Succinct Hitting Sets and Algebraic Circuit Lower Bound Barriers ${ }^{1}$

Outline

Introductin

Natural Proofs

Algebraic Natural Proofs
Framework
Succinct Derandomisation
Succinct Generators

Evidence for Barriers

References

Boolean Natural Proofs

- Razborov and Rudich (1997) introduced the notion of natural proofs. Showed that many proofs are natural.

Boolean Natural Proofs

- Razborov and Rudich (1997) introduced the notion of natural proofs. Showed that many proofs are natural.
- Also showed that assuming crypto, natural proofs cannot give superpoly lower bounds.

Boolean Natural Proofs

- Razborov and Rudich (1997) introduced the notion of natural proofs. Showed that many proofs are natural.
- Also showed that assuming crypto, natural proofs cannot give superpoly lower bounds.
- In particular, existance of $\exp \left(n^{\Omega(1)}\right)$ prg.

Algebraic Natural Proofs?

- Natural question, are there barriers for algebraic proofs.

Algebraic Natural Proofs?

- Natural question, are there barriers for algebraic proofs.
- Missing key ingredient - crypto.

Algebraic Natural Proofs?

- Natural question, are there barriers for algebraic proofs.
- Missing key ingredient - crypto.
- Fix: reduce to derandomisation problem, like Williams (2013).

Razborov and Rudich: Useful Properties, Natural Proofs

- Property P is a subset of boolean functions,

$$
P \subseteq \bigcup_{n \geq 1}\left\{f \mid f:\{0,1\}^{n} \rightarrow\{0,1\}\right\}
$$

Razborov and Rudich: Useful Properties, Natural Proofs

- Property P is a subset of boolean functions,

$$
P \subseteq \bigcup_{n \geq 1}\left\{f \mid f:\{0,1\}^{n} \rightarrow\{0,1\}\right\}
$$

- Г-constructive: If we can check $f \in P$ in Γ, given truth table.
- Large if atleast $2^{\mathcal{O}(n)}$ fraction of f in P.

Such a property is called Γ-natural.

Razborov and Rudich: Useful Properties, Natural Proofs

- Property P is a subset of boolean functions,

$$
P \subseteq \bigcup_{n \geq 1}\left\{f \mid f:\{0,1\}^{n} \rightarrow\{0,1\}\right\}
$$

- Г-constructive: If we can check $f \in P$ in Γ, given truth table.
- Large if atleast $2^{\mathcal{O}(n)}$ fraction of f in P.

Such a property is called Γ-natural.

- Useful against \mathcal{C} if $f \in \mathcal{C} \Rightarrow f \notin P$.

Razborov and Rudich: Useful Properties, Natural Proofs

- Property P is a subset of boolean functions,

$$
P \subseteq \bigcup_{n \geq 1}\left\{f \mid f:\{0,1\}^{n} \rightarrow\{0,1\}\right\}
$$

- Г-constructive: If we can check $f \in P$ in Γ, given truth table.
- Large if atleast $2^{\mathcal{O}(n)}$ fraction of f in P.

Such a property is called Γ-natural.

- Useful against \mathcal{C} if $f \in \mathcal{C} \Rightarrow f \notin P$.
- A proof is natural against \mathcal{C} if it contains the definition of a natural P.

Razborov and Rudich: Quote

Quoting the original paper:
... consider a commonly envisioned proof strategy for showing
$P \neq N P$.

- Formulate some mathematical notion of "discrepency" (... formalised as a combinatorial property $P \ldots$. . .
- Show that poly sized circuits can only compute "low discrepency" functions ... (... P is useful ...).
- SAT has "high discrepency"... (... SAT has P...).

Razborov and Rudich: Quote

Quoting the original paper:
... consider a commonly envisioned proof strategy for showing
$P \neq N P$.

- Formulate some mathematical notion of "discrepency" ... (... formalised as a combinatorial property $P \ldots$. .
- Show that poly sized circuits can only compute "low discrepency" functions ... (... P is useful ...).
- SAT has "high discrepency"... (... SAT has P ...).

Their main result: no such strategy can succeed.

