CS748 - ARITHMETIC CIRCUIT COMPLEXITY
 NITIN SAXENA

ASSIGNMENT 1

POINTS: 50

DATE GIVEN: 17-JAN-2019
DUE: 31-JAN-2019

Rules:

- You are strongly encouraged to work independently. That is the best way to understand \& master the subject.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Submit your solutions, before time, to your TA. Preferably, give the TA a printed copy of your LaTeXed or Word processed solution sheet.
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proofs done in the class.
- Problems marked ' 0 points' are for practice.

Question 1: [6 points] Consider the class of polynomial families with circuit complexity $O(1)$. Show that it has uncomputable problems.

Question 2: [6 points] Let \mathbb{F}_{p} be a finite field. Show that the question of existence of a zero of a system of quadratic equations is NP-complete.

Question 3: [10 points] For $n, d \in \mathbb{N}$, show that there exists a d-degree n-variate polynomial f, over the finite field \mathbb{F}_{2}, such that any circuit computing f has size $\Omega\left(\sqrt{\binom{n+d}{d}}\right)$.
(Hint: There is a counting argument.)

Question 4: [13 points] Show a homogenization theorem for ABPs: Prove that if f has an ABP of size s then there is a $O(s d)$-size ABP to compute the degree d homogeneous part of f.

Question 5: [11+4 points] Show that the zeros of a polynomial are "few": For a finite subset $S \subseteq \mathbb{F}$, and a degree d polynomial $f \in$ $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ show that

$$
\operatorname{Pr}_{\alpha \in S^{n}}[f(\alpha)=0] \leq \frac{d}{|S|}
$$

What can you say when the polynomial f is over a commutative ring R that is not a field?

Question 6: [0 point] Show that a size s formula can only compute a polynomial of degree $O(s)$.

What can you say for circuits?
Question 7: [0 point] Show that VP $=\mathrm{VNP}$ implies $\mathrm{P} /$ poly $=\mathrm{NP} /$ poly. What do you do when the circuits use large integers as constants?

Question 8: [0 point] Show that, over rationals, the ring generated by symmetric polynomials is equal to the ring generated by the powersums $p_{i}=\sum_{j \in[n]} x_{j}^{i}$.

Question 9: [0 point] Is the ABP model same as formulas (up to poly-size blowup)?

