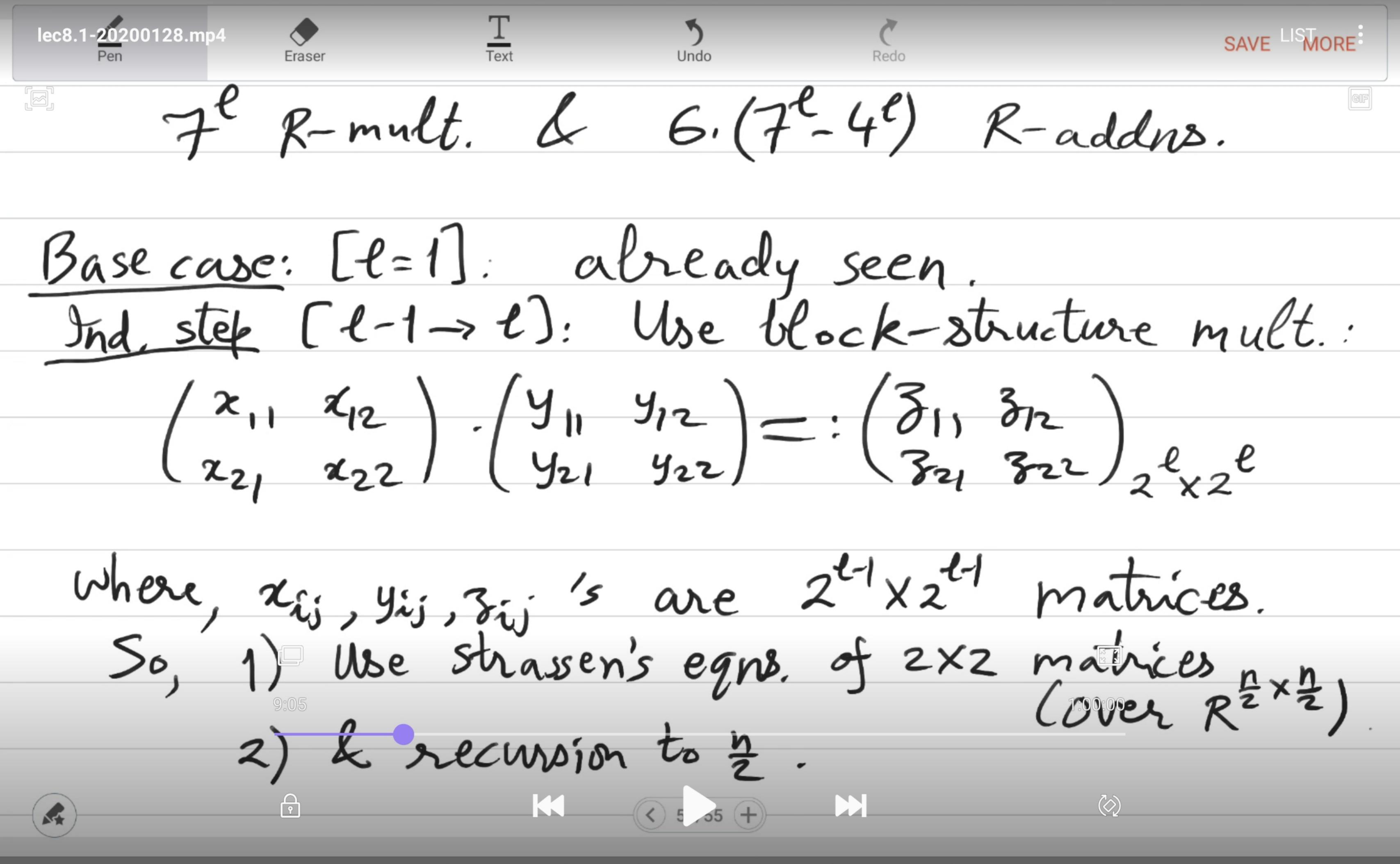
Matrix Multiplication (MM) - Given two matrices $x = (x_{ij})_{i,j \in [n]} \&$ $y = (y_{ij})_{i,j \in [n]}$ over R. We want to compute x·y=: z=(z:). $D = \sum_{k \in [n]} x_{ik} \cdot y_{kj}$ D Naively, MM requires n³ R-mult. & h²(n-1) R-addn.

