CS748 - ARITHMETIC CIRCUIT COMPLEXITY
 NITIN SAXENA

MID-SEMESTER EXAMINATION (2018-19/II)
POINTS: 50

DATE GIVEN: 13-FEB
DUE: 19-FEB-2019 (6PM)

Rules:

- You are not allowed to discuss.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proof details covered before.

Question 1: [$15+5$ points] Let us introduce a division gate in the arithmetic circuit model. Let $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ be a degree d polynomial computed by a circuit of size s, using $\{+, \times, \div\}$ gates. Show that f has a circuit of size poly $(s d)$ using only the $\{+, \times\}$ gates.

Generalize the above result to any characteristic.
The depth reduction proofs unfold several structural properties of arithmetic circuits. Two of them will be discussed below.

Question 2: [15 points] VNP was defined by taking projections of a circuit $C(\mathbf{x}, \mathbf{y})$, in $\mathbf{y} \in\{0,1\}^{n}$. Analogously, define VNP_{e} by taking the sum of all projections of a formula $F(\mathbf{x}, \mathbf{y})$, in $\mathbf{y} \in\{0,1\}^{n}$.

Show that VNP $=\mathrm{VNP}_{e}$.
Question 3: [$5+10$ points] A circuit C is called weakly-skew if each of its multiplication gate α has two inputs β and γ such that: at least one of the subcircuits C_{β} or C_{γ} is connected to the rest of the circuit only via α.

The class of VP-polynomials computed by a poly-sized weakly-skew circuit is called $\mathrm{VP}_{w s}$.

Page 1 of 2

Show that det is $V P_{w s}$-complete, i.e. det is in this class and that any polynomial in the class is a projection of det.

