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Abstract
In his paper on elliptic curves over finite fields, R. Schoof assumes
certain basic material concerning elliptic curves. This material mainly
concerns the division polynomials and the “Weil Conjectures for Elliptic
Curves”. These notes provide elementary self-contained proofs of these
results.

Part I — Elliptic Curves over Algebraically Closed Fields

1 Introduction

The goal of these notes is to prove the results used by Schoof in his paper on
elliptic curves over finite fields. On the way, we expose most of the basic notions
of elliptic curve theory required for further study. It appears to be impossible
to find an elementary presentation of this material in the literature. By “el-
ementary”, we mean that the exposition requires little beyond undergraduate
mathematics. It is still true, however, that our “elementary” proofs may require
some mathematical sophistication. Thus you would not have to consult a lot of
other books (as in [6]), but you still may have to expend some thought.

We would like to thank our colleagues at IDA for their unrelenting criticism
and good advice. In addition, we would like to thank Ann Stehney for her
editorial and mathematical suggestions.

Recall that the characteristic of a field K is the smallest positive integer p
such that p-1 = 0 where by p-1 wemean 1 +1+--- 41, p times. It can be
easily seen that if there is such a p, it is always a prime integer (see [4, page
241]). If there is no such positive integer p, we say the characteristic is zero.

Recall that a field K is said to be algebraically closed if every polynomial with
coefficients in K splits completely into linear factors. Another way of saying this
is that every polynomial of degree n (with coefficients in K) has n roots in K,
counting multiplicities. The standard example of an algebraically closed field is
C, the complex numbers. It is a standard fact (see [2, page 107], for example)
that every field has an algebraic closure, i.e., an algebraically closed superfield.



We assume that the characteristic of our field K is not 2 and that K
is algebraically closed.

We will use some standard notation that we record here. K[X] will denote
the ring of polynomials in the indeterminate X with coefficients in K while
K (X) will denote its field of quotients, namely the field of rational functions in
X with coefficients in K. K[X,Y] and K(X,Y) are defined similarly.

2 Elliptic Curves
We give the basic definition.

Definition 2.1 For any A, B € K, we can define an elliptic curve E. E is the
set of all points (h, k) € K x K that satisfy the equation

E*=h’+Ah+ B (1)

together with an “idealized point” (. For reasons that will become apparent
later, O is called the identity. The points of the curve other than the identity
are said to be finite.

Definition 2.2 If k£ is a subfield of K, and A and B are in k, we define the
k—rational points of E to be the points whose coordinates lie in k. We denote
the set of these points by E(k).

Definition 2.3 An elliptic curve defined by Equation (1) is called nonsingular
if the polynomial X3 + AX + B has (three) distinct roots; otherwise we say it
is singular.

Exercise 2.4 Define A(E) = 442 4+ 27B2. A(E) is called the discriminant of
the equation of the curve. Show that E is nonsingular if and only if A(E) # 0.

Remarks.

(i) The symbols “z” and “y” will be reserved for the coordinate functions on

E defined by z(a,b) = a and y(a,b) = b.

(ii) It is sometimes fruitful to think of the identity as being “at infinity.” If
we use projective coordinates, we can actually make sense of this notion
(see [6]). We will abuse the terminology and use the symbol “c0” for both
the z and the y coordinates of O.

(iii) Our definition of elliptic curve is slightly different from the usual one which
requires elliptic curves to be nonsingular. Since we will have nothing to
do with singular curves, we would not worry about this difference.

(iv) In characteristic 2 or 3, an elliptic curve should be defined by a more
complicated equation to correspond to the standard definition (see [6,
page 325]). In fact, in characteristic 2, our definition of “singular” is not



the right one. Consider a somewhat more general curve defined by an
equation FI(X,Y) = 0 where F is some irreducible polynomial. The usual
definition of singular is that the curve is singular if there is a point on the
curve (i.e., satisfying the above equation) at which both partial derivatives
OF/0x and OF/Jy are zero. In the case of elliptic curves it is easily seen
that if the characteristic is not 2, this is equivalent to our definition. This
is not the case in characteristic 2, and, in fact, it is easy to see that if
we use the definition in terms of partial derivatives, all curves of the form
Y2 = X3 + AX + B are singular.

In characteristic 3, we will not be considering the most general elliptic curve,
but for the class of curves defined by (1) the proofs all work up to Theorem 8.6.
We will say no more here about these characteristics.

In these notes, we will consider only non—singular elliptic curves.

3 Polynomial and Rational Functions

We would like to think of the elements of K[X,Y] as defining polynomial func-
tions on E, but clearly two elements of K[X,Y] that differ by a multiple of
Y2 — X3 — AX — B will define the same function on E. If we wanted to be fancy,
we could define polynomials on E to be elements of the quotient ring

K[X,Y]/(Y? - X3 - AX —B) ,

where (Y2 — X3 — AX — B) is the ideal generated by Y2 — X® — AX — B.
Of course, the idea of these notes is not to be fancy, so we will adopt a more
concrete definition of polynomials on E. The point is that Y2 = X3 + AX + B
on E, so any time we see a power of Y higher than one, we can use this relation
to replace it by an expression in X times a power of Y no greater than one.
Notice that if we consider polynomials in the functions x and y, the relation
y? = 23 + Az + B holds automatically. We therefore consider polynomials to

be elements of K[z,y], the ring of polynomials in the functions z and y.

Definition 3.1 A polynomial on E is an element of K[z,y]. We sometimes
denote the ring of polynomials on E by K[E].

An important consequence of this definition is that any polynomial f on
E can be written f(z,y) = v(z) + yw(zx) for two polynomials v and w of one
variable. Also note that using this definition, polynomials are automatically
functions on E since z and y are.

Definition 3.2 If f(z,y) = v(z) + yw(z) is a polynomial on E, its conjugate
f is the polynomial f(z,y) = v(z) — yw(z) and its norm is the polynomial

N(f)=fFf.

Remark. Without getting too bogged down in foundational considerations,
we would like to examine the notion of polynomial a little more carefully. First
notice that

N(f)(z,y) = v(z)* = s(z)w(z)® ,



where s(z) = z® + Az + B, so we can think of N(f) as being a function of
only one variable, i.e., a member of K[z]. In addition, N(fg) = N(f)N(g).
Many of the proofs in this part depend on thinking of N(f) in this way because
we know a lot about polynomials of only one variable. For example, we might
like to know that the representation of a polynomial as v(z) + yw(x) is unique.
Suppose f(z,y) = v(z) + yw(x) were the zero function. Then N(f) would have
to be the zero function (since the degree of s is odd, and the degrees of v? and
w? are even, the polynomial w would have to be zero and hence so would the
polynomial v). From this we easily see that the representation v(z) + yw(z) is
unique. In a similar fashion, we can see that K[z,y] has no zero divisors, and
that the usual rules used with polynomials hold here.

Now we would like to define a rational function to be the quotient of two
polynomials, but we must exercise some care.

Definition 3.3 A rational function on E is an equivalence class of formal quo-
tients of polynomials f/g (with g not identically zero), where we identify f/g
with h/k if fk = gh as polynomials on E. It is easily seen that the set of rational
functions on E is a field, which we denote by K(E).

The way to see that fk = gh “as polynomials on E” is to write both fk and
gh in the canonical form v(x) + yw(z) using the relation y? = 2 + Az + B, and
then see if they are equal. While polynomials have values at every finite point
of E, rational functions may not have values at all finite points and may have
a value at O. Notice that if r = f/g is a rational function, then by multiplying
by §/g, we can write 7(z,y) = a(z) + yb(z), where now a and b are rational
functions of x alone.

Definition 3.4 If r is a rational function on E and P is a finite point in E, we
say r is finite at P if there exists a representation r = f/g where f and g are
polynomials on E and g(P) # 0. If r is finite at P, we put r(P) = f(P)/g(P),
and it is trivial to see that this is well-defined.

Exercise 3.5 Show that the rational functions that are finite at P form a ring
(i.e., sums and products of finite polynomials are finite) and, if you know what
it is, show this ring is local.

It is somewhat more complicated to define the value of a rational function
at O, even if it has one there. The usual way (in calculus) to find the value (or
limit) of a rational function at infinity is to compare the degrees of the numerator
and denominator. In our case the situation is complicated by the existence of
two variables, x and y. While it might seem natural to assign degree 1 to z and
y, this would not be consistent with our fundamental relation y?> = 2%+ Az + B.
This relation suggests that the degree of y should be 3/2 the degree of z. Since
we do not want to deal with fractional degrees, we will assign degree 3 to y and
degree 2 to z. To avoid confusion, we denote the usual degree of a polynomial
f in z alone by deg,(f).



Definition 3.6 Let f(z,y) = v(z) + yw(z) be a nonzero polynomial on E.
Define the degree of f by

deg(f) = max[2 - deg,(v),3 + 2 - deg, (w)] . (2)

If f happens to be a function of only the variable x then its degree as a
function on FE is twice its usual degree as a function of z, i.e., with the degree
of z equal 1.

Lemma 3.7 If f is a polynomial on E then

deg(f) = deg,(N(f))

Proof. If we write f(z,y) = v(z) + yw(z), then N(f)(z) = v%(z) — s(z)w?(z),
where s(z) = z3 + Az + B. The lemma then follows from the definition of
degree. [ |

In order to see that this is a useful notion of degree, we must check the
fundamental property we expect of degrees.

Proposition 3.8 dg are polynomials on E, then deg(f - g) = deg(f) + deg(g).
Proof. Using the lemma, we get

deg(fg) =deg, (N(fg)) = deg,(N(f)N(g))
=deg, (N(f)) + deg, (N(g)) = deg(f) + deg(g) ,

since we certainly know the result for deg,. |

Note that while we cannot talk about the degree of the numerator (or denom-
inator) of a rational function, the difference between the degree of the numerator
and the degree of the denominator is well-defined, i.e., if r = f/g, r may also
equal h/k and deg(f) may not equal deg(h). By the above proposition, however,
deg(f) — deg(g) = deg(h) — deg(k) since fk = gh. Therefore we can make the
following definitions:

Definition 3.9 Suppose r = f/g is a rational function on E. If deg(f) <
deg(g), we set r(O) = 0. If deg(f) > deg(g), we say that r is not finite at O. If
deg(f) = deg(g), we must distinguish two cases. If deg(f) is even, then writing
f and g in canonical form, they will have as leading terms (terms of highest
degree) ax? and bz? respectively (for some a,b € K and integer d). Then we
put r(O) = a/b. Similarly if deg(f) is odd, the leading terms have the form
ayr? and byx?, and again we put r(0) = a/b.

Remark. It might seem natural to define the degree of a rational function
r = f/g to be deg(f) —deg(g). If we did this, then r would be finite or infinite at
O depending on whether it had negative or positive degree. The disadvantage of
this definition is that it disagrees with the usual one used in algebraic geometry.
We will avoid this problem by not defining the degree of a rational function at
all.



Exercise 3.10 Show that if 7 and s are rational functions with 7(0) and s(O)
finite, then r5(0) = 7(0)s(0), and (r + 5)(0) = 7(0) + s(O).

If r is a rational function on E that is not finite at some P € E, we write
r(P) = oo to indicate this.

4 Zeros and Poles

From the material of the last section it is easy to define what a zero or pole of
a rational function should be.

Definition 4.1 Let r be a rational function on E. We say that r has a zero at
P € E if r(P) = 0 and that r has a pole at P if r(P) = oo.
What is not so easy to do is to define the multiplicity of a zero or pole.

Example 4.2 Suppose E is given by the equation Y2 = X3 + X. Then the
point P = (0,0) is in E. Since x = y? — 23, it appears that the function z ought
to have a zero at P whose multiplicity is twice that of the zero of y at P.

Before we prove a theorem that will show us how to define multiplicities,
we want to point out three points on our elliptic curve that will cause us no
end of difficulty, beginning here. Remember that we have assumed that E was
nonsingular, which means that the polynomial X3 + AX + B has three distinct
roots. Let’s call them wy,ws and w3, and use w to indicate an arbitrary one.
Then E contains three points whose y—coordinate is 0, namely (wi,0), (w2, 0)
and (ws,0). These three points are called the points of order two for reasons
that will become apparent in Section 6.

Theorem 4.3 For each point P € E there is a rational function u, zero at P,
with the following property: If v is any rational function not identically zero,
then

r=u’s (3)

for some integer d and some rational function s that is finite and nonzero at P.
Furthermore, the number d does not depend on the choice of the function u.