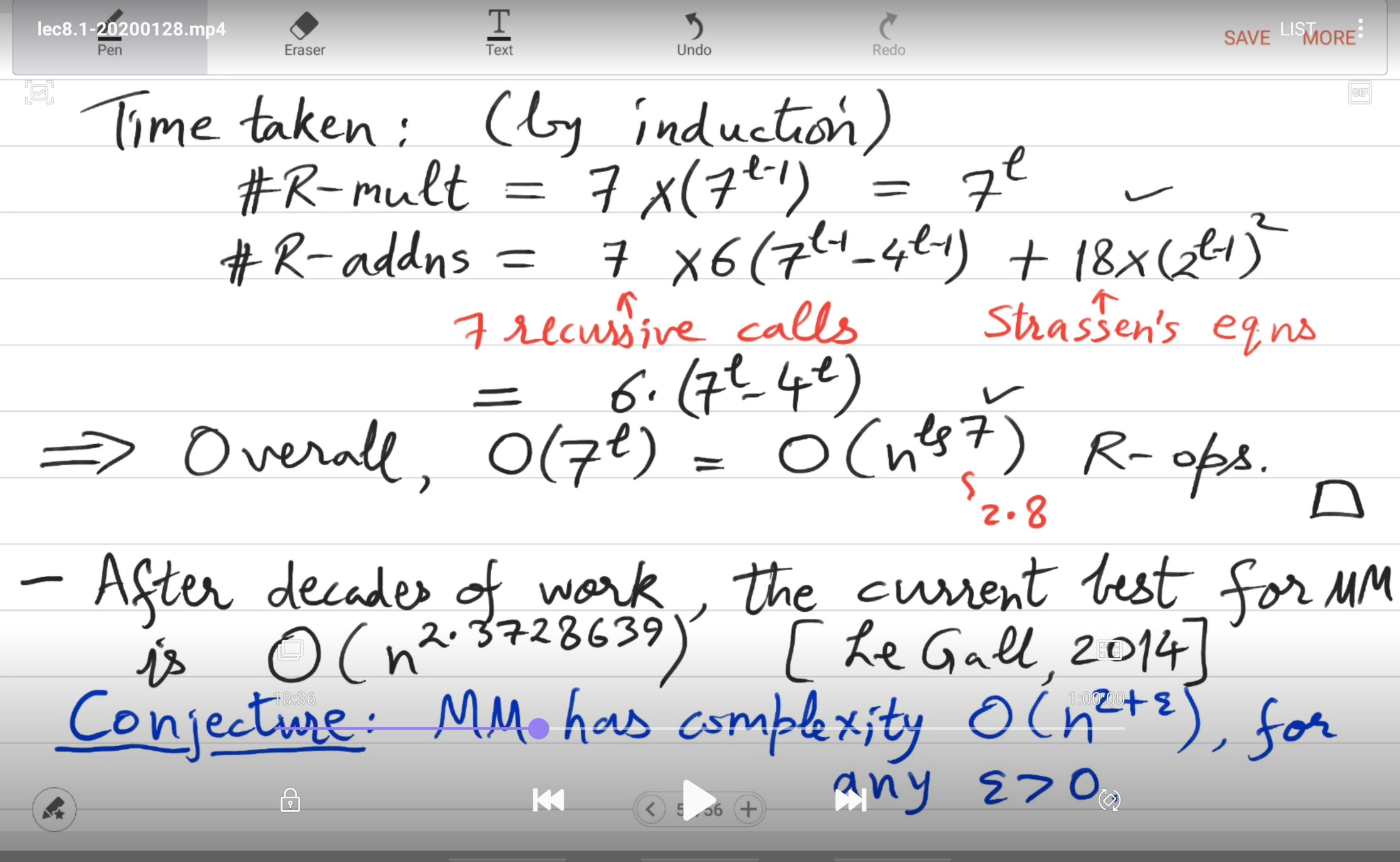
- <u>Qn</u>: Could we reduce R-mult. at the cost of R-addn. ? (Say, n fixed ?) D Strassen (1969) showed how to multiply 2X2 matrices using 2³-1=7 mult. (but 18 addn.). The 7 products: $k_1 = \chi_{22}(-y_{11} + y_{21})$ $\dot{p}_{1} = (\chi_{1} + \chi_{2})(y_{1} + y_{2})$ $k_{5} = (n_{1} + n_{12}) y_{22}$ $k_{2} = (\pi_{21} + \pi_{22}) y_{11}$ $= (-x_{1} + x_{2})(y_{1} + y_{2})$ $p_3 = \chi_1 (y_{12} - y_{22})$

