CS748 - ARITHMETIC CIRCUIT COMPLEXITY
 NITIN SAXENA

ASSIGNMENT 3

POINTS: 50

DATE GIVEN: 07-MAR-2019
DUE: 28-MAR-2019

Rules:

- You are strongly encouraged to work independently. That is the best way to understand \& master the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Submit your solutions, before time, to your TA. Preferably, give the TA a printed copy of your LaTeXed or Word processed solution sheet.
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Problems marked ' 0 points' are for practice.

Question 1: [3+4 points] For an $m \times n$ matrix A, over a field, one can define the rank via columns or via rows. Prove that $\operatorname{col}-\mathrm{rk}(A)=$ $\operatorname{row}-\mathrm{rk}(A)$. Thus, we could talk about the $\operatorname{rk}(A)$.

Let B be another $m \times n$ matrix. Prove the subadditivity property: $\operatorname{rk}(A+B) \leq \operatorname{rk}(A)+\operatorname{rk}(B)$.

Question 2: [10 points] Let X be a nonnegative real-valued random variable with mean μ. Let $\delta \in(0,1)$. We are interested in estimating the probability of deviation of X from μ (multiplicatively). Show that:
(1) $\operatorname{Prob}[X>(1+\delta) \mu]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$, and
(2) $\operatorname{Prob}[X<(1-\delta) \mu]<\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}$.

Question 3: [6 points] Let $n=d^{2}$ and consider the n-variate permanent polynomial, per_{d}, over \mathbb{F}_{q}. Prove that $\operatorname{Prob}_{\alpha \in \mathbb{F}_{q}^{n}}\left[\operatorname{per}_{d}(\alpha) \neq 0\right] \geq$ $\frac{1}{4}$.

Question 4: $[9+4+4$ points] We have extensively used the binomial estimates. They originate from Stirling's approximation. Prove that for all $n \in \mathbb{N}$,

$$
\sqrt{2 \pi} \leq \frac{n!}{n^{n+0.5} e^{-n}} \leq e
$$

Using this prove that:
(1) For $f+g=o(h), \ln \frac{(h+f)!}{(h-g)!}=(f+g) \ln h \pm O\left(\frac{(f+g)^{2}}{h}\right)$,
(2) For constants $\alpha \geq \beta>0, \ln \binom{\alpha n}{\beta n}=\alpha n \cdot H(\beta / \alpha)-O(\ln n)$.

Question 5: [10 points] Prove that the homogeneous- $\Sigma \Pi \Sigma$ complexity of det_{d} is $2^{\Omega(d)}$ (over any field).

Question 6: [0 points] What is the formula complexity of determinant?
Question 7: [0 points] Show that width-two ABP is an incomplete model.

Question 8: [0 points] Over constant-size \mathbb{F}_{q}, show that the d^{2}-variate polynomial sym ${ }_{\leq d}$ requires depth-3 circuits of size $d^{\Omega_{q}(d)}$.

Question 9: [0 points] Complete the missing details in the exponential lower bound proof we did in the class; to express determinant as a multilinear depth-3 circuit.