Proof. There are three cases. First we do the generic case, i.e., we assume that
P is not of order 2 and that P is not O. For P = (a,b), we will show we can
take u(z,y) = z — a. Suppose r has a zero at P. Then r = f/g with f(P) =0
and g(P) # 0. If we can decompose f = u?s as in the above equation, then we
can simply divide by g and get the corresponding result for r.

We write f(z,y) = v(z) +yw(z) so f(z,y) = v(z) —yw(z). If f(P) =0, then
since the characteristic is not two and y(P) = b # 0, we can solve the linear
equations

v(a) + bw(a) =0

v(a) —bw(a) =0 ,



to conclude that v(a) = w(a) = 0. Since v and w are polynomials in one variable,
we get
f(xay) = (:E - (I) ) Sl(l',y)
for some polynomial s;. o
If f(P) # 0, then we can multiply f by f/f to get

_ v (z) — s(z)w?(x)
f($7y) - f_.(m,y) )

where s(x) = 2% + Az + B. Now f(P) = 0 and f(P) # 0 implies

v (z) — s(z) - w?(x) =0 forz=a ,

and the polynomial on the left is a polynomial in one variable. Again we con-
clude that

f(may) = (:c—a) 'Sl(xay) )

where this time s; is some rational function that is finite at P. In either case, if
51(P) = 0, we can continue the process. To see that it eventually comes to an
end, note that if f(z,y) = (z — a)?s1(z,y), then N(f)(z) = (z — a)?*?N(s1)(z).
We know that N(s1)(z) does not have a pole at a so we can see that 2d must
be less than the degree of N(f) as a function of z alone.

Thus if r has a zero at P = (a,b), we can take u(z,y) = z —a. If r has a pole
at P, then 1/r has a zero at P, and the same u still works (with d negative).
If r has neither a zero nor a pole at P, then we can take d = 0 and s = r, and
what v is is immaterial. Thus in the generic case, we can take u(z,y) =z — a.

Now we assume that P is a point of order two, say P = (w;1,0). We show
that we can take u(x,y) = y in this case. As above, if r has a zero at P, we
can assume r = f/g and f(P) = 0. Now f(w1,0) = 0 implies v(w;) = 0 where
f(z,y) = v(z) + yw(z). Hence we can write v(z) = (x — wy)vi(z) for some
polynomial v;. Since the roots of s(z) are distinct, (z — w2) and (z —ws) do not
vanish at P, so we get

f(z,y) = (. —wi)vi(z) + yw(z)
_ (@ —wi)(z — wo)(z — w3)ui(z) + ywi ()
(. —w2)(z — w3)
_ yu(a) +ywi (a)
(z —w2)(z — ws)
yu1(z) + wi ()
(z — w2)(z — w3)

Y

where wy (2) = (z—w2)(z—w3)w(z). Now if the function in brackets still vanishes
at P, we can do the process over again to the polynomial wy(z) + yvy(z). This
process must also terminate since in every other step we factor z — w; from v,
which can contain only finitely many such factors. Hence in the case of points
of order two, we can take u(z,y) = y.



Finally in the case P = O, we show that u(z,y) = z/y works. Suppose
r = f/g and r(O) = 0. This means that deg(f) — deg(g) = d < 0. Since
deg(y) — deg(z) = 1, deg(y?f) = deg(z%g), and (y/x)%r will be finite and
nonzero at the identity. Since

r=(z/y)* [(y/z)"] ,

we see that we can take u(z,y) = z/y at the identity.

To see that the number d is unique, suppose that v and «' are both rational
functions satisfying the conditions of the theorem. This means that we can
write u = (u')®s and u' = uft, so u = u¢f(t°s). If ef # 1, then by dividing
this equation by u and plugging in P, we get 1 = 0. We therefore must have
e = f = 1. Thus if r is any rational function not identically zero that vanishes
at P, we can write r = u?s = (u')%t. [

The above theorem allows us to make the following definitions:

Definition 4.4 A function u that satisfies the above theorem is called a uni-
formizing variable or uniformizer at P. If r is a rational function and r = u9s,
where u is a uniformizing variable at P, we say that the order of r at P is d and
write

ordp(r) =d .

We define the multiplicity of a zero to be the order of the function and the
multiplicity of a pole to be the negative of the order. If a zero or pole has
multiplicity one, two, or three we say it is simple, double, or triple, respectively.

Example 4.5 (i) Let P € E and suppose P = (k,1) with k,l € K and [ # 0.
Let u = x — k. Since v is a uniformizer at P, we see ord,(u) = 1. Now
P' = (k,—1) is also a point of E, and clearly ordp/(u) = 1. It is also clear
that u has order zero at every other finite point. We see that u has a pole
at O, and since deg(u) = 2, we get that ordp (u) = —2. Summing up, we
see that u has two simple zeros, and a single double pole.

(ii) Now consider the function y. We have seen that y is a uniformizing variable
at the three points (w1, 0), (w2, 0), and (w3, 0), so it has a zero of multiplic-
ity one at these three points. Also y has order zero at every other point
except O. Since y has degree three, it has a pole of multiplicity three at O.

(iii) Finally take u = z/y. We leave it to the “interested reader” to show that u
has a zero of multiplicity one at O, zeros also of multiplicity one at the two
points (0,v/B) and (0, —v/B) and simple poles at the three points of order
two (if B = 0, there is a simple zero at O, a simple zero of multiplicity
one at (0,0)), and poles of multiplicity one at the points (v/—A,0) and
(—v=2,0)).

These examples suggest the following theorem, which is a sort of baby
Riemann—-Roch Theorem in that it places restrictions on what kind of zeros
and poles a rational function can have:



Theorem 4.6 Let r be a rational function on E. Then

Z ordy(r) =0 .

PcE

Before we give its proof, we prove a lemma, which is of interest itself.

Lemma 4.7 Let f be a polynomial on E. The sum of the multiplicities of the
zeros of f equals the degree of f.

Proof. Let deg(f) = n. By Lemma 3.7, deg,(N(f)) = n, so we can write
N(f)(@) = ffz) = (@~ a)(z —a2) - (z —an) ,

where the a; are elements of K that may not be distinct. If a; # w, then (z—a;)

has two distinct roots on E. If a; = w, then £ — a; has only one root on E, but

it has multiplicity two. Thus we can conclude that ff has precisely 2n roots on

E, counting multiplicities. But clearly f and f have the same number of roots

on E, so the sum of the multiplicities of the zeros of each must be n. ]
Now we give the proof of Theorem 4.6.

Proof. Tt suffices to prove the result for a polynomial f. We know that

Z ord,(f)

PEE-O

is the sum of the multiplicities of the zeros of f. On the other hand, by definition,

ordo(f) is the negative of the degree of f, so the theorem follows from the

lemma. [ ]
We will need the next two lemmas in several places.

Lemma 4.8 Let f be a nonconstant polynomial on E. Then f must have at
least two simple zeros or one double one at finite points of E.

Proof. If f is nonconstant, then it must involve an x or a y. Since deg(z) = 2
and deg(y) = 3, this result follows from the previous lemma. |
The following exercise is in much the same spirit as the above lemma:

Exercise 4.9 Since K is algebraically closed, E must have an infinite number
of points. Show that if two rational functions agree on an infinite number of
points of E, then they are equal.

Lemma 4.10 A rational function without finite poles is a polynomial.

Proof. We write r = a + yb where, a and b are rational functions of x. If r has
no finite poles, then clearly ¥ = a — yb has no finite poles. Hence r + ¥ = 2a
has no finite poles. If a had a pole as a function of x, then it would have one as
a function on E. Thus a is a polynomial. This implies that yb = r — a has no
finite poles. Hence (yb)? = sb? has no finite poles where, s(z) = 2 + Az + B.
If b has a pole, then it can be written b = f/g where g(z) = 0 for some z € K.



In this case, b2 = f2?/g% and g? has a double root at some x. The only way for
sb? not to have a pole at P is for s to have a double zero at x, and since E is
nonsingular, this is not the case. Therefore b has no finite poles. Finally we see
that b must also be a polynomial, so r is a polynomial. [ |

There is an extension of the idea of rational function that we will need later.

Definition 4.11 A rational map F on E is a pair (r,s) where r and s are
rational functions on F such that

s2=r*+Ar+B .

If we make the convention that F(P) = O if r and s are not finite at P, we
see that F' actually defines a map from E to E by F(P) = (r(P),s(P)) since r
and s must have poles at the same points.

Remark. There is an amusing way of looking at rational maps that will
actually be useful. Given the field K, we form the elliptic curve E using the
equation

Y2=X3+AX+B . (4)

Now suppose we consider the field of rational functions K (E). Then we can
use the same equation to form a new elliptic curve, which we might denote by
E(K(E)). Now K(FE) may not be algebraically closed, and by our convention,
the points of E(K(E)) have coordinates in the algebraic closure of K (E). The
finite points whose coordinates lie in K (E) (i.e., the K (E)-rational points) are
precisely the rational maps. We can think of the identity of this curve, call it
Our, as the “map” with the constant value O.

5 Divisors and Lines

It is not hard to imagine that it would be convenient to have a device to keep
track of the zeros and poles of a rational functional 7. One idea is to use lists

[(P17m1)7 (P27m2)7 LR (Pnamn)]

where r has order m; at P;. It turns out to be better to consider a formal sum
mi(P1) + mo{Po) + - - - + mp(Py,) = Zmz’<Pi>

The right way to do this is to use the notion of a free Abelian group generated
by a given set. We recall the definition here.

Definition 5.1 Let S be any set. The free Abelian group generated by S is the
set of finite formal linear combinations

Zm(s)s ,

sES

10



where m(s) € Z, and m(s) = 0 except for finitely many s € S. The addition is
also formal; simply juxtapose and collect terms. For example,

(m1s1 4+ masa) + (n151 + nsss) = (M1 +n1)s1 + masa + ngss

Definition 5.2 Let E be an elliptic curve over an algebraically closed field K.
The group of divisors of E is the free Abelian group generated by the points of
E. We denote it by Div(FE). To distinguish the point P from the divisor whose
sole nontrivial entry is P with coefficient 1, we denote this divisor by (P). If
A =3 pcpm(P)(P) is a divisor, then we define its degree by

deg(A) = Z m(P)€eZ .

PecE

If r is a nonzero rational function on E, we associate a divisor to r by the
following equation:

div(r) = Z ord, (r){P)

PceFE
Remarks.

(i) We should observe that a rational function has a finite number of zeros
and poles. This can be seen from Lemma 4.7.

(ii) If two rational functions have the same divisor, then Lemma 4.10 implies
that their quotient is constant. Thus one way to prove that two functions
are equal is to show that they have the same divisor, then to show they
agree at any one point of E. Usually the only point on E that we can get
our hands on is O, and frequently functions have poles at O. In this case,
we can compare leading coefficients, defined below.

Definition 5.3 Let r be a rational function and suppose ordp(r) = d. Then
we define the leading coefficient of r to be

[(@/y)? - r](0)

Exercise 5.4 Show that if two rational functions have the same divisor and
the same leading coefficient, they are equal.

Example 5.5 (i) Let P = (a,b) € E with b # 0, and 1 = ( — a). Then
we have seen that r; has simple zeros at P and P’ = (a,—b) and a pole
of multiplicity two at O. Therefore div(r1) = (P) + (P') — 2(O) where we
have used —2(0) for +(—2){0).

(ii)) Let ro = y. If we let P; (i = 1,2,3) be the points of order two, then

div(re) = (P1) + (P2) + (P3) — 3(0)

11



(iii) We take 3 = z/y and Q = (0,v/B) and Q' = (0,—v/B), so
div(rs) = (Q) +(Q') — (P1) — () — (P5) + (O) .

Definition 5.6 We say a divisor A is principal if A = div(r) for some rational
function r. If A; — A, is principal, we say A; and Ay are linearly equivalent or
in the same divisor class, and write A; ~ A,.

Proposition 5.7 If r1 and ry are rational functions on E, then div(riry) =
diV(’I‘l) + diV(T‘Q).

Proof. It is easy to see that ord,(r1r2) = ord,(r1)+ord,(r2), and the proposition
follows from this. ]

Definition 5.8 By the above proposition, the set of principal divisors forms a
subgroup of Div(E), which we denote by Prin(E). We also define Div?(E) to
be the subgroup of divisors of degree 0. (It is trivial to see it is a subgroup.)