Razborov and Rudich: Key Idea

- If there are prgs, we can get pseudorandom functions indistinguishable from uniform.
- But constructivity will give us an advantage in distinguishing the prf.

Razborov and Rudich: Key Idea

- If there are prgs, we can get pseudorandom functions indistinguishable from uniform.
- But constructivity will give us an advantage in distinguishing the prf.
- This works for any class powerful enough to have one-way functions.
- Under standard assumptions, includes classes like $T C^{0}$.

Williams: Succinct Derandomisation

- ZPE: solvable in randomised $2^{\mathcal{O}(n)}$ time, no error, allowed to answer don't know.
- Predicate for $L \in$ ZPE: Machine $M(x, y)$ such that for all x, for all y of length $2^{c|x|}$, in $2^{\mathcal{O}(|x|) \text {, if } x \in L \text { then } M(x, y) \text { is } 1 . ~(x) ~}$ wp atleast $2 / 3$, and if $x \notin L$ then 0 wp atleast $2 / 3$.
- Given \mathcal{C}, ZPE has \mathcal{C} seeds if for all $x, \exists \mathcal{C}_{x} \in \mathcal{C}$ of size $|x|^{k}+k$ such that $M\left(x, t t\left(C_{x}\right)\right)$ is not don't know.

Williams: Succinct Derandomisation

- ZPE: solvable in randomised $2^{\mathcal{O}(n)}$ time, no error, allowed to answer don't know.
- Predicate for $L \in$ ZPE: Machine $M(x, y)$ such that for all x, for all y of length $2^{c|x|}$, in $2^{\mathcal{O}(|x|) \text {, if } x \in L \text { then } M(x, y) \text { is } 1 . ~(x) ~}$ wp atleast $2 / 3$, and if $x \notin L$ then 0 wp atleast $2 / 3$.
- Given \mathcal{C}, ZPE has \mathcal{C} seeds if for all $x, \exists \mathcal{C}_{x} \in \mathcal{C}$ of size $|x|^{k}+k$ such that $M\left(x, \operatorname{tt}\left(C_{x}\right)\right)$ is not don't know.
- There is no natural P-natural property useful against \mathcal{C} iff ZPE has \mathcal{C} seeds for almost all lengths.

Redefine Properties

- We slighly change the definition of a property.
- P is useful against \mathcal{C} if all $f \in \mathcal{C}$ are in P.
- P is large if most f are NOT in P.

Redefine Properties

- We slighly change the definition of a property.
- P is useful against \mathcal{C} if all $f \in \mathcal{C}$ are in P.
- P is large if most f are NOT in P.
- The complement of properties defined earlier, do not matter in boolean setting, do matter in algebraic.

Motivation - Rank Based Lower Bound Proofs

- Many lower bound proofs use matrix rank, for eg partial derivatives, shifted pds, etc.

Motivation - Rank Based Lower Bound Proofs

- Many lower bound proofs use matrix rank, for eg partial derivatives, shifted pds, etc.
- Given f, find a matrix M_{f}, entries polynomials in coefficients of f.
- Usually M_{f} is exponentially big.
- Show, that rank $M_{f}<r$ if $f \in \mathcal{C}$.
- For explicit h, show that $\operatorname{rank} M_{h} \geq r$.

Motivation - Small rank is natural

- The above rank bounds are shown by identifying minor M^{\prime} and showing $\operatorname{det} M_{f}^{\prime}=0$ and $\operatorname{det} M_{h}^{\prime} \neq 0$.

Motivation - Small rank is natural

- The above rank bounds are shown by identifying minor M^{\prime} and showing $\operatorname{det} M_{f}^{\prime}=0$ and $\operatorname{det} M_{h}^{\prime} \neq 0$.
- This gives a natural property:

$$
P:=\left\{f \mid \operatorname{det}\left(M_{f}^{\prime}\right)=0\right\} .
$$

- It is useful by definition, constructive since det is easy, and large by SZ.

