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Motivational Problems

Ideal Membership Problem
Given f ∈ k[x1, x2, · · · xn] and an ideal I =< f1, f2, · · · , fn >, determine if
f ∈ I .

Solving Polynomial Equations
Find all solution in kn of a system of polynomial equations
fi (x1, x2, · · · , xn) = 0. In other words, given an ideal I , compute V (I ).

Implicitization Problem
Given a parametric solution of xi ’s in terms of variables ti i.e.
xi = gi (t1, t2, · · · , ti ), find a set of polynomials fi such that
xi ∈ V (< f1, f2, · · · , fn >). It can be easily observed that this is
essentially the inverse of the above question i.e given V (I ) compute I .

But an immediate question arises.
How do we even store these ideals which are possibly of infinite size ?
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Noetherian Ring

A Noetherian ring is a ring that satisfies the ascending chain condition on
ideals; that is, given any chain of ideals:

I1 ⊆ · · · ⊆ Ik−1 ⊆ Ik ⊆ Ik+1 ⊆ · · ·

there exists an n such that: In = In+1 = · · · In+k ∀k ≥ 0

Equivalently, every ideal I in R is finitely generated, i.e. there exist
elements a1, ..., an in I such that I =< a1, a2, · · · , an >

Theorem (Hilbert Basis Theorem)

R is Noetherian ⇒ R[x ] is Noetherian
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Special Cases

R = k[x ] i.e. n = 1.
We know that k[x ] is a PID. Moreover, it is a Euclidean domain and
hence, a polynomial g ∈ < f > iff f |g .

Linear Algebra techniques can be used efficiently when the degree of the
polynomials is restricted to 1 irrespective of n.

We will generalize both the idea of division and a basis to solve the
problem for the general case.
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Monomial Ordering

We will use the notation xα to represent
∏n

i xαi
i where α = (α1, α2, · · · , αn).

Definition (admissible ordering of monomials)

A total ordering on all monomials is an ordering for which holds:

xα < xβ ⇒ ∀δ: xαxδ < xβxδ.

∀α: 1 < xα.

A few popular orderings are:

1. Lexicographical ordering: In which we compare xα and xβ thus: if the
first k − 1 indices agree, αi = βi , i ≤ k − 1 and the kth differ, we decide
based on that index αk ≤ βk ⇒ α ≤ β, and the reverse.

2. Graded lexicographical order: in which the order is by the degree of the
monomials and ties are broken using lexicographical ordering.
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Preliminary Definitions

Let f =
∑

i aix
αi be a polynomial. Associated with it are the following

definitions

Definition (Multidegree)

multideg(f ) = maxiαi

Definition (Leading Coefficient)

LC(f ) = amultideg(f )

Definition (Leading Monomial)

LM(f ) = xmultideg(f )

Definition (Leading Term)

LT (f ) = LC(f )LT (f )
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Example

Let f = 7x3y 2z + 2x2yz4 + 9xy 4 + 3yz7 + 2.

Using the lex ordering,

multideg(f ) = (3, 2, 1)

LC(f ) = 7

LM(f ) = x3y 2z

LT (f ) = 7x3y 2z

Whereas using the grlex ordering we would get,

multideg(f ) = (0, 0, 7)

LC(f ) = 3

LM(f ) = yz7

LT (f ) = 3yz7
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Division Algorithm
The division algorithm is essentially the same as the one in the univariate case
but there is a small change which has to be made. To see this, let us look at
an example,

a1 : x + y
a2 : 1 r

xy + 1
) x2y + xy 2 + y 2

y 2 + 1
x2y − x

xy 2 + x + y 2

xy 2 − y

x + y 2 + y → x

y 2 + y

y 2 − 1

y + 1

1 → x + y

0 → x + y + 1
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Division Algorithm

Algorithm 1: Multi Divide(f , f1, f2, · · · fn)

1 a1 := 0; a2 := 0; · · · an := 0; r = 0
2 p := f
3 while p 6= 0 do
4 i := 1
5 divisionoccured := false
6 while i ≤ s AND divisionoccured := false do
7 if LT (fi )|p then
8 ai := ai + LT (p)/LT (fi )
9 p := p − (LT (p)/LT (fi ))fi

10 divisionoccured := true

11 else
12 i := i + 1

13 if divisionoccured := false then
14 r := r + LT (p)
15 p := p − LT (p)

16 return a1, a2, · · · , an, r ;
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Are we done? NO!!