One of our goals in this section is to study which divisors are principal,
i.e., what zeros and poles a rational function can have. This is equivalent to
studying the divisors that are mnot principal. These divisors are represented by
the elements of the group

Pic(E) = Div(E)/Prin(E) .

Pic(E) is called the Picard or divisor class group of E. Actually we can
study a smaller group to investigate which divisors are principal. Theorem 4.6
implies Prin(E) CDiv®(E), so we may as well look at the divisors of degree zero
that are not principal, i.e., the group

Pic’(E) = Div’(E)/Prin(E) .

Pic?(E) is called the degree zero part of the Picard (or divisor class) group
of E. We are going to show that Pic’(E) is in one—to—one correspondence with
the points of E. We need some more definitions first.

Definition 5.9 If A =}, . m(P)(P) is a divisor, we define its norm by
A= > Im(P) .
PEE-O

For example, a divisor of norm one looks like +(P) + n{O) where n is some
arbitrary integer. Also if A is the divisor of some polynomial f, then |A| is the
sum of the multiplicities of the zeros of f, which is the degree of f.

Definition 5.10 A line on E is a polynomial of the form

Lzy) =ax+By+7 ,

for some «, 3,7 € K with not both « and [ zero.

If a point P is a zero of the line £/, we say £ is a line through P, and P is on
L.

The main result on lines is the following:
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Lemma 5.11 If ¢ is a line with divisor A, then |A| =2 or 3.

Proof. (¢ is a polynomial of degree 2 (if 8 = 0) or 3 (if 8 # 0). Hence by
Lemma 4.7, the sum of the multiplicities of the zeros of £ is 2 or 3, and this sum
is precisely |A|. [

Exercise 5.12 Show that the possible divisors of a line are the following, where
P,@Q, and R are distinct:

(i) div(€) = (P} +(Q) + (R) — 3(0).

(i) div(f) = 2(P) +(Q) = 3(0).
(iif) div(€) = 3(P) - 3(0)-
(iv) div(f) = (P) +(Q) — 2(0)-
(v) div(€) = 2(P) — 2(0).

Show all of these cases actually occur. (Hint: In part (iii), P is an inflection
point of the curve.)

The next theorem is the main result of this section. It has an amazingly
simple proof. If P = (a,b), we use the notation —P for (a,—b). The reason for
this will become clear in the next section.

Theorem 5.13 (Linear Reduction) Let A €Div(E). Then there is A € Div(E)
with A ~ A and deg(A) = deg(A) and |A| < 1.

Proof. Suppose A =3, pn(P)(P), and ) and R appear in A with nonzero
coefficients of the same sign. Let £ be the line through @) and R. Then depending
on the sign of the coefficient of @ (or R), A + div(¢) or A — div(¢) will have
[n(@)| and |n(R)| reduced by one if £ has three distinct zeros. By the lemma,
we will have at worst increased the coefficient of one other point by one. If £
has only two distinct zeros, then we will have decreased |n(Q)| or |[n(R)| by one,
and increased no other coefficient at all. So we will have produced a divisor, say
Ay, with Ay ~ A, deg(A;) = deg(A) and |A1] < |A]

After doing this linear reduction a finite number of times, we get a divisor
A’ linearly equivalent to A, of the same degree as A, and

A" =n1(P) —n2(Q) +n(0) ,

where n; and ns are nonnegative integers and n is an integer we do not care
about.
Suppose ny > 1. Consider the line

Uz, y) =m(z —a) = (y - b)
with P = (a,b). P is on £ if a is a zero of the polynomial

f(@)=[m(x—a)+b?—-2°—- Az - B

13



because P must satisfy both the equation of the line and the basic equation of
the elliptic curve. We have used these two equations to eliminate y and obtain
the polynomial f. If we compute f'(a), we see that P will have multiplicity two
if

_3a’+ A

T2

(A neater way to do this computation is to use the derivation of Defini-
tion 8.1.) So if b # 0, this line will have divisor 2{P)+(S) —3(0). By subtracting
it, we can reduce ny and |A'|. If P is of order two, the line £(z,y) = z — w has
divisor 2(P) — 2(O) and can be subtracted to reduce n;.

We can similarly reduce n,. Eventually we are done, or we arrive at

(P) = (@)+(0) .

The line £(z,y) = = — a has divisor {P) + (R) — 2(O) or 2{P) — 2(0). Thus
by subtracting it, we are reduced to a previous case. [ |

The next two corollaries and Proposition 6.7 are analogs of the Riemann—
Roch Theorem. They give a rather precise description of which divisors are
principal.

Corollary 5.14 For each A € DitP (E), there is a unique point P € E such that
A~ (P)—(0)

Proof. The theorem tells us that A is equivalent to a divisor of norm 1, i.e.,
a divisor =(P) + n{O). If the sign of (P) is not plus, by subtracting the line
with divisor (P) + (Q) — 2(O), we can change the sign. Since we are given that
degree of A is zero, the coefficient of O must be —1, so the only thing to check is
whether P is unique. Suppose A ~ {Q) — (O) also. Then (@) ~ A+{O) ~ (P),
so there would have to be a rational function r with div(r) = (P) — (Q). By
the methods of the proof of the theorem, we can see that if this were the case,
there would have to be a rational function r whose divisor is (S) —(O) for some
S € E. Clearly r would have no finite poles so by Lemma 4.10, » would have
to be a polynomial. But then r would be a polynomial with a single finite zero,
which by Lemma 4.8 is impossible, so we must have (P) = (Q). |

Define a map & : Div’(E) = E by 6(A) = P where P is the unique point
with A ~ (P)—(0). Since div(r) ~ 0, (div(r)) = O, and we see that & induces
a map

o:Pic 5 E .

Corollary 5.15 o is a bijection.

Proof. o is surjective since o((P) — (O)) = P. It is obviously injective. |
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6 The Group Laws

We are going to give the group addition laws for an elliptic curve in their al-
gebraic formulation. This is in keeping with our policy of being explicit and
computational. It does, however, suffer from two disadvantages. One is that
it is somewhat unmotivated, and the other is that the “(direct) verification (of
the associativity law) is a pain” ([3, page 40]). Another approach is geometric
(see [6, page 55]) and is a little more motivated, but associativity is still difficult
(although it can be done, see [1, page 125]). We will use this approach to moti-
vate the algebraic equations. In his book, Lang gives a beautiful definition using
doubly periodic functions, but this method only works when K is the field of
complex numbers. Finally there is a way to define addition using divisors that
makes associativity trivial. We are ultimately going to use this approach by
showing it is equivalent to the algebraic formulas presented here.

Remark. The basic idea behind addition on an elliptic curve is that a line
will intersect the curve no more than three times. We describe roughly how
this works; the formal definitions follow. First we make O act as the zero or
identity element of the group. Then we make (a, —b) be the negative of (a,b).
Finally, if the points P, @, and R are on a line, we define the addition so that
P+Q+R=0.

First of all, suppose P # @ or —@Q and let £ be the line through P and () and
let R be the third zero of ¢, which is easily seen to be finite. Write P = (a,b)
and @ = (¢,d) so £ can be written

Uz,y) =m(z —a) = (y—=b) ,

where m = (d — b)/(c — a). We have seen that since (a,b) is a zero of £ and is
on the curve, a is a zero of the polynomial

fx)=[m(z—a)+b?—-2*—-Az—-B . (5)

It is trivial to see that a and ¢ are zeros of f, but what is the third zero of
f? Let e be this third zero. Writing f(z) = (x — a)(z — ¢)(z — €), we see that
the coefficient of 2 in f is a + ¢+ e. Using Equation (5), we see that m? is the

coefficient of 22, so a +c+e = m? or e = —a — ¢+ m?. To get the y coordinate
of R, we just plug this back into the equation of the line; the y coordinate of R
is m(e —a) + b.

If P = (@, then we use the line tangent to P, i.e., the line with a double zero
at P. We have seen that this line has the usual equation with m = (3a®+ A)/2b.

Summing up, to add two distinct nonzero points that are not negatives, draw
the line through them and then “flip” the third point of intersection about the
x axis (i.e., send (a,b) into (a, —b)) to get their sum. If the points to be added
are the same, use the line tangent to get the point to be flipped.

Now we give the formal definitions. As usual, we let E be a nonsingular
elliptic curve over an algebraically closed field K given by the equation Y2 =
X3+ AX + B. We now define the structure of an Abelian group on E.
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Definition 6.1 We let the identity O be the zero of the group (which explains
its notation). So for any point P € E,

P+O=0+P=P .
For P = (k,l) € E, we define —P to be (k,—1) € E, so
P+(-P)=(-P)+P=0 .

Now suppose P, and P, are not O, and P, # —P>. Let P, = (ki,l1) and
PQ = (kg,lg). If kl 75 kg (SO P1 75 PQ), define

-1
A ek

while if k1 = k2 (so Py = P, since we have assumed P; # —P,), define

3k’ 4+ A
2

A
Define P, + P, = (ks,l3) by
ks = —ky — ko + A2

and

I3 =—l; — (ks — k1) .

We will call the addition formula in the case Py # Py, —P5,0 (i.e., A =
(I3 = 1)/ (k2 — k1)) the generic addition formula since it is the one to use for
practically all pairs of points.

Remarks.

(i) In some real sense, the generic formula works all of the time. We can, for
example, use it in the case P; = P, not a point of order two, if we believe
the following computation:

-l btk

Tka—k b+l

ke® = ]+ Alks — k) 6
(ke — k1)(lo + 1)

_k22 +kiko + ko? + A

n 1+ 1 ’

and if ky = ky = kand I, = Iy = [ # 0, this becomes 2EL+4 Geo-
metrically, what this means is that the slope of the line through P; and

P, (namely ,ﬁijcll) becomes the slope of the line tangent to P; (namely
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3(k)22l+A) as Py goes to P». There are a number of other cases (e.g., P = O,

or P, = —P,), and it is not too difficult to work them all out. But what
do they mean?

We are really showing here the important fact that addition is a rational
function. But a rational function on what? Unfortunately, addition is
defined on F x E, which is not an elliptic curve but a product of elliptic
curves. It would be very convenient for us to know that addition is ratio-
nal, but that would involve a more general definition of rational function
on a more general algebraic geometric object. All this would lead us too
far afield, so we have decided on a different approach.

It might appear that addition is rational simply because it is given by
rational formulas. The difficulty is that it is given by different rational
formulas for different cases. If it is to be obvious that a function is rational,
it must be given by the same rational expression at every point it is defined
or at least by expressions that are “rationally related”, i.e., if r = f/g, r
may also equal h/k if fk = gh.

(ii) One might prefer to use the last expression in Equation (6) to define A
in the case P = P,. This would have the advantage of working not only
when P, = P», but whenever l; # —I,. It might almost appear that this
expression for A would work whenever P; # O or —P,. However, there
are two other points on E besides —P, whose y coordinate is —I3, so we
would still have the same number of special cases.

(iii) Notice that the three points of order two, (w1, 0), (w2,0) and (w3, 0), satisfy
2- P = O, and these are the only points (except for O) which do so. This
follows since the definition of —P tells us that any point with P = —P
must have second coordinate 0, and the three points of order two are the
only points that do.

(iv) If P and @ are any points not both O, then we can find a line £ whose
divisor is
(P) +(Q) +(R) = 3(0) ,
and then R is —P — Q. This is true even if Q = +P or O.

(v) Recall the elliptic curve E(K(E)) of rational maps of E. Since the field
K (E) may not be algebraically closed, it is not immediately clear that the
sum of two rational maps is again a rational map; it may be something
whose coordinates lie in the algebraic closure of K(FE). However, an ex-
amination of the algebraic formulas defining addition quickly shows that
this is not the case, i.e., the sum of two rational maps is again a rational
map.

Now we state the basic theorem about addition.
Theorem 6.2 The elliptic curve with the addition defined above forms an Abelian

group.
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All of the group axioms are trivial to check except associativity, which will
follow from the next proposition. Recall the bijection

o:Pic®(E) - E

defined in the previous section. Let k = 0=, so k(P) is the linear equivalence
class of the divisor (P) — (O). Clearly x(0) is the zero linear equivalence class.

Proposition 6.3 (P + Q) = «(P) + x(Q).