Algebraic Natural Proof: Definition

Definition
Let \mathcal{M} be a set of monomials. Given a polynomial $f \in \operatorname{span}(\mathcal{M})$, let coeff $\mathcal{M}(f)$ denote its coefficient vector, indexed by elements of \mathcal{M}.

Algebraic Natural Proof: Definition

Definition
Let \mathcal{M} be a set of monomials. Given a polynomial $f \in \operatorname{span}(\mathcal{M})$, let coeff $\mathcal{M}_{\mathcal{M}}(f)$ denote its coefficient vector, indexed by elements of \mathcal{M}. Let $\mathcal{C} \subseteq \operatorname{span}(\mathcal{M})$ denote some complexity class.

Algebraic Natural Proof: Definition

Definition

Let \mathcal{M} be a set of monomials. Given a polynomial $f \in \operatorname{span}(\mathcal{M})$, let coeff $\mathcal{M}(f)$ denote its coefficient vector, indexed by elements of \mathcal{M}. Let $\mathcal{C} \subseteq \operatorname{span}(\mathcal{M})$ denote some complexity class. Let $\mathcal{D} \subseteq \mathbb{F}\left[\left\{y_{\alpha}\right\}_{x^{\alpha} \in \mathcal{M}}\right]$ denote a class of polynomials in $|\mathcal{M}|$ many variables.

Algebraic Natural Proof: Definition

Definition

Let \mathcal{M} be a set of monomials. Given a polynomial $f \in \operatorname{span}(\mathcal{M})$, let coeff $\mathcal{M}^{(}(f)$ denote its coefficient vector, indexed by elements of \mathcal{M}. Let $\mathcal{C} \subseteq \operatorname{span}(\mathcal{M})$ denote some complexity class. Let $\mathcal{D} \subseteq \mathbb{F}\left[\left\{y_{\alpha}\right\}_{x^{\alpha} \in \mathcal{M}}\right]$ denote a class of polynomials in $|\mathcal{M}|$ many variables. A non-zero polynomial $D \in \mathcal{D}$ is said to be a \mathcal{D}-natural proof against \mathcal{C} if the following holds: for all $f \in \mathcal{C}$, the polynomial D vanishes on $\operatorname{coeff}_{\mathcal{M}}(f)$, that is $D\left(\operatorname{coeff}_{\mathcal{M}}(f)\right)=0$.

Comparing to Razborov Rudich

- As in the motivating example, we get a property P, defined as

$$
P:=\left\{f \mid D\left(\operatorname{coeff}_{\mathcal{M}}(f)=0\right\} .\right.
$$

Comparing to Razborov Rudich

- As in the motivating example, we get a property P, defined as

$$
P:=\left\{f \mid D\left(\operatorname{coeff}_{\mathcal{M}}(f)=0\right\} .\right.
$$

- Constructive since $D \in \mathcal{D}$, large due to SZ , useful since D vanishes on coefficients.

Instantiation

- Let \mathcal{M} be the set of monomials in n variables of total degree atmost d, and let $N=|\mathcal{M}|=\binom{n+d}{d}$.
- Let \mathcal{C} be the set of polynomials poly (n, d)-sized circuits.

Instantiation

- Let \mathcal{M} be the set of monomials in n variables of total degree atmost d, and let $N=|\mathcal{M}|=\binom{n+d}{d}$.
- Let \mathcal{C} be the set of polynomials poly (n, d)-sized circuits.
- Is there an algebraic poly (N) sized natural proof for \mathcal{C}.

Instantiation

- Let \mathcal{M} be the set of monomials in n variables of total degree atmost d, and let $N=|\mathcal{M}|=\binom{n+d}{d}$.
- Let \mathcal{C} be the set of polynomials poly (n, d)-sized circuits.
- Is there an algebraic poly (N) sized natural proof for \mathcal{C}.
- In other words, are there VP natural proofs against VP.
- Given that algebraic natural proofs are based on vanishing of polynomials, derandomisation will be that of the PIT problem.
- Given that algebraic natural proofs are based on vanishing of polynomials, derandomisation will be that of the PIT problem.
- The equivalence here will follow from definitions, unlike the boolean setting.

