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Boolean Natural Proofs

I Razborov and Rudich (1997) introduced the notion of natural
proofs. Showed that many proofs are natural.

I Also showed that assuming crypto, natural proofs cannot give
superpoly lower bounds.

I In particular, existance of exp
(
nΩ(1)

)
prg.
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Algebraic Natural Proofs?

I Natural question, are there barriers for algebraic proofs.

I Missing key ingredient - crypto.

I Fix: reduce to derandomisation problem, like Williams (2013).
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Razborov and Rudich: Useful Properties, Natural Proofs

I Property P is a subset of boolean functions,

P ⊆
⋃
n≥1

{f | f : {0, 1}n → {0, 1}} .

I Γ-constructive: If we can check f ∈ P in Γ, given truth table.

I Large if atleast 2O(n) fraction of f in P.

Such a property is called Γ-natural.

I Useful against C if f ∈ C ⇒ f 6∈ P.

I A proof is natural against C if it contains the definition of a
natural P.
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Razborov and Rudich: Quote

Quoting the original paper:
. . . consider a commonly envisioned proof strategy for showing
P 6= NP.

I Formulate some mathematical notion of ”discrepency” . . .
(. . . formalised as a combinatorial property P . . . ).

I Show that poly sized circuits can only compute ”low
discrepency” functions . . . (. . . P is useful . . . ).

I SAT has ”high discrepency” . . . (. . . SAT has P . . . ).

Their main result: no such strategy can succeed.
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Razborov and Rudich: Key Idea

I If there are prgs, we can get pseudorandom functions
indistinguishable from uniform.

I But constructivity will give us an advantage in distinguishing
the prf.

I This works for any class powerful enough to have one-way
functions.

I Under standard assumptions, includes classes like TC 0.
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Williams: Succinct Derandomisation

I ZPE: solvable in randomised 2O(n) time, no error, allowed to
answer don’t know.

I Predicate for L ∈ ZPE: Machine M(x , y) such that for all x ,
for all y of length 2c|x |, in 2O(|x |), if x ∈ L then M(x , y) is 1
wp atleast 2/3, and if x 6∈ L then 0 wp atleast 2/3.

I Given C, ZPE has C seeds if for all x ,∃Cx ∈ C of size |x |k + k
such that M(x , tt(Cx)) is not don’t know.

I There is no natural P-natural property useful against C iff
ZPE has C seeds for almost all lengths.
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Redefine Properties

I We slighly change the definition of a property.

I P is useful against C if all f ∈ C are in P.

I P is large if most f are NOT in P.

I The complement of properties defined earlier, do not matter
in boolean setting, do matter in algebraic.
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Motivation - Rank Based Lower Bound Proofs

I Many lower bound proofs use matrix rank, for eg partial
derivatives, shifted pds, etc.

I Given f , find a matrix Mf , entries polynomials in coefficients
of f .

I Usually Mf is exponentially big.

I Show, that rankMf < r if f ∈ C.

I For explicit h, show that rankMh ≥ r .
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Motivation - Small rank is natural

I The above rank bounds are shown by identifying minor M ′

and showing detM ′f = 0 and detM ′h 6= 0.

I This gives a natural property:

P :=
{
f | det(M ′f ) = 0

}
.

I It is useful by definition, constructive since det is easy, and
large by SZ.
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Algebraic Natural Proof: Definition

Definition
Let M be a set of monomials. Given a polynomial f ∈ span (M),
let coeffM(f ) denote its coefficient vector, indexed by elements of
M.

Let C ⊆ span (M) denote some complexity class. Let
D ⊆ F

[
{yα}xα∈M

]
denote a class of polynomials in |M| many

variables. A non-zero polynomial D ∈ D is said to be a D-natural
proof against C if the following holds: for all f ∈ C, the polynomial
D vanishes on coeffM(f ), that is D(coeffM(f )) = 0.
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Comparing to Razborov Rudich

I As in the motivating example, we get a property P, defined as

P := {f | D(coeffM(f ) = 0} .

I Constructive since D ∈ D, large due to SZ, useful since D
vanishes on coefficients.



