CS747 - RANDOMIZED METHODS IN COMPUTATIONAL COMPLEXITY NITIN SAXENA

END-SEMESTER EXAMINATION (2018-19/I)

POINTS: 40

DATE GIVEN: 15-NOV
DUE: 20-NOV-18 (DAY-END)

Rules:

- You are not allowed to discuss.
- Write the solutions on your own and honorably acknowledge the sources if any. http://cse.iitk.ac.in/pages/AntiCheatingPolicy. html
- Clearly express the fundamental idea of your proof/ algorithm before going into the other proof details. The distribution of partial marks is according to the proof steps.
- There will be a penalty if you write unnecessary or unrelated details in your solution. Also, do not repeat the proof details covered before.

Question 1: [13 points] Suppose boolean function f is in E with $\mathrm{H}_{\text {avg }}(f) \geq n^{4}$. Then, the function $g: z_{1} z_{2} \mapsto z_{1} \circ z_{2} \circ f\left(z_{1}\right) \circ f\left(z_{2}\right)$, for $z_{1}, z_{2} \in\{0,1\}^{\ell / 2}$, is an $(\ell+2)$-prg.

Question 2: [15 points] An ecc $E:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is called ϵ-biased if for all nonzero $x \in\{0,1\}^{n}, \frac{\#\left\{i \mid E(x)_{i} \neq 0\right\}}{m} \in\left(\frac{1}{2}-\epsilon, \frac{1}{2}+\epsilon\right)$.

For every $\epsilon \in\left(0, \frac{1}{2}\right)$, prove the existence of an ϵ-biased linear errorcorrecting code $E:\{0,1\}^{n} \rightarrow\{0,1\}^{\text {poly }(n / \epsilon)}$ with poly-time encoding and decoding algorithms.

Let us explore some fundamental concepts from cryptography.
Function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is called one-way if

- f is poly-time computable, and
- for all randomized poly-time algorithms $A, \forall c>0$, for all sufficiently large n,

$$
\operatorname{Prob}\left[A\left(f(x), 1^{n}\right) \in f^{-1}(f(x))\right]<n^{-c},
$$

where the probability is over $x \in\{0,1\}^{n}$ and the random bits of A.

Predicate $b:\{0,1\}^{*} \rightarrow\{0,1\}$ is called hard-core of a function f if

- f, b are poly-time computable, and
- for all randomized poly-time algorithms $A, \forall c>0$, for all sufficiently large n,

$$
\operatorname{Prob}[A(f(x))=b(x)]<\frac{1}{2}+n^{-c}
$$

where the probability is over $x \in\{0,1\}^{n}$ and the random bits of A.

Question 3: $[4+4+4$ points] Prove the following facts:
(1) If there is a one-way function then there is a length-preserving one-way function.
(2) If b is hard-core (of some f) then

$$
\left|\operatorname{Prob}\left[b\left(U_{n}\right)=0\right]-\operatorname{Prob}\left[b\left(U_{n}\right)=1\right]\right|=n^{-\omega(1)} .
$$

(3) If b is hard-core of some one-to-one function f, then f is oneway.
[0 points] For a one-way function f is there a hard-core predicate b ?