Succinct Hitting Sets

Definition

Let $\mathcal{M}, \mathcal{C}, \mathcal{D}$ be defined as in the definition of algebraic natural proofs. We say that \mathcal{C} is a \mathcal{C}-succinct hitting set for \mathcal{D} if $\mathcal{H}:=\{\operatorname{coeff}(f) \mid f \in \mathcal{C}\}$ is a hitting set for \mathcal{D}. In other words, $D \in \mathcal{D}$ is non-zero if and only if there is some $f \in \mathcal{C}$ such that $D(\operatorname{coeff}(f)) \neq 0$.

Succinct Hitting Sets

- If D is an algebraic natural proof for \mathcal{C}, then D must vanish on coefficient vectors \mathcal{H}.
- Thus, \mathcal{H} is NOT a hitting set for \mathcal{D}.

Succinct Hitting Sets

- If D is an algebraic natural proof for \mathcal{C}, then D must vanish on coefficient vectors \mathcal{H}.
- Thus, \mathcal{H} is NOT a hitting set for \mathcal{D}.
- There are algebraic natural proofs if and only if coefficient vectors of simple polynomials are not hitting sets.

Succinct Hitting Sets

- If D is an algebraic natural proof for \mathcal{C}, then D must vanish on coefficient vectors \mathcal{H}.
- Thus, \mathcal{H} is NOT a hitting set for \mathcal{D}.
- There are algebraic natural proofs if and only if coefficient vectors of simple polynomials are not hitting sets.
- The existance of barriers is equivalent to whether PIT can be derandomised using succinct pseudorandomness.

Equivalence of Barriers and Derandomisation

Theorem
Let $\mathcal{M}, \mathcal{C}, \mathcal{D}$ be defined as in the definition of algebraic natural proofs. Then there is an algebraic \mathcal{D}-natural proof against \mathcal{C} if and only if \mathcal{C} is not a \mathcal{C}-succinct hitting set for \mathcal{D}.

Instantiating

Corollary

Let \mathcal{C} be the class of poly (n, d)-sized circuits of total degree atmost d. Then there is an algebraic poly (N)-natural proof against \mathcal{C} if and only if \mathcal{C} is not a poly (n, d)-succinct hitting set for poly (N)-sized circuits in N variables.

Instantiating

Corollary

Let \mathcal{C} be the class of poly (n, d)-sized circuits of total degree atmost d. Then there is an algebraic poly (N)-natural proof against \mathcal{C} if and only if \mathcal{C} is not a poly (n, d)-succinct hitting set for poly (N)-sized circuits in N variables.
If $d=$ poly (n), then existence of barrier is equivalent to saying that coefficient vectors of polylog sized circuits are a hitting set for circuits of polynomial size.

Succinct Generators

Definition (Succinct Generators)

Let $\mathcal{C}, \mathcal{M}, \mathcal{D}$ be as in the earlier definitions. Let $\mathcal{C}^{\prime} \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{l}\right]$ be another class of polynomials. A polynomial $\operatorname{map} \mathcal{G}: \mathbb{F}^{\prime} \rightarrow \mathbb{F}^{|\mathcal{M}|}$ is a \mathcal{C}-succinct generator for \mathcal{D} computable in \mathcal{C}^{\prime} if the following conditions hold:

- The polynomial $G(\mathbf{x}, \mathbf{y}):=\sum_{\mathbf{x}^{\alpha} \in \mathcal{M}} \mathcal{G}_{\mathbf{x}^{\alpha}}(\mathbf{y}) \mathbf{x}^{\alpha}$ is in \mathcal{C}^{\prime}, where $\mathcal{G}_{\mathbf{x}^{\alpha}}$ is the coordinate of \mathcal{G} corresponding to α.
- For every $\alpha \in \mathbb{F}^{\prime}$, the polynomial $G(\mathbf{x}, \alpha)$ is in \mathcal{C}.
- \mathcal{G} is a generator for \mathcal{D}, that is $D\left(\operatorname{coeff}_{\mathcal{M}}(\mathcal{G})\right) \neq 0$ as a polynomial if and only if D is non-zero. For this, we define coeff $_{\mathcal{M}}(\mathcal{G})$ by treating \mathcal{G} as a polynomial in the variables \mathbf{x} over the ring $\mathbb{F}[\mathbf{y}]$.