Proof. The result is trivial if P = @ = O, so we suppose that P and @ are not
both O. Let £ be the line through P and Q. As we remarked above (iv), we can
write the divisor of £ as

div(€) = (P) +(Q) + (R) — 3(0) .
Let ¢ be the line through R and —R, so
div(¢') = (R) + (—R) — 2(0) .

We have seen that R=—P —Q so —R= P + @ and

div(€'/0) = (P + Q) — (P) —(Q) + (0) ~ 0
since ¢'/{ is a rational function. Rewriting this slightly yields

(P +Q)—(0) - ((P) = (0)) - (@) — (0)) ~0 ,

which translates to k(P + Q) — k(P) — k(Q) = 0 as desired. |
Corollary 6.4 Addition on an elliptic curve is associative.

This follows because the addition in Pic?(E) is certainly associative.

We have proved that « is a homomorphism, so clearly o is a homomorphism.
Since & is the composition of o and projection from Div® to Pic® = Div® /Prin,
it too is a homomorphism. There is a simpler way of looking at &.

Definition 6.5 Define a map sum from Div(E) to E by

sum (Z n(P)(P)) =Y nP)P .

Exercise 6.6 Show that & is merely sum restricted to Div®.
We can use all this to prove an extremely useful result.

Proposition 6.7 Let A =), n(P){P) be a divisor. Then A is principal if
and only if deg(A) =3 pcpn(P) =0 and sum(A) = > p . pn(P)P = 0.

Proof. We have already proved the part about the degree, so we can assume
that deg(A) = 0. Recall that 6(A) = P where P is the unique point with
A ~ (P) —{0). Hence A ~ 0 < 7(A) = O & sum(A) = O, which is what we
wanted to prove. [ |
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7 Multiplication by n

What we really are interested in is the function [n] : P — n - P, the point P
added to itself n times. More precisely, we are interested in the two functions
gn(P) = z(n - P) and h,(P) = y(n - P), i.e., n- P = (gn(P), hn(P)).

The next theorem is our version of the fact that addition is rational. Recall
that the rational maps on E form an elliptic curve themselves. When we write
the sum of two rational maps, we mean the sum on this elliptic curve. Suppose
we make the convention that the constant map O whose value is O everywhere
is a rational map. Then the following theorem says that the pointwise sum of
rational maps is a rational map.

Theorem 7.1 Let F and G be rational maps on E. If K = F+G, then K(P) =
F(P) + G(P).

Proof. The point of the theorem is that even if F is not G, —G, or Oy, F(P)
may equal G(P),—G(P), or O, so there are some things to be checked.

If any of F,G, or F + G is Oy, the result is trivial, so we will exclude these
trivial cases.

Suppose F = (r,s) and G = (t,v). There are two main cases, namely r # t,
and r =t. Let K = (w, 2) so

w=—(t+7r)+ A\ (7)
and
z=—v—Nw-—1) , (8)

where in the first case, we put

while in the second case, we put

_3r2+A

A 2s

(10)

(I) Let us assume that we are in the first case so A is given by Equation (9).
(A) If r(P) and t(P) are finite and not equal, then K (P) = F(P)+ G(P)
is simply the generic addition formula.
(B) If 7(P) and t(P) are finite and equal, then we must have s(P) =
—v(P), or s(P) = v(P).
(1) If s(P) = —v(P) # O, then we have F(P) = —G(P). We see
that A will have a pole at P, which is again just what we want
since F'(P) + G(P) = F(P) + (-F(P)) = 0.
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(2)

If r(P) and t(P) are finite and s(P) = v(P), the formulas for
F(P) 4+ G(P) and K(P) only differ in the definition of A. Since
v # —s, we get

v—8 v+s

t—r v+ts
B+ At —)
t—=7r)(v+s)
t2+rt+r2+ A
- s+
In the case r(P) = t(P) and s(P) = v(P) # 0, this becomes
3r(P)2+ A
A(P) = Tos(P)

as required by Equation (10).

If s(P) = v(P) = 0, then we are at a point F(P) of order two.
We see from the above expression that A has a pole for this P
and hence the components of K (P) must also have poles since
everything else besides A in the addition formula is finite. For-
tunately this is just what we want because if F(P) = G(P) has
order two, then F'(P) + G(P) = O.

Next we do the case where exactly one of F(P) or G(P), say
F(P),is O. In this case, r and s have poles at P so we can write
r =r1/u? and s = s1 /u® where u is a uniformizing variable at P,
d and e are positive integers, and r; and s; are rational functions
that are finite and nonzero at P. Then since s = r® + Ar + B,
we must have 2e = 3d and s,2(P) = r13(P). The last statement

follows from ) A2 5
s € Bu’¢
o1y Atk Bu
T1 T1

Using Equations (7), (8), and (9), we compute w.

w=—(t+71)+ (S_v)2

r—t

—(r® —t2r —tr? +3) + (s> — 2us + v?)
(r —t)2
-3 +2r +tr2 — 2 + (r® + Ar + B) — 2vs + 0
(r—1t)?

tr2 + (2 + A)r + (v? — 2 + B — 2vs)

r2 — 2tr + 2
tri2u™2? 4+ (2 + A)rju? 4+ (02 — 2 + B — 2us,u™°)

ri2u—2d — 3tryu—d + 2
tri2 + ubRy — 2uud—esy
7‘12 + udR2
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where Ry and R» are rational functions that are finite at P. Since
2e = 3d, 2d — e > 0, we see that w(P) = t(P). This is what we
want since F'(P) + G(P) = G(P) when F(P) = O.

Now we could compute the y coordinate in a similar fashion, but
we can avoid that by using the associative law on the elliptic
curve of rational maps. Since F' + G = K, we have G — K = F.
Now the previous computation of the z coordinate shows that
K(P) # O, so we know that (G — K)(P) = G(P) — K(P) =
F(P) = O, which shows that G(P) = K(P) as desired.

(4) The next case to consider is when F' and G both have poles
at P. Again we can use associativity of addition on the elliptic
curve of rational maps to save a lot of work. Since K = F + G,
(F + G) — K = Oy, and by associativity F + (G — K) = Oyy.
Suppose K(P) = Q. Then since G(P) = O, we can conclude
that G(P) — K(P) = —@Q by the previous case. Similarly we get
that F(P) + (G — K)(P) = —@Q, which tells us that Q@ = O as
desired.

(IT) Now we suppose r = t. If s = —v, then F = —G, so K = Oy, the map
whose constant value is O. But clearly F(P) = —G(P), so F(P)+G(P) =
O for any point P € E. Hence we can assume that s # —v in this case.
Of course, s(P) may be —v(P) for any particular point P. Since s # v,
F # —@, so we can assume that F' =G.
If r(P) is finite, then K(P) = F(P) + G(P) because they are identically
defined. Otherwise, we observe that the duplication formula yields

_ —drs+ 324+ A

B 2s ’
which shows w has a pole at P if r and s do. As above, z must then also
have a pole at P.

We now make an important definition.

Definition 7.2
Enl={P€eE:n-P=0} .

Notice that O € E[n] for all n, and, in fact, E[n] is a subgroup of E. The points
of E[n] are called the n-torsion points of E.
Recall that g, and hy, are defined by n - P = (gn(P), hn(P)).

Theorem 7.3 g, and h, are rational functions on E with poles precisely at the
points of E[n], and E[n] has a finite number of points for all n.

Proof. The proof is by induction on n. The functions g (z,y) = = and hy (z,y) =
y are clearly rational, which gets the induction started. We now assume that
gn and h,, are rational for n < g and that E[n] is finite for n < g.
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The idea of the inductive step is to write
g-P=(@-1)-P+P . (11)

By induction we can assume that g,_1 and h,_1, the components of (¢ —1) - P,
are rational functions of P. Our result will then follow from the previous theorem
if we knew that P — ¢ - P is not the rational map Oy, i.e., if we knew that
(g—1)- P # —P for some P. But (g —1)- P = —P for all P means E[g] = E.
Suppose E[¢] = E and k > 1 divides ¢, and say gq/k = £. Then E[k] is a
subgroup of E[g], and if P € E[q], £- P € E[k]. Since both k and ¢ are less than
g, both E[k] and E[{] are finite. It is easy to see that if E[{] is finite, then there
are only finitely many points ) with £-Q = R for a fixed R. Therefore if q has
a nontrivial divisor, E[q] is finite, so we may as well assume that ¢ is prime.
Observe that E[2] is finite since there are only four points P with 2- P = O,
namely O and the three points of order two. Also E[q] = E implies E[2] C E[q],
which implies that g is even. Since q is prime, this says ¢ = 2, which contradicts
the fact that E[q] is infinite. Hence E[q] # E and g, is rational and not O, so
Elq] is actually finite since it is the set of poles of a rational function not equal
to Opr. [ |

Corollary 7.4 The rational function g, —x is not identically zero for anyn > 1.

Proof. If g, —x = 0, then we would have n-P = +P or, equivalently, (n+1)-P =
O for all P € E. Hence either E[n — 1] or E[n + 1] would have to be infinite,
contradicting the theorem. ]

For the record, we write go and ho here. Recalling that s(z) = 2° + Az + B,
we have

z* — 2Az% — 8Bz + A2
4s(x) ’

92(P)=x(2-P) = (12)
and

x% — 5Az* 4+ 20Bz® — 5A%x? — 4ABz — 8B? — A3
' 8s(z)? '
These formulas follow easily from the duplication formula.

In the next section, we will define a derivation of rational functions on FE.
Before we discovered this derivation, we used the following exercise to reduce
to derivatives of functions of one variable. In the present treatment this fact is
used very sparingly.

ha(P) =y(2-P) =y

(13)

Exercise 7.5 Show that there are functions §,, and hn, of one variable such that
9n(P) = Gn(xz(P)) and h,(P) = y(P)h,(z(P)) (Hint: Consider the mapping
F(P) = n- P. Show that F(—P) = —F(P) and that the components of any map
with this property must satisfy the exercise. Alternatively, do the exercise by

induction.

We need to know some nonhomogeneous information about g¢,, and h,, i.e.,
we would like to know their values at some point. Since the only point we can
really get our hands on is O, we examine the pole of g, and h,, at O. Let p be
the characteristic of K.
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Proposition 7.6 If n is prime to p, then

In oy = L

x ©) = n?
and

hn, 1

PR

Proof. Yet again, the proof is by induction on n. First assume that n < p. Our
result clearly is true for n = 2 by Equations (12) and (13). Using the equation
n-P=(n-1)-P+ P, we get

gn _ =gn-1 g, 1 [hn_l—yr

T T T | gn1—Z
B — 2

:M_Hrf !

T z3 —g"w‘l—l

SO

In(0) = —(n—1)2 1+ [Mr

(n—-1)"2-1

— —1)3 ?
-+ Mm-1)"%)+ ((ni 1)(ﬁ (n11 1)3> ]

=n"2 .
We will leave the result about h,, as an exercise for the reader.

It appears that we are stuck when the induction gets to p. Examining the
previous computation, we see that

If n—1 = p—1, this is extremely unpleasant because it is in the denominator.
It turns out, however, that there is an easy way around this problem that
“bridges the gap” at the characteristic, but unfortunately gives no information
about what happens at the characteristic.

The idea is to use the equation n- P = (n —2) - P 4+ 2 - P to go directly
from p — 1 to p+ 1. The two relevant computations are similar to those above
although they are longer. ]

Corollary 7.7 If n is prime to p, the leading coefficient of g, is 1/n? and the
leading coefficient of h,, is 1/n>.
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Proof. The proposition shows that the order of g, at O is two, so to compute
the leading coefficient we must look at (z/y)2g,. But

2 2
A T
(y) 3+ Az + B’

which has the same leading coefficient and order at O as 1/x. Hence the first
part of the corollary follows directly from the proposition. We leave the result
about h, as an exercise. [ |

Remark. This is a result that really depends on the characteristic. If n and
p are not coprime, then the leading terms are quite different.

8 The Divisor of g, — g

We want to compute the divisor of g, — g, and relate it to the points of E[k] for
appropriate k. In order to compute the multiplicities of the zeros and poles of
Jm — 9n, we must study the notion of derivative. It is possible to work with the
functions §,, and h,, of one variable, so differentiation is just what we expect.
It turns out that this is not the natural derivative on an elliptic curve, and the
computations are unnecessarily complicated because of this. We want to define
the derivative of an arbitrary rational function on E, but we must take care
that the derivative of the polynomial y? — 2° — Az — B is zero. If we formally
take a derivative, we get

2yDy = (32° + A)Dz
which leads us to make the following definition:

Definition 8.1 Define a derivation D on the field of rational functions K(E) =
K (z,y) by setting

Dz =2y
and
Dy =32+ A .

