CS748 - ARITHMETIC CIRCUIT COMPLEXITY
 NITIN SAXENA

ASSIGNMENT 4

POINTS: 40

DATE GIVEN: 06-APR-2019
DUE: 18-APR-2019

Rules:

- You are strongly encouraged to work independently. That is the best way to understand \& master the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Submit your solutions, before time, to your TA. Preferably, give the TA a printed copy of your LaTeXed or Word processed solution sheet.
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Problems marked ' 0 points' are for practice.

Question 1: [15 points] Read about the complexity class \#P/poly. \#P is the class of boolean functions F such that there is a non-deterministic poly-time Turing machine M : for every binary input $x, F(x)=$ number of accepting paths in $M(x)$.

If we allow M to also take poly $(|x|)$-bits of an 'advice' string, then F is said to be in \#P/poly.

Consider a polynomial, in $\mathbb{Z}[\mathbf{x}]$,

$$
f\left(x_{1}, \ldots, x_{n}\right)=: \sum_{\mathbf{e} \in \mathbb{N}^{n}} f_{\mathbf{e}} \mathbf{x}^{\mathbf{e}}, \quad f_{\mathbf{e}} \in\{0,1\} .
$$

Show that, if the function $F: \mathbf{e} \mapsto f_{\mathbf{e}}$ is in $\# \mathrm{P} /$ poly, then $f \in \mathrm{VNP}$.

Question 2: [6 points] Show that the Nisan-Wigderson polynomial is in VNP.

Question 3: [8 points] For a finite field \mathbb{F}, PIT is the question of testing whether a circuit C, given in $\mathbb{F}[\mathbf{x}]$, is identically zero. We saw that PIT is in BPP.

What can you say about the problem to test: Whether $C(\mathbf{a})=0$, $\forall \mathbf{a} \in \mathbb{F}^{n}$?

Question 4: [11 points] Consider a circuit family: circuit $C \in \mathbb{F}_{q}[\mathbf{x}]$ of size s. For this family, show the existence of a hitting-set generator with degree $d(s)=\operatorname{poly}(s)$. Try for the best possible $d(s)$.

Question 5: [0 points] Show that, in a homogeneous linear system of equations, there is always a nonzero solution if the number of variables exceeds the number of constraints.

Question 6: [0 points] Show that for a circuit of size resp. degree $\leq s$, the factors have size poly (s).

Question 7: [0 points] Complete the analysis of randomized PIT algorithm in the case of rational field \mathbb{Q}. In particular, the part where we go modulo a random prime.

Question 8: [0 points] Show that $\mathrm{IMM}_{n, d}$ has homogeneous depth-4 complexity $(n d)^{\Theta(\sqrt{d})}$.