 $b_{1} = (x_{12} - x_{22})(y_{21} + y_{22})$

 $D x \cdot y = 3 = (p_1 + p_4 - p_5 + p_7 + p_3 + p_5)$ $p_2 + p_4 + p_1 + p_3 - p_2 + p_6)$ - Since, the above holds for any ring R we can apply this to design a recursive algorithm for MM. [Use halving of h.] Iheoren [Strassen'69]: MM takes O(n^{g7}) R-ops.

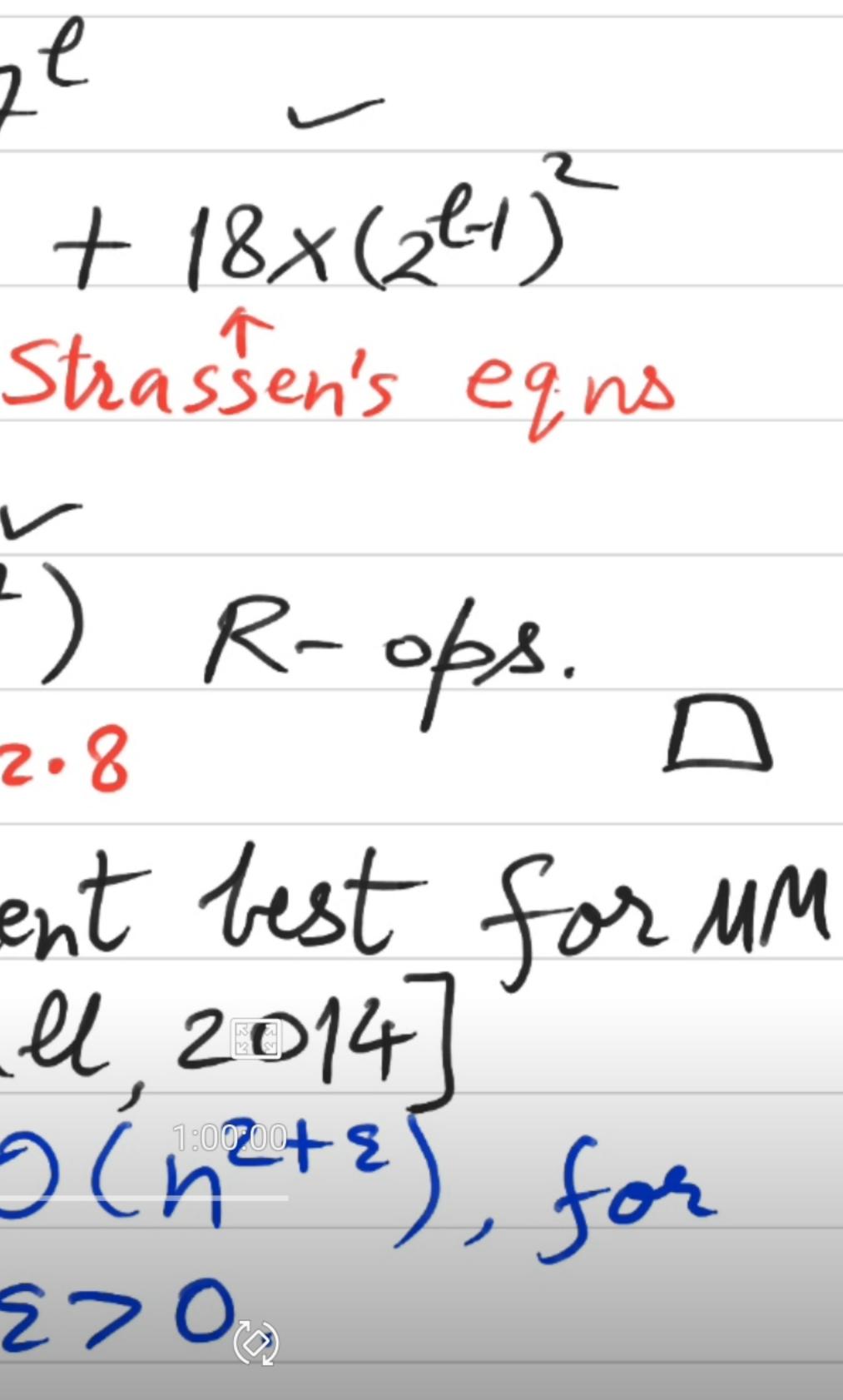
Pen Eraser Text Undo Redo SAVE MORE $D \mathbf{x} \cdot \mathbf{y} = \mathbf{z} = \begin{pmatrix} \mathbf{p}_1 + \mathbf{p}_4 - \mathbf{p}_5 + \mathbf{p}_7 & \mathbf{p}_3 + \mathbf{p}_5 \\ \mathbf{p}_2 + \mathbf{p}_4 & \mathbf{p}_1 + \mathbf{p}_3 - \mathbf{p}_2 + \mathbf{p}_6 \end{pmatrix}$ - Since, the above holds for any ring R we can apply this to design a recursive algorithm for MM. [Use halving of h.] <u>Jheoren</u> [Strassen'69]: MM takes O(n^{G7}) R-ops. <u>Pf</u>: Let x, y ∈ R^{n×n}, n=: 2^e We'll show by induction on *e* that we can do MM (54/54 + in