Extend D to arbitrary rational functions so that the usual rules of differentiation
hold.

The following exercises should help to familiarize you with this notion:

Exercise 8.2 (i) Show D is well-defined.

(ii) Suppose f is a nonzero polynomial and f # g? for any polynomial g. Show
that the degree of Df (as a function of x and y) is one larger than the
degree of f.
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(iii) Let r be a rational function. Show that if r is finite at P € E, then so is
Dr. (Hint: You should handle the case P = O separately.)
The basic fact we need to know about this derivative is the following:

Proposition 8.3 Let r be a rational function. If ordy(r) = d # 0 is prime to
p, then ord,(Dr) =d — 1.

Proof. Suppose u is a uniformizing variable at P, and 7 = u?r; where r{(P) is
finite and nonzero. Then

Dr=du®'Du-r +u'Drq

If we can show that Du is finite and nonzero at P, then we will have written
Dr = 4% 1ry where 7, is finite and nonzero at P, since the above exercise tells
us that Dr; must be finite at P.

There are the usual three cases. If P is not O or of order two, then we can
take u(z,y) = © — z(P), so Du = 2y, which is finite and nonzero in this case.
If P is a point of order two, we take u = y, and Du = 322 + A. Since E is
nonsingular, we know that the derivative of f(z) = 2® + Az + B is nonzero at
a zero of f. But f'(z) = 322 + A and if P has order two, z(P) = w, a zero of f.
Hence Du is finite and nonzero at P in this case too.

If P =0, we take u = z/y, and

2y® — 32 — Ar —y® +2Az + 3B

Du=Dafy) = F—"3 = = = ,

which is minus one at O. |
Remark. It follows from Proposition 8.3 that if a rational function u satisfies
u(P) = 0 and Du(P) # 0, then w is a uniformizing variable at P.
We need the following proposition to compute the multiplicity of the zeros
of gm — gn and hy, — hy,.

Proposition 8.4 We have Dg,, = 2nh,, and Dh,, = n(3g2 + A).

Proof. Again the proof is by induction on n. The case n = 1 is the definition
of D. The case n = 2 follows upon differentiating Equation (12) and comparing
it with n times Equation (13). For the inductive step, we have the following
equations:

h -y 2

gn=—0gn-1— T+ (L) ) (14)
gn—1—7T
hpn—1— y)
hp=—y— | —= n—2I) , 15
v-(2220) gn-2) (13
(hn—1)2 :(gn—1)3 + Agn—l +B 3 (16)
and

Dhyq =(n—1)(3gn_12+ A) . (17)
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Equations (14) and (15) come from the generic addition formula applied to the
equation n- P = (n — 1) - P+ P. Equation (16) simply expresses the fact that
(n—1)-P = (gn-1,hn—1) is on the curve E, and Equation (17) is the inductive
hypothesis.

Now we assume that Dg,—1 = 2(n — 1)h,—1 and differentiate (14) to get

Dgn = — Dgn—1 — 2y
42 (hn—l - y) [(gn—l —)(Dhp—1 — Dy) — (hn—1 — y)(Dgn—1 — 2y)
gn—1—1T (gn—1 — x)?
Then we use (17) to write the result in terms of powers of g,—; and h,—;. Next
we use (16) to eliminate the powers of h,_; greater than one obtaining

1
Don = (9n—1 —2)? .
{=2y + 2[(gn-1 — 2)(-32° + (n — 1) (3gn—1° + 4) — 4)
= (hn-1 —9)(2(n — 1)hn1 — 2y)]}
—2(n—1)hp_1

If we compare the result with nh,, using (15), we will see we get the same thing. B

This proposition is somewhat striking; it is not a result that was at all
obvious from the equation of the curve or the addition formulas. Before we get
to the theorem about the divisor of g,, — g,, we need a lemma about translations.
This lemma will enable us to use information about the order of g,, at one point
in E[n] to get information about the order of g, at all points of E[n]. A similar
situation will arise in Section 13.

Lemma 8.5 Let P, € E, and suppose u is a uniformizing variable at P. Then
the function Tg(u) defined by

[To(w)(R) =u(R+Q)
is a uniformizing variable at P — Q.

Proof. The point here is that Tg is an automorphism of the field K(E) so we
can use T(_g) to go back. Suppose Tg(u) is not a uniformizing variable at
P — Q. Since it clearly has a zero at Pg, it must have order m > 0. This means
that T takes a function of order d at P into a function of order md at P — Q.
But this implies that T(_¢) takes a function of order d at Pg into a function of
order d/m at P, which is absurd. |

It now follows that if a rational function r has divisor ) n(P){P), then the
function T(r) has divisor Y n(P)(P — Q).

Recall that

En)={P€E:n-P=0} .

We write (E[n]) to denote the divisor whose nonzero entries are the points
of E[n], each with coefficient one.

At this point we begin to get into difficulty if the characteristic is 3. Hence
from this point on we assume that the CHARACTERISTIC OF K IS NOT 3.
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Theorem 8.6 Suppose m > n > 0 and that m,n,m — n, and m + n are all
prime to p. Then

div(gm — gn) = (Elm + nl) + (Blm — nl) — 2Bfm]) - 2AER)) . (18)

Proof. There are, as usual, various cases. First consider the points in both E[n]
and E[m]. By definition they are also in E[m+ n] and E[m —n]. Hence we must
show that g,, — g, has order 1 +1 — 2 — 2 = —2 there. One of these points is
O. Proposition 7.6 tells us that both g,, and g, have poles of multiplicity two
there. Further Corollary 7.7 tells us that these poles cannot cancel out since gy,
and g,, have different leading coefficients at O, namely 1/m? and 1/n?, and it
is easy to see that our hypothesis implies that m? # n? (mod p). Hence g,, — gn
has a pole of order two at O.

Notice that if P € E[n], then Tp(g,) = gn since n - (Q + P) = n - Q. Hence
by Lemma 8.5, the order of g, is the same at all points of E[n]. Thus we see
that g, — gn has order —2 at every point of E[m] N E[n] as desired.

Second we consider the points that are in E[m] but not in E[n]. These points
are not in either E[m + n] or E[m — n]. We must therefore show that g, — g»
has order —2 here also. Now g,, has order greater than zero here, and we have
seen in the previous case that g,, has order —2 here so this case follows easily.

The third case is the difficult one. Here we consider the points that are
neither in E[m] nor E[n]. There are three subcases, P in E[m — n] but not in
E[m + n], P in E[m + n] but not in E[m — n], and P in both E[m + n] and
E[m — n]. In each of these subcases it is easy to see that g,, — g, has a zero at
P; the problem is to determine the multiplicities. We will use the derivative for
this. By Proposition 8.4, D(g,;, — gn) = 2mhy, — 2nh,.

If P in E[m — n] but not in E[m + n], we have m - P =n-P # —n - P, and
since P ¢ E[m]U E[n], m- P # O and n- P # O. In this case hy,(P) = h,(P),
50 D(gm — gn)(P) = 2(m — n)hp (P). Now m — n is prime to p, and hp,(P) #0
because m - P # —m - P so m - P cannot be a point of order two. Hence g, — gn
has a simple zero here, which is what we want. The case P in E[m +n] but not
in E[m — n] is symmetric and also works out as desired.

On the other hand, in the third subcase, we have both m - P = —n - P and
m-P=mn-P (and m-P # O and n-P # ), and the situation is quite different.
This case is equivalent to assuming that 2m - P = 2n - P = 0. We see that
D(gm — gn)(P) = 0 here, so the multiplicity is at least two. We must look at
DD(gm — gn)- Proposition 8.4 tells us that

Dhy, =n(3g,> + A) .

Since 2n - P = O,we see that n - P is a point of order two. Therefore g, (P) = w
and h,(P) = 0. Hence

DD(gm — gn)(P) = (m2 _n2)(3w2 +A4) ,

which is nonzero since m — n and m + n are prime to p, and E is nonsingular.
Thus g,, — g, has a double zero here as desired. [ ]
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Corollary 8.7 If n is prime to p, then E[n] has n® points.

Proof. Let dy, be the number of points in E[n]. By taking degrees in Equa-
tion (18), we get dmin + dm—n — 2d;m — 2d, = 0. We know that d; = 1 and
dy = 4. Tt is then easy to see that d, = n? satisfies this recursion.

To see that this solution is unique, it suffices to take di = 0 and d» = 0,
and show that if d,, satisfies the recursion, d,, must also be 0 for all n prime to
p. Let k be prime to p. If we take m = k — 1 and n = 1 in the recursion, we
get dy = 2dy_1 — dj_o, which says that d = 0 for k — 2 and k — 1 prime to p.
Now take n = 2 and m = k — 2. We get dj, = 2d},_o — dy_4, which tells us that
dr = 0if k — 4 and k — 2 are prime to p. Finally take n = 3 and m = k — 3 to
get dp = 0 if k — 3 and k — 6 are prime to p.

Suppose k — 1 is not prime to p. Then k& — 2 must be prime to p, and if k —4
were not prime to p, then we would have p = 3, which we have excluded.

Suppose k — 2 is not prime to p. Then k£ — 3 must be prime to p, and if
k — 6 were not prime to p, then 4 would have to be a multiple of p, which is also
excluded.

Hence as long as k is prime to p, we can find a case, which tells us that
dr, = 0. | |

Exercise 8.8 Suppose n is prime to p. Show that E[n] is isomorphic to Z /nZ x
Z/nZ. (Hint: Use the fundamental theorem of Abelian groups).

Remark. It is a fact (see the last remark of this part) that E[p] is either {O}
or Z/pZ. This shows that multiplication by the characteristic is quite different
than multiplication by an integer prime to the characteristic.

9 The Division Polynomials

We would like to define a polynomial ¥, that has divisor (E[n]). By Proposi-
tion 6.7, we can do this provided the sum of the points in E[n] is O and the
degree of (E[n]) is 0. If P € E[n] then —P € E[n], and if P is not a point of
order two, P and —P are distinct. Also if P is a point of order two, then all
of the points of order two are in E[n], and they all sum to zero. Hence the
sum of the points in E[n] is O, but deg({E[n])) = n?. Therefore if we let A
be the divisor (E[n]) — n?(0), the sum of the points in A will still be zero,
and deg(A) will be 0 at least if n is prime to p. We will want to be able to
compute the ,’s inductively so we will need to define them even if n is not
prime to p. The way we are going to do this is to define them at first only in
characteristic 0, prove what we want, then give a different definition for positive
characteristic, and finally show that the results in characteristic zero imply the
results in characteristic p > 0. Therefore until we say otherwise we assume that
the CHARACTERISTIC OF K IS ZERO.

We now know that we can get a polynomial with the correct divisor, but it
will not be unique. By Exercise 5.4, if we specify the leading coefficient we can
select a unique one.
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Definition 9.1 Let ¢, be the unique polynomial whose divisor is A = (E[n]) —
n%(0O) and whose leading coefficient is n.

Remark. Since the coefficient of O in the divisor A is 1 — n2, we see that
the degree of 1, is n? — 1.

Exercise 9.2 (i) Show that

2Py =n" [  [2(P)—2(P")]

P'€E[n]-0O
(Hint: Look at divisors and leading coefficients.)

(ii) Suppose m is odd. Show that 1, is a function of z alone and that its
degree as a function of z is (n? — 1)/2.

(iii) Suppose n is even. Show that ¢, is y times a function of z alone, and
that the degree of this function of z is (n? — 4)/2.
The goal of the rest of this section is to show that g,, and h,, can be computed
in terms of the v,’s and that the ,,’s satisfy a recursion that allows them to
be computed.

Theorem 9.3 Suppose m >n > 0. Then

_ wm-i-n"pm—n

Im = = Ty 2,2 (19)

Proof. By Theorem 8.6,
div(gm — gn) = (E[m + n]) + (Elm —n]) — 2(E[m]) — 2(E[n]) .

By definition,

div (%) = (E[m + n]) + (E[m — n]) — 2(E[m]) — 2(E[n]) .
The above two equations show that the two sides of Equation (19) have the
same divisor.
Now g,, has leading coefficient 1/n?, while v,, has leading coefficient n. A
brief computation shows that the two sides of Equation (19) have the same
leading coefficient, which proves the theorem. [ |

Corollary 9.4 For any P€ E

_ ¢n+1(P)¢n—1(P)
Yn(P)?