Comparing to Razborov Rudich

I As in the motivating example, we get a property P, defined as

P := {f | D(coeffM(f ) = 0} .

I Constructive since D ∈ D, large due to SZ, useful since D
vanishes on coefficients.



Instantiation

I Let M be the set of monomials in n variables of total degree
atmost d , and let N = |M| =

(n+d
d

)
.

I Let C be the set of polynomials poly (n, d)-sized circuits.

I Is there an algebraic poly (N) sized natural proof for C.

I In other words, are there VP natural proofs against VP.
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PIT

I Given that algebraic natural proofs are based on vanishing of
polynomials, derandomisation will be that of the PIT problem.

I The equivalence here will follow from definitions, unlike the
boolean setting.
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Succinct Hitting Sets

Definition
Let M, C,D be defined as in the definition of algebraic natural
proofs. We say that C is a C-succinct hitting set for D if
H := {coeff(f ) | f ∈ C} is a hitting set for D. In other words,
D ∈ D is non-zero if and only if there is some f ∈ C such that
D(coeff(f )) 6= 0.



Succinct Hitting Sets

I If D is an algebraic natural proof for C, then D must vanish
on coefficient vectors H.

I Thus, H is NOT a hitting set for D.

I There are algebraic natural proofs if and only if coefficient
vectors of simple polynomials are not hitting sets.

I The existance of barriers is equivalent to whether PIT can be
derandomised using succinct pseudorandomness.
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Equivalence of Barriers and Derandomisation

Theorem
Let M, C,D be defined as in the definition of algebraic natural
proofs. Then there is an algebraic D-natural proof against C if and
only if C is not a C-succinct hitting set for D.



Instantiating

Corollary

Let C be the class of poly (n, d)-sized circuits of total degree
atmost d. Then there is an algebraic poly (N)-natural proof
against C if and only if C is not a poly (n, d)-succinct hitting set for
poly (N)-sized circuits in N variables.

If d = poly (n), then existence of barrier is equivalent to saying
that coefficient vectors of polylog sized circuits are a hitting set for
circuits of polynomial size.
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Succinct Generators

Definition (Succinct Generators)

Let C,M,D be as in the earlier definitions. Let
C′ ⊆ F [x1, . . . , xn, y1, . . . , yl ] be another class of polynomials. A
polynomial map G : Fl → F|M| is a C-succinct generator for D
computable in C′ if the following conditions hold:

I The polynomial G (x, y) :=
∑

xα∈M
Gxα(y)xα is in C′, where Gxα

is the coordinate of G corresponding to α.

I For every α ∈ Fl , the polynomial G (x, α) is in C.

I G is a generator for D, that is D(coeffM(G)) 6= 0 as a
polynomial if and only if D is non-zero. For this, we define
coeffM(G) by treating G as a polynomial in the variables x
over the ring F [y].



Interpretation

I The second and third conditions (when the field is large
enough) are equivalent to the fact that the output
G(x,Fl) =

{
G (x, α) | α ∈ Fl

}
is a C-succinct hitting set for

D in the above sense.

I The first condition adds a succinct indexing condition on the
generator.

I It is clear that succinct generators give rise to succinct hitting
sets. The converse also holds in some sense: if there are
succinct hitting set, then the universal circuit is a succinct
generator.
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Example 1

I Let D be the set of polynomials with monomials of support
size poly (logN).

I A hitting set is {v | supp(v) ≤ poly (logN) = poly (n)}.

I These are coefficient vectors of
∑∏

circuits of size poly (n).
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Example 2

I Let D be the class of polynomials of sparsity atmost s.

I We will use the following result: if f (x) has sparsity ≤ s then
f (x + 1) has a monomial of support ≤ log s.

I A hitting set is {1 + v | supp(v) ≤ poly (logN) = poly (n)}.

I Since 1 = coeff(g) where g =
∏

(xi + 1), this is succinct.
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Main Theorem

Theorem
The set of poly (log s, n)-sized multilinear

∑∏∑
formulas is a

succinct hitting set for N = 2n variate size s computations of the
form

I
∑O(1)∏∑ formulas

I
∑∏∑

formulas of constant trdeg.

I Sparse polynomials

I Commutative roABPs
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