) then it will have a much better “expansion”, i.e.

∣Ale⃗s − 1⃗∣ < λ(G′)l ≤ 1
n2

for l ∈ O(lg(n)), n ∶= ∣V (G′)∣. Prooved by Reingold [2005]. The transfor-
mation will be shown in the next course.

c) An expander is a family of graphs {Gi}∞i=1 with λ(Gi) < ε ∈ R ∀i ∈ N

2.20 Graph Isomorphism (GI)
Definition 2.20.1.

GI ∶= {(G1,G2)∣finite graphs G1 ≅ G2}
GNI ∶= {(G1,G2)∣finite graphs G1 /≅ G2}

It is trivial that GI ∈ NP and GNI ∈ coNP but it is open if GNI ∈ NP .

Theorem 2.20.2. (Goldwasser-Sipser [1986])

GNI ∈ BP ⋅NP

Proof. We will show the existence of a polynomial-time transformation A
and a constant c > 0 s.t.

(G1,G2) ∈ GNI ⇒ Prr [∃y,A(G1,G2, r, y) = 1] ≥ 2
3

(G1,G2) ∉ GNI ⇒ Prr [∃y,A(G1,G2, r, y) = 1] ≤ 1
3

where r, y ∈ {0,1}∣(G1,G2)∣c .
The key idea is to look at a set S associated with the graphs G1 and G2

(having n vertices):

S ∶= {(H,π) ∣H is a graph on vertices {1, . . . , n}
H ≅ G1 ∨H ≅ G2, π ∈ Aut(H)}

• If G1 ≅ G2 then #S = # ({H ∣H ≅ G1} ×Aut(G1)) ⇒ #S = n!
#Aut(G1) ⋅

#Aut(G1) = n!

• If G1 /≅ G2 then #S = ∑2
i=1 # ({H ∣H ≅ Gi} ×Aut(Gi)) = 2n!.

• And “membership-in-S” ∈ NP .

Thus #S is larger (by a factor of 2) when (G1,G2) ∈ GNI. We now give a
general method for set-lower-bound in BP ⋅NP .

Recall from the proof of SAT ≤r ⊕SAT , a hash function forB ∈ {0,1}k×m , b ∈
{0,1}k (also see 2.15.15):

hB,b ∶ {0,1}m → {0,1}k
u ↦ (Bu + b)

2.20. GRAPH ISOMORPHISM (GI) 57

with the above properties.
Let m = maxs∈S {∣s∣} (where we think of S as a subset of {0,1}m). And let

k ∈ N be such that 2k−2 ≤ 2n! ≤ 2k−1.
Idea: For a random hash-function hB,b and a random image z there exists a

pre-image with high-probability iff S is “large”.

• If #S = 2n! then

Pr
B,b,z

[∃y ∈ S ∶ hB,b(y) = z] ≥
#S
2k

(1 − #S
2k+1) ≥

3
16

.

• If #S = n! then

Pr
B,b,z

[∃y ∈ S ∶ hB,b(y) = z] ≤
#S
2k

= n!
2k

≤ 1
4

• It is easy to see that repeatuing this, say 8 times gives us:

#S = 2n!⇒ PrB⃗,b⃗,z⃗ [∃y⃗ ∈ S8 ∶ hi(yi) = ui ∀i] > 2
3

#S = n!⇒ PrB⃗,b⃗,z⃗ [∃y⃗ ∈ S8 ∶ hi(yi) = ui ∀i] < 1
3

• We can check h(y) = z in polynomial-time and y ∈ S too, using a certicate.
Thus we get a suitable polynomial-time turing-machine A.

◻
So we see that GNI ∈ coNP ∩BP ⋅NP

Theorem 2.20.3. (Schöning [1987]) If GI is NP -complete then ΣP2 = ΠP
2 .

Proof. Suppost GI is NP -complete then GNI is coNP -complete. Let ψ ∶=
∃x∀yφ(x, y) (where φ is a boolean formula) be a ΣP2 -instance with n ∶= ∣x∣ = ∣y∣.

We can convert the question of ∀yφ(x, y) to an equivalent question of graphs
g: g(x) ∈ GNI.

Now define a new quantifier M by M(z ∈ {0,1}m) ∶ τ(z) is true iff τ(z) is
true for “most” z ∈ {0,1}m (probability bound will depend on the context).