Since g; = x, the proof is trivial. The next theorem gives us the basic
properties of the division polynomials.

gn(P) = z(n - P) = z(P)

(20)
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Theorem 9.5 The polynomials v, satisfy the following:
(0) %o =0,
(i)
(i) ¢2(P) = 2y,

(iii) ¢3(P) = 3z* + 6Az® + 12Bz — A?,
) ¥
)

(iv) 14(P) = 4y(2® + 5Az* + 20Bz® — 5A%z* — 4ABz — 8B% — A®%),

(v) form >n >0,

¢n2¢m+1wm—1 - ¢m2¢n+1¢n—1 = Ymtn¥m-n - (21)

Proof. (o) and (i) follow by definition. For (ii), note that E[2] consists of O

and the three points of order two. Also div(y) = (w1) + (wa2) + (w3) — 3(0) =

(E[2]) — 4(O). Since the leading coefficient of 2y is manifestly 2, this proves (ii).
To do (iii), observe that by Corollary 9.4

ZU(Q'P)::U(P)—%

We know z(2 - P) (it is just go(z), which is given by Equation (12)), and we
also know the other ’s, so we can solve for 3.

We can do a similar computation for 14, but there is a better way which
avoids computing gs. Observe that a 4-torsion point P is either of order two or
four. If P is of order two, then y(P) = 0. If P is of order four, then 2 - P is of
order two, so ho(P) = 0. A glance at Equation (13) yields 4.

We have already done the hard part of (v) in Theorem 9.5. We write g, —
gn = (9m — 91) — (gn — g1), and using Equation (19) we get

_"pm-i-nwm—n R ¢m+1¢m—1 —z+ ¢n+1¢n—1

2002 T onz

which proves the desired result. ]

Corollary 9.6 (i) For k > 2,
_ lbk 2 2
Yop = @(¢k+2¢k—1 — Yr—2¥k1”)

(i) For k > 2,
Pokt1 = Yrrah® — Yrgr *Pra
Proof. For (i), take m = k+ 1 and n = k — 1 in Equation (21). For (ii), take

m=k+1andn =k. [ |
We are left with one loose end to tie up, which we do in the next proposition.
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Proposition 9.7 If P € E andn > 2, then

ha(P) = y(n - P) = Yny2(P )¢n1(§;¢;($;32(P)¢n+1(P) L@

Proof. The proof is again by induction. The beginning of the induction is easy.
For the inductive step, we use

hn = -y — (M) (gn — ) -

gn-1—7T

We know h,,_; in terms of the v’s by induction, and we know g,, and g,,_1 in
terms of the ¢’s by Corollary 9.4. After plugging these results in the above
equation, simplifying and subtracting what we get from what we want, we will
be left with showing

—UnoWn 12 Vnte + Vn 3 Vni1 + Vo2n 130ng1 — 22 20,2 =0 .

This will follow by applying Equation (21) separately to the last two terms. W

We would now like to extend the results of this section to positive character-
istic. Our argument is somewhat similar to the one that appears in [3] around
page 39. The main idea is to note that the results we want are really poly-
nomial identities in the ring Z[A, B, z,y], and hence still hold upon reduction
mod p. It takes a bit of work to get this all together. From now on we let the
CHARACTERISTIC OF K BE ARBITRARY.

We use Theorem 9.5 now to define 1)y,.

Definition 9.8 The polynomials v,, are the unique polynomials that satisfy
the following conditions:

(0) o =0,

i) ¢ =1,

(i) ¥2(P) = 2y,
(iii) ¢¥3(P) = 3z* + 642> + 12Bx — A2,
(iv) ¥4(P) = 4y(a® + 5Az* + 20Ba® — 54222 — 4ABx — 8B? — A%),
(v) for k > 2,

Yo = ;p—;(@bkm(lbk—l)z — Yk 2(Prt1)?)
and for k > 2,

Yokt = Y2 (Pr)® — (Prr1)*r-1 (23)

Note that because of Theorem 9.3 and Corollary 9.6, this definition agrees
with the one we have already in characteristic zero.
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Now consider the field of rational functions in two indeterminates A and B
over the field of rational numbers. Let E be the elliptic curve over this field
with the defining polynomial

Y?’=X*+AX+B . (24)

In this case we can identify the rational functions on E with the quotient
field of the ring Z[A, B, X,Y] subject to the relation (24). We can easily see
that in this case the polynomials 1 are actually in the ring Z[A, B, X,Y]
/(F(X,Y)) where F(X,Y) = Y2 — X3 — AX — B. Now consider a polyno-
mial identity such as (21), which is an identity in the 9}’s involving only integer
coefficients. We have proved this so far only for fields of characteristic zero.
However we may now deduce that this identity will hold for the ’s in an
arbitrary elliptic curve as follows.

The ring Z[A, B, X,Y] has the property that there is a unique ring homo-
morphism from it to an arbitrary ring R where A, B, X, Y are mapped to any
elements of R. If we map these indeterminates to A, B,  and y in the func-
tion field of an arbitrary elliptic curve over any field, then the homomorphism
induces a mapping from Z[A, B, X,Y]/(F(X,Y)) into the function field of the
curve. This mapping will obviously map the v¥’s to the ’s. It then follows
that any identity that holds in characteristic zero and therefore in particular in
Z[A,B, X,Y]/(F(X,Y)) will also hold in any elliptic curve over any field.

We are now going to prove Corollary 9.4 and Proposition 9.7, i.e., the ex-
pressions for g, and h,, in terms of the ¥,,’s, in characteristic p.

Theorem 9.9 (i) v, is not identically zero for all n > 0.

(i1) gn satisfies

. wn-i-l ¢n—1

T 2

gn =2

(%) hy, satisfies

— ¢n+2¢%—1 - ¢n—2¢n+12
4ypn®

Proof. It is easily seen that 1), is not identically zero for n < 4. Now assume

(25), (26) for n < m, and that 1, is not identically zero all for n < m + 1.

Now assume we are in characteristic zero for a moment. If we take the
expression for g,, given by (25), and note that

_ hm—1—y 2
9m = —9m-1—T+ | —— )
9m-1—T

hn

(26)
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then we can use Equations (25) and (26) for n = m—1, (which we know are true
in characteristic zero) to eliminate g, 1 and h,,_1. We thus get an identity in
the v’s alone.

Similarly starting with (23) and using

= =0 (22220 (g - 0)

9m-1—1F

we get another identity in the 1)’s alone.

What these identities are is not important; what is important is that they
are polynomial identities in Z[A, B, X,Y]/(F(X,Y)). Hence the preceding ar-
gument shows they hold in characteristic p. We would now like to convert these
polynomial identities in characteristic p back into Equations (25) and (26). To
do this we must divide by %, _2,%m_1, and ¥,,. Fortunately these are the ¢’s
that we have assumed are not identically zero in the inductive hypothesis. Hence
(25) and (26) for n = m hold in characteristic p.

Now we know that

Ym1¥m—1
gm — T = 7’"%2’” (27)
By Corollary 7.4, we know that g, — « is not identically zero. Hence we get
that ¥,41 # 0, which allows us to continue the induction. [ ]

Hence we have established Corollary 9.4 and Proposition 9.7 even in char-
acteristic p.

About the only thing left to prove about the 1,’s is that their divisor is
(E[n]) — n?(0), which only holds for n prime to p. We have proved.

gn — T = —7¢"+1¢2"71 . (28)
Yn
Since we know that g, — x only has poles on E[n], we see that 1),, has zeros on
E[n]. Now we have to show that these zeros are simple and that there are no
others. If n is prime to p, then we know that deg(+,) = n? — 1 because it is
n? — 1 in characteristic zero, and if n is prime to p, the leading coefficient, n,
does not reduce to zero. Since ¥, has a pole at O and zeros on E[n], it cannot
have any other zeros because E[n] has n? points (counting ). Since the poles
of g, — z on E[n] have multiplicity two, Equation (25) shows that the zeros of
b, must be simple. This proves div(¢y,) = (E[n]) — n?(0O) provided n is prime
to p.
If n is not prime to p, we can still say something. Look at Equation (23) for
k=n:

¢2n+1 = ¢n+2¢n3 - "/}n+13¢n—1 . (29)

1, must be prime to 1,11 because otherwise the above equation would imply
that 1,41 has a triple zero. Since 2n + 1 must be prime to p, this is impossible
by the result of the previous paragraph. Similarly by looking at Equation (23)
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with K = n — 1, we see that v, must be prime to v, 1. Hence Equation (25)
implies that v, has all of its zeros on E[n] but we do not know they are simple.
Thus we have proved.

Proposition 9.10 Ifn is prime to p, div(i,) = (E[n]) —n*(O) even in positive
characteristics. FEven if n is not necessarily prime to p, ¥, has all of its zeros
on E[n].

Remark. Our final remark concerns E[p]. In characteristic zero the leading
coefficient of v, is n. Hence in characteristic p the degree of v, is less than
p? — 1. Since the elements of E[p] are all zeros of 9, this says that E[p] cannot
have p? elements. Since E[p] is a group all of whose elements are p-torsion, E[p]
must either be the trivial group or Z/pZ. It turns out that both cases occur.
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Part IT — Elliptic Curves over Finite Fields

10 Objective

We let p be a prime, n some integer, ¢ = p”, and k¥ = GF(g), the field with ¢
elements. Let K be the algebraic closure of k. In this part we are interested in
elliptic curves defined over k, so the points of our curve F lie in K x K and
satisfy the equation

Y?=X+AX+B (30)

for some fixed A, B € k. Recall that (a,b) € E is k-rational if a,b € k, and E(k)
is the set of k-rational points of E. We make the convention that O is k-rational
so E(k) itself has the structure of an elliptic curve itself. A natural question to
ask is, how many points lie on E(k)? Another way of asking the same question
is how many solutions does Equation (30) have in k. We will let £, denote the
number of k-rational points on E.

There is an heuristic argument that suggests that £, is approximately g +
1. Write k* = {g,¢%,...,97 1 = 1}, so (k*)? = {g%, g%, ...,97 ! = 1}, and
|(k*)?| = (¢ — 1)/2. We might, therefore, expect that for about half of the
elements a € k, a® + Aa + B will be a square. For each such a, there will are
two values, namely b and —b, with b2 = a3 + Aa+ B. Therefore we might expect
roughly 2 - g = ¢ finite solutions of (30), and, since O is k-rational, g + 1
solutions altogether. We should remark here that there is no general formula
known for E, and that the best known algorithm ([5]) is somewhat complicated.
The main theorem of this part will concern the difference between ¢+ 1 and E,.

An important tool in the study of this problem is a rational mapping ¢,
called the Frobenius mapping. We need a trivial result before defining ¢.

Exercise 10.1 If (a,b) € E, then (a?,b?) € E.

Definition 10.2 The Frobenius mapping ¢ : E — E is defined by ¢(a,b) =
(a, ).

Exercise 10.3 Show that (a,b) € E is k-rational if and only if ¢(a, b) = (a, b).
(Hint: Look at the zeros of 27 — z.)

We state here the Main Theorem to be proved in the course of this part. It
was conjectured by E. Artin and proved by H. Hasse. Generalizations of related
results are known as the Weil Conjectures.

Main Theorem (Hasse): Let E be an elliptic curve defined over k =
GF(q), andt =q+1— E,. Then

(i) pop—[t]op+[q] = On and
(ii) [t <2/3,
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where [m] is the rational mapping P +— m - P.

Although the Main Theorem concerns elliptic curves over finite fields, many
of the results leading to it are valid over any field. Only the results involving
the Frobenius mapping require k& to be finite. Therefore in the rest of this part,
unless we say otherwise, k will be an arbitrary field of characteristic # 2 or 3,
and K will be its algebraic closure.

11 The Ramification Index

This section is concerned with general rational mappings and contains results
that could well have been done in Part I.

Lemma 11.1 Suppose r is a nonconstant rational function on E. Then r takes
on all values (including O ).

Proof. Lemma 4.8 and Theorem 4.6 showed that » must have at least one zero
and one pole. The lemma, follows if we apply this result to the function r — a
for an arbitrary a € K. [ ]

Proposition 11.2 A nonconstant rational mapping F : E — E is onto.