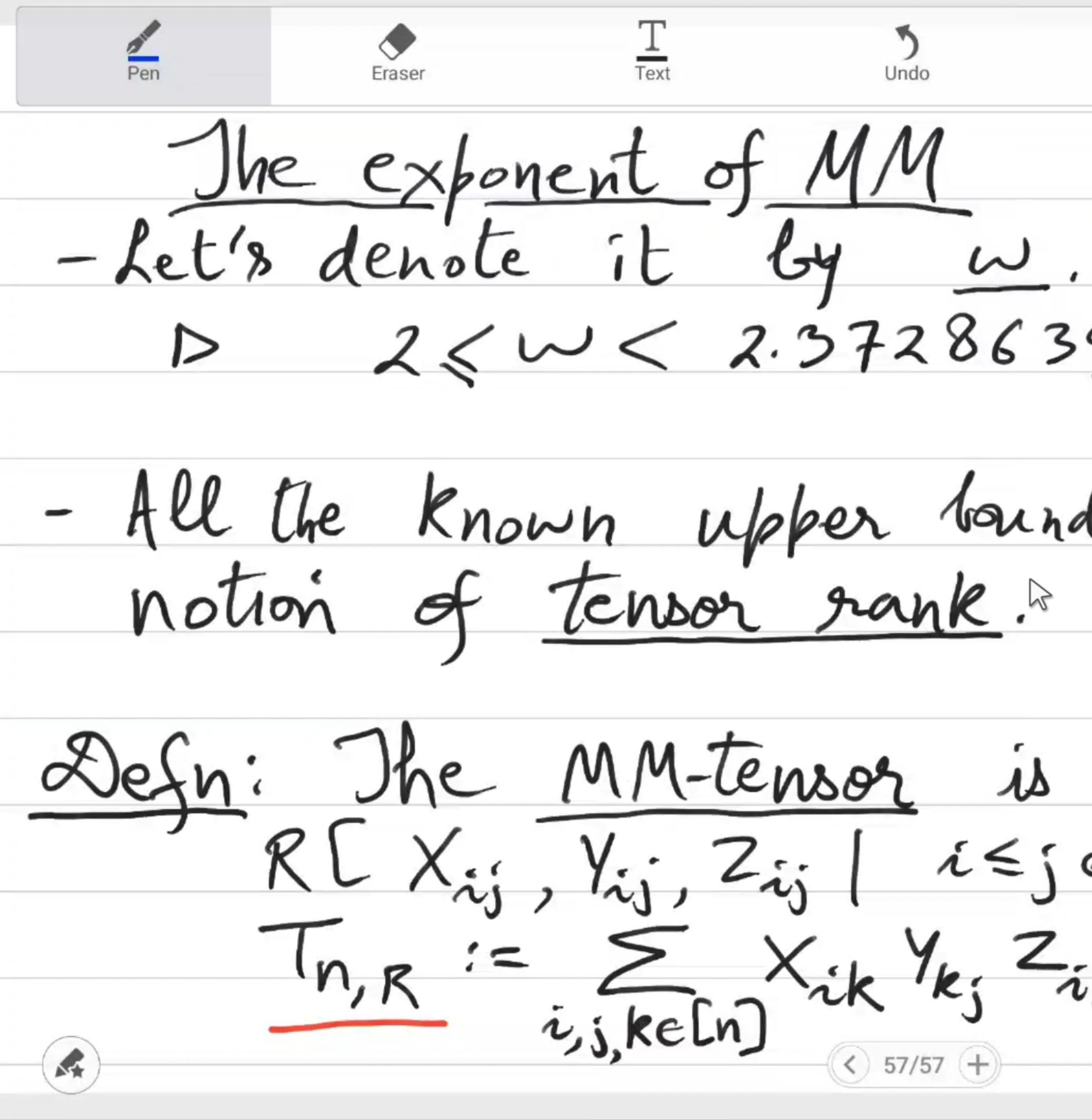




Text Undo Time taken: (by induction) $\#R-mult = 7 x(7^{-1}) =$ $\# R - addns = 7 \times 6(7^{(-1)} + 18 \times (2^{(-1)}))$ Freussive calls Strassen's egns $= 6.(7^{4}-4^{4})$ $O(7^{\ell}) = O(n^{\ell} 7)$ 2.8

