Succinct Hitting Sets and Algebraic Circuit Lower Bound Barriers¹

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

¹Forbes et al. (2017)

Outline

Introductin

Natural Proofs

Algebraic Natural Proofs

Framework Succinct Derandomisation Succinct Generators

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Evidence for Barriers

References

Boolean Natural Proofs

 Razborov and Rudich (1997) introduced the notion of natural proofs. Showed that many proofs are natural.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Boolean Natural Proofs

- Razborov and Rudich (1997) introduced the notion of natural proofs. Showed that many proofs are natural.
- Also showed that assuming crypto, natural proofs cannot give superpoly lower bounds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Boolean Natural Proofs

- Razborov and Rudich (1997) introduced the notion of natural proofs. Showed that many proofs are natural.
- Also showed that assuming crypto, natural proofs cannot give superpoly lower bounds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

• In particular, existance of $\exp(n^{\Omega(1)})$ prg.

Algebraic Natural Proofs?

Natural question, are there barriers for algebraic proofs.

Algebraic Natural Proofs?

Natural question, are there barriers for algebraic proofs.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Missing key ingredient - crypto.

Algebraic Natural Proofs?

- Natural question, are there barriers for algebraic proofs.
- Missing key ingredient crypto.
- ▶ Fix: reduce to derandomisation problem, like Williams (2013).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Property P is a subset of boolean functions,

$$P \subseteq \bigcup_{n \ge 1} \{ f \mid f : \{0,1\}^n \to \{0,1\} \}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Property P is a subset of boolean functions,

$$P \subseteq \bigcup_{n \ge 1} \{ f \mid f : \{0,1\}^n \to \{0,1\} \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Γ-constructive: If we can check f ∈ P in Γ, given truth table.
 Large if atleast 2^{O(n)} fraction of f in P.

Such a property is called Γ -natural.

Property P is a subset of boolean functions,

$$P \subseteq \bigcup_{n \ge 1} \{ f \mid f : \{0,1\}^n \to \{0,1\} \}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

F-constructive: If we can check f ∈ P in Γ, given truth table.
 Large if atleast 2^{O(n)} fraction of f in P.

Such a property is called Γ -natural.

• Useful against C if $f \in C \Rightarrow f \notin P$.

Property P is a subset of boolean functions,

$$P \subseteq \bigcup_{n \ge 1} \{ f \mid f : \{0,1\}^n \to \{0,1\} \}.$$

F-constructive: If we can check $f \in P$ in Γ , given truth table.

• Large if atleast $2^{\mathcal{O}(n)}$ fraction of f in P.

Such a property is called Γ -natural.

- Useful against C if $f \in C \Rightarrow f \notin P$.
- A proof is natural against C if it contains the definition of a natural P.

Razborov and Rudich: Quote

Quoting the original paper:

... consider a commonly envisioned proof strategy for showing $P \neq NP$.

- Formulate some mathematical notion of "discrepency" ...
 (... formalised as a combinatorial property P ...).
- Show that poly sized circuits can only compute "low discrepency" functions ... (... P is useful ...).
- ▶ SAT has "high discrepency" ... (... SAT has P ...).

Razborov and Rudich: Quote

Quoting the original paper:

... consider a commonly envisioned proof strategy for showing $P \neq NP$.

- Formulate some mathematical notion of "discrepency" ...
 (... formalised as a combinatorial property P ...).
- Show that poly sized circuits can only compute "low discrepency" functions ... (... P is useful ...).
- ▶ SAT has "high discrepency" ... (... SAT has P ...).

Their main result: no such strategy can succeed.

Razborov and Rudich: Key Idea

- If there are prgs, we can get pseudorandom functions indistinguishable from uniform.
- But constructivity will give us an advantage in distinguishing the prf.

Razborov and Rudich: Key Idea

- If there are prgs, we can get pseudorandom functions indistinguishable from uniform.
- But constructivity will give us an advantage in distinguishing the prf.
- This works for any class powerful enough to have one-way functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Under standard assumptions, includes classes like TC^0 .