Proof. Let F = (r,s) where r and s are rational functions. If r were constant,
then s would have only finitely many values, and hence by the lemma, s would
be constant. Then F' would be constant, which is a contradiction. Similarly we
can see that s is not constant.

It follows that both r and s have poles, but these must occur simultaneously
since (r(P), s(P)) is always on the curve. Thus F takes the value O. To see that
F takes the value P € E, apply this result to the function Q — F(Q) — P. &

Now we define the ramification index of a nonconstant rational mapping
F:E — E at a point. Let P € E and u be a uniformizing variable at F'(P). If
uw o F were identically zero, then u would be zero on F(FE). Since the previous
proposition shows F(E) = E, this would imply that u would be identically zero
itself, which cannot be. Thus u o F' is zero at P, but not identically zero on E.

Definition 11.3 The ramification index of F' at P is defined by
er(P) =ordp(uo F) ,

where v is a uniformizing variable at F'(P).
It is easily verified that ep(P) is independent of the choice of u. Note that
er(P) > 1. The principal property of the ramification index is the following:

Proposition 11.4 Suppose that r is a nonzero rational function on E and F
s a nonconstant rational mapping. Let P € E. Then

ordy(r o F') = [ordp(p)r] - [er(P)]
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Exercise 11.5 Prove this proposition. (Hint: Take uniformizing variables at
P and F(P) and write everything out.)

We now use the ramification index to investigate the effect of a rational
mapping on divisors.

Definition 11.6 Suppose that F is a nonconstant rational mapping. We define
F* : Div(E) — Div(E) to be the homomorphism with

F*(Q) = Y er(P)P) .

F(P)=Q
Proposition 11.7 F* is one-to-one.
Exercise 11.8 Prove this proposition.
The preceding definition is made so that the following is true:

Proposition 11.9 Suppose that F' is a nonconstant rational mapping and that
r 18 a nonzero rational function. Then

div(r o F) = F*(div(r))

Proof. Like most of the proofs in this part, this one is a straightforward com-
putation.

div(ro F) = Y ordy(r o F)(P)
P
= Z[ordp(p)T] - [er(P)|(P)
P
=Y orde(r)- Y er(P)(P)
Q

F(P)=Q

= Jordor] - F*((Q))
Q

= F*(div(r)) .

We also need

Lemma 11.10 Suppose that Fy and F> are nonconstant rational mappings.
Then Fy o F5 is nonconstant and for P € E,

er o, (P) = ep (F2(P)) - er, (P)

Proof. Since rational mappings are onto, it follows that F; o F5 is nonconstant.
Let u be a uniformizer at Fj (F>(P)). Then

er o, (P) =ord,(u o Fy o Fy)

= [ordp,(p)(u 0 F1)] ep, (P)
=ep, (F2(P)) - er(P) .
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The next proposition justifies the use of the upper star.

Proposition 11.11 Suppose that Fy and F> are monconstant rational map-
pings. Then
(FioFy)* = Fy o Ff

Proof. The proof is again a routine computation.

Fy o F{((R)) = Fé‘( > em (Q)(Q))

F1(Q)=R

= Y en@- > en(PNP)

Fi1(Q)=R F2(P)=Q

= Y en(BP) - en(P)NP)

FioFs(P)=R
= Z eror, (P)(P)
FioFs(P)=R
(Fio F3)*((R)) .

Il

12 Endomorphisms

We now study a special class of rational mappings that contains the Frobenius
mapping.

Definition 12.1 A rational mapping from E to E that is also a group homo-
morphism is called an endomorphism. These mappings form a group, which we
denote by End(E).

Remark. We could also study rational mappings between different elliptic
curves and, in particular, those which are homomorphisms, but we do not need
them for proving the Main Theorem. Many of the ideas presented here can be
easily extended to homomorphisms between elliptic curves.

Example 12.2 (i) The mapping [m] defined by [m](P) = m- P is clearly an
endomorphism.

(ii) The Frobenius mapping is an endomorphism.
The following is a striking and important result:

Theorem 12.3 Suppose a : E — E is a nonzero endomorphism. Then the
ramification index e, (P) is independent of P.
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Proof. For P € E, let aT p be the translation sending @) to @ + P. Since « is
an endomorphism, aoa7 p = a7 o(p) © . Applying Lemma 11.10 to both sides
of this equation at the point O yields

ea(P) - ear,(0) = eaTa(p)(a(P)) ea(0) .

But it is easily seen from Lemma 8.5 that a translation has ramification index
one at every point. Hence e, (P) = ey (0). |

If o is an endomorphism, we denote by e, the constant value of e, (P) for
P € E. Now we show how to find e, in the cases of interest.

Lemma 12.4 Let m be any integer, r any rational function, and D the deriva-
tion of Section 8. Then

D(ro[m])=(m-Dr)o[m] .

Proof. This is obvious for m = 0. If » = z, then r o [m] = ¢, and the result
follows from Proposition 8.4. Similarly if r = y, we are done. One checks
immediately that the set of those rational functions for which the lemma holds
is closed under field operations (4, —, X, div). This proves the lemma for m > 0.
The case m = —1 is easily verified directly.

Now take m > 0. We get

D(f o [=m]) = D(f o fm] o [-1])
= —D(f o [ml) o [-1]
= (-m)Df o [-m] .

Proposition 12.5 Suppose that E is defined over k = GF(q) and that ¢ is the
Frobenius mapping. Then e, = q.

Proof. We know that e, = e,(0). Since u = z/y is a uniformizing variable at
O, u o ¢ =u7, and the result follows from the definition of e,(O). |

Definition 12.6 Let a : E — E be an endomorphism. If e, = 1, we say « is
separable. If e, > 1, we say « is inseparable.

Remark. Let F : E — E be a rational function. We can define a map
F*:K(E) — K(E) by F*(r) =r o F. Then F*(K(E)) will be some subfield of
K(E). If F is a separable (respectively inseparable) endomorphism, then K(E)
is a separable (respectively inseparable) extension of F*(K (E)).

The next result that we need is that the set of separable endomorphisms is
closed under addition, but it takes a little work to get to it.

Lemma 12.7 Suppose that r is a rational function of the single variable x and
r' = 0 where 1’ is the usual derivative. Then r(z) = 7(xP) for some rational
function 7.
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Proof. This is obvious for polynomials. Write r = f/g with f and g relatively
prime polynomials of the single variable x. Then ' = 0 implies f'g = ¢'f, but
since f and g are relatively prime, we have f|f’ and g|g’. Hence f' and g’ are
zero, and f and g are functions of xP. ]

Proposition 12.8 Suppose r is a rational function on E and Dr = 0. Then
there is a rational function ¥ with r(x,y) = 7(xP,yP).

Proof. First note that

p—1 p—1

2 .

v =y (y°)
where s(z) = 2 + Az + B. Therefore r has a unique representation as
r(z,y) = u(z) +yPo(z) ,
where 4 and v are rational functions of z alone. If Dr = 0, we have
[u'(2) + 47! (2)] -2y = 0 .

It follows that ' = v’ = 0, and our result then follows from the previous
lemma. ]

Proposition 12.9 Suppose a is an endomorphism. Then « is inseparable if
and only if D(r o &) = 0 for all rational functions r.

Proof. If D(r o a)) = 0 for all rational functions r, then this is true in particular
when r = v is a uniformizing variable at a(P) for some P € E. Hence D(uoa) =
0, and by the previous proposition, uo« is a function of z? and y?, and therefore
must have order > 1 at P. This implies e, > 1.
On the other hand, suppose there is a rational function r and a point P € FE
with
[D(roa))(P) #0 .

Let w = r — r(a(P)). Then w o a(P) =0 and
[D(w o @))(P) = [D(roa)](P) #0 ,
so w o a has a zero of multiplicity one at P. Thus
1 =ord,(wo a) = [ordy(p)q] - €a
by Proposition 11.4, and we see that e, = 1. [ |
Corollary 12.10 An endomorphism « is inseparable if and only if
a(z,y) = (u(z?,y"),v(z?,y"))

for rational functions u and v.
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This follows immediately from the two previous propositions.

Corollary 12.11 If m is any integer prime to p, then [m] is a separable endo-
morphism.

Proof. Let P € E and let u be a uniformizer at m - P. Then by Lemma 12.4,
{D(uo[m])} (P)={m-Du}(m-P) .
The result then follows from the proposition. [ |
Proposition 12.12 Ifa and 3 are inseparable endomorphisms, then so is a+[.
This follows immediately from Corollary 12.10.

Proposition 12.13 Suppose that E is defined over k = GF(q) and m and n are
integers with m prime to p. If p is the Frobenius endomorphism, then [m]+[n]og
is separable.

Proof. Let a = [m]+ [n] o ¢. If a is inseparable, then since [m] = a—[n] o, [m]

would be the sum of two inseparable endomorphisms. The previous proposition

then implies that [m] would be inseparable, which contradicts Corollary 12.11. 1
Recall that the kernel of an endomorphism a is {P € E : o(P) = O0}.

Definition 12.14 Suppose that « is a nonzero endomorphism. Let |ker «f
denote the number of elements in the kernel of a. We define the degree of a by

dega = |ker a - ey .

Remark. This is not the usual way the degree of a mapping is defined. For
a rational mapping F : E — E, we have seen that F*(K(FE)) is a subfield of
K (E) (see the previous remark). It turns out that K(E) is a finite-dimensional
vector space over F*(K (E)), and the dimension of K(E) over F*(K (E)) is the
usual definition of the degree of F. This definition agrees with ours in the case
of an endomorphism. These matters are discussed in more generality around
page 76 in [6], where an endomorphism is called an isogeny. Since we do not
need these more general notions, we omit them.

Exercise 12.15 (i) If m is prime to p, deg([m]) = m?.

(ii) If E is defined over GF(g), then the degree of the Frobenius endomorphism
is q.

(iii) If @ and B are nonconstant endomorphisms, then

deg(a o B) = (dega) - (degf) .
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(iv) If @ is a nonconstant endomorphism and A € Div(E), then
deg(a”(A)) = (dega) - (degA) .

There is another result about a* that is special to endomorphisms. Recall
the map sum:Div(E) — E, which takes the divisor Y n(P)(P) into the point

> n(P)- P.

Proposition 12.16 Let o be a nonzero endomorphism. For P € E, pick Py
with a(Py) = P. Then

sum [ ((P)) — &*((0))] = (dega) - Py .

Proof. We have
(P =ea 3 (Q=ca ¥ (R+R) .
a(Q)=P a(R)=0

Hence

sum [a*((P)) — @*((0))] =sum e, > ((Po+ R) — (R))
a(R)=0

=€y Z B
a(R)=0

=eq|ker a|Py

=(dega)Pp .

13 The Weil Pairing

Another important tool in our proof of the main theorem is the Weil pairing,
which is a map from E[m] x E[m] to K. In order to define it, we will make
frequent use of the result that a divisor A is principal if and only if deg(A) =0
and sum(A) = O.

Fix an integer m prime to p.

Lemma 13.1 For T € E[m), the divisor [m]*((T) — (®)) is principal.
Proof. Since deg((T) — (O)) = 0,

deg([m]*((T) - (O)) = deglm] - deg ((T) — (0)) = 0
by (iv) of Exercise 12.15.

Now pick Ty € E with m - Ty = T. Then sum([m]*((T') —(O))) = m? - Ty by
Proposition 12.16, and m? - Ty =m-T = O. [ |
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Let g, be a rational function with

div(gr) = [m]"({T) = (0)) .

Although g is not unique, it is unique up to a constant multiple.
Let aT p be translation by P, i.e. aT p(Q) =Q + P.

Exercise 13.2 Show that a7 p((Q)) = (@ — P).
Lemma 13.3 Suppose that S,T € E[m]. Then
div(gy 0 aTs) = div(gr)

Proof. Since S € E[m], [m] o aTs = [m]. Hence using Propositions 11.9 and
11.11, we get

div(gr 0 aTs) =aTg o [m]*({T) — (O))
=([m] 0 aT5)*({T) — (O))
=[m]*((T) = (0))
=div(gr) -
|
The next proposition provides the basis for the definition of the Weil pairing,.

Proposition 13.4 Suppose S,T € E[m]. Then the function (g o aTs)/gr is
constant, and its value is an m'™ root of unity in K and is independent of the
choice of the function gr.

Proof. Since g is unique up to a constant multiple, it is clear that (gr0aT s)/gr
does not depend on the choice of g;.