SAVE LISMORE



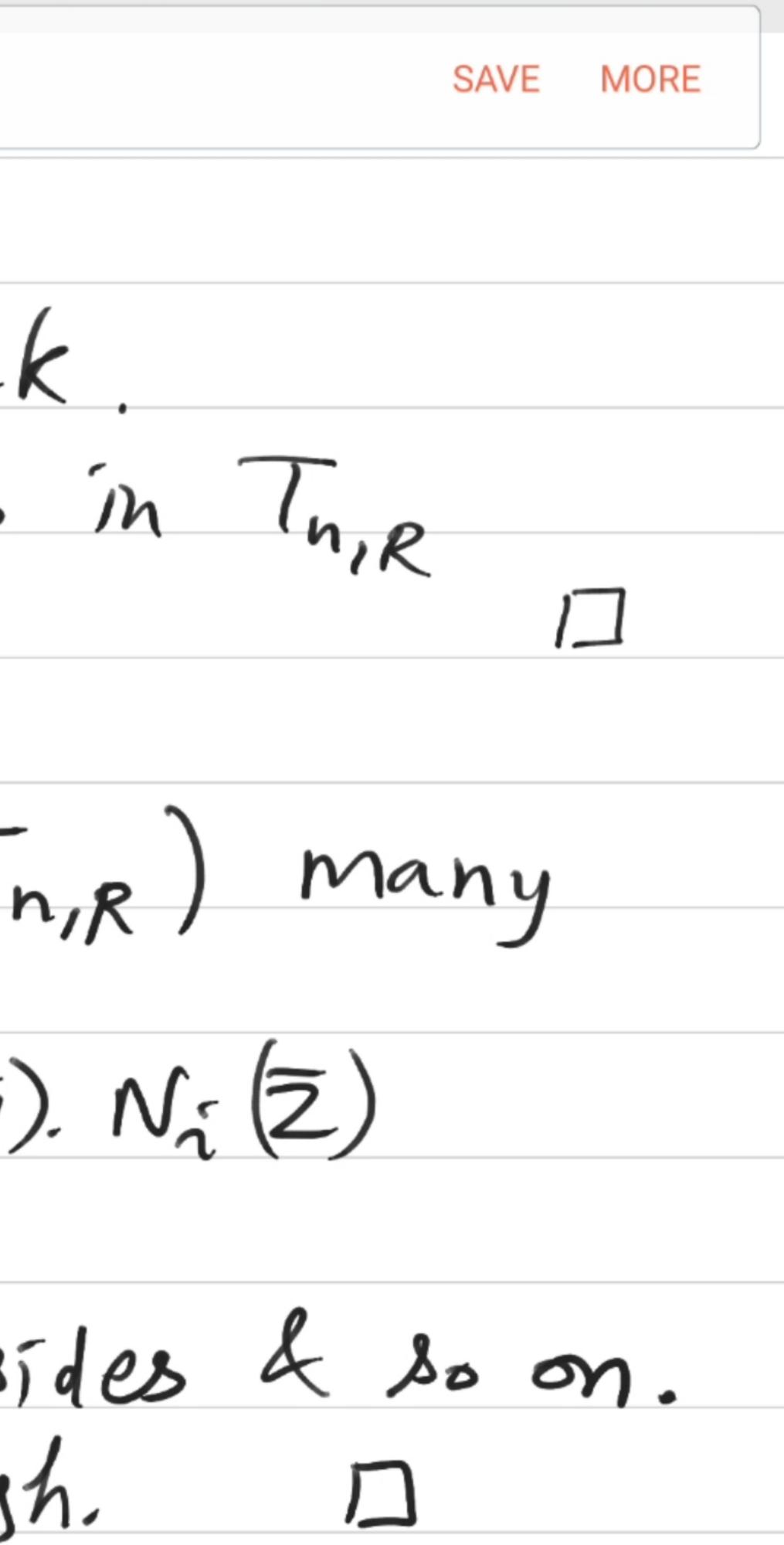


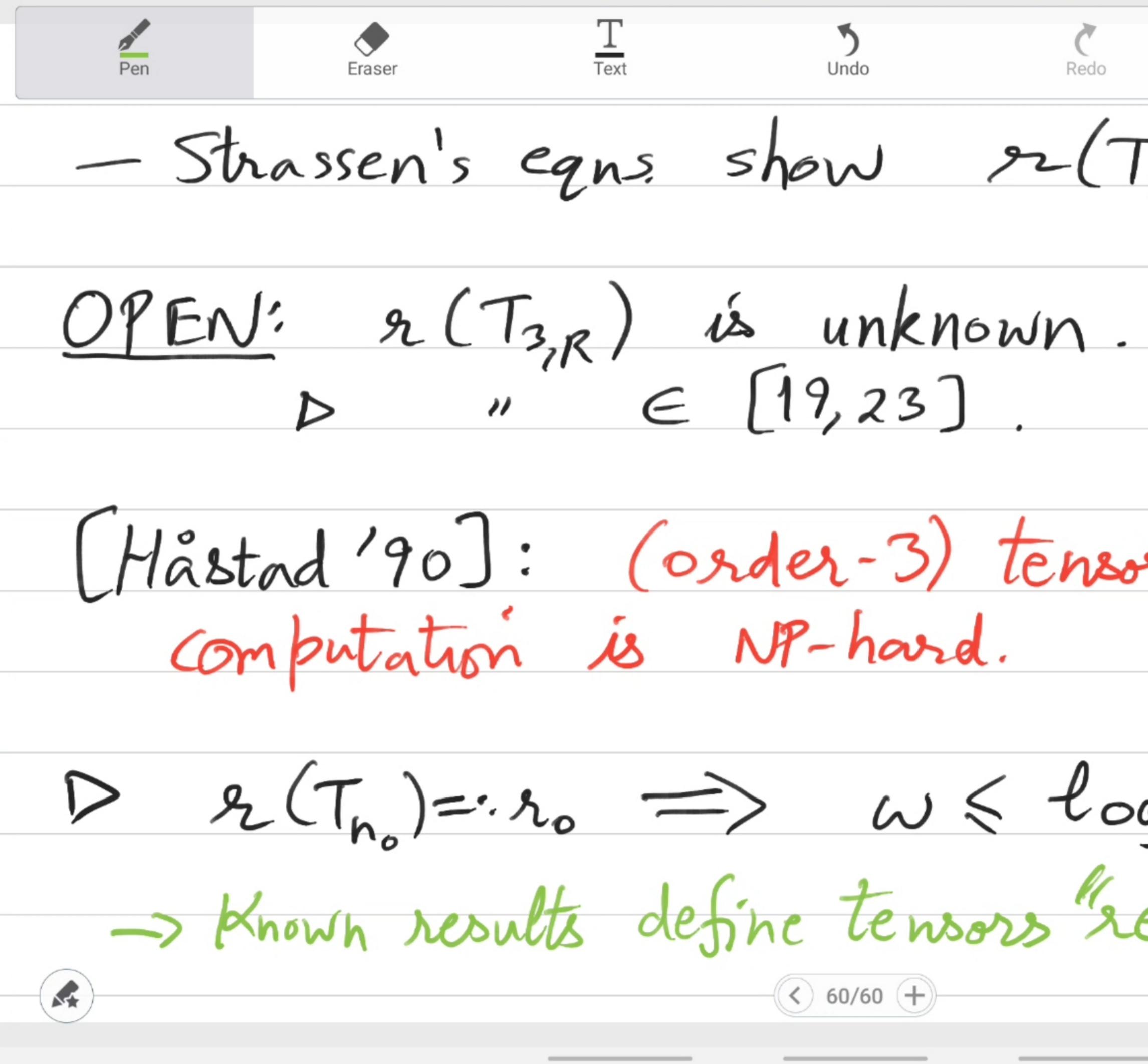
SAVE MORE Undo $P 2 \leq w < 2.3728639$. - All the known upper bounds on w use the notion of tensor rank.