The natural algorithm to check if f belongs to the ideal generated by fi s
would be to check if remainder of f = 0 on division with the basis
elements.

Although this gives us a sufficient condition, it is not a necessary one. To
see this, observe that the output of the algorithm depends on the order of
input and the ordering used. For example,

Multi Divide(xy 2 − x , xy + 1, y 2 − 1) = (y , 0,−(x + y))

Multi Divide(xy 2 − x , y 2 − 1, xy + 1) = (y 2 − 1, 0, 0)

We want to find a ”good” basis for a given ideal which preserves the
property that nonzero remainder implies non-membership also called the
remainder property

Does such a basis exist ? Is it computable ?
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Gröbner basis

Definition

Fix a monomial order. A finite subset G = {g1, g2, · · · , gn} of an ideal I is
said to be a Gröbner basis (or standard basis) if

< LT (g1), LT (g2) · · · , LT (gn) > = < LT (I ) >

Theorem

Let G be a Gröbner basis for an ideal I and let f ∈ k[x1, · · · , xn]. Then there is
a unique remainder r on division by G with the following two properties:

1. No term of r is divisible by any of LT (g1), · · · LT (gn).

2. There is g ∈ I such that f = g + r .
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Syzygy Polynomials

Definition

For two monomials xα, xβ , LCM(xα, xβ) = xγ where γi = max(αi , βi )

Definition

If LCM(LM(f ), LM(G)) = xγ , S-polynomial is defined as,

S(f , g) =
xγ

LT (f )
f − xγ

LT (g)
g

Lemma

Suppose we have a sum
∑n

i=1 ci fi , where ci ∈ k and multideg(fi ) = α. If
multideg(

∑n
i=1 ci fi ) < α , then

n∑
i=1

ci fi =
n∑

i=1

c ′ijS(fi , fj)
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Buchberger’s Criterion

Theorem (Buchberger ’65)

Let I be a polynomial ideal. Then a basis G = g1, · · · gn for I is a Gröebner
basis for I if and only if for all pairs i 6= j , the remainder on division of
S(gi , gj) by G is zero.

Algorithm 2: Buchberger(F)

1 Start with G:= F
2 do
3 G ′ := G
4 for pair of polynomials f1, f2 ∈ G ′ do
5 h := remainder [G , S(f1, f2)]
6 if h 6= 0 then
7 G = G ∪ {h}

8 while G 6= G ′;
9 output G
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Using Gröner Basis

System of polynomials

- It can be shown that computing Gröbner basis
using the lex ordering gives a basis where the variables are eliminated
successively. Also, the order of elimination seems to correspond to the
ordering of the variables.Example, the Gröbner basis corresponding to

I = (x2 + y 2 + z2 − 1, x2 + Z 2 − y , x − z)

G = (x − z ,−y + 2z2, z4 +
1

2
z2 − 1

4
)

The Implicitization Problem Similarly, we can eliminate the t variables
and the rest of the equations define the ideal we require. Example,

I = (t4 − x , t3 − y , t2 − z)

G = {t2 + z , ty − z2, tz − y , x − z2, y 2 − z3}

Thus, (x − z2, y 2 − z3) is the required ideal.
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Complexity

The worst case time complexity of Buchberger’s
algorithm is O(22n ) time which restricts its usage.

Ideal membership problem is EXPSPACE-complete
[Mayr-Meyer’82]

Polynomial System solving is in PSPACE . [Koll´ar’88,
Fitchas-Galligo’90]

However, better algorithms can be constructed for specific
purposes. For example, computing a Gröbner basis for
the radical of a zero dimensional Ideal takes randomized
O(d), deterministic O(dn) time. [Lakshman ’90]

Linear Algebra can also be used to compute Gröbner
Basis by using Macaulay Matrices [Macaulay 1902].

Faster Algorithms by Jean-Charles Faugére (F4,F5) for a
certain (broad) class of systems called regular sequences
in singly exponential time. Quite fast in the general case
as well, used in computer algebra systems.
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Applications

Effective computation with (holonomic) special functions

Solving Diophantine equations (Pell)

Automated geometry theorem proving.

Coding theory

Signal and image processing

Robotics

Graph coloring problems e.g. Sudoku puzzles

Extrapolating ”missing links” in palaeontology, and phylogenetic tree
construction
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