Interpretation

- The second and third conditions (when the field is large enough) are equivalent to the fact that the output $\mathcal{G}\left(\mathbf{x}, \mathbb{F}^{\prime}\right)=\left\{G(\mathbf{x}, \alpha) \mid \alpha \in \mathbb{F}^{\prime}\right\}$ is a \mathcal{C}-succinct hitting set for \mathcal{D} in the above sense.
- The first condition adds a succinct indexing condition on the generator.

Interpretation

- The second and third conditions (when the field is large enough) are equivalent to the fact that the output $\mathcal{G}\left(\mathbf{x}, \mathbb{F}^{\prime}\right)=\left\{G(\mathbf{x}, \alpha) \mid \alpha \in \mathbb{F}^{\prime}\right\}$ is a \mathcal{C}-succinct hitting set for \mathcal{D} in the above sense.
- The first condition adds a succinct indexing condition on the generator.
- It is clear that succinct generators give rise to succinct hitting sets. The converse also holds in some sense: if there are succinct hitting set, then the universal circuit is a succinct generator.

Example 1

- Let \mathcal{D} be the set of polynomials with monomials of support size poly $(\log N)$.
- A hitting set is $\{\mathbf{v} \mid \operatorname{supp}(v) \leq \operatorname{poly}(\log N)=\operatorname{poly}(n)\}$.

Example 1

- Let \mathcal{D} be the set of polynomials with monomials of support size poly $(\log N)$.
- A hitting set is $\{\mathbf{v} \mid \operatorname{supp}(v) \leq \operatorname{poly}(\log N)=\operatorname{poly}(n)\}$.
- These are coefficient vectors of $\sum \prod$ circuits of size poly (n).

Example 2

- Let \mathcal{D} be the class of polynomials of sparsity atmost s.
- We will use the following result: if $f(\mathbf{x})$ has sparsity $\leq s$ then $f(\mathbf{x}+\mathbf{1})$ has a monomial of support $\leq \log s$.
- A hitting set is $\{\mathbf{1}+\mathbf{v} \mid \operatorname{supp}(v) \leq$ poly $(\log N)=\operatorname{poly}(n)\}$.

Example 2

- Let \mathcal{D} be the class of polynomials of sparsity atmost s.
- We will use the following result: if $f(\mathbf{x})$ has sparsity $\leq s$ then $f(\mathbf{x}+\mathbf{1})$ has a monomial of support $\leq \log s$.
- A hitting set is $\{\mathbf{1}+\mathbf{v} \mid \operatorname{supp}(v) \leq \operatorname{poly}(\log N)=\operatorname{poly}(n)\}$.
- Since $\mathbf{1}=\operatorname{coeff}(g)$ where $g=\prod\left(x_{i}+1\right)$, this is succinct.

Main Theorem

Theorem
The set of poly $(\log s, n)$-sized multilinear $\sum \prod \sum$ formulas is a succinct hitting set for $N=2^{n}$ variate size s computations of the form

- $\sum^{\mathcal{O}(1)} \Pi \sum$ formulas
- $\sum \prod \sum$ formulas of constant trdeg.
- Sparse polynomials
- Commutative roABPs

References

Michael A. Forbes, Amir Shpilka, and Ben Lee Volk. Succinct hitting sets and barriers to proving algebraic circuits lower bounds. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 653-664, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4528-6. doi: 10.1145/3055399.3055496. URL http://doi.acm.org/10.1145/3055399.3055496.
Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer and System Sciences, 55(1):24-35, 1997. ISSN 0022-0000. doi: https://doi.org/10.1006/jcss.1997.1494. URL http://www.sciencedirect.com/science/article/pii/ S002200009791494X.
Ryan Williams. Natural proofs versus derandomization. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC '13, pages 21-30, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2029-0. doi: 10.1145/2488608.2488612. URL
http://doi.acm.org/10.1145/2488608.2488612.