Defn: The MM-tensor is a polynomial in R[X_{ij}, Y_{ij}, Z_{ij}] i≤j∈[n] namely: Tn, R := ∑ Xik Yk; Z_{ij} (cubic poly.) i,j,ke[n] (57/57 +)

Pen Eraser Text Undo Redo SAVE MORE $\begin{array}{l} \mathcal{R}, \ \mathcal{T}_{Z,R} = Z_{11}(X_{11}Y_{11} + X_{12}Y_{21}) + \\ Z_{12}(X_{11}Y_{12} + X_{12}Y_{22}) + Z_{21}(X_{21}Y_{11} + X_{22}Y_{21}) \end{array}$ + Z22 (X2, Y12 + X22 Y22). Defn: Rank r(T) of tensor T is the least rst. Flinear forms $L_i \in R[X]$, $M_i \in R[Y]$, Nier[z], ier] sahifying: $T = \sum_{i} L_{i} \cdot M_{i} \cdot N_{i}$ -> order-2 tensor; T(x,y)= E Li(x). M₄(y) (\$ 58/58 + [2xercise: Matrix Rk?]

Text Eraser Undo $D h \langle \mathcal{P}(T_{n,R}) \langle h \rangle$ Pf sketch: [≤n³]: by defn of rk. [≥n³]: Fixing variables in Thir gives a contradiction. $\frac{Claim:}{R-multiplications.} M_{n} can be done in \mathcal{P}(T_{n,R}) many \\ R-multiplications. \\ \underline{PF:} \cdot Say, T_{n,R} = \sum_{i \in [r]} L_{i}(\overline{x}) \cdot M_{i}(\overline{y}) \cdot N_{i}(\overline{z}) \\ \underset{i \in [r]}{Li(\overline{x})} \cdot M_{i}(\overline{y}) \cdot N_{i}(\overline{z})$ • Extract the coefficient of Z₁₁ both sides & so on.
• Products {L_i·M_i | i∈ [r] } are enough.





Undo - Strassen's eqns show $\mathcal{P}(T_{2,R}) \leq 7$. [Håstad '90]: (order-3) tensor rank $\mathcal{P} \mathcal{L}(T_{h_0}) = \mathcal{L}_{h_0} \Longrightarrow \quad \omega \leq \log_{h_0} \mathcal{L}_{h_0}$ -> Known results define tensors related to "Th,R" < 60/60 (+)-

