CS748 - ARITHMETIC CIRCUIT COMPLEXITY
 NITIN SAXENA

ASSIGNMENT 2

POINTS: 50

DATE GIVEN: 02-FEB-2019
DUE: 15-FEB-2019

Rules:

- You are strongly encouraged to work independently. That is the best way to understand \& master the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Submit your solutions, before time, to your TA. Preferably, give the TA a printed copy of your LaTeXed or Word processed solution sheet.
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Problems marked ' 0 points' are for practice.

Question 1: [7 points] Recall the proof of $O(\log d)$-depth reduction, of size- s degree- d circuits, done in the class. Fill in the details showing that it actually gives a poly $(s d)$-time randomized algorithm to reduce depth of a given circuit.

Question 2: [5+5 points] Given a circuit C of size s and depth d, show that the circuit D computing all the first-order partial derivatives of C has depth $O(d)$, and size $O(s)$. [The latter was covered in the class.]

What is the best that you can say if one wanted to compute δ-order partial derivatives of C, for a given $\delta>1$?

Question 3: [13 points] Recall the proof of "det $\in \mathrm{VP}$ " that we saw, in the class, using Newton's identities. It was claimed that a linear system of n equations, that corresponds to a symbolic triangular matrix, can
be solved by $O(\log n)$-depth poly (n)-size arithmetic circuit. Prove this claim.

Question 4: [7 points] Show that, over an integral domain R, the matrix $\left(\alpha_{i}^{j}\right)_{i, j \in[n]}$ is full-rank iff α_{i} 's are distinct in R.

Question 5: [9+4 points] Over a field \mathbb{F}, show that the monomial $x_{1} \ldots x_{n}$ has a $\Sigma \wedge \Sigma$ expression iff $n!\neq 0$ in \mathbb{F}.

Question 6: [0 points] Recall the proof of $O(\log d)$-depth reduction, of size- s degree- d circuits, done in the class. Could the final size bound be made $\operatorname{poly}(s \log d)$ in place of $\operatorname{poly}(s d)$?

Question 7: [0 points] Consider a matrix $A \in R^{n \times n}$, where R is a possibly non-commutative ring. How will you define the determinant polynomial of A ?

How fast can you compute it?
Question 8: [0 points] What is the smallest depth-3 circuit computing the $n \times n$ symbolic determinant? permanent?