Williams: Succinct Derandomisation

- ZPE: solvable in randomised 2^{O(n)} time, no error, allowed to answer don't know.
- ▶ Predicate for $L \in ZPE$: Machine M(x, y) such that for all x, for all y of length $2^{c|x|}$, in $2^{O(|x|)}$, if $x \in L$ then M(x, y) is 1 wp atleast 2/3, and if $x \notin L$ then 0 wp atleast 2/3.
- Given C, ZPE has C seeds if for all $x, \exists C_x \in C$ of size $|x|^k + k$ such that $M(x, tt(C_x))$ is not don't know.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Williams: Succinct Derandomisation

- ZPE: solvable in randomised 2^{O(n)} time, no error, allowed to answer don't know.
- ▶ Predicate for $L \in ZPE$: Machine M(x, y) such that for all x, for all y of length $2^{c|x|}$, in $2^{O(|x|)}$, if $x \in L$ then M(x, y) is 1 wp atleast 2/3, and if $x \notin L$ then 0 wp atleast 2/3.
- ▶ Given C, ZPE has C seeds if for all $x, \exists C_x \in C$ of size $|x|^k + k$ such that $M(x, tt(C_x))$ is not don't know.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

There is no natural *P*-natural property useful against *C* iff *ZPE* has *C* seeds for almost all lengths.

Redefine Properties

We slighly change the definition of a property.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ▶ *P* is useful against *C* if all $f \in C$ are in *P*.
- \triangleright *P* is large if most *f* are NOT in *P*.

Redefine Properties

- We slighly change the definition of a property.
- *P* is useful against C if all $f \in C$ are in *P*.
- ▶ *P* is large if most *f* are NOT in *P*.
- The complement of properties defined earlier, do not matter in boolean setting, do matter in algebraic.

Motivation - Rank Based Lower Bound Proofs

Many lower bound proofs use matrix rank, for eg partial derivatives, shifted pds, etc.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation - Rank Based Lower Bound Proofs

- Many lower bound proofs use matrix rank, for eg partial derivatives, shifted pds, etc.
- Given f, find a matrix M_f, entries polynomials in coefficients of f.

- Usually M_f is exponentially big.
- Show, that rank $M_f < r$ if $f \in C$.
- For explicit *h*, show that rank $M_h \ge r$.

Motivation - Small rank is natural

▶ The above rank bounds are shown by identifying minor M'and showing det $M'_f = 0$ and det $M'_h \neq 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation - Small rank is natural

The above rank bounds are shown by identifying minor M' and showing det M'_f = 0 and det M'_h ≠ 0.

This gives a natural property:

$$P:=\left\{f \mid \det(M'_f)=0\right\}.$$

It is useful by definition, constructive since det is easy, and large by SZ.

Definition

Let \mathcal{M} be a set of monomials. Given a polynomial $f \in \text{span}(\mathcal{M})$, let $\text{coeff}_{\mathcal{M}}(f)$ denote its coefficient vector, indexed by elements of \mathcal{M} .

Definition

Let \mathcal{M} be a set of monomials. Given a polynomial $f \in \text{span}(\mathcal{M})$, let $\text{coeff}_{\mathcal{M}}(f)$ denote its coefficient vector, indexed by elements of \mathcal{M} . Let $\mathcal{C} \subseteq \text{span}(\mathcal{M})$ denote some complexity class.

Definition

Let \mathcal{M} be a set of monomials. Given a polynomial $f \in \text{span}(\mathcal{M})$, let $\text{coeff}_{\mathcal{M}}(f)$ denote its coefficient vector, indexed by elements of \mathcal{M} . Let $\mathcal{C} \subseteq \text{span}(\mathcal{M})$ denote some complexity class. Let $\mathcal{D} \subseteq \mathbb{F}\left[\{y_{\alpha}\}_{x^{\alpha} \in \mathcal{M}}\right]$ denote a class of polynomials in $|\mathcal{M}|$ many variables.

Definition

Let \mathcal{M} be a set of monomials. Given a polynomial $f \in \text{span}(\mathcal{M})$, let $\text{coeff}_{\mathcal{M}}(f)$ denote its coefficient vector, indexed by elements of \mathcal{M} . Let $\mathcal{C} \subseteq \text{span}(\mathcal{M})$ denote some complexity class. Let $\mathcal{D} \subseteq \mathbb{F}\left[\{y_{\alpha}\}_{x^{\alpha} \in \mathcal{M}}\right]$ denote a class of polynomials in $|\mathcal{M}|$ many variables. A non-zero polynomial $D \in \mathcal{D}$ is said to be a \mathcal{D} -natural proof against \mathcal{C} if the following holds: for all $f \in \mathcal{C}$, the polynomial D vanishes on $\text{coeff}_{\mathcal{M}}(f)$, that is $D(\text{coeff}_{\mathcal{M}}(f)) = 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Comparing to Razborov Rudich

▶ As in the motivating example, we get a property *P*, defined as

$$P := \{f \mid D(\operatorname{coeff}_{\mathcal{M}}(f) = 0\}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Comparing to Razborov Rudich

As in the motivating example, we get a property P, defined as $P := \{f \mid D(\operatorname{coeff}_{\mathcal{M}}(f) = 0\}.$

Constructive since D ∈ D, large due to SZ, useful since D vanishes on coefficients.

