CS748 - ARITHMETIC CIRCUIT COMPLEXITY NITIN SAXENA

END-SEMESTER EXAMINATION (2018-19/II)
POINTS: 80

DATE GIVEN: 19-APR
DUE: 23-APR-2019 (5PM)

Rules:

- You are not allowed to discuss.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proof details covered before.

Question 1: [16 points] Suppose a degree d polynomial f has a VP circuit of size s. For any $\Delta>0$, show that f has a product-depth- Δ circuit of size $s^{O\left(d^{1 / \Delta}\right)}$.

Question 2: [14 points] Show that if there is a poly (s)-time blackbox PIT algorithm for size s, degree s circuits, then either $\mathrm{E} \nsubseteq \# \mathrm{P} /$ poly OR there is a polynomial family $\left\{q_{m}\right\}_{m}$ in VNP that requires size $2^{\Omega(m)}$ VP circuits.

Question 3: $[20+30$ points $]$ Recall diagonal depth- 4 circuits, which is an important model to study in VP. Consider

$$
C=\sum_{i \in[k]} c_{i} Q_{i}^{d_{i}} \in \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right],
$$

where $c_{i} \in \mathbb{Q}, d_{i} \in \mathbb{N}$, and Q_{i} 's are polynomials of degree at most δ. In this problem we are interested in the case when δ is quite small (even the constant case is interesting!).
i) Prove that any such C computing the monomial $x_{1} \cdots x_{n}$ satisfies $k=2^{\Omega(n / \delta)}$.
[Hint: Use shifted partials.]
ii) Let C be given as a blackbox (with the promised parameters and size s). Construct a hitting-set in time poly $\left(s^{\delta \cdot \log s}\right)$.
[Hint: Consider the trailing monomial in C.]