Since GNI ∈ BP ⋅NP (M, ∃) we can reqrite g(x) ∈ GNI as

Mr∃a ∶ T (x, r, a) = 1

for some polynomial-time turing-machine T .
Thus ψ1 ∶= ∃xMr∃aT (x, r, a) = 1 is equivalent to ψ. By a suitable error

reduction, we get a polynomial-time turing-machine T ′ and bigger strings r′, a′
s.t. ψ2 ∶=Mr′∃x∃a′T ′(x, r′, a′) = 1 is equivalent to ψ1.

Exercise 2.20.4. Work out the amplification under which ψ1 and ψ2 become
equivalent.

Recall the proof of 2.17.2), it can be seen as a general way to replace M by
∀∃: ψ3 ∶= ∀s1∃s2∃s3∃s4T ′′(s⃗) = 1 is equivalent to ψ2, hence to ψ.

⇒ ΣP2 SAT ∈ ΠP
2

⇒ ΣP2 ⫅ ΠP
2

⇒ ΣP2 = ΠP
2

⇒ PH collapses. ◻

58 CHAPTER 2. P , NP AND BEYOND

Chapter 3

Circuits

3.1 Definition of Boolean & Arithmetic Circuits
Turing machines capture problems that can be solved by some algorithm. What
about a language L for which there is a different algorithm An for each x ∈ {0,1}∗
with n = ∣x∣ (non-uniform vs. uniform computation). There is a mathematically
elegant way to capture these problem: circuits (inspired by real "‘silicon chips"’).

Definition 3.1.1. A boolean circuit C(x1, . . . , xn) is a directed rooted tree with
boolean input nodes x1, . . . , xn at the leaves. The inernal nodes are labeled with
OR, AND and NOT and the ouput is calculated at the root. Sometimes a
boolean circuit can have several outputs and so it has several roots.

The maximal indegree of a node is the fanin of C and the maximal outdegree
the fanout. ∣C ∣ ∶= size(C) ∶= #nodes in the tree. depth(C) ∶= #levels in the tree.
A circuit is called a formula if its fanout is 1. A boolean circuit with n inputs
and m outputs computes a function {0,1}n → {0,1}m.

Now we can formalize when a circuit family solves a problem:

Definition 3.1.2. Let S ∶ N → N be a function. A s(n)-sized circuit family is
a sequenz of boolean circuits {Cn}n∈N s.t. ∣Cn∣ = O(s(n)).

size(s(n)) ∶= {L ⊆ {0,1}∗ ∣ ∃s(n) − sized circut family {Cn}n∈N
s.t. ∀x ∶ Cn(x) = L(x) where n = ∣x∣}

P /poly ∶= ⋃
c∈N

Size(nc)

non-uniform polynomial-time.

Exercise 3.1.3. a) Any language L has a n ⋅ 2n-sized circuti family i.e.
size(n2n) = 2{0,1}∗ .

b) Uncomputable problems are solvable with n2n-circuit families

c) there exists an uncomputable problem solvable by an n-sized circuit family
Hint: Consider

L ∶= {1n ∣Mn(1n) where Mn is a turing-machine described by (n)2}

59

60 CHAPTER 3. CIRCUITS

So constant-sized circuits can solve some uncomputable problems.
We reduce the strength of P /poly by a uniformity restriction.

Definition 3.1.4. A circuit family {Cn} is called logspace-uniform if there
exists a logspace algorithm that generates Cn on input 1n.

(logspace-uniform)P /poly ∶= {L ⊆ {0,1}∗ ∣ ∃c > 0,∃ logspace-uniform nc-sized
circuit family {Cn} s.t. Cn decides L ∩ {0,1}n}

Theorem 3.1.5. (logspace-uniform)P /poly = P

Proof. "‘⊆"’ Even with polynomial-time in place of logspace it is true!
"‘⊆"’ Let L ∈ P be a language and M is a nc-time turing-machine deciding

L. Idea: We encode the steps of M on {0,1}n in a polynomial-sized circuit
Cn in O(log(n)) space.As in Cook-Levins (proof of NP -hardness of SAT) first
convert M into an n

2c-time turing-machine M̃ which is oblivious (i.e. the i-
th head-movement of M̃ depends only on i). Thus the i-th head-position of
M̃ can be computed in O(log(n)) space given 1i. Let ζ1, . . . , ζn2c be the n2c

configurations of M̃ starting from the initial to the final state of M̃ on input
x1, . . . , xn. Each ζi is an array (head-position,head-bit, state). Construct the
circuit Cn as: In the i-th level it computes ζi from ζi−1 using δ(M̃). Finally it
outputs 1 iff ζn2c is in the accept state. So ∣Cn∣ = depth(Cn) = O(n2c). Cn can
be generated given 1n in O(log(n)) space. And we see that L has a logspace
non-uniform nc-sized circuit family. ◻

Exercise 3.1.6. a) P ⊆ P /poly

b) SAT ∉ P /poly⇒ P ≠ NP

Open: SAT ∉ P /poly

Remark 3.1.7. SAT can have a polynomial-sized circuit even if SAT ∉ P .

Theorem 3.1.8. (Karp-Lipton, 1980) NP ⊆ P /Poly⇒ Π2 = Σ2 ⇒ PH = Σ2

Proof. Suppose SAT ∈ P /Poly then for any boolean formula φ(x1, . . . , xn)
of size m there is a constant c and a boolean circuit Cm(φ(x1, . . . , xn)) of size
mc s.t. Cm(φ) = 1 iff φ is satisfiable.

Note that φ(x1, . . . , xn) is satisfiable iff φ(1, x2, . . . , xn) or φ(0, x2, . . . , xn)
is satisfiable (or both). So using SAT as an oracle you can actually find a
satisfying assignment. This property is called self-reducibility.

By repeating this n times we get a circuit C ′
m of size O(nmc) that outputs a

satisfying assignment of φ (if one exists). C ′
m can be expressed using m3c bits.

Let ∀u∃vψ(u, v) be a Π2SAT instance. Look at the formula ∀[ψ(u,C ′
m(ψ)) =

1]. Now look at ∃w∀u[w is a circuit of size ≤m3c & ψ(u,w(ψ)) = 1]. The two
quantified formulars are equivalent. Π2 ⊆ Σ2 ⇒ PH = Σ2. ◻

This theorem gives hope that “SAT does not have polynomial-sized circuits”.
There are results known for SAT not having certein special booolean circuits,
e.g. monotone circuits.

It is interesting that most of the functions {0,1}n → {0,1} have high circuit
complexity.

3.1. DEFINITION OF BOOLEAN & ARITHMETIC CIRCUITS 61

Theorem 3.1.9. “Almost all” boolean functions {0,1}n → {0,1} require circuits
of size ≥ 2n/10n.

Proof. #{f ∶ {0,1}n → {0,1}} = 22n and w.l.o.g. fanin of every circuit is 2
and fanout is 1 (by breaking a circuit with more fanout / fanin up in more levels)
then #{circuits of size s on n − sized input} < s3s. For s = 2n

10n , s
3s ≤ 2 2n

3 < 22n .
Thus a “random” function requires circuits of size > 2n

10n . ◻
Open: Find such a function explicitly.

Exercise 3.1.10. Proove the non-uniform hierarchy theorem:
∀T,T ′ ∶ N→ N s.t. T ′(n) = ω(T (n) lg(T (n))) then size(T (n)) ⊊ size(T ′(n))
Hint: By counting a function in size(T ′(n)) − size(T (n))

BPP is also related to P /poly:

Theorem 3.1.11. (Adleman 1918) BPP ⊆ P /poly

Proof. Suppose L ∈ BPP then there exists a polynomial-time turing-
machine M s.t. ∀n ∈ N,x ∈ {0,1}n:

x ∈ L ⇒ Prr∶∣r∣=m[M(x, r) = 1] ≥ (1 − 1
2n+1)

x ∉ L ⇒ Prr∶∣r∣=m[M(x, r) = 1] ≤ 1
2n+1

Say r ∈ {0,1}m is bad if for some x ∈ {0,1}n: M(x, r) is wrong. Thus

#{r ∣ r is bad} ≤ 2n 2m
2n+1 = 2m

2

So pick an rn ∈ {0,1}m for which M(x, rn) is correct for all x ∈ {0,1}n. Define
Cn to be the circuit that simulates M(x1, . . . , xn, rn) (where xi is the i-th bit
of x). Which implies that LinP /poly. ◻