Instantiation

▶ Let \mathcal{M} be the set of monomials in *n* variables of total degree atmost *d*, and let $N = |\mathcal{M}| = \binom{n+d}{d}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Let C be the set of polynomials poly (n, d)-sized circuits.

Instantiation

▶ Let \mathcal{M} be the set of monomials in *n* variables of total degree atmost *d*, and let $N = |\mathcal{M}| = \binom{n+d}{d}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- ▶ Let C be the set of polynomials poly (n, d)-sized circuits.
- ▶ Is there an algebraic poly (N) sized natural proof for C.

Instantiation

▶ Let \mathcal{M} be the set of monomials in *n* variables of total degree atmost *d*, and let $N = |\mathcal{M}| = \binom{n+d}{d}$.

- ▶ Let C be the set of polynomials poly (n, d)-sized circuits.
- ▶ Is there an algebraic poly (N) sized natural proof for C.
- In other words, are there VP natural proofs against VP.

Given that algebraic natural proofs are based on vanishing of polynomials, derandomisation will be that of the PIT problem.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Given that algebraic natural proofs are based on vanishing of polynomials, derandomisation will be that of the PIT problem.
- The equivalence here will follow from definitions, unlike the boolean setting.

Definition

Let $\mathcal{M}, \mathcal{C}, \mathcal{D}$ be defined as in the definition of algebraic natural proofs. We say that \mathcal{C} is a \mathcal{C} -succinct hitting set for \mathcal{D} if $\mathcal{H} := \{ \operatorname{coeff}(f) \mid f \in \mathcal{C} \}$ is a hitting set for \mathcal{D} . In other words, $D \in \mathcal{D}$ is non-zero if and only if there is some $f \in \mathcal{C}$ such that $D(\operatorname{coeff}(f)) \neq 0$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

▶ If *D* is an algebraic natural proof for *C*, then *D* must vanish on coefficient vectors *H*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Thus, \mathcal{H} is NOT a hitting set for \mathcal{D} .

- If D is an algebraic natural proof for C, then D must vanish on coefficient vectors H.
- Thus, \mathcal{H} is NOT a hitting set for \mathcal{D} .
- There are algebraic natural proofs if and only if coefficient vectors of simple polynomials are not hitting sets.

- If D is an algebraic natural proof for C, then D must vanish on coefficient vectors H.
- Thus, \mathcal{H} is NOT a hitting set for \mathcal{D} .
- There are algebraic natural proofs if and only if coefficient vectors of simple polynomials are not hitting sets.
- The existance of barriers is equivalent to whether PIT can be derandomised using succinct pseudorandomness.

Equivalence of Barriers and Derandomisation

Theorem

Let $\mathcal{M}, \mathcal{C}, \mathcal{D}$ be defined as in the definition of algebraic natural proofs. Then there is an algebraic \mathcal{D} -natural proof against \mathcal{C} if and only if \mathcal{C} is not a \mathcal{C} -succinct hitting set for \mathcal{D} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Instantiating

Corollary

Let C be the class of poly (n, d)-sized circuits of total degree atmost d. Then there is an algebraic poly (N)-natural proof against C if and only if C is not a poly (n, d)-succinct hitting set for poly (N)-sized circuits in N variables.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Instantiating

Corollary

Let C be the class of poly (n, d)-sized circuits of total degree atmost d. Then there is an algebraic poly (N)-natural proof against C if and only if C is not a poly (n, d)-succinct hitting set for poly (N)-sized circuits in N variables.

If d = poly(n), then existence of barrier is equivalent to saying that coefficient vectors of polylog sized circuits are a hitting set for circuits of polynomial size.