By the lemma, there is an element { € K such that g; o aTs = (gp.
Composing this equation repeatedly with a7 g, we see that

groaTs' =Cgr .
Taking ¢ = m, we see that ("™ = 1. [ ]

Definition 13.5 Let S,7 € E[m], and let u,, be the group of m*® roots of
unity in K. Then the mapping from E[m] x E[m] to u,, that sends (S,T') into
(97 0 aT s)/gy is called the Weil pairing and is denoted by w, i.e.,

w(s,T) = 29T
gr

We summarize the properties of the Weil pairing in the following theorem:

Theorem 13.6 Let S1,S5,S,T1,T>,T € E[m]. Then the Weil pairing satisfies
the following conditions:
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(i) w(S1 + S2,T) = w(S1,T) - w(S2,T).
(11 ’IU(S T +T2) = ’U)(S Tl) (S,TQ)

)

)
(i) w(T,T) = 1.
(iv) Ifw(S,T) =1 for all S € E[m], then T = O.
)

(v) If a is any endomorphism, then

w(a($),a(T)) = w(S, T)*e .

Proof.

(i) This is a straightforward computation.

(Sl + Sij) — gro° aTSl+S2

9r
_9ro° aT51 ° G’TS2
9r
_ (gT oaTs, ) oaTs, - groaTs,
9r 9r

= ’lU(SQ,T) . w(Sl,T) .

The last equality follows because (g1 o aT s,)/gr is constant so it has the
same value at S; + P as at P.

(ii) First note that

div (M) = [m]*((T1 + T) — (T1) — (T>) +(O)) .

91 * 91>

Now (T1 +T») — (T1) — (T2) + (O) is clearly principal. Let h be a function
with this divisor, so

dw<ﬁ£ﬂi):p@%mwm):mwhqmp,

91 " 91>

and we see that
9T +T>

91 - 9T
for some ¢ € K. Hence if S € E[m],

=c-ho[m]

IEAL o o 5(P) = (c-ho[m])(P+S) = (c-ho[m])(P) ,
gr, - 9r»
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9T14To

or—g. 18 invariant under translation by elements of E[m]. Hence
1 2

1.€.,

w(S, Ty + ) = I0+12 20T s
9T+ T

9ri+1, ©aT g (91, ©aT s)(gr, 0 aTs)

(91, 0 aTs)(gr, 0 aTs) 9T+ T
_9n+n (9 0aTs)(gr 0aTs)
B 9T 91> 9T +T>

gr,caTs gnoaTs

9T a1,
=w(S,T1) - w(S, T2)

as desired.

(iii) Pick Ty with m - Ty = T. Then using Propositions 11.9 and 11.11 and
Exercise 13.2, we get

div(gr o aTz’-To) = aT:TO (divgr)

aTi, o [m]"((T) —(0))
= (Im] o aTiz,)*((T) —(O0))
= (aTir o [m])"((T) —{O))
= [m]" 0 aT ;7 ((T) —(O))
=[m"(1—-i)-T) = (=:-T)) .

It follows that the divisor of

G=g9r-(gro GTTO) “(gro aTQ-To) e (gro aT(m—l)-To)
is
[m]*[((T) —(O0)) + (O) = (-T)) + (-T) = (-2-T))
+-+{(2-m)-T)—(1-m) -T))] ,

which is zero since T' € E[m]. Therefore G is a constant. Clearly, if we
compose with a7, again, we get the same constant. Hence

gr-(g9ro G'TTO) <o (gpo aT(m—l)-TO) =(g9ro° aTTO) (gro aTz-TO) - (gro G‘Tm-TO) s
so after cancelling, we get

9gr = 9r° aTm-TO =graTy .
Thus w(T,T) = groaTr/gy = 1.

(iv) Suppose that T' € E[m] and w(S,T) = 1 for all S € E[m]. This means
that groaT s = gp for all S € E[m], i.e., g1 is invariant under translation
by elements of E[m]. We now use the following lemma whose proof will
be given later:
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Lemma 13.7 Suppose that r is a rational function on E that is invariant under
translation by elements of E[m]. Then r =t o [m] for some rational function t.

So now we see that gr = h o [m] for some rational function h. But then
[m]"(div(h)) = div(gr) = [m]*((T) - (O)) .

By Proposition 11.7, we get (T') — (O) = div(h) is a principal divisor.
Lemma 4.8 then tells us that 7" must be O.

(v) We need to show that

(gT o aTs)dega _ 9am)©° aT o(s)
gr Go(T)

But a7 (s)0a = aoaTs, so if we compose the right side of the above equation
with a leaving its constant value unchanged, we obtain

garyo@oaTs

Jo(T) O &
Rewriting what we want to prove, we get

9% 0aTs _ gamyoaoaTs
gTdega Jo(T) O &

which is equivalent to showing

9a(T) © _ Ya(m) o
( graes> ) °als = graese

i.e., we must show that

Jo(T) O &
gTdega

is invariant under translation by elements of E[m)].
Since « is an endomorphism, a commutes with [m], and thus a* commutes
with [m]*, so

div (022 ) = " o (o)) ~ (O)) = degfa) - [l (T) - (O)
= [m]" [a” ((a(T)) = (0)) — deg(a) - ((T) — (O))]-
We show that the divisor in square brackets is principal. Since
deg(a*(A)) = dega - degA
it follows that the degree of the divisor in question is zero. By Proposition 12.16,

sum (@ ((a(T)) = (0))) = deg(a) - T,
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which cancels sum applied to the second term. Thus we have

div (M) = [m]*(div(h)) = div(h o [m])

9r dega

for some rational function h. It follows that

Ja(T) O &
gTdega

is invariant under translation by elements of E[m] as desired. ]

Now we give the proof of Lemma 13.7, which turns out to be surprisingly

nontrivial.
Proof. Let H be the field of all rational functions on E that are invariant under
translation by elements of E[m]. Let
J={go[m]:g€ K(E)} .
Then we certainly have
JCHCK(E) .

We can consider each of these fields as a vector space over its subfield. Since
H is the fixed field of a group of m? automorphisms (E[m]), Galois theory tells
us the dimension of K(E) over H is precisely m2. We will show that K (E) has
dimension < m? when regarded as a vector space over J. This will show that
J = H, and the lemma, will follow.

Consider J(z), the subfield of K (E) generated by J and x. Recall the func-
tions g, and h,, from Part I. Since ¢, = z o [m] and h,, = y o [m], we
have gm,hm € J. (In fact, J is generated by g, and hy,.) By Exercise 7.5,
hm = yhuy, where h,, is a function of z alone. Hence y = hy, /by, € J(x). Hence
K(E) = J(z).

Now if we can show that z satisfies a polynomial in J[X] of degree m?, we
will be done. Recall Equation (25),

_ 1pmfllbm+l

Ym?

x¢m2 - ¢m71¢m+l - zpngm =0 .

It follows from Exercise 9.2 (ii) and (iii) that ©,,% and 9;,—1¥m+1 can be
written as polynomials in z alone of degree (in x) m? — 1 and m? respectively.
Furthermore, since the leading coefficient of 1,, is n, the coeflicient of z™ in
T2 = Um_1Vmy1 is m? — (m+1)(m—1) = 1. Hence z satisfies the polynomial
of degree m?

gm =T

or

X¢m2(X) — Pm—1 (X)¢m+1 (X) - gm¢m2(X) =0
in J[X]. |
We now give some corollaries of the theorem.

Corollary 13.8 For S,T € E[m], w(S,T) = w(T,S)~ .
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Proof. This follows from
w(S+T,S+T)=1,w(S,S) =1,wT,T)=1 ,

and (i) and (ii) of the theorem. |

Remark. If m is not prime, then Z/mZ is not a field, and E[m] is not a
vector space. E[m] is, however, a free module of rank two over Z /mZ, so we
can do linear algebra there.

Corollary 13.9 Let Ty and T, be a basis for E[m] as a free module over Z /mZ.
Then w(Ty, Ty) is a primitive m*™ root of unity.

Proof. Suppose w(Ty,T2)" = 1. Then w(nT1,T>) = 1. It then follows that

w(nTy, 1Ty + ceT2) = 1 for all ¢1,c2 € Z from which we may conclude that

nTy = O and m divides n. [ ]
As our first application of the Weil pairing we present the following;:

Theorem 13.10 Suppose that o is a nonzero endomorphism. Then a(E[m])
C E[m)]. Furthermore, the determinant of a on E[m] is deg(a) (mod m).

Proof. Let Ty and T» be a basis for E[m] over Z /mZ. Then for suitable integers
(mod m) a;; (i,7 = 1,2), we have

2
oT;) = Zaz’,jTj )
Jj=1

and det(a) = a1,1a2,2 — a1,2a2,1 as usual.
It is routine to check that this is independent of the choice of basis. Now we
have

w(T1, T2)dega = w(a(Th),a(T))
by Theorem 13.6, (v)
=w(a11T1 + a1 21>, a2,1T1 + a1,2T»)

w(Ty, Ty)" 002 - w(Ty, Ty) 22

(T, T) 2920 (T, Ty)™ 02
w(Ty, Ty) 17022 . op(Ty, Ty) 01202
,w(Tl,T2)a1,1a2,2—a1,2a2,1
w

(Tla T2)det @

Since w(Ty,T,) is a primitive m'" root of unity, we are done. |
Remark. Note that det a depends on m while dega is defined independently
of m. The use of the Weil pairing allows us to pass from local information on
E[m] to global information on all of E.
Now we show that the degree of an endomorphism is essentially quadratic
in the endomorphism. This will be important in proving the estimate of the
number of k-rational points of E. First we need a lemma on 2 x 2 matrices.
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Lemma 13.11 Let A and B be 2 X 2 matrices with entries in some ring R.
Then for c1,c2 € R

(i) det(ciA+caB) = c1% det A+ c2? det B + cica[det(A+ B) — det A — det B].
(ii) ttA =1+ det A — det(I — A).
The proof is an easy exercise.
Theorem 13.12 If a and B are endomorphisms, then
deg(cia + c28) = ¢1%dega + co2degf + cico [deg(a + B) — dega — degf] .

Proof. Let m be any integer prime to p. If we restrict @ and 8 to E[m], by
Theorem 13.10 and the previous lemma we get

deg(cia + c23) =det(cra + ¢ 8)
=ci? det a + co? det B + cico[det(a + B) — det a — det ]
=c,?dega + cy?degf + c1co[deg(a + B) — dega — degf]

(mod m) .

The theorem now follows since this congruence holds for all m prime to p. R
The next theorem is the principal part of (i) of the Main Theorem.

Theorem 13.13 If a is any endomorphism, then
B=aoa—[1+dega —deg(l —a)loa—[dega] =0 .
Proof. When we restrict to E[m], we see that 3 becomes
aoa—[l+deta—det(l —a)]oa—[deta] =aoca—[trajoa—deta .

But it is easy to see by direct computation that any 2 x 2 matrix A satisfies the
equation
A% — (trA)A+det A=0 .

(This is also a special case of the Cayley-Hamilton Theorem.) Hence J restricted
to E[m] is zero. Since this holds for infinitely many m, 3 must be the zero
endomorphism. [ |

Now we can prove the Main Theorem. Let E be defined over k& = GF(g),
and let ¢ be the Frobenius mapping. Let E; be the number of k-rational points
on E.

Theorem 13.14 (Hasse): Sett =¢q+1— E;. Then
(i) pop—[tlop+[q = O and
(i) [t] < 24
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Proof. First note that ker(1l — ¢) is the set of (a,b) € E with (a,b) = (a?,b?)
together with the point O. Exercise 10.3 tells us that ker(1 — ) is precisely the
set of k-rational points of E, so | ker(1 — ¢)| = E,. Also Proposition 12.13 tells
us that 1 — ¢ is separable, so by our definition of degree, deg(1 — ¢) = E;. Since
degyp = ¢ by (ii) of Exercise 12.15, (i) follows from Theorem 13.13.

To prove (ii), we note that

e1? + g+ cic2(Ey — 1 —q) = deg(ca1[1] — cap) >0

for all ¢1,cy € Z. Hence

(_) va+ (2)E-1-0- (é)Qdeg@lm ) >0

for all rational numbers ¢; /c2. Thus we must have

v’ +q+v(E;—1—¢) >0
for all real numbers v. It follows that the discriminant of the quadratic function
on the left must be < 0. This discriminant is t? — 4¢, which yields || < 2,/g. B
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