Succinct Generators

Definition (Succinct Generators)

Let $\mathcal{C}, \mathcal{M}, \mathcal{D}$ be as in the earlier definitions. Let $\mathcal{C}' \subseteq \mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_l]$ be another class of polynomials. A polynomial map $\mathcal{G} : \mathbb{F}' \to \mathbb{F}^{|\mathcal{M}|}$ is a \mathcal{C} -succinct generator for \mathcal{D} computable in \mathcal{C}' if the following conditions hold:

- ► The polynomial $G(\mathbf{x}, \mathbf{y}) := \sum_{\mathbf{x}^{\alpha} \in \mathcal{M}} \mathcal{G}_{\mathbf{x}^{\alpha}}(\mathbf{y}) \mathbf{x}^{\alpha}$ is in \mathcal{C}' , where $\mathcal{G}_{\mathbf{x}^{\alpha}}$ is the coordinate of \mathcal{G} corresponding to α .
- For every $\alpha \in \mathbb{F}'$, the polynomial $G(\mathbf{x}, \alpha)$ is in \mathcal{C} .
- G is a generator for D, that is D(coeff_M(G)) ≠ 0 as a polynomial if and only if D is non-zero. For this, we define coeff_M(G) by treating G as a polynomial in the variables x over the ring F [y].

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Interpretation

- The second and third conditions (when the field is large enough) are equivalent to the fact that the output G(x, ℝ') = {G(x, α) | α ∈ ℝ'} is a C-succinct hitting set for D in the above sense.
- The first condition adds a succinct indexing condition on the generator.

Interpretation

- The second and third conditions (when the field is large enough) are equivalent to the fact that the output G(x, ℝ^l) = {G(x, α) | α ∈ ℝ^l} is a C-succinct hitting set for D in the above sense.
- The first condition adds a succinct indexing condition on the generator.
- It is clear that succinct generators give rise to succinct hitting sets. The converse also holds in some sense: if there are succinct hitting set, then the universal circuit is a succinct generator.

Let D be the set of polynomials with monomials of support size poly (log N).

• A hitting set is $\{\mathbf{v} \mid \operatorname{supp}(v) \leq \operatorname{poly}(\log N) = \operatorname{poly}(n)\}.$

- Let D be the set of polynomials with monomials of support size poly (log N).
- A hitting set is $\{\mathbf{v} \mid \operatorname{supp}(v) \leq \operatorname{poly}(\log N) = \operatorname{poly}(n)\}.$
- These are coefficient vectors of $\sum \prod$ circuits of size poly (*n*).

- Let D be the class of polynomials of sparsity atmost s.
- We will use the following result: if f(x) has sparsity ≤ s then f(x + 1) has a monomial of support ≤ log s.
- A hitting set is $\{1 + \mathbf{v} \mid \operatorname{supp}(v) \leq \operatorname{poly}(\log N) = \operatorname{poly}(n)\}$.

- Let D be the class of polynomials of sparsity atmost s.
- We will use the following result: if f(x) has sparsity ≤ s then f(x + 1) has a monomial of support ≤ log s.
- A hitting set is $\{1 + \mathbf{v} \mid \operatorname{supp}(v) \leq \operatorname{poly}(\log N) = \operatorname{poly}(n)\}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Since $\mathbf{1} = \operatorname{coeff}(g)$ where $g = \prod (x_i + 1)$, this is succinct.

Main Theorem

Theorem

The set of poly (log s, n)-sized multilinear $\sum \prod \sum$ formulas is a succinct hitting set for $N = 2^n$ variate size s computations of the form

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $\sum^{\mathcal{O}(1)} \prod \sum$ formulas
- $\sum \prod \sum$ formulas of constant trdeg.
- Sparse polynomials
- Commutative roABPs

References

- Michael A. Forbes, Amir Shpilka, and Ben Lee Volk. Succinct hitting sets and barriers to proving algebraic circuits lower bounds. In *Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2017, pages 653–664, New York, NY, USA, 2017. ACM. ISBN 978-1-4503-4528-6. doi: 10.1145/3055399.3055496. URL http://doi.acm.org/10.1145/3055399.3055496.
- Alexander A Razborov and Steven Rudich. Natural proofs. Journal of Computer and System Sciences, 55(1):24 - 35, 1997. ISSN 0022-0000. doi: https://doi.org/10.1006/jcss.1997.1494. URL http://www.sciencedirect.com/science/article/pii/ S002200009791494X.
- Ryan Williams. Natural proofs versus derandomization. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC '13, pages 21–30, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2029-0. doi: 10.1145/2488608.2488612. URL http://doi.acm.org/10.1145/2488608.2488